Computing Igusa Class Polynomials

Marco Streng

Universiteit Leiden, Microsoft Research

UW Number Theory and Computation Seminar Seattle, Sinterklaasavond 2008

Igusa class polynomials

Igusa class polynomials are the genus 2 analogue of the classical Hilbert class polynomial.

Overview:

- The Hilbert class polynomial
- What is it?
- Two applications
- How to compute it?
- What is genus 2?
- Igusa class polynomials
- What are they?
- Two applications
- How to compute them?

Complex multiplication

- An elliptic curve E over a field k (of characteristic $\neq 2$) is a smooth projective curve given by $y^{2}=x^{3}+a x^{2}+b x+c$. It has an algebraic group law.
- Let $\operatorname{End}(E)$ be the ring of algebraic group endomorphisms.
- If k has characteristic 0 , then $\operatorname{End}(E)$ is either \mathbf{Z} or an order \mathcal{O} in an imaginary quadratic number field. In the second case, we say that E has complex multiplication (CM) by \mathcal{O}.
- Example: $E: y^{2}=x^{3}+x$ over \mathbf{C} has an endomorphism $(x, y) \mapsto(-x, i y)$, where $i^{2}=-1$.
We call this endomorphism i and notice $i^{2}=-1$.
The endomorphism ring is $\operatorname{End}(E)=\mathbf{Z}[i]$.

Analytic complex multiplication

- Every elliptic curve E over \mathbf{C} is complex analytically isomorphic to \mathbf{C} / Λ for some lattice $\Lambda \subset \mathbf{C}$.
- Let $K \subset \mathbf{C}$ be an imaginary quadratic number field. There is a bijection

$$
\begin{aligned}
\left\{\text { Elliptic curves over } \mathrm{C} \text { with } \mathrm{CM} \text { by } \mathcal{O}_{K}\right\} / & \cong \mathrm{Cl}_{K} \\
\mathrm{C} / \mathfrak{a} & \leftarrow[\mathfrak{a}]
\end{aligned}
$$

where Cl_{K} is the class group of K.

The j-invariant

- The j-invariant is a rational function in the coefficients of the (Weierstrass) equation of an elliptic curve.
- For any field k, there is a bijection

$$
\begin{aligned}
\{\text { elliptic curves } / k\} /(\bar{k} \text {-isom. }) & \leftrightarrow k, \\
E & \mapsto \text { E.j_invariant }(), \\
\text { EllipticCurve }(\mathrm{j}) & \leftarrow j .
\end{aligned}
$$

- Up to \bar{k}-isomorphism, computing E and computing $j(E)$ is the same thing.

The Hilbert class polynomial

Definition

The Hilbert class polynomial H_{K} of an imaginary quadratic number field K is

$$
H_{K}=\prod_{\left\{E / \mathbf{C}: \operatorname{End}(E) \cong \mathcal{O}_{K}\right\}}(X-j(E)) \in \mathbf{Z}[X] .
$$

Examples:

$$
\begin{aligned}
H_{\mathbf{Q}(i)} & =X-1728 \\
H_{\mathbf{Q}(\sqrt{-23})} & =X^{3}+3491750 X^{2}-5151296875 X+12771880859375
\end{aligned}
$$

Application: constructing class fields

Definition

The Hilbert class field \mathcal{H}_{K} of a field K is the maximal unramified abelian extension of K.

The Galois group $\operatorname{Gal}\left(\mathcal{H}_{K} / K\right)$ is naturally isomorphic to Cl_{K} (Artin isomorphism).

Theorem

Let K be imaginary quadratic. The Hilbert class polynomial H_{K} is irreducible and normal over K and its roots generate \mathcal{H}_{K} over K. The action of Cl_{K} on the roots of H_{K} is given by $[\mathfrak{a}] j(\mathbf{C} / \mathfrak{b})=j\left(\mathbf{C} / \mathfrak{a}^{-1} \mathfrak{b}\right)$.

By computing the CM curves and their torsion points, we can also compute the ray class fields of K.

Application: curves of prescribed order

- Let q be a prime. For any integer t such that $|t|<2 \sqrt{q}$, there exists an elliptic curve E / \mathbf{F}_{q} with $\# E\left(\mathbf{F}_{q}\right)=q+1-t$.
- Let $D=t^{2}-4 q$. The polynomial $\left(H_{\mathbf{Q}(\sqrt{D})} \bmod q\right) \in \mathbf{F}_{q}[X]$ splits completely into linear factors, and every zero $j_{0} \in \mathbf{F}_{q}$ is the j-invariant of such an elliptic curve E.
- Computing all curves with j-invariant j_{0} is easy, and so is checking which one has group order $q+1-t$.
- Conclusion: (prime $q,|t|<2 \sqrt{q})+H_{\mathbf{Q}\left(\sqrt{t^{2}-4 q}\right)} \rightsquigarrow$ EC of order $q+1-t$.

Computing the Hilbert class polynomial

- The Hilbert class polynomial is huge: the degree h_{K} grows like $\left|\Delta_{K}\right|^{\frac{1}{2}}$, as do the logarithms of the coefficients.
- Three algorithms:
- Complex analytic method,
- p-adic, [Couveignes-Henocq 2002, Bröker 2006]
- Chinese remainder theorem. [CNST 1998, ALV 2004]
- Under GRH or heuristics, each takes time $O\left(\left|\Delta_{K}\right|^{1+\epsilon}\right)$, essentially linear in the size of the output.
- MAGMA: HilbertClassPolynomial(K) NOT Sage: K.hilbert_class_polynomial()
- Recent improvements by [BBEL 2008, Sutherland 2008] turned CRT (the underdog) into the record holder:
$\Delta_{K}=-102,197,306,669,747, h_{K}=2,014,236$.

Part 2: genus 2

Definition

A curve of genus 2 is a smooth geometrically irreducible curve of genus 2.

Definition (char. $\neq 2$)

A curve of genus 2 is a smooth projective curve that has an affine model

$y^{2}=f(x), \quad \operatorname{deg}(f) \in\{5,6\}$,
where f has no double roots.

Sage / MAGMA:

HyperellipticCurve(f)

How to add points on a curve

- Points on a curve C / k can be added inside the divisor class group

$$
\operatorname{Pic}^{0}(C)=\operatorname{Div}^{0}(C) / \operatorname{div}\left(k(C)^{*}\right)
$$

- For an elliptic curve $E, E(k) \leftrightarrow \operatorname{Pic}^{0}(E), P \mapsto[P-\infty]$.
- For a curve of genus 2 , if we fix a divisor D_{0} of degree 2 , then for every every divisor $D \in \operatorname{Div}^{0}(C)$, there are points P_{1}, P_{2} on C such that $[D]=\left[P_{1}+P_{2}-D_{0}\right]$.

Genus 2 addition law

$$
\left[P_{1}+P_{2}-2 \infty\right]+\left[Q_{1}+Q_{2}-2 \infty\right]=-\left[R_{1}+R_{2}-2 \infty\right]=\left[S_{1}+S_{2}-2 \infty\right]
$$

Abelian varieties

- The Jacobian $J(C)$ of a curve C / k of genus g is a g-dimensional group variety with $J(C)(k)=\operatorname{Pic}^{0}(C)$ (if $C(k) \neq \emptyset)$.
- The Jacobian is a "principally polarized abelian variety".
- For an elliptic curve $E: J(E)=E$.
- Every principally polarized abelian surface over \mathbf{C} is either the Jacobian of a unique curve C / C of genus 2 or the (polarized) product of two elliptic curves, but not both.
- Sage: C.jacobian()

MAGMA: Jacobian(C)

Complex multiplication

- An elliptic curve (dim. 1 AV) has CM if its endomorphism ring is an order in an imaginary quadratic number field.
- An abelian surface (dim. 2 AV) has CM if its endomorphism ring is an order in a CM field of degree 4.
- A CM field of degree 4 is a totally imaginary quadratic extension K of a real quadratic field.
- It is called primitive if it does not contain an imaginary quadratic subfield.
- Fact: any principally polarized abelian surface with CM by a primitive CM field is not a product of elliptic curves, hence is the Jacobian of a unique curve of genus 2 .

The analogue of the j-invariant

Let k be an algebraically closed field.

- Every elliptic curve over k can be written in Legendre form

$$
y^{2}=x(x-1)(x-\lambda)
$$

- Every curve of genus 2 over k can be written in Rosenhain form

$$
y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)
$$

- Conclusion: the "family" of elliptic curves is one-dimensional, that of curves of genus 2 is three-dimensional.

Igusa invariants

- Igusa gave a genus 2 analogue of the j-invariant.
- Let k be an algebraically closed field of characteristic different from 2, 3,5. (Actually, Igusa's invariants work for any characteristic.)
- Igusa gives polynomials $I_{2}, I_{4}, I_{6}, I_{10}$ in the coefficients of C. MAGMA: IgusaClebschInvariants (C) not (yet?) in Sage.
- These give a bijection between the set of isomorphism classes of genus 2 curves over k and k-points $\left(I_{2}: I_{4}: I_{6}: I_{10}\right)$ in weighted projective space with $I_{10} \neq 0$.
- Mestre's algorithm computes an equation for the curve from the invariants.
MAGMA: HyperellipticCurveFromIgusaClebsch(I)

Igusa class polynomials

- One simplifies by looking at the so-called absolute Igusa invariants

$$
i_{1}=\frac{l_{2}^{5}}{l_{10}}, \quad i_{2}=\frac{I_{2}^{3} I_{4}}{l_{10}} \quad \text { and } \quad i_{3}=\frac{I_{2}^{2} I_{6}}{l_{10}} .
$$

- Points $\left(i_{1}, i_{2}, i_{3}\right)$ with $i_{1} \neq 0$ correspond bijectively to points $\left(I_{2}: I_{4}: I_{6}: I_{10}\right)$ with $I_{2} I_{10} \neq 0$ and hence to isomorphism classes of curves with $I_{2} \neq 0$.

Definition

The Igusa class polynomials of a primitive quartic CM field K are the polynomials

$$
H_{K, n}(X)=\prod_{\left\{C / \mathbf{C}: \operatorname{End}(J(C)) \cong \mathcal{O}_{K}\right\} / \cong}\left(X-i_{n}(C)\right) \quad \in \mathbf{Q}[X], \quad n \in\{1,2,3\} .
$$

Application: computation of class fields.

- In general, CM theory does not generate class fields of the CM field K, but of the reflex field K^{\dagger}.
- If K is primitive, then $K^{\dagger \dagger}=K$.
- In general, CM theory does not allow you to generate the full Hilbert class field or ray class fields:
- Which fields can be obtained is described by Shimura.
- Question: can we use dimension 2 CM as an ingredient for efficient computation of class fields?

Application: prescribed number of points

- Let q be a prime and let π be a Weil q-number (i.e. an algebraic integer with all complex absolute values equal to $q^{\frac{1}{2}}$) that generates a primitive quartic CM field.
- If the middle coefficient of f^{π} is coprime to q, then

$$
\begin{gathered}
\text { (quartic } q \text {-number } \pi)+\left(H_{\mathbf{Q}(\pi), n}\right)_{n} \\
\downarrow \\
\left(\begin{array}{c}
\text { a curve } C / \mathbf{F}_{q} \text { of genus } 2 \text { with } \\
q+1-\operatorname{Tr}(\pi) \text { rational points } \\
\text { and } \# \operatorname{Pic}^{0}(C)=N(\pi-1)
\end{array}\right) .
\end{gathered}
$$

Computing Igusa class polynomials

Analogues of the three algorithms have been developed:

- Complex analytic [Spallek 1994, Van Wamelen 1999]
- 2-adic [GHKRW 2002]
- Chinese remainder theorem [Eisenträger-Lauter 2005]

But no bounds on the runtime were given:

- algorithms were not explicit enough,
- no rounding error analysis for the complex analytic method,
- no bounds on the denominator,
- no bounds on the absolute values of $i_{n}(C)$.

In fact, there was not even a proof of correctness of the output.

Computing Igusa class polynomials (2)

- Recently, bounds on the denominator were given [Goren-Lauter 2007], [Goren (unpublished)].
- My work: improve upon Spallek and Van Wamelen and use bounds of Goren and Lauter to get an algorithm with a runtime bound.

Complex analytic method

Basic idea for genus 1 :

1. Give a set of representatives of the ideal classes of \mathcal{O}_{K}, each given as $z \mathbf{Z}+\mathbf{Z}$ for $z \in \mathbf{C}$ with $\operatorname{Im} z>0$.
2. For each, evaluate numerically $j(z)=j(\mathbf{C} /(z \mathbf{Z}+\mathbf{Z}))=$ $q^{-1}+744+196884 q+21493760 q^{2}+\cdots$, where $q=\exp (2 \pi i z)$.
3. Compute $H_{K}=\prod_{z}(X-j(z)) \in \mathbf{Z}[X]$.

- Algorithm analysis uses bounds on Im z.

Genus 2, step 1

Enumerating the isomorphism classes.

- Complex principally polarized abelian surfaces over \mathbf{C} are of the form $\mathbf{C}^{2} /\left(\mathbf{Z} \mathbf{Z}^{2}+\mathbf{Z}^{2}\right)$, where Z is a period matrix, i.e. a (2×2) complex symmetric matrix with positive definite imaginary part. We call the set \mathcal{H}_{2} of period matrices matrices the Siegel upper half space.
- A complete set of representatives Z for all isomorphism classes of principally polarized abelian surfaces with CM by \mathcal{O}_{K} is given by Van Wamelen.

Genus 2, step 2

Evaluating the invariants.

- Recall that $i_{1}=I_{2}^{5} I_{10}^{-1}, i_{2}=I_{2}^{3} I_{4} I_{10}^{-1}$ and $i_{3}=I_{2}^{2} I_{6} I_{10}^{-1}$.
- Each Igusa invariant $I_{2 k}(Z)$ can be given as a polynomial in the theta constants. For $c_{1}, c_{2} \in\left\{0, \frac{1}{2}\right\}^{2}$, let

$$
\theta\left[c_{1}, c_{2}\right](Z)=\sum_{v \in \mathbf{Z}^{2}} \exp \left(\pi i\left(v+c_{1}\right) Z\left(v+c_{1}\right)^{\mathrm{t}}+2 \pi i\left(v+c_{1}\right) c_{2}^{\mathrm{t}}\right)
$$

Moreover,

$$
I_{10}(Z)=\prod_{2 c_{1} \cdot c_{2} \in Z} \theta\left[c_{1}, c_{2}\right](Z)^{2}
$$

- We use this to evaluate $i_{n}(Z)$.
- To get upper bounds on $\left|i_{n}(Z)\right|$, and the required precision for the theta constants, we (only) need to give upper and lower bounds on the theta constants.

Bounding the theta constants (1)

- To be able to bound the theta constants, we move the period matrix Z to a suitable region \mathcal{F} in the upper half space \mathcal{H}_{2}.
- Two period matrices in \mathcal{H}_{2} correspond to isomorphic principally polarized abelian varieties if and only if they are in the same orbit under the action of the symplectic group $\mathrm{Sp}_{4}(\mathbf{Z})$.
- Gottschling describes a fundamental domain $\mathcal{F} \subset \mathcal{H}_{2}$ for the action of $\mathrm{Sp}_{4}(\mathbf{Z})$ on \mathcal{H}_{2}.
- After step 1, we replace Van Wamelen's period matrices by $\mathrm{Sp}_{4}(\mathbf{Z})$-equivalent ones in \mathcal{F} using a reduction algorithm. MAGMA: To2 [Tab]

Bounding the theta constants (2)

Let

$$
Z=\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{3} & z_{2}
\end{array}\right) \in \mathcal{F}
$$

- There is a constant upper bound on $\left|\theta\left[c_{1}, c_{2}\right](Z)\right|$ that holds for all $Z \in \mathcal{F}$.
- Klingen gives a positive lower bound on $\left|\theta\left[c_{1}, c_{2}\right](Z)\right|$ in terms of upper bounds on $\operatorname{Im} z_{1}$ and $\operatorname{Im} z_{2}$ and a lower bound on $\left|z_{3}\right|$.
- The period matrix Z is obtained from Van Wamelen's via a reduction algorithm.
- How to bound its entries? A direct analysis gives bad bounds on $\operatorname{Im} z_{1}$ and $\operatorname{Im} z_{2}$.

Bounding the entries of the period matrix (1)

- The lower bound we need on $\left|z_{3}\right|$ is allowed to be weak.
- We know that $z_{3} \neq 0$, because otherwise $\mathbf{C}^{2} /\left(Z \mathbf{Z}^{2}+\mathbf{Z}^{2}\right)=\mathbf{C} /\left(z_{1} \mathbf{Z}+\mathbf{Z}\right) \times \mathbf{C} /\left(z_{2} \mathbf{Z}+\mathbf{Z}\right)$ is not a Jacobian.
- Therefore, we obtain a lower bound for free from a rounding error analysis.

Bounding the entries of the period matrix (2)

- Trick to bound $\operatorname{Im} z_{1}$ and $\operatorname{Im} z_{2}$: certain kinds of bounds on $Z^{\prime} \in \mathcal{H}_{2}$ imply uniform bounds on $\operatorname{Im} z_{1}$ and $\operatorname{Im} z_{2}$ for all $Z \in \operatorname{Sp}_{4}(\mathbf{Z}) Z^{\prime}$.
- Compare to: positive upper and lower bounds on $\operatorname{Im} z^{\prime}$ for $z^{\prime} \in \mathbf{C}$ together give an upper bound on

$$
\begin{gathered}
\operatorname{Im}\left(\left(a z^{\prime}+b\right)\left(c z^{\prime}+d\right)^{-1}\right)=\left|c z^{\prime}+d\right|^{-2} \operatorname{Im} z^{\prime} \text { for all } \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})
\end{gathered}
$$

- For Z^{\prime}, take an optimal point in the Hilbert upper half space of abelian varieties with real multiplication by $K \cap \mathbf{R}$.
- Z^{\prime} does not occur in the algorithm, only in the analysis.

Genus 2, step 3

Compute $H_{K, n}=\prod_{Z}\left(X-i_{n}(Z)\right) \in \mathbf{Q}[X]$.

- To get the correct \mathbf{Q}-valued coefficients, use LLL and the appropriate precision obtained from
- the absolute value bounds above,
- the denominator bounds of Goren and Lauter, and
- a rounding error analysis of every step.
- Runtime bound is obtained from the precision bounds and a runtime analysis of every step.

Result

Theorem

The complex analytic method for computing the Igusa class polynomials of a primitive quartic CM field K in which 2 and 3 do not ramify, takes time at most

$$
\Delta_{K}^{7 / 2+\epsilon} \quad\left(\Delta_{K} \rightarrow \infty\right)
$$

The size of the output is between

$$
\Delta_{K}^{1 / 4-\epsilon} \quad \text { and } \quad \Delta_{K}^{2+\epsilon} \quad\left(\Delta_{K} \rightarrow \infty\right)
$$

- Ramification assumption comes from Goren's unpublished work and it 'should be' possible to remove them.
- Preprint on my web page http://www.math.leidenuniv.nl/~streng

