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Igusa class polynomials

Igusa class polynomials are the genus 2 analogue of the classical
Hilbert class polynomial.

Overview:
I The Hilbert class polynomial

I What is it?
I Two applications
I How to compute it?

I What is genus 2?
I Igusa class polynomials

I What are they?
I Two applications
I How to compute them?
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Complex multiplication

I An elliptic curve E over a field k (of characteristic 6= 2) is a
smooth projective curve given by y2 = x3 + ax2 + bx + c . It
has an algebraic group law.

I Let End(E ) be the ring of algebraic group endomorphisms.

I If k has characteristic 0, then End(E ) is either Z or an order
O in an imaginary quadratic number field. In the second case,
we say that E has complex multiplication (CM) by O.

I Example: E : y2 = x3 + x over C has an endomorphism
(x , y) 7→ (−x , iy), where i2 = −1.
We call this endomorphism i and notice i2 = −1.
The endomorphism ring is End(E ) = Z[i ].
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Analytic complex multiplication

I Every elliptic curve E over C is complex analytically
isomorphic to C/Λ for some lattice Λ ⊂ C.

I Let K ⊂ C be an imaginary quadratic number field. There is
a bijection

{Elliptic curves over C with CM by OK}/ ∼= ↔ ClK

C/a ← [a] ,

where ClK is the class group of K .
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The j-invariant

I The j-invariant is a rational function in the coefficients of the
(Weierstrass) equation of an elliptic curve.

I For any field k , there is a bijection

{ elliptic curves/k }/(k-isom.) ↔ k ,

E 7→ E.j invariant(),

EllipticCurve(j) ← j .

I Up to k-isomorphism, computing E and computing j(E ) is
the same thing.
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The Hilbert class polynomial

Definition

The Hilbert class polynomial HK of an imaginary quadratic number
field K is

HK =
∏

{E/C : End(E)∼=OK}

(
X − j(E )

)
∈ Z[X ].

Examples:

HQ(i) = X − 1728

HQ(
√
−23) = X 3 + 3491750X 2 − 5151296875X + 12771880859375
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Application: constructing class fields

Definition

The Hilbert class field HK of a field K is the maximal unramified
abelian extension of K .

The Galois group Gal(HK/K ) is naturally isomorphic to ClK (Artin
isomorphism).

Theorem

Let K be imaginary quadratic. The Hilbert class polynomial HK is
irreducible and normal over K and its roots generate HK over K.
The action of ClK on the roots of HK is given by
[a]j(C/b) = j(C/a−1b).

By computing the CM curves and their torsion points, we can also
compute the ray class fields of K .

Marco Streng Universiteit Leiden, Microsoft Research

Computing Igusa Class Polynomials



Genus 1 Genus 2

Application: curves of prescribed order

I Let q be a prime. For any integer t such that |t| < 2
√

q,
there exists an elliptic curve E/Fq with #E (Fq) = q + 1− t.

I Let D = t2 − 4q. The polynomial (HQ(
√

D) mod q) ∈ Fq[X ]
splits completely into linear factors, and every zero j0 ∈ Fq is
the j-invariant of such an elliptic curve E .

I Computing all curves with j-invariant j0 is easy, and so is
checking which one has group order q + 1− t.

I Conclusion:
(prime q, |t| < 2

√
q) + H

Q(
√

t2−4q)
 EC of order q + 1− t.
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Computing the Hilbert class polynomial

I The Hilbert class polynomial is huge: the degree hK grows

like |∆K |
1
2 , as do the logarithms of the coefficients.

I Three algorithms:
I Complex analytic method,
I p-adic, [Couveignes-Henocq 2002, Bröker 2006]
I Chinese remainder theorem. [CNST 1998, ALV 2004]

I Under GRH or heuristics, each takes time O(|∆K |1+ε),
essentially linear in the size of the output.

I MAGMA: HilbertClassPolynomial(K)
NOT Sage: K.hilbert class polynomial()

I Recent improvements by [BBEL 2008, Sutherland 2008]
turned CRT (the underdog) into the record holder:
∆K = −102, 197, 306, 669, 747, hK = 2, 014, 236.
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Part 2: genus 2

Definition

A curve of genus 2 is a smooth
geometrically irreducible curve of
genus 2.

Definition (char. 6= 2)

A curve of genus 2 is a smooth
projective curve that has an
affine model

y2 = f (x), deg(f ) ∈ {5, 6},

where f has no double roots.
Sage / MAGMA:
HyperellipticCurve(f)
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How to add points on a curve

I Points on a curve C/k can be added inside the divisor class
group

Pic0(C ) = Div0(C )/div(k(C )∗).

I For an elliptic curve E , E (k)↔ Pic0(E ),P 7→ [P −∞].

I For a curve of genus 2, if we fix a divisor D0 of degree 2, then
for every every divisor D ∈ Div0(C ), there are points P1,P2

on C such that [D] = [P1 + P2 − D0].
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Genus 2 addition law

[P1+P2−2∞]+[Q1+Q2−2∞] = −[R1+R2−2∞] = [S1+S2−2∞]

P1

P2

Q1

Q2

R1

R2

S1

S2
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Abelian varieties

I The Jacobian J(C ) of a curve C/k of genus g is a
g -dimensional group variety with J(C )(k) = Pic0(C )
(if C (k) 6= ∅).

I The Jacobian is a “principally polarized abelian variety”.

I For an elliptic curve E : J(E ) = E .

I Every principally polarized abelian surface over C is either the
Jacobian of a unique curve C/C of genus 2 or the (polarized)
product of two elliptic curves, but not both.

I Sage: C.jacobian()
MAGMA: Jacobian(C)
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Complex multiplication

I An elliptic curve (dim. 1 AV) has CM if its endomorphism ring
is an order in an imaginary quadratic number field.

I An abelian surface (dim. 2 AV) has CM if its endomorphism
ring is an order in a CM field of degree 4.

I A CM field of degree 4 is a totally imaginary quadratic
extension K of a real quadratic field.

I It is called primitive if it does not contain an imaginary
quadratic subfield.

I Fact: any principally polarized abelian surface with CM by a
primitive CM field is not a product of elliptic curves, hence is
the Jacobian of a unique curve of genus 2.
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The analogue of the j-invariant

Let k be an algebraically closed field.

I Every elliptic curve over k can be written in Legendre form

y2 = x(x − 1)(x − λ).

I Every curve of genus 2 over k can be written in Rosenhain
form

y2 = x(x − 1)(x − λ1)(x − λ2)(x − λ3).

I Conclusion: the “family” of elliptic curves is one-dimensional,
that of curves of genus 2 is three-dimensional.

Marco Streng Universiteit Leiden, Microsoft Research

Computing Igusa Class Polynomials



Genus 1 Genus 2

Igusa invariants

I Igusa gave a genus 2 analogue of the j-invariant.
I Let k be an algebraically closed field of characteristic different

from 2, 3, 5. (Actually, Igusa’s invariants work for any
characteristic.)

I Igusa gives polynomials I2, I4, I6, I10 in the coefficients of C .
MAGMA: IgusaClebschInvariants(C)
not (yet?) in Sage.

I These give a bijection between the set of isomorphism classes
of genus 2 curves over k and k-points (I2 : I4 : I6 : I10) in
weighted projective space with I10 6= 0.

I Mestre’s algorithm computes an equation for the curve from
the invariants.
MAGMA: HyperellipticCurveFromIgusaClebsch(I)

Marco Streng Universiteit Leiden, Microsoft Research

Computing Igusa Class Polynomials



Genus 1 Genus 2

Igusa class polynomials

I One simplifies by looking at the so-called absolute Igusa
invariants

i1 =
I 5
2

I10

, i2 =
I 3
2 I4
I10

and i3 =
I 2
2 I6
I10

.

I Points (i1, i2, i3) with i1 6= 0 correspond bijectively to points
(I2 : I4 : I6 : I10) with I2I10 6= 0 and hence to isomorphism
classes of curves with I2 6= 0.

Definition

The Igusa class polynomials of a primitive quartic CM field K are
the polynomials

HK ,n(X ) =
∏

{C/C : End(J(C))∼=OK}/∼=

(
X − in(C )

)
∈ Q[X ], n ∈ {1, 2, 3}.
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Application: computation of class fields.

I In general, CM theory does not generate class fields of the
CM field K , but of the reflex field K †.

I If K is primitive, then K †† = K .

I In general, CM theory does not allow you to generate the full
Hilbert class field or ray class fields:

I Which fields can be obtained is described by Shimura.
I Question: can we use dimension 2 CM as an ingredient for

efficient computation of class fields?
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Application: prescribed number of points

I Let q be a prime and let π be a Weil q-number (i.e. an

algebraic integer with all complex absolute values equal to q
1
2 )

that generates a primitive quartic CM field.

I If the middle coefficient of f π is coprime to q, then

(quartic q-number π) + (HQ(π),n)n

↓ a curve C/Fq of genus 2 with
q + 1− Tr(π) rational points

and #Pic0(C ) = N(π − 1)

 .
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Computing Igusa class polynomials

Analogues of the three algorithms have been developed:

I Complex analytic [Spallek 1994, Van Wamelen 1999]

I 2-adic [GHKRW 2002]

I Chinese remainder theorem [Eisenträger-Lauter 2005]

But no bounds on the runtime were given:

I algorithms were not explicit enough,

I no rounding error analysis for the complex analytic method,

I no bounds on the denominator,

I no bounds on the absolute values of in(C ).

In fact, there was not even a proof of correctness of the output.
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Computing Igusa class polynomials (2)

I Recently, bounds on the denominator were given
[Goren-Lauter 2007], [Goren (unpublished)].

I My work: improve upon Spallek and Van Wamelen and use
bounds of Goren and Lauter to get an algorithm with a
runtime bound.
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Complex analytic method

Basic idea for genus 1:

1. Give a set of representatives of the ideal classes of OK , each
given as zZ + Z for z ∈ C with Im z > 0.

2. For each, evaluate numerically j(z) = j(C/(zZ + Z)) =
q−1 + 744 + 196884q + 21493760q2 + · · · , where
q = exp(2πiz).

3. Compute HK =
∏

z(X − j(z)) ∈ Z[X ].

I Algorithm analysis uses bounds on Im z .
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Genus 2, step 1

Enumerating the isomorphism classes.

I Complex principally polarized abelian surfaces over C are of
the form C2/(ZZ2 + Z2), where Z is a period matrix, i.e. a
(2× 2) complex symmetric matrix with positive definite
imaginary part. We call the set H2 of period matrices
matrices the Siegel upper half space.

I A complete set of representatives Z for all isomorphism
classes of principally polarized abelian surfaces with CM by
OK is given by Van Wamelen.
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Genus 2, step 2

Evaluating the invariants.

I Recall that i1 = I 5
2 I−1

10 , i2 = I 3
2 I4I

−1
10 and i3 = I 2

2 I6I
−1
10 .

I Each Igusa invariant I2k(Z ) can be given as a polynomial in
the theta constants. For c1, c2 ∈ {0, 1

2}
2, let

θ[c1, c2](Z ) =
∑
v∈Z2

exp(πi(v + c1)Z (v + c1)t + 2πi(v + c1)c2
t).

Moreover,
I10(Z ) =

∏
2c1.c2∈Z

θ[c1, c2](Z )2.

I We use this to evaluate in(Z ).

I To get upper bounds on |in(Z )|, and the required precision for
the theta constants, we (only) need to give upper and lower
bounds on the theta constants.
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Bounding the theta constants (1)

I To be able to bound the theta constants, we move the period
matrix Z to a suitable region F in the upper half space H2.

I Two period matrices in H2 correspond to isomorphic
principally polarized abelian varieties if and only if they are in
the same orbit under the action of the symplectic group
Sp4(Z).

I Gottschling describes a fundamental domain F ⊂ H2 for the
action of Sp4(Z) on H2.

I After step 1, we replace Van Wamelen’s period matrices by
Sp4(Z)-equivalent ones in F using a reduction algorithm.
MAGMA: To2 [Tab]
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Bounding the theta constants (2)

Let

Z =

(
z1 z3

z3 z2

)
∈ F ,

I There is a constant upper bound on |θ[c1, c2](Z )| that holds
for all Z ∈ F .

I Klingen gives a positive lower bound on |θ[c1, c2](Z )| in terms
of upper bounds on Im z1 and Im z2 and a lower bound on |z3|.

I The period matrix Z is obtained from Van Wamelen’s via a
reduction algorithm.

I How to bound its entries? A direct analysis gives bad bounds
on Im z1 and Im z2.
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Bounding the entries of the period matrix (1)

I The lower bound we need on |z3| is allowed to be weak.

I We know that z3 6= 0, because otherwise
C2/(ZZ2 + Z2) = C/(z1Z + Z)× C/(z2Z + Z) is not a
Jacobian.

I Therefore, we obtain a lower bound for free from a rounding
error analysis.
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Bounding the entries of the period matrix (2)

I Trick to bound Im z1 and Im z2: certain kinds of bounds on
Z ′ ∈ H2 imply uniform bounds on Im z1 and Im z2 for all
Z ∈ Sp4(Z)Z ′.

I Compare to: positive upper and lower bounds on Im z ′ for
z ′ ∈ C together give an upper bound on
Im((az ′ + b)(cz ′ + d)−1) = |cz ′ + d |−2 Im z ′ for all(

a b
c d

)
∈ SL2(Z).

I For Z ′, take an optimal point in the Hilbert upper half space
of abelian varieties with real multiplication by K ∩ R.

I Z ′ does not occur in the algorithm, only in the analysis.
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Genus 2, step 3

Compute HK ,n =
∏

Z (X − in(Z )) ∈ Q[X ].
I To get the correct Q-valued coefficients, use LLL and the

appropriate precision obtained from
I the absolute value bounds above,
I the denominator bounds of Goren and Lauter, and
I a rounding error analysis of every step.

I Runtime bound is obtained from the precision bounds and a
runtime analysis of every step.
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Result

Theorem

The complex analytic method for computing the Igusa class
polynomials of a primitive quartic CM field K in which 2 and 3 do
not ramify, takes time at most

∆
7/2+ε
K (∆K →∞).

The size of the output is between

∆
1/4−ε
K and ∆2+ε

K (∆K →∞).

I Ramification assumption comes from Goren’s unpublished
work and it ‘should be’ possible to remove them.

I Preprint on my web page
http://www.math.leidenuniv.nl/∼streng
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