Igusa class polynomials

Marco Streng

Number Theory Seminar Warwick Mathematics Institute 25 October 2010

Elliptic curves

► An *elliptic curve* E/k (char(k) \neq 2) is a smooth projective curve

$$y^2 = x^3 + ax^2 + bx + c.$$

 \blacktriangleright E(k) is an abelian group

Endomorphisms

- ▶ End(E) = (ring of algebraic group morphisms $E \rightarrow E$)
 - $(\phi + \psi)(P) = \phi(P) + \psi(P)$
 - $(\phi\psi)(P) = \phi(\psi(P))$
- ▶ Examples:
 - ► For $n \in \mathbb{Z}$, have $n : P \mapsto nP$. For "most" E's in characteristic 0, have $\operatorname{End}(E) = \mathbb{Z}$.
 - ▶ If $E: y^2 = x^3 + x$ and $i^2 = -1$ in k, then we have

$$i:(x,y)\mapsto(-x,iy),$$

and $\mathbf{Z}[i] \subset \operatorname{End}(E)$.

▶ If #k = q, we have

Frob :
$$(x, y) \mapsto (x^q, y^q)$$
.

The Hilbert class polynomial

The *j-invariant* is

$$j(E) = \frac{6912b^3}{4b^3 + 27c^2} \quad \text{for} \quad E : y^2 = x^3 + bx + c.$$
$$j(E) = j(F) \iff E \cong_{\overline{k}} F$$

Definition

Let K be an imaginary quadratic number field. Its Hilbert class polynomial is

$$H_K = \prod_{\substack{E/\mathbf{C} \\ \operatorname{End}(E) \cong \mathcal{O}_K}} (X - j(E)) \in \mathbf{Z}[X].$$

Application 1: roots generate the Hilbert class field of K over K.

Application 2: make elliptic curves with prescribed order over $\mathbf{F}_{p_{\perp}}$

Marco Streng

Curves with prescribed order

- ▶ If $p = \pi \overline{\pi}$ in \mathcal{O}_K , then $(H_K \mod p)$ splits into linear factors.
- ▶ Let $j_0 \in \mathbf{F}_p$ be a root and let E_0/\mathbf{F}_p have $j(E_0) = j_0$.
- ▶ Then a twist E of E_0 has Frob = π .
- ► We get

$$\#E(\mathbf{F}_p) = N(\pi-1) = p+1-\operatorname{tr}(\pi).$$

Computing Hilbert class polynomials (1)

- ▶ Any E is complex analytically \mathbf{C}/Λ for a lattice Λ
- ▶ Endomorphisms induce **C**-linear maps α : **C** → **C** with $\alpha(\Lambda) \subset \Lambda$
- ▶ If End(E) $\cong \mathcal{O}_K$, then $\Lambda = c\mathfrak{a}$ for an ideal $\mathfrak{a} \subset \mathcal{O}_K$ and $c \in \mathbf{C}^*$.
- ► We get

$$\begin{array}{ccc} \mathsf{CI}_{\mathcal{K}} & \longleftrightarrow & \frac{\{E/\mathbf{C} : \mathsf{End}(E) \cong \mathcal{O}_{\mathcal{K}}\}}{\cong} \\ [\mathfrak{a}] & \longmapsto & \mathbf{C}/\mathfrak{a}. \end{array}$$

Computing Hilbert class polynomials (2)

- ▶ Write $\mathfrak{a} = \tau \mathbf{Z} + \mathbf{Z}$ and let $q = \exp(2\pi i \tau)$.
- ► Then $j(\mathbf{C}/\mathfrak{a}) = j(q) = q^{-1} + 744 + 196884q + \cdots$
- ► Compute

$$H_K = \prod_{[\mathfrak{a}] \in \mathcal{CL}_K} (X - j(\mathbf{C}/\mathfrak{a})) \in \mathbf{Z}[X].$$

- ► Other algorithms:
 - ▶ p-adic, [Couveignes-Henocq 2002, Bröker 2006]
 - ► Chinese remainder theorem. [Chao-Nakamura-Sobataka-Tsujii 1998, Agashe-Lauter-Venkatesan 2004]

Performance

- ▶ The Hilbert class polynomial is huge: the degree h_K grows like $|D|^{\frac{1}{2}}$, as do the logarithms of the coefficients.
- ▶ Small example: for $K = \mathbf{Q}(\sqrt{-17})$, get

$$H_K = x^4 - 178211040000x^3$$
 $- 75843692160000000x^2$
 $- 318507038720000000000x$
 $- 20892975063040000000000000$

- ▶ Under GRH or heuristics, all three "quasi-linear" $O(|D|^{1+\epsilon})$.
- ► CRT (the underdog) is now the record holder: constructed a large finite field elliptic curve with $-D > 10^{15}$, $h_K > 10^7$. [Belding-Bröker-Enge-Lauter 2008, Sutherland 2009]

Curves of genus 2

Definition

A curve of genus 2 is a smooth geometrically irreducible curve of which the genus is 2.

"Definition" (char. \neq 2)

A curve of genus 2 is a smooth projective curve that has an affine model

$$y^2 = f(x), \quad \deg(f) \in \{5, 6\},\$$

where f has no double roots.

The group law on the Jacobian

The Jacobian: group of equivalence classes of pairs of points.

▶ More precisely, divisor class group $Pic^0(C)(k)$

The group law on the Jacobian

The Jacobian: group of equivalence classes of pairs of points.

▶ More precisely, divisor class group $Pic^0(C)(k)$

Igusa class polynomials

- ▶ Elliptic curves E have CM if $\operatorname{End}(E)$ is an order in an imaginary quadratic field $K = \mathbf{Q}(\sqrt{r})$ with $r \in \mathbf{Q}$ negative.
- ▶ Curves C of genus 2 have CM if $\operatorname{End}(J(C))$ is an order in a CM field K of degree 4, i.e. $K = K_0(\sqrt{r})$ with K_0 real quadratic and $r \in K_0$ totally negative.
- ► Assume *K* contains no imaginary quadratic field.
- ▶ *Igusa's invariants* i_1, i_2, i_3 are the genus-2 analogue of j
- ► The Igusa class polynomials of a quartic CM field K are a set of polynomials of which the roots are the Igusa invariants of curves C of genus 2 with CM by O_K.

Applications

- ► Roots generate class fields.
 - ▶ not of K, but of its "reflex field' (no problem)'
 - ▶ not the full Hilbert class field (but we know which field)
 - ▶ useful? efficient?
- ▶ If $p = \pi \overline{\pi}$ in \mathcal{O}_K , construct curve C with

$$\#J(C)(\mathbf{F}_p) = N(\pi - 1)$$
 and $\#C(\mathbf{F}_p) = p + 1 - \operatorname{tr}(\pi)$.

Algorithms

- 1. Complex analytic [Spallek 1994, Van Wamelen 1999]
- p-adic [Gaudry-Houtmann-Kohel-Ritzenthaler-Weng 2002, Carls-Kohel-Lubicz 2008]
- 3. Chinese remainder theorem [Eisenträger-Lauter 2005]

None of these had running time bounds:

- ▶ denominators
- ▶ not known how to bound $|i_n(C)|$.
- algorithms not explicit enough
- ▶ no rounding error analysis for alg. 1 (not even for genus 1!!)

Denominators

- ► CM elliptic curves have "potential good reduction", hence $j(E) \in \overline{\mathbf{Z}}$, hence Hilbert class polynomials are in $\mathbf{Z}[X]$
- ► CM abelian varieties (such as J(C)) also have potential good reduction, but may have

$$(J(C) \bmod \mathfrak{p}) = E_1 \times E_2 \quad \text{and} \quad (C \bmod \mathfrak{p}) = E_1 \cup E_2$$

for supersingular elliptic curves E_1 , E_2 .

- ▶ In that case, $\exists \iota : \mathcal{O}_K \to \mathsf{End}(E_1 \times E_2)$.
- Can bound denominators by studying the "embedding problem" [Goren-Lauter 2007], [Goren-Lauter (preprint 2010)]

Step 1: Enumerating ≅-classes

$$K \otimes \mathbf{R} \cong_{\mathbf{R}-\mathsf{alg.}} \mathbf{C}^2$$

- ► For Φ an isomorphism and $\mathfrak{a} \subset \mathcal{O}_K$, get a lattice $\Lambda = \Phi(\mathfrak{a}) \subset \mathbf{C}^2$ and End(\mathbf{C}^2/Λ) = \mathcal{O}_K .
- ▶ Also need a polarization, given by $\xi \in K^*$ with $\xi \alpha \overline{\alpha} \mathcal{D}_{K/\mathbf{Q}} = \mathcal{O}_K$. Then

$$\frac{\{(\Phi,\mathfrak{a},\xi)\}}{\sim} \quad \longleftrightarrow \quad \frac{\{C/\mathbf{C}: \operatorname{End}(J(C)) \cong \mathcal{O}_K\}}{\cong}.$$

▶ symplectic basis gives $\Lambda = \tau \mathbf{Z}^2 + \mathbf{Z}^2$ with $\tau \in \mathsf{Mat}_2(\mathbf{C})$ symmetric with pos. def. imaginary part.

Step 2: Reduction (elliptic case)

For $E = \mathbf{C}/(\tau \mathbf{Z} + \mathbf{Z})$, the number τ is unique up to

$$SL_2(\mathbf{Z})$$

acting via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = (a\tau + b)(c\tau + d)^{-1}.$$

We make τ reduced:

- 1. $|\text{Re }\tau| \leq 1/2$,
- 2. $| \tau | \ge 1$

Step 2: Reduction (elliptic case)

For $E = \mathbf{C}/(\tau \mathbf{Z} + \mathbf{Z})$, the number τ is unique up to

$$\mathsf{SL}_2(\boldsymbol{Z}) = \{ \textit{M} \in \mathsf{GL}_2(\boldsymbol{Z}) : \textit{M}^t \bigg(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \bigg) \textit{M} = \bigg(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \bigg) \},$$

acting via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = (a\tau + b)(c\tau + d)^{-1}.$$

We make τ reduced:

- 1. $|\text{Re }\tau| \leq 1/2$,
- 2. $|c\tau + d| \ge 1$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z})$

Step 2: Reduction

For $J(C) = \mathbf{C}^2/(\tau \mathbf{Z}^2 + \mathbf{Z}^2)$, the matrix τ is unique up to

$$\mathsf{Sp}_4(\boldsymbol{Z}) = \{ M \in \mathsf{GL}_4(\boldsymbol{Z}) : M^t \bigg(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \bigg) M = \bigg(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \bigg) \},$$

acting via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = (a\tau + b)(c\tau + d)^{-1}.$$

We make τ reduced:

- 1. entries of Re τ have absolute value $\leq 1/2$,
- $2. \ |\mathsf{det}(c\tau+d)| \geq 1 \ \mathsf{for \ all} \ \left(\begin{array}{cc} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{array} \right) \in \mathsf{Sp}_4(\mathbf{Z}),$
- 3. Im $\tau = \begin{pmatrix} y_1 & y_3 \\ y_3 & y_2 \end{pmatrix}$ is reduced: $0 \le 2y_3 \le y_1 \le y_2$.

Step 3: Numerical evaluation

▶ Thomae's formula [1870] gives an equation for C, given τ , in terms of theta constants

$$\theta[c_1, c_2](\tau) = \sum_{v \in \mathbf{Z}^2} \exp(\pi i (v + c_1) \tau (v + c_1)^{\mathsf{t}} + 2\pi i (v + c_1) c_2^{\mathsf{t}})$$

with $c_1, c_2 \in \{0, \frac{1}{2}\}^2$.

▶ Write out, get [Bolza 1887, Spallek 1994]

$$i_k(\tau) = \frac{\text{pol. in } \theta' \text{s}}{(\prod \text{all } \theta' \text{s} \neq 0)^4}.$$

► Evaluate Igusa class polynomials numerically.

Bounds on Igusa invariants

► For running time bound, need upper bound on

$$|i_k(\tau)| = \frac{|\mathsf{pol.\ in}\ \theta'\mathsf{s}|}{(\prod\ \mathsf{all}\ |\theta|'\mathsf{s} \neq 0)^4}.$$

- ▶ Have $|\theta(\tau)| < 2$ for reduced τ , so only need lower bound on $|\theta(\tau)|$.
- ► Got a bound in terms of
 - 1. upper bound on Im τ_{22}
 - 2. lower bound on $|\tau_{12}|$ (allowed to be weak)
- ▶ part 2 for free from detailed analysis of Steps 1 and 2.

Bounds on Im τ_{22}

- ▶ Bound Im τ_{22} by proving existence of alternative τ' and relating it to τ via $A \in \operatorname{Sp}_4(\mathbf{Z})$.
- ▶ Elliptic curves: if $\tau = A\tau'$ and $\tau' = x + yi$, then

$$\begin{split} \operatorname{Im} \tau &= \frac{\operatorname{Im} \tau'}{|c\tau' + d|^2} = \frac{y}{(cx + d)^2 + (cy)^2} \\ &\leq \left\{ \begin{array}{ll} y & \text{if } c = 0 \\ y^{-1} & \text{if } c \neq 0 \end{array} \right. \\ &\leq \max\{y, y^{-1}\} \end{split}$$

Similar results for genus 2.

▶ To get τ' , write $\mathfrak{a} = z\mathfrak{b} + \mathfrak{b}^{-1}$ and maximize $N_{K/\mathbb{Q}}(\mathfrak{b}^2(z - \overline{z})\mathcal{O}_K)$. (related to fundamental domains for $SL_2(\mathcal{O}_{K_0})$).

Result

Theorem

Algorithm computes the Igusa class polynomials of K in time less than

cst.
$$(D_1^{7/2}D_0^{11/2})^{1+\epsilon}$$
,

where $D_0 = \operatorname{disc} K_0$ and $D_1 D_0^2 = \operatorname{disc} K$. The bit size of the output is between

$$\operatorname{cst.}(D_1^{1/2}D_0^{1/2})^{1-\epsilon}$$
 and $\operatorname{cst.}(D_1^2D_0^3)^{1+\epsilon}$.

Bottlenecks:

- quasi-quadratic time theta evaluation (quasi-linear method not proven [Dupont 2006])
- 2. denominator bounds not optimal (special cases/conjectures [Bruinier-Yang 2006, Yang (to appear)])

What's next?

- g=1: In practice, one does not use j, but uses "smaller functions" such as $\sqrt[3]{j}$, Weber functions, and (double) eta quotients.
- g = 2: Still stuck with Igusa's invariants.
- g=1: Useful tool: explicit version of Shimura's reciprocity law, relating Galois action of \widehat{K}^* on values of modular functions to the action of $\mathrm{GL}_2(\widehat{\mathbf{Q}})$ on the modular functions themselves.
- g=2: I have been making Shimura's reciprocity law for g=2 more explicit and have some ideas for "smaller functions"

The "embedding problem" (Goren-Lauter)

Given a quartic CM field K (not containing an imag. quadr. field). What are the primes p such that the following exist?

- ▶ a maximal order R in the quaternion algebra $B_{p,\infty}/\mathbf{Q}$,
- \triangleright a fractional right R-ideal $\mathfrak a$ with left order R', and
- ightharpoonup an embedding of \mathcal{O}_K into the matrix algebra

$$\left(\begin{array}{cc} R & \mathfrak{a}^{-1} \\ \mathfrak{a} & R' \end{array}\right)$$

such that complex conjugation on $\mathcal{O}_{\mathcal{K}}$ coincides with

$$\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right) \mapsto \left(\begin{array}{cc} \overline{\alpha} & \overline{\gamma} N(\mathfrak{a})^{-1} \\ \overline{\beta} N(\mathfrak{a}) & \overline{\delta} \end{array}\right).$$

Partial answer: we know the splitting behaviour of p in the normal closure of K and we know $p < cD_K$. [GL 2006]