Computing Igusa Class Polynomials

Marco Streng

Universiteit Leiden, Microsoft Research

UW Number Theory and Computation Seminar Seattle, Sinterklaasavond 2008

Marco Streng Computing Igusa Class Polynomials Universiteit Leiden, Microsoft Research

Igusa class polynomials

Igusa class polynomials are the genus 2 analogue of the classical Hilbert class polynomial.

Overview:

- The Hilbert class polynomial
 - What is it?
 - Two applications
 - How to compute it?
- What is genus 2?
- Igusa class polynomials
 - What are they?
 - Two applications
 - How to compute them?

Complex multiplication

- An elliptic curve E over a field k (of characteristic ≠ 2) is a smooth projective curve given by y² = x³ + ax² + bx + c. It has an algebraic group law.
- Let End(E) be the ring of algebraic group endomorphisms.
- ► If k has characteristic 0, then End(E) is either Z or an order O in an imaginary quadratic number field. In the second case, we say that E has complex multiplication (CM) by O.
- Example: E : y² = x³ + x over C has an endomorphism (x, y) → (-x, iy), where i² = -1. We call this endomorphism i and notice i² = -1. The endomorphism ring is End(E) = Z[i].

Genus 1

Analytic complex multiplication

- Every elliptic curve *E* over C is complex analytically isomorphic to C/Λ for some lattice Λ ⊂ C.
- Let K ⊂ C be an imaginary quadratic number field. There is a bijection

 $\begin{array}{rcl} \{ \mbox{Elliptic curves over } {\bf C} \mbox{ with CM by } \mathcal{O}_{\mathcal{K}} \} / \cong & \leftrightarrow & \mbox{Cl}_{\mathcal{K}} \\ & {\bf C} / \mathfrak{a} & \leftarrow & [\mathfrak{a}] \,, \end{array}$

where CI_K is the class group of K.

The *j*-invariant

- The *j*-invariant is a rational function in the coefficients of the (Weierstrass) equation of an elliptic curve.
- ▶ For any field *k*, there is a bijection

► Up to k-isomorphism, computing E and computing j(E) is the same thing.

The Hilbert class polynomial

Definition

The Hilbert class polynomial H_K of an imaginary quadratic number field K is

$$H_{\mathcal{K}} = \prod_{\{E/\mathbf{C} : \operatorname{End}(E) \cong \mathcal{O}_{\mathcal{K}}\}} (X - j(E)) \quad \in \mathbf{Z}[X].$$

Examples:

$$H_{\mathbf{Q}(i)} = X - 1728$$

 $H_{\mathbf{Q}(\sqrt{-23})} = X^3 + 3491750X^2 - 5151296875X + 12771880859375$

Marco Streng

Computing Igusa Class Polynomials

Application: constructing class fields

Definition

The Hilbert class field \mathcal{H}_K of a field K is the maximal unramified abelian extension of K.

The Galois group $Gal(\mathcal{H}_{\mathcal{K}}/\mathcal{K})$ is naturally isomorphic to $Cl_{\mathcal{K}}$ (Artin isomorphism).

Theorem

Let K be imaginary quadratic. The Hilbert class polynomial H_K is irreducible and normal over K and its roots generate \mathcal{H}_K over K. The action of Cl_K on the roots of H_K is given by $[\mathfrak{a}]j(\mathbf{C}/\mathfrak{b}) = j(\mathbf{C}/\mathfrak{a}^{-1}\mathfrak{b}).$

By computing the CM curves and their torsion points, we can also compute the ray class fields of K.

Application: curves of prescribed order

- ▶ Let q be a prime. For any integer t such that $|t| < 2\sqrt{q}$, there exists an elliptic curve E/\mathbf{F}_q with $\#E(\mathbf{F}_q) = q + 1 t$.
- ▶ Let $D = t^2 4q$. The polynomial $(H_{\mathbf{Q}(\sqrt{D})} \mod q) \in \mathbf{F}_q[X]$ splits completely into linear factors, and every zero $j_0 \in \mathbf{F}_q$ is the *j*-invariant of such an elliptic curve *E*.
- ► Computing all curves with *j*-invariant *j*₀ is easy, and so is checking which one has group order *q* + 1 − *t*.
- Conclusion:

 $(\text{prime } q, |t| < 2\sqrt{q}) + H_{\mathbf{Q}(\sqrt{t^2 - 4q})} \rightsquigarrow \text{ EC of order } q + 1 - t.$

Marco Streng

Computing the Hilbert class polynomial

- ► The Hilbert class polynomial is huge: the degree h_K grows like |∆_K|^{1/2}, as do the logarithms of the coefficients.
- Three algorithms:
 - Complex analytic method,
 - ▶ p-adic, [Couveignes-Henocq 2002, Bröker 2006]
 - ► Chinese remainder theorem. [CNST 1998, ALV 2004]
- ► Under GRH or heuristics, each takes time O(|∆_K|^{1+ϵ}), essentially linear in the size of the output.
- MAGMA: HilbertClassPolynomial(K)
 NOT Sage: K.hilbert_class_polynomial()
- ► Recent improvements by [BBEL 2008, Sutherland 2008] turned CRT (the underdog) into the record holder: $\Delta_{K} = -102, 197, 306, 669, 747, h_{K} = 2, 014, 236.$

Part 2: genus 2

Definition

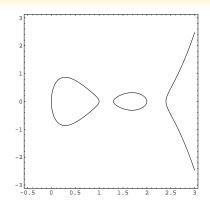
A curve of genus 2 is a smooth geometrically irreducible curve of genus 2.

Definition (char. \neq 2)

A curve of genus 2 is a smooth projective curve that has an affine model

$$y^2 = f(x), \quad \deg(f) \in \{5, 6\},$$

where f has no double roots.



Sage / MAGMA:
HyperellipticCurve(f)

Marco Streng

Computing Igusa Class Polynomials

How to add points on a curve

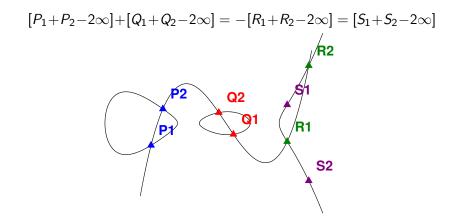
Points on a curve C/k can be added inside the divisor class group

$$\operatorname{Pic}^{0}(C) = \operatorname{Div}^{0}(C)/\operatorname{div}(k(C)^{*}).$$

- ▶ For an elliptic curve *E*, $E(k) \leftrightarrow \text{Pic}^{0}(E), P \mapsto [P \infty]$.
- For a curve of genus 2, if we fix a divisor D₀ of degree 2, then for every every divisor D ∈ Div⁰(C), there are points P₁, P₂ on C such that [D] = [P₁ + P₂ - D₀].

Marco Streng

Genus 2 addition law



Marco Streng Computing Igusa Class Polynomials

Abelian varieties

- The Jacobian J(C) of a curve C/k of genus g is a g-dimensional group variety with J(C)(k) = Pic⁰(C) (if C(k) ≠ Ø).
- ► The Jacobian is a "principally polarized abelian variety".
- For an elliptic curve E: J(E) = E.
- ► Every principally polarized abelian surface over **C** is either the Jacobian of a unique curve *C*/**C** of genus 2 or the (polarized) product of two elliptic curves, but not both.
- Sage: C.jacobian()
 MAGMA: Jacobian(C)

Complex multiplication

- An elliptic curve (dim. 1 AV) has CM if its endomorphism ring is an order in an imaginary quadratic number field.
- ► An abelian surface (dim. 2 AV) has CM if its endomorphism ring is an order in a CM field of degree 4.
 - ► A CM field of degree 4 is a totally imaginary quadratic extension *K* of a real quadratic field.
 - It is called primitive if it does not contain an imaginary quadratic subfield.
- ► Fact: any principally polarized abelian surface with CM by a primitive CM field is not a product of elliptic curves, hence is the Jacobian of a unique curve of genus 2.

The analogue of the *j*-invariant

Let k be an algebraically closed field.

► Every elliptic curve over *k* can be written in Legendre form

$$y^2 = x(x-1)(x-\lambda).$$

Every curve of genus 2 over k can be written in Rosenhain form

$$y^2 = x(x-1)(x-\lambda_1)(x-\lambda_2)(x-\lambda_3).$$

Conclusion: the "family" of elliptic curves is one-dimensional, that of curves of genus 2 is three-dimensional.

Igusa invariants

▶ Igusa gave a genus 2 analogue of the *j*-invariant.

- ► Let k be an algebraically closed field of characteristic different from 2, 3, 5. (Actually, Igusa's invariants work for any characteristic.)
- Igusa gives polynomials I₂, I₄, I₆, I₁₀ in the coefficients of C. MAGMA: IgusaClebschInvariants(C) not (yet?) in Sage.
- ► These give a bijection between the set of isomorphism classes of genus 2 curves over k and k-points (I₂ : I₄ : I₆ : I₁₀) in weighted projective space with I₁₀ ≠ 0.
- Mestre's algorithm computes an equation for the curve from the invariants.

MAGMA: HyperellipticCurveFromIgusaClebsch(I)

Igusa class polynomials

 One simplifies by looking at the so-called absolute Igusa invariants

$$i_1 = \frac{I_2^5}{I_{10}}, \quad i_2 = \frac{I_2^3 I_4}{I_{10}} \text{ and } i_3 = \frac{I_2^2 I_6}{I_{10}}.$$

Points (i₁, i₂, i₃) with i₁ ≠ 0 correspond bijectively to points (I₂ : I₄ : I₆ : I₁₀) with I₂I₁₀ ≠ 0 and hence to isomorphism classes of curves with I₂ ≠ 0.

Definition

The lgusa class polynomials of a primitive quartic CM field K are the polynomials

$$H_{\mathcal{K},n}(X) = \prod_{\{\mathcal{C}/\mathbf{C} : \operatorname{End}(J(\mathcal{C})) \cong \mathcal{O}_{\mathcal{K}}\}/\cong} (X - i_n(\mathcal{C})) \quad \in \mathbf{Q}[X], \quad n \in \{1, 2, 3\}.$$

Marco Streng

Universiteit Leiden, Microsoft Research

Computing Igusa Class Polynomials

Application: computation of class fields.

- ► In general, CM theory does not generate class fields of the CM field K, but of the reflex field K[†].
 - If K is primitive, then $K^{\dagger\dagger} = K$.
- In general, CM theory does not allow you to generate the full Hilbert class field or ray class fields:
 - Which fields can be obtained is described by Shimura.
 - Question: can we use dimension 2 CM as an ingredient for efficient computation of class fields?

Application: prescribed number of points

- Let q be a prime and let π be a Weil q-number (i.e. an algebraic integer with all complex absolute values equal to q^{1/2}) that generates a primitive quartic CM field.
- If the middle coefficient of f^{π} is coprime to q, then

$$(ext{quartic } q ext{-number } \pi) + (H_{\mathbf{Q}(\pi),n})_n \ \downarrow$$

$$\left(\begin{array}{l} \text{a curve } C/\mathbf{F}_q \text{ of genus 2 with} \\ q+1-\mathsf{Tr}(\pi) \text{ rational points} \\ \text{and } \#\mathsf{Pic}^0(C) = \mathit{N}(\pi-1) \end{array}\right)$$

Marco Streng Computing Igusa Class Polynomials

Computing Igusa class polynomials

Analogues of the three algorithms have been developed:

- Complex analytic [Spallek 1994, Van Wamelen 1999]
- 2-adic [GHKRW 2002]
- Chinese remainder theorem [Eisenträger-Lauter 2005]

But no bounds on the runtime were given:

- algorithms were not explicit enough,
- ▶ no rounding error analysis for the complex analytic method,
- no bounds on the denominator,
- no bounds on the absolute values of $i_n(C)$.

In fact, there was not even a proof of correctness of the output.

Computing Igusa class polynomials (2)

- Recently, bounds on the denominator were given [Goren-Lauter 2007], [Goren (unpublished)].
- My work: improve upon Spallek and Van Wamelen and use bounds of Goren and Lauter to get an algorithm with a runtime bound.

Complex analytic method

Basic idea for genus 1:

- 1. Give a set of representatives of the ideal classes of \mathcal{O}_K , each given as $z\mathbf{Z} + \mathbf{Z}$ for $z \in \mathbf{C}$ with Im z > 0.
- 2. For each, evaluate numerically $j(z) = j(\mathbf{C}/(z\mathbf{Z} + \mathbf{Z})) = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots$, where $q = \exp(2\pi i z)$.
- 3. Compute $H_K = \prod_z (X j(z)) \in \mathbf{Z}[X]$.
- Algorithm analysis uses bounds on Im z.

Genus 2, step 1

Enumerating the isomorphism classes.

- ► Complex principally polarized abelian surfaces over C are of the form C²/(ZZ² + Z²), where Z is a period matrix, i.e. a (2 × 2) complex symmetric matrix with positive definite imaginary part. We call the set H₂ of period matrices matrices the Siegel upper half space.
- A complete set of representatives Z for all isomorphism classes of principally polarized abelian surfaces with CM by O_K is given by Van Wamelen.

Genus 2, step 2

Evaluating the invariants.

- ▶ Recall that $i_1 = I_2^5 I_{10}^{-1}$, $i_2 = I_2^3 I_4 I_{10}^{-1}$ and $i_3 = I_2^2 I_6 I_{10}^{-1}$.
- ► Each Igusa invariant I_{2k}(Z) can be given as a polynomial in the theta constants. For c₁, c₂ ∈ {0, ¹/₂}², let

$$\theta[c_1, c_2](Z) = \sum_{v \in \mathbf{Z}^2} \exp(\pi i (v + c_1) Z (v + c_1)^{t} + 2\pi i (v + c_1) c_2^{t}).$$

Moreover,

$$I_{10}(Z) = \prod_{2c_1.c_2 \in \mathbf{Z}} \theta[c_1, c_2](Z)^2.$$

- We use this to evaluate $i_n(Z)$.
- ► To get upper bounds on |i_n(Z)|, and the required precision for the theta constants, we (only) need to give upper and lower bounds on the theta constants.

Bounding the theta constants (1)

- ► To be able to bound the theta constants, we move the period matrix Z to a suitable region F in the upper half space H₂.
- ► Two period matrices in H₂ correspond to isomorphic principally polarized abelian varieties if and only if they are in the same orbit under the action of the symplectic group Sp₄(Z).
- Gottschling describes a fundamental domain *F* ⊂ *H*₂ for the action of Sp₄(Z) on *H*₂.
- ► After step 1, we replace Van Wamelen's period matrices by Sp₄(Z)-equivalent ones in *F* using a reduction algorithm. MAGMA: To2 [Tab]

Bounding the theta constants (2)

Let

$$Z = \left(\begin{array}{cc} z_1 & z_3 \\ z_3 & z_2 \end{array}\right) \in \mathcal{F},$$

- There is a constant upper bound on |θ[c₁, c₂](Z)| that holds for all Z ∈ F.
- ► Klingen gives a positive lower bound on |θ[c₁, c₂](Z)| in terms of upper bounds on Im z₁ and Im z₂ and a lower bound on |z₃|.
- ► The period matrix Z is obtained from Van Wamelen's via a reduction algorithm.
- ► How to bound its entries? A direct analysis gives bad bounds on Im z₁ and Im z₂.

Bounding the entries of the period matrix (1)

- The lower bound we need on $|z_3|$ is allowed to be weak.
- ▶ We know that $z_3 \neq 0$, because otherwise $\mathbf{C}^2/(Z\mathbf{Z}^2 + \mathbf{Z}^2) = \mathbf{C}/(z_1\mathbf{Z} + \mathbf{Z}) \times \mathbf{C}/(z_2\mathbf{Z} + \mathbf{Z})$ is not a Jacobian.
- Therefore, we obtain a lower bound for free from a rounding error analysis.

Bounding the entries of the period matrix (2)

- Trick to bound Im z_1 and Im z_2 : certain kinds of bounds on $Z' \in \mathcal{H}_2$ imply uniform bounds on Im z_1 and Im z_2 for all $Z \in Sp_4(\mathbf{Z})Z'$.
- Compare to: positive upper and lower bounds on Im z' for z' ∈ C together give an upper bound on Im((az' + b)(cz' + d)⁻¹) = |cz' + d|⁻² Im z' for all

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathsf{SL}_2(\mathbf{Z}).$$

- For Z', take an optimal point in the Hilbert upper half space of abelian varieties with real multiplication by $K \cap \mathbf{R}$.
- Z' does not occur in the algorithm, only in the analysis.

Genus 2, step 3

Compute $H_{K,n} = \prod_{Z} (X - i_n(Z)) \in \mathbf{Q}[X]$.

- To get the correct Q-valued coefficients, use LLL and the appropriate precision obtained from
 - the absolute value bounds above,
 - ► the denominator bounds of Goren and Lauter, and
 - a rounding error analysis of every step.
- Runtime bound is obtained from the precision bounds and a runtime analysis of every step.

Result

Theorem

The complex analytic method for computing the Igusa class polynomials of a primitive quartic CM field K in which 2 and 3 do not ramify, takes time at most

$$\Delta_{\mathcal{K}}^{7/2+\epsilon} \quad (\Delta_{\mathcal{K}} \to \infty).$$

The size of the output is between

$$\Delta_{\mathcal{K}}^{1/4-\epsilon}$$
 and $\Delta_{\mathcal{K}}^{2+\epsilon}$ $(\Delta_{\mathcal{K}} o \infty).$

- Ramification assumption comes from Goren's unpublished work and it 'should be' possible to remove them.
- Preprint on my web page http://www.math.leidenuniv.nl/~streng