Igusa class polynomials

Marco Streng

THE UNIVERSITY OF WARWICK

Number Theory Seminar
Warwick Mathematics Institute 25 October 2010

Elliptic curves

- An elliptic curve $E / k(\operatorname{char}(k) \neq 2)$ is a smooth projective curve

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

- $E(k)$ is an abelian group

Endomorphisms

- $\operatorname{End}(E)=($ ring of algebraic group morphisms $E \rightarrow E)$
- $(\phi+\psi)(P)=\phi(P)+\psi(P)$
- $(\phi \psi)(P)=\phi(\psi(P))$
- Examples:
- For $n \in \mathbf{Z}$, have $n: P \mapsto n P$.

For "most" E 's in characteristic 0 , have $\operatorname{End}(E)=\mathbf{Z}$.

- If $E: y^{2}=x^{3}+x$ and $i^{2}=-1$ in k, then we have

$$
i:(x, y) \mapsto(-x, i y)
$$

and $\mathbf{Z}[i] \subset \operatorname{End}(E)$.

- If $\# k=q$, we have

$$
\text { Frob : }(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

The Hilbert class polynomial

The j-invariant is

$$
\begin{gathered}
j(E)=\frac{6912 b^{3}}{4 b^{3}+27 c^{2}} \text { for } E: y^{2}=x^{3}+b x+c \\
j(E)=j(F) \Longleftrightarrow E \cong_{\bar{k}} F
\end{gathered}
$$

Definition

Let K be an imaginary quadratic number field. Its Hilbert class polynomial is

$$
H_{K}=\prod_{\substack{E / \mathbf{C} \\ \operatorname{End}(E) \cong \mathcal{O}_{K}}}(X-j(E)) \quad \in \mathbf{Z}[X]
$$

Application 1: roots generate the Hilbert class field of K over K. Application 2: make elliptic curves with prescribed order over $\mathbf{F}_{p_{\underline{\underline{\underline{1}}}}}$

Curves with prescribed order

- If $p=\pi \bar{\pi}$ in \mathcal{O}_{K}, then $\left(H_{K} \bmod p\right)$ splits into linear factors.
- Let $j_{0} \in \mathbf{F}_{p}$ be a root and let E_{0} / \mathbf{F}_{p} have $j\left(E_{0}\right)=j_{0}$.
- Then a twist E of E_{0} has $\mathrm{Frob}=\pi$.
- We get

$$
\# E\left(\mathbf{F}_{p}\right)=N(\pi-1)=p+1-\operatorname{tr}(\pi)
$$

Computing Hilbert class polynomials (1)

- Any E is complex analytically \mathbf{C} / Λ for a lattice Λ
- Endomorphisms induce \mathbf{C}-linear maps $\alpha: \mathbf{C} \rightarrow \mathbf{C}$ with $\alpha(\Lambda) \subset \Lambda$
- If $\operatorname{End}(E) \cong \mathcal{O}_{K}$, then $\Lambda=c \mathfrak{a}$ for an ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ and $c \in \mathbf{C}^{*}$.
- We get

$$
\begin{aligned}
\mathrm{Cl}_{K} & \longleftrightarrow \frac{\left\{E / \mathbf{C}: \operatorname{End}(E) \cong \mathcal{O}_{K}\right\}}{\cong} \\
{[\mathfrak{a}] } & \longmapsto \mathbf{C} / \mathfrak{a} .
\end{aligned}
$$

Computing Hilbert class polynomials (2)

- Write $\mathfrak{a}=\tau \mathbf{Z}+\mathbf{Z}$ and let $q=\exp (2 \pi i \tau)$.
- Then $j(\mathbf{C} / \mathfrak{a})=j(q)=q^{-1}+744+196884 q+\cdots$.
- Compute

$$
H_{K}=\prod_{[\mathfrak{a}] \in \mathcal{C} \mathcal{L}_{K}}(X-j(\mathbf{C} / \mathfrak{a})) \in \mathbf{Z}[X] .
$$

- Other algorithms:
- p-adic, [Couveignes-Henocq 2002, Bröker 2006]
- Chinese remainder theorem. [Chao-Nakamura-Sobataka-Tsujii 1998, Agashe-Lauter-Venkatesan 2004]

Performance

- The Hilbert class polynomial is huge: the degree h_{K} grows like $|D|^{\frac{1}{2}}$, as do the logarithms of the coefficients.
- Small example: for $K=\mathbf{Q}(\sqrt{-17})$, get

$$
\begin{aligned}
H_{K}=x^{4} & -178211040000 x^{3} \\
& -75843692160000000 x^{2} \\
& -318507038720000000000 x \\
& -2089297506304000000000000
\end{aligned}
$$

- Under GRH or heuristics, all three "quasi-linear" $O\left(|D|^{1+\epsilon}\right)$.
- CRT (the underdog) is now the record holder: constructed a large finite field elliptic curve with $-D>10^{15}, h_{K}>10^{7}$. [Belding-Bröker-Enge-Lauter 2008, Sutherland 2009]

Curves of genus 2

Definition

A curve of genus 2 is a smooth geometrically irreducible curve of which the genus is 2 .
"Definition" (char. $=$ 2)
A curve of genus 2 is a smooth projective curve that has an affine model

$$
y^{2}=f(x), \quad \operatorname{deg}(f) \in\{5,6\}
$$

where f has no double roots.

The group law on the Jacobian

The Jacobian: group of equivalence classes of pairs of points.

- More precisely, divisor class group $\mathrm{Pic}^{0}(C)(k)$ $\left\{P_{1}, P_{2}\right\} \mapsto\left[P_{1}+P_{2}-D_{\infty}\right]$

$\left\{P_{1}, P_{2}\right\}+\left\{Q_{1}, Q_{2}\right\}=?$

The group law on the Jacobian

The Jacobian: group of equivalence classes of pairs of points.

- More precisely, divisor class group $\mathrm{Pic}^{0}(C)(k)$ $\left\{P_{1}, P_{2}\right\} \mapsto\left[P_{1}+P_{2}-D_{\infty}\right]$

Igusa class polynomials

- Elliptic curves E have CM if $\operatorname{End}(E)$ is an order in an imaginary quadratic field $K=\mathbf{Q}(\sqrt{r})$ with $r \in \mathbf{Q}$ negative.
- Curves C of genus 2 have CM if $\operatorname{End}(J(C))$ is an order in a CM field K of degree 4, i.e. $K=K_{0}(\sqrt{r})$ with K_{0} real quadratic and $r \in K_{0}$ totally negative.
- Assume K contains no imaginary quadratic field.
- Igusa's invariants i_{1}, i_{2}, i_{3} are the genus-2 analogue of j
- The Igusa class polynomials of a quartic CM field K are a set of polynomials of which the roots are the Igusa invariants of curves C of genus 2 with CM by \mathcal{O}_{K}.

Applications

- Roots generate class fields.
- not of K, but of its "reflex field' (no problem)'
- not the full Hilbert class field (but we know which field)
- useful? efficient?
- If $p=\pi \bar{\pi}$ in \mathcal{O}_{K}, construct curve C with

$$
\# J(C)\left(\mathbf{F}_{p}\right)=N(\pi-1) \quad \text { and } \quad \# C\left(\mathbf{F}_{p}\right)=p+1-\operatorname{tr}(\pi) .
$$

Algorithms

1. Complex analytic [Spallek 1994, Van Wamelen 1999]
2. p-adic [Gaudry-Houtmann-Kohel-Ritzenthaler-Weng 2002, Carls-Kohel-Lubicz 2008]
3. Chinese remainder theorem [Eisenträger-Lauter 2005]

None of these had running time bounds:

- denominators
- not known how to bound $\left|i_{n}(C)\right|$.
- algorithms not explicit enough
- no rounding error analysis for alg. 1 (not even for genus 1!!)

Denominators

- CM elliptic curves have "potential good reduction", hence $j(E) \in \mathbf{Z}$, hence Hilbert class polynomials are in $\mathbf{Z}[X]$
- CM abelian varieties (such as $J(C)$) also have potential good reduction, but may have

$$
(J(C) \bmod \mathfrak{p})=E_{1} \times E_{2} \quad \text { and } \quad(C \bmod \mathfrak{p})=E_{1} \cup E_{2}
$$

for supersingular elliptic curves E_{1}, E_{2}.

- In that case, $\exists \iota: \mathcal{O}_{K} \rightarrow \operatorname{End}\left(E_{1} \times E_{2}\right)$.
- Can bound denominators by studying the "embedding problem" [Goren-Lauter 2007], [Goren-Lauter (preprint 2010)]

Step 1: Enumerating \cong-classes

$$
K \otimes \mathbf{R} \cong \cong_{\mathbf{R}-\text { alg. }} \mathbf{C}^{2}
$$

- For Φ an isomorphism and $\mathfrak{a} \subset \mathcal{O}_{K}$, get a lattice $\Lambda=\Phi(\mathfrak{a}) \subset \mathbf{C}^{2}$ and $\operatorname{End}\left(\mathbf{C}^{2} / \Lambda\right)=\mathcal{O}_{K}$.
- Also need a polarization, given by $\xi \in K^{*}$ with $\xi \mathfrak{a} \overline{\mathfrak{a}} \mathcal{D}_{K / \mathbf{Q}}=\mathcal{O}_{K}$. Then

$$
\frac{\{(\Phi, \mathfrak{a}, \xi)\}}{\sim} \longleftrightarrow \frac{\left\{C / \mathbf{C}: \operatorname{End}(J(C)) \cong \mathcal{O}_{K}\right\}}{\cong}
$$

- symplectic basis gives $\Lambda=\tau \mathbf{Z}^{2}+\mathbf{Z}^{2}$ with $\tau \in \operatorname{Mat}_{2}(\mathbf{C})$ symmetric with pos. def. imaginary part.

Step 2: Reduction (elliptic case)

For $E=\mathbf{C} /(\tau \mathbf{Z}+\mathbf{Z})$, the number τ is unique up to
$\mathrm{SL}_{2}(\mathbf{Z})$
acting via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=(a \tau+b)(c \tau+d)^{-1}
$$

We make τ reduced:

1. $|\operatorname{Re} \tau| \leq 1 / 2$,
2. $|\tau \quad| \geq 1$

Step 2: Reduction (elliptic case)

For $E=\mathbf{C} /(\tau \mathbf{Z}+\mathbf{Z})$, the number τ is unique up to

$$
\mathrm{SL}_{2}(\mathbf{Z})=\left\{M \in \mathrm{GL}_{2}(\mathbf{Z}): M^{\mathrm{t}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\}
$$

acting via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=(a \tau+b)(c \tau+d)^{-1}
$$

We make τ reduced:

1. $|\operatorname{Re} \tau| \leq 1 / 2$,
2. $|c \tau+d| \geq 1$ for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbf{Z})$

Step 2: Reduction

For $J(C)=\mathbf{C}^{2} /\left(\tau \mathbf{Z}^{2}+\mathbf{Z}^{2}\right)$, the matrix τ is unique up to

$$
\mathrm{Sp}_{4}(\mathbf{Z})=\left\{M \in \mathrm{GL}_{4}(\mathbf{Z}): M^{\mathrm{t}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\}
$$

acting via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=(a \tau+b)(c \tau+d)^{-1}
$$

We make τ reduced:

1. entries of $\operatorname{Re} \tau$ have absolute value $\leq 1 / 2$,
2. $|\operatorname{det}(c \tau+d)| \geq 1$ for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}_{4}(\mathbf{Z})$,
3. $\operatorname{Im} \tau=\left(\begin{array}{ll}y_{1} & y_{3} \\ y_{3} & y_{2}\end{array}\right)$ is reduced: $0 \leq 2 y_{3} \leq y_{1} \leq y_{2}$.

Step 3: Numerical evaluation

- Thomae's formula [1870] gives an equation for C, given τ, in terms of theta constants

$$
\theta\left[c_{1}, c_{2}\right](\tau)=\sum_{v \in \mathbf{Z}^{2}} \exp \left(\pi i\left(v+c_{1}\right) \tau\left(v+c_{1}\right)^{\mathrm{t}}+2 \pi i\left(v+c_{1}\right) c_{2}^{\mathrm{t}}\right)
$$

with $c_{1}, c_{2} \in\left\{0, \frac{1}{2}\right\}^{2}$.

- Write out, get [Bolza 1887, Spallek 1994]

$$
i_{k}(\tau)=\frac{\text { pol. in } \theta^{\prime} \mathrm{s}}{\left(\prod \text { all } \theta^{\prime} \mathrm{s} \neq 0\right)^{4}}
$$

- Evaluate Igusa class polynomials numerically.

Bounds on Igusa invariants

- For running time bound, need upper bound on

$$
\left|i_{k}(\tau)\right|=\frac{\mid \text { pol. in } \theta^{\prime} \mathrm{s} \mid}{\left(\prod \text { all }|\theta| ' s \neq 0\right)^{4}}
$$

- Have $|\theta(\tau)|<2$ for reduced τ, so only need lower bound on $|\theta(\tau)|$.
- Got a bound in terms of

1. upper bound on $\operatorname{Im} \tau_{22}$
2. lower bound on $\left|\tau_{12}\right|$ (allowed to be weak)

- part 2 for free from detailed analysis of Steps 1 and 2.

Bounds on $\operatorname{Im} \tau_{22}$

- Bound $\operatorname{Im} \tau_{22}$ by proving existence of alternative τ^{\prime} and relating it to τ via $A \in \operatorname{Sp}_{4}(\mathbf{Z})$.
- Elliptic curves: if $\tau=A \tau^{\prime}$ and $\tau^{\prime}=x+y i$, then

$$
\begin{aligned}
\operatorname{Im} \tau & =\frac{\operatorname{lm} \tau^{\prime}}{\left|c \tau^{\prime}+d\right|^{2}}=\frac{y}{(c x+d)^{2}+(c y)^{2}} \\
& \leq \begin{cases}y & \text { if } c=0 \\
y^{-1} & \text { if } c \neq 0\end{cases} \\
& \leq \max \left\{y, y^{-1}\right\}
\end{aligned}
$$

Similar results for genus 2 .

- To get τ^{\prime}, write $\mathfrak{a}=z \mathfrak{b}+\mathfrak{b}^{-1}$ and maximize $N_{K / \mathbf{Q}}\left(\mathfrak{b}^{2}(z-\bar{z}) \mathcal{O}_{K}\right)$.
(related to fundamental domains for $\mathrm{SL}_{2}\left(\mathcal{O}_{K_{0}}\right)$).

Result

Theorem

Algorithm computes the Igusa class polynomials of K in time less than

$$
\operatorname{cst} .\left(D_{1}^{7 / 2} D_{0}^{11 / 2}\right)^{1+\epsilon},
$$

where $D_{0}=\operatorname{disc} K_{0}$ and $D_{1} D_{0}^{2}=\operatorname{disc} K$. The bit size of the output is between

$$
\operatorname{cst} .\left(D_{1}^{1 / 2} D_{0}^{1 / 2}\right)^{1-\epsilon} \quad \text { and } \quad \operatorname{cst} .\left(D_{1}^{2} D_{0}^{3}\right)^{1+\epsilon} .
$$

Bottlenecks:

1. quasi-quadratic time theta evaluation (quasi-linear method not proven [Dupont 2006])
2. denominator bounds not optimal (special cases/conjectures [Bruinier-Yang 2006, Yang (to appear)])

What's next?

$g=1$: In practice, one does not use j, but uses "smaller functions" such as $\sqrt[3]{j}$, Weber functions, and (double) eta quotients.
$g=2$: Still stuck with Igusa's invariants.
$g=1$: Useful tool: explicit version of Shimura's reciprocity law, relating Galois action of \widehat{K}^{*} on values of modular functions to the action of $\mathrm{GL}_{2}(\widehat{\mathbf{Q}})$ on the modular functions themselves.
$g=2$: I have been making Shimura's reciprocity law for $g=2$ more explicit and have some ideas for "smaller functions"

The "embedding problem" (Goren-Lauter)

Given a quartic CM field K (not containing an imag. quadr. field). What are the primes p such that the following exist?

- a maximal order R in the quaternion algebra $B_{p, \infty} / \mathbf{Q}$,
- a fractional right R-ideal \mathfrak{a} with left order R^{\prime}, and
- an embedding of \mathcal{O}_{K} into the matrix algebra

$$
\left(\begin{array}{cc}
R & \mathfrak{a}^{-1} \\
\mathfrak{a} & R^{\prime}
\end{array}\right)
$$

such that complex conjugation on \mathcal{O}_{K} coincides with

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \mapsto\left(\begin{array}{cc}
\bar{\alpha} & \bar{\gamma} N(\mathfrak{a})^{-1} \\
\bar{\beta} N(\mathfrak{a}) & \bar{\delta}
\end{array}\right)
$$

Partial answer: we know the splitting behaviour of p in the normal closure of K and we know $p<c D_{K}$. [GL 2006]

