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1 The original Chabauty method
1.1 General idea
Consider a geometrically connected smooth projective curve X defined over SpecQ, with genus g, with
a rational point. It is well-known that its set of rational points exhibits very different behavior when g
varies.

When g = 0, X is isomorphic to P1
Q (see for instance [25, Proposition 7.4.1]) and its set of rational

points is thus the complete rational line Q ∪ {∞}. When X is given explicitly, we can even use rational
parametrizations to compute every rational point of X from a given rational point.

When g = 1, X is an elliptic curve, and the Mordell-Weil theorem (see [38, Theorem VIII.6.7]) states
that, given a fixed rational point, X(Q) has a natural structure of a finitely generated abelian group.
However, although there are systematic methods to compute the rank, the torsion group, or generators,
X(Q) remains difficult to compute. The computation of the rank, in particular, is especially complicated,
as, for example, it is not known whether there are elliptic curves over Q whose group of rational points has
arbitrary rank. The highest unconditional known rank is 20, found in Elkies-Klagsbrun in 2020, according
to [15] while, according to [38, Chapter VIII.10] an earlier example found by Elkies has rank at least 28
(and exactly 28 conditionally on analytic number theory conjectures such as Birch and Swinnerton-Dyer
or GRH, as shown in [3] or improved more recently in [23]). The torsion subgroups, on the other hand,
are better-known, at least over Q: as shown in Mazur’s important paper [28, Theorem III-5.1], there are
fifteen of them.

The case g > 1 is the hardest case. It was Mordell’s conjecture that the set X(Q) of rational points
was finite, and it was proved by Faltings only in 1984. Faltings’ proof provides a bound for that number
of rational points, but it is hard to make explicit, and is often far coarser than the actual number. The
proof does not give a criterion to generate all rational points, or to determine whether a given list of
rational points is complete.

Chabauty’s method, dating back from about 1940, is a method to try and make more explicit the
set of rational points of a curve in the last case. It relies on the commutative diagram 1, where J is the
Jacobian of X and the closed immersion X → J is given by an Abel-Jacobi map, P 7−→ [P ]− [O] where
O is a given rational point on the curve (we also could do with O ∈ X(K) where K is a number field
Galois with degree d and group G over Q and the map being P 7−→ d[P ] −

∑
s∈G [s ·O], but we will

assume, for the sake of simplicity, that we already know a rational point), given a prime number p.

X(Q) X(Qp)

J(Q) J(Qp)

Figure 1 – Diagram of Chabauty’s original method

To explain the idea behind Chabauty’s method, we use a language more appropriate to real differential
geometry, which we informally extend to describe p-adic varieties. The actual relevant formalism will be
developed in the following subsections. As we see in the diagram, X(Q) is contained in the intersection
of two p-adic subvarieties of J(Qp), the p-adic closure J ′ of J(Q) and X(Qp). If J(Q) has rank r, then it
is natural to assume that J ′ will have dimension at most r (as a p-adic variety), while X(Qp) will only
have dimension 1. So, if r < g, and if J ′ and X(Qp) intersect transversally, their intersection should be
a closed strict subvariety of X(Qp), so is a p-adic variety of dimension 0, that is, a finite set.

It remains to make explicit that intersection. Still informally, J ′, J(Qp) are p-adic Lie groups (the
former a subgroup of positive codimension of the latter): there should be, therefore, an algebraic function
over J(Qp) that vanishes over J ′ but not over X(Qp). We can compute the zero set of that function on
X(Qp), which should already be finite, and extract from it the rational points.

The condition r < g which we used here is not a merely technical assumption: it is necessary for the
idea to work in this form, and our informal description of the idea cannot be adapted to the case r ≥ g,
where the global behavior of J(Q) inside J(Qp) cannot be so easily predicted. We will come back to this
limitation later.
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The remaining subsections develop this idea and explain the formalism necessary to its proof. Section
1.2 introduces the notion of Coleman integrals, the appropriate tool we use to describe the algebraic
function evoked above. Section 1.3 proves a first very explicit bound by Coleman using Chabauty’s
method. Our approach for that part is mostly that of [29]. Section 1.4 will briefly explain subsequent
improvements on these results: Stoll’s “free” slightly better bound, results for number fields or in cases
of bad reduction...

1.2 Jacobian and Coleman integrals
First, we define some notations that we keep for the rest of the section. Given a scheme X and a point
x ∈ X, unless explicitly indicated otherwise, OX is its structural sheaf, OX,x is the ring of stalks of OX
at x, mx is its maximal ideal and κ(x) (or κX(x) if necessary) the residual field.

We first consider a prime number p and Y → SpecZp a smooth proper scheme with connected generic
fiber.

We will first need some prerequisites from algebraic geometry, and we refer to the annex A.1 for the
details of the proof:
Lemma 2.1

• Its generic fiber is a dense open subscheme.

• Y is a regular integral scheme.

• Every nonempty closed subset of Y meets the closed fiber.

• The natural map Y (Zp)→ Y (Qp) is a bijection.

• The map of sets Y (Fp)→ {y ∈ YFp , κ(y) = Fp} mapping P to the unique point in the set-theoretical
image of P is a bijection.

• The map of sets Y (Qp)→ {y ∈ YQp , κ(y) = Qp} mapping P to the unique point in the set-theoretical
image of P is a bijection.

• If the generic fiber is geometrically connected, so is the special fiber.

We can now define the reduction mod p of the Qp-points of C.
Definition Let P ∈ Y (Qp); we know that P extends uniquely to a morphism P1 ∈ Y (Zp). Now, we
have a reduction mod p morphism Zp → Fp inducing a natural map rp : Y (Zp)→ Y (Fp). The reduction
mod p of P is rp(P1) ∈ Y (Fp).

If Z ∈ Y (Fp), the set of points of Y (Qp) that reduce mod p to Z is called the residue disk of Z. We
denote it as Y (Qp)Z . The completed residue disk of Z is the scheme SpecOY,Z (where we identified Z to
the set-theoretical image of the morphism Z as in the lemma). It is endowed with a canonical morphism
SpecOY,Z → Y , which is topologically a homeomorphism onto its image and is an isomorphism on all
rings of stalks. The schematic residue disk is the open subscheme SpecOY,Z [p−1] (they both are naturally
Zp-schemes). We recall from the annex A.1:
Lemma 2.2 The schematic residue disk and the completed residue disk have the same Qp-points, which
are canonically identified to the points of Y (Qp)Z .

Now, and from now on, we take Y = X a smooth proper scheme of relative dimension 1 over Zp, C its
generic fiber, which we suppose is a geometrically connected (hence integral) curve of genus g over Qp.
We denote as F the special fiber.
Definition Let z ∈ X(Fp) = F (Fp) be a closed point. A uniformizer at z is a function t ∈ OX,z such
that the maximal ideal of this ring is generated by (p, t) (which is then a system of parameters). We
easily note that, in the usual sense for curves, t is a uniformizer at z for XFp .

It is proved in greater generality (any relative dimension) in the annex A.1 that such uniformizers
always exist. We admit this fact for now.

The interesting properties of the uniformizers are summarized in the two propositions below, proved
in greater generality in the annex A.
Proposition 2.3 Let t be a uniformizer at a point z ∈ X(Fp). Given a point P ∈ C(Qp)z, it corresponds
to a morphism P1 ∈ X(Zp) mapping the closed point to z, and thus induces a morphism of local rings
µP : OX,z → Zp. We define t(P ) = µP (t) ∈ pZp. Then P ∈ C(Qp)z 7−→ t(P ) ∈ pZp is a bijection.
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Proposition 2.4 Let z ∈ X(Fp), let t be a uniformizer at p. Let S and D be the schematic and complete
residue disks, respectively, at z. Then the Qp[t] (resp. Zp[t])-submodule of Ω1

D/Zp(D) (resp. Ω1
S/Zp(S))

generated by dt is free and t-adically dense. Furthermore, Ω1
S/Zp(S) = Ω1

D/Zp(D)⊗Zp Qp. In particular,
every global 1-form on S can be written uniquely as a puR(t)dt, where R ∈ Zp[[T ]] not divisible by p and
u ∈ Z (however, not all such power series define a global 1-form).

We can now state the following fundamental theorem, which we partially prove in Annex A:
Theorem 2.5 (Coleman ’85,[7]) We keep the notations above. Let, furthermore, J be the Jacobian of
C, and j : C → J be an Abel-Jacobi injection. Then J has a proper Néron model over Zp, and we have
a unique pairing

(P, ω) ∈ J(Qp)×H0(C,Ω1) 7−→
P∫

0

ω ∈ Qp

satisfying the following properties:

1. For any ω, P ∈ J(Qp) 7−→
P∫
0
ω is additive.

2. For any Q ∈ J(Qp), ω 7−→
Q∫
0
ω is Qp-linear.

3. If z ∈ X(Fp), S is its schematic residue disk, t is a uniformizer at z, P,Q ∈ X(Qp)z, then, for
any ω ∈ H0(C,Ω1) such that ω|S = pu

∑∞
n=0 ant

ndt (the restriction is a pull-back in formal terms),
with u ∈ Z and an ∈ Zp, then

j(Q)∫
0

ω −
j(P )∫
0

ω = pu
∞∑
n=0

an
n+ 1

(
t(Q)n+1 − t(P )n+1).

Coleman’s definition is actually much more powerful than what is sketched here, but we only take what
we need. For instance, it is invariant under any lift of the Frobenius, a very useful property when it comes
to actually compute such integrals (indeed, a point is in the same residue disk as its image, so computing
the "error terms" is easy, and the transformation of the differential form is effectively computable; for
examples, one may consult e.g. [1] and look especially at Algorithms 1.52, 1.53).
Corollary 2.6 Let us keep the same notations, with g the genus of C and r the rank of J(Q). Assume
r < g. Then there exists a subvector space (over Qp) V ⊂ H0(X,Ω1), with dimension at least g− r, such

that for any ω ∈ V , for any P ∈ J(Q),
P∫
0
ω = 0.

Proof. – Simply consider a system of generators of the free part of J(Q): they define as many equations

for V , because if P ∈ J(Q)tors,
P∫
0
· = 0. �

1.3 Coleman’s bound
Once given the datum of section 1.2, that is, a smooth proper geometrically connected curve C of genus
g with a rational point, its Jacobian J and an Abel-Jacobi map j, a smooth proper model X → SpecZp
of X, it remains to apply the idea explained in section 1.1. It decomposes practically in two steps: we
bound the number of rational points on each residue disk, and we assemble the local bounds to get a
global one.

The bound we get is the following:

Theorem 3.1 (Coleman ’85, [7])
If C1 is a smooth geometrically connected projective curve over Q of genus g > 1 with good reduction

at a prime p > 2g and Jacobian J1, (which corresponds to the case above, where X is a base change
of a smooth proper X1 → SpecZ(p) of relative dimension 1 with geometrically connected generic fiber).
Assume the rank r of J1(Q) satisfies r < g. Then |C1(Q)| ≤ |X1(Fp)|+ 2g − 2.
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The proof results from two steps: a step of local analysis, that estimates the number of potential
rational points on a residue disk, and a step of global analysis, where the local bounds are mixed. In this
situation, the global step is relatively straightforward. For now, we take ω any nonzero differential.

First, we see that Ω1
X/Zp is a locally free OX -module, in particular p is a regular element. Restricting

along affine subsets, we find that H0(X,Ω1
X/Zp)⊗ZpQp = H0(C,Ω1

C/Qp) and H0(X,Ω1
X/Zp)⊗Zp Fp injects

naturally by pullback into H0(F,Ω1
F/Fp) where F is the special fiber.

Also, X → SpecZp is proper (see e.g. [17]), and by the above, H0(X,Ω1
X/Zp) is a torsion-free finitely

generated Zp-module, so it is a free Zp-module of finite rank. So, up to multiplication by the right power
of p, we can assume ω ∈ H0(X,Ω1

X/Zp)\pH0(X,Ω1
X/Zp), so that ω reduces to a nonzero global differential

form ω1 on XFp .
Note finally that as C is geometrically connected and smooth, by Lemma 2.1, XFp is also a smooth

proper geometrically connected curve over Fp.

Lemma 3.2 (Local bound)
Let z ∈ X(Fp), t a uniformizer at z, S the associated schematic residue disk, write ω|S = f(t)dt,

f ∈ Zp[[T ]]\pZp[[T ]]. Let m be the multiplicity of z in divω1. Let F ∈ Qp[[t]] be any antiderivative of f .

1. The valuation of f mod p (i.e. the order of the first nonvanishing coefficient) is m.

2. If m < p− 2, F has at most m+ 1 zeros as an analytic function defined over pZp.

3. There are at most m+ 1 points L ∈ X(Qp)z satisfying
j(L)∫
0
ω = 0.

Proof. – Note that t-adically in (Ω1XFp/Fp)z, ω1 is (f mod p)(t)dt. So if f mod p = 0, then ω1 is zero
on a non-empty open subset, so is zero. The formula before also proves the first claim. The third claim
follows from properties of Coleman integrals, residue disks, and from the second claim. So the second
claim is the most interesting one. We can see it as a p-adic Rolle theorem. First, we notice that if consider
a z ∈ pZp, then F (z) − F (0) ∈ pZp. Indeed, write f(t) =

∑∞
n=0 ant

n. Then, the p-adic valuation of
an
n+1z

n+1 is at least 1 if n < m < p − 2 (because of an, and n + 1 is not a multiple of p); the p-adic
valuation of the same expression for m ≤ n < p − 1 is at least m + 1; when n ≥ p − 1, the valuation is
at least n + 1 − vp(n + 1) ≥ n − p + 2 (the inequality is proved by induction). So if F (0) /∈ pZp, the
statement holds. Let z = (z1, . . . , zm+1) ∈ (pZp)m+1 be a set of m + 1 roots of F , pairwise distinct (if
we can’t find any such list, we are done). Define, for every k ≥ 0,

bk =
∑

`∈Nm+1

z`
ak+|`|+m

k + |`|+m+ 1 .

The series is unconditionally convergent in Qp, because for any k, for large enough l ≥ 0, l−vp(k+l+m+1)
(a term not greater than the p-adic valuation of the sum of the terms with |`| = l) is greater than l/2.
Furthermore, one can check the following formal identity, in the variables X1, . . . , Xm+1, T :

∞∑
v=0

T v
∑

`∈Nm+1,|l|=v

X` =
m+1∏
i=1

∞∑
t=0

(XiT )t =
m+1∏
i=1

1
1−XiT

.

Arranging the equation so that the right hand side is 1, specializing Xi = zi, and denoting σi the i-th
degree symmetric polynomial in z, letting Sw(z) =

∑
`∈Nm+1,|`|=w z

`, we get for w > 0

m+1∑
i=0,i≤w

(−1)iσiSw−i(z) = 0.

By rearranging sums,

G =
∑
k≥0

bkX
k
m+1∏
k=1

(X − zk)− F (X) =
∞∑
k=0

Xk
∞∑
v=0

uk+v
∑
t+l=v
0≤t≤m
k+t≥m

Sl(z)σt(−1)t
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is a polynomial of degree at most m. Now, if the p-adic norm of bk is o(pk) as k → ∞, then we can
evaluate the equality at each zi, and it follows G(zi) = 0. As the zi are distinct, and there are more of
then than the degree of G, G = 0.

Thus, it remains to prove two things:

• That |bk|p = o(pk).

• That H(X) =
∑
k≥0 bkX

k has no zeros in pZp.

For the first item, simply note that the p-adic valuation of bk is vk = inf {l− vp(k+ l+m+ 1), l ≥ 0}.
Thus

pvk ≥ inf
{

pl

x+ k +m+ 1 , x ≥ 0
}
,

and the function is minimal when x = 0 or x+m+ 1 = (ln p)−1. As p− 2 > m > 0, p ≥ 3, so the latter
condition isn’t met in [0,∞). So pvk ≥ 1

k+m+1 and thus |bk|p grows linearly, hence the conclusion.
For the second term, let y ∈ pZp, ` ∈ Nm+1 and k ≥ 0 with k + |`| > 0 and let us show

that tk,` = ykz`
ak+|`|+m
k+|`|+m+1 has positive valuation. If s = k + |`| + m + 1 < p, it is clear. Else,

vp(s) ≤ s − (p − 1) < s − (m + 1) = k + |`|. Adding everything together, it follows that bkyk ∈ pZp for
k ≥ 1 and b0y0 − am

m+1 ∈ pZp. But as m + 1 < p and am /∈ pZp, b0 /∈ Zp. So H(y) /∈ pZp, and we are
done. �

Now we can prove Coleman’s theorem:

Proof. – We choose ω ∈ V . Let z ∈ X1(Fp), let mz be the multiplicity of z in divω1. For each point

q ∈ C1(Q)∩C(Qp)z, then if t is a uniformizer at z (in X),
j(q)∫
0
ω = 0 (where we have a natural embedding

C1(Q) → C(Qp)). So there are at most 1 + mz points in C1(Q) ∩ C(Qp)z. Now, using Riemann-Roch
and the fact that both C1 and X1 have no nontrivial global function (they are geometrically connected
and smooth proper curves over their respective fields), and Euler characteristics invariance,∑

z

1 +mz = |X1(Fp)|+
∑
z

mz ≤ |X1(Fp)|+ deg divω1 = |X1(Fp)|+ 2g − 2.

�

1.4 Further refinements
The results of this section are mostly inspired by David Zureick-Brown’s lecture [45] on Abelian Chabauty
at the Arizona Winter School 2020.

We first talk about Stoll’s improvement of Coleman’s bound. This is a case where the bound is
improved unconditionally. The idea is simple: the proof of the Coleman theorem only uses the existence
of one vanishing differential. Then we locate its zeroes on each residue disk, and the Riemann-Roch
theorem lets us bound the total vanishing order of the differential form.

But if the rank of the Jacobian is smaller than the genus of the curve, there can be several independent
differentials in V , and perhaps we can pick different ones for each residue disk, the ones best suited to
each disk. This is the crux of Stoll’s improved bound.

Theorem 4.1 (Stoll, [42])Let C → SpecQ be a geometrically connected smooth projective curve with
genus g > 1 and with good reduction at some prime number p > 2g, let X → SpecZ(p) be a smooth proper
model of C. Let r be the rank of the finitely generated group of rational points of its Jacobian. If r < g,
then |C(Q)| ≤ |X(Fp)|+ 2r.

Proof. – Let V be the orthogonal of J(Q) in H0(CQp ,Ω1
CQp/Qp

), with dimension g− r at least. For every
nonzero ω ∈ V , there exists a unique u ∈ Z such that puω extends to a global differential on XZp with
nonzero reduction ω on the special fiber. For each Q ∈ X(Fp), let mω,Q be the vanishing order at Q of
ω. Denote by mQ, for each Q ∈ X(Fp), the minimum value over all such ω of mω,Q.
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Then by Lemma 3.2, for each Q ∈ X(Fp), |C(Q)Q| ≤ 1 + mQ. Then, D =
∑
QmQ ·Q is a divisor

on the special fiber (which is known to be geometrically connected, smooth of relative dimension 1 and
proper) satisfying |C(Q)| ≤ |X(Fp)|+ degD.

Now, D is a special (as defined in [17, Example IV.1.3.4]) effective divisor, as any ω, for nonzero
ω ∈ V , is a holomorphic differential on XFp with ÷ω ≥ D. Thus, by Clifford’s theorem ([17, Theorem
IV.5.4]), 2`(D) − 2 ≤ degD. But by Riemann-Roch (see eg [25, Theorem 7.3.26, Remark 7.3.27]),
`(D) = degD + 1− g + dim{u ∈ H0(XFp ,Ω1

XFp/Fp
), div u−D ≥ 0}.

Now, the latter dimension is at least the dimension of
(
V ∩H0(XZp ,Ω1

XZp/Zp
)
)
⊗Zp Fp, which is

dimV ≥ g − r. So finally `(D) − 1 ≥ degD + r. Thus 2 degD + 2r ≤ 2(`(D) − 1) ≤ degD, hence
degD ≤ 2r and we are done. �

A well-known related question, but broader and somewhat bolder, is the uniformity problem, formu-
lated in [5]. It consists in finding a uniform upper bound on the number of rational points of a curve,
depending only on its genus, assumed to be at least 2. Some progress was made in the recent work of
[12], which proves a uniform upper bound depending only on r and g.

In view of this question, we notice that the quality of the bound when applying Chabauty’s method
depends heavily on the prime p of good reduction, which could even be arbitrarily large. That is why
the Coleman bound was adapted, using other arguments from p-adic geometry, intersection theory or
tropical geometry, to the case of bad reduction:

Theorem 4.2 (Lorenzini, Tucker, [27]) |C(Q)| ≤ |Xsm(Fp)| + 2g − 2 if p > 2g, r < g, where X is a
regular proper scheme over Z(p) with generic fiber CQp , and Xsm is its smooth locus.

Theorem 4.3 (Katz, Zureick-Brown, [19]) With the same notations, if we only require p > 2r + 2 and
r < g, then |C(Q)| ≤ |Xsm(Fp)|+ 2r, where Xsm is the smooth locus of a regular model of C over Z(p).

The drawback of these bounds is that Xsm(Fp) could be huge: for instance, if C is an elliptic curve
with j-invariant in p−nZ×p , it turns out that Xsm

Fp is a reunion of n P1
Fp .

Another aspect of the method of Chabauty-Coleman is the fact that better rank bounds yield better
bounds on the number of points. It can be done in an elementary way, with a p-adic valuation analysis
not unlike the proof of Lemma 3.2; some corresponding results can be found in [29]. In a more recent
article, combining improved rank bounds but using instead a minimal, non regular model of the curve,
Stoll derived the following uniform bound for hyperelliptic curves, regardless of reduction.

Theorem 4.4 (Stoll, [43]) With the same notations, if r ≤ g − 3, and if C is hyperelliptic, then
|C(Q)| ≤ 8(r + 4)(g − 1) + gmax(1, 4r).

Using more refined non-Archimedean analytic tools, such as Berkovich spaces, and tropical geometry,
the statement was then generalized to all curves:

Theorem 4.5 (Katz, Rabinoff, Zureick-Brown, [18]) If r ≤ g − 3, then |C(Q)| ≤ 84g2 − 98g + 28.
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2 Kim’s non-abelian generalization and application to modular
curves

2.1 Kim’s diagram
The method now known as Chabauty-Kim’s method relies on a variant of Figure 1, where the Jacobian
is replaced by another object constructed using the curve. In loose terms, the Jacobian is an abelian
version of a richer invariant, which is in this case a fundamental group.

We consider a smooth projective curve X over a field K with characteristic 0 with a base point
b ∈ X(K). Let K be an algebraic closure of K, and G be the absolute Galois group of K, which has a
profinite topology. Using Deligne’s ideas from [9], a Qp-unipotent fundamental group (which is actually
a group scheme) π(p,u)

1 (XK , b) can be defined, as well as, for any x ∈ X(K), a right torsor of paths
P (XK , b, x) under π(p,u)

1 (XK , b) can be defined.

If x ∈ X(K), we have compatible natural actions of G on π(p,u)
1 (XK , b) and P (XK , b, x), because b

and x are invariant under G. This defines a map jfull
K : X(K)→ H1(G, π(p,u)

1 (XK , b)) (see Annex B).
We actually simplify this map by replacing π(p,u)

1 (XK , b) with a more tractable object: we consider
its lower central series given by U (1) = π

(p,u)
1 (XK , b) and U (n+1) is the closed subgroup generated by the

set of commutators of elements of U (1) and U (n). These subgroups are clearly stable under continuous
group automorphisms; in particular, they are stable under the action of the Galois group. We define
Un = U (1)/U (n+1) for each n ≥ 1, they are topological groups with continuous actions of G.

More generally, let us consider a closed subgroup Q of U (1), stable under Galois, and U = U (1)/Q, then
jfull
K becomes, through the Galois-equivariant quotient π(p,u)

1 (XK , b)→ U , a map j : X(K)→ H1(G,U).
Now, we consider changing base fields, we take K = Q and then K = Qv for some prime number v.

For U such as defined above, we can have a diagram:

X(Q) X(Qv)

H1(GQ,T , U) H1(GQv , U)

j jv

locv

Figure 2 – Chabauty-Kim diagram, first version

where T is a set of primes containing v and the primes of bad reduction of X, and GQ,T is the Galois
group of the maximal algebraic extension of Q unramified outside T , so that GQ,T acts on π(p,u)

1 (XQ, b)
(as the curve has good reduction outside T ), and GQv is, by a given embedding Q→ Qv, a subgroup of
GQ,T .

The two following theorems follow from Kim’s work in [20] and are stated in [2].
The first statement is that all our constructions actually work as p-adic varieties:

Theorem 1.1 There exist group schemes of finite type over Qp making each of the formerly defined
U (i)/U (k), i < k, their sets of Qp-points, and all the canonical maps between these groups come from
morphisms of schemes.

The second statement is the fact that the cohomology spaces of unipotent group schemes over Qp are
actually cohomology schemes:
Theorem 1.2 Let G be a profinite group acting continuously on Un and U be a quotient of Un by
a subgroup scheme stable under G, so that U is a Qp-group scheme of finite type. Then the functor
R 7−→ H1(G,U(R)) (from Qp-algebras to pointed sets) is represented by an affine Qp-scheme of finite
type, which we denote as H1(G,U) as well.

Assume we have two quotients V and W of Un by subgroup schemes stable under G. Let f : V →W
be a morphism of group schemes, G and H be two profinite groups acting respectively on V and W , and
p : H → G be continuous such that for each x ∈ U(R), h ∈ H, h(f(x)) = f(p(h)x), then the natural
morphism of functors H1(p, f) : H1(G,V (R))→ H1(H,W (R)) is a morphism of schemes.
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For all groups with this form, and all morphisms of exact sequences with various profinite groups, the
diagram from Theorem 0.6 comes from a diagram of schemes.

This already tells us more information about the diagram of Figure 2, namely that the map locv is
actually a map of p-adic algebraic varieties.

When p is a prime of good reduction of X, the image of the map X(Qp)→ H1(GQp , U) has a further
property: the torsors in the image are crystalline, a “good-reduction-like” property which we will not
detail here. It is stated in [2] that the subspace H1

f (GQp , U) of H1(GQp , U) corresponding to crystalline
torsors is also the set of Qp-points of a Qp-scheme.

From now on, we fix a prime of good reduction p of X. Let U be a quotient of U (1) by a closed
subgroup. its abelianization Uab is a quotient of π(p,u)

1 (XQ, b)ab. But the set of Qp-points of the latter
group, considered as a Galois module, is the Qp-vector space VJ = Tp(J)⊗Zp Qp, where Tp(J) is the Tate
module of the Jacobian.

An idea of why this holds true is to look at the Riemann-surface analog: the Jacobian is the quotient
of a g-dimensional complex vector space by the lattice generated by the 2g generators of the topological
fundamental group. The Tate module of the Jacobian is, by definition, the Zp-module generated by said
lattice, thus, the free Zp-module generated by the loops. On the other side of the identification, when we
abelianize the fundamental group and consider its Qp-completion, all that remains is the free Qp-vector
space generated by the loops.

Thus, using the results from Annex B we have a natural map µ : J(Q)⊗Qp → H1(GQ,T , U
ab) when

X (hence J) has good reduction at v.

We actually have significant information about the diagram of Figure 2. The following theorem is
stated in [2] from [22]:
Theorem 1.3 For each prime v of bad reduction, jv(X(Qv)) ⊂ H1(GQv , U(Qp)) is finite.

Let now T0 be the set consisting of all the primes of bad reduction of X, then p /∈ T0, and we denote
from now on T = T0 ∪ {x}. We have an algebraic map loc : H1(GQ,T , U) → S1 :=

∏
v∈T H

1(GQv , U).
S1 is a Qp-scheme, and has a finite set B of p-adic points corresponding to the image of the product of
the images of the jv(X(Qv)). We denote S2 = loc−1(B) ×H1(GQp ,U) H

1
f (GQp , U) = (H1(GQ,T , U) ×S1

B)×H1(GQp ,U) H
1
f (GQp , U).

We can see J(Q) ⊗ Qp as the set of Qp-points of a finite-dimensional affine space PJ over Qp, and
similarly for Uab and H1

f (GQp , U
ab) (without the finite-dimensional assumption for the latter), so the

map J(Q)⊗Qp → H1
f (GQ,T , U

ab) comes from a morphism of schemes.
We define the Selmer scheme Sel(U) of U as S2 ×H1

f
(GQ,T ,Uab) (J(Q)⊗Qp).

In particular, Sel(U)(Qp) corresponds to cohomology classes α of H1(GQ,T , U) satisfying the following
conditions:

1. If v is a prime of bad reduction, locv(α) ∈ jv(X(Qv)).

2. locp(α) ∈ H1
f (GQp , U).

3. The image of α in H1(GQ,T , U
ab) is in the image of µ.

At this point, we have the following diagram:

X(Q) X(Qp)

Sel(U)(Qp) H1
f (GQp , U(Qp))

j jp

locp

Figure 3 – Chabauty-Kim diagram, second version
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It becomes thus natural to define X(Qp)U = j−1
p (locp(Sel(U)(Qp))). It is a set of particular p-adic

points of the curve, containing in particular X(Q). This notation was implicit in Kim’s work [21], when
U is one of the Un, and he showed that usual conjectures such as the Bloch-Kato conjecture or the
Fontaine-Mazur conjecture implied the finiteness of X(Qp)Un for large n, using the sufficient condition
below.

We have the following information on the maps, according to [2] (which ultimately sources [21]):
Theorem 1.4 jp is analytic on each residue disk and the image of the residue disk of b is Zariski-dense.
locp comes from a morphism of Qp-schemes.

Corollary 1.5 If locp is not dominant as a map of varieties, then X(Qp)U = j−1
p (locp(Sel(U)(Qp))) is

finite (and in particular X(Q) is finite!).
Proof. – Let Z be the scheme theoretical image of locp, which is a closed subscheme (with strictly smaller
underlying space) of H1

f (GQp , U(Qp)) which is affine from [2]. Thus, there is an nontrivial algebraic
morphism of Qp-schemes α : H1

f (GQp , U(Qp)) → A1
Qp vanishing on Z, so that α ◦ jp : X(Qp) → Qp is

locally analytic, nonzero on the residue disk of b, and vanishes on X(Qp)U . Thus X(Qp)U has finitely
many points on the residue disk of b.

If we change the base point, we have a (non-natural) isomorphism between the two corresponding
Chabauty-Kim diagrams due to the existence of a “rational” path linking the two points (see [39, Tag
0BND] and then perform the pro-p-unipotent completion). So the hypothesis is independent of the base
point, so that X(Qp)U has finitely many points on each residue disk. �

Computing locp precisely, to determine when it is dominant, can be difficult, but there is a simple
sufficient condition:
Proposition 1.6 If dim Sel(U) < dim H1

f (GQp , U), then X(Qp)U is finite and in particular X(Q) is
finite.
Proof. – Note that the two schemes are affine of finite type over Qp, so it is enough to show that if
A,B are two finitely generated K-algebras such that A→ B has nilpotent kernel (ie SpecB → SpecA is
dominant), then dimB ≥ dimA. By Noether normalization, A is finite over a polynomial ring in dimA
variables, so we may assume that A = K[X1, . . . , Xd] for some d ≥ 0. Write C1, . . . , Cp the irreducible
components of SpecB, the reunion of the closures of the images of the Ci in SpecA is the closure of
the image of SpecB, so contains the generic point. Therefore, some Ci is dominant over SpecA. As
dimCi ≤ dimB, we can thus assume SpecB irreducible and even integral. As the morphism is dominant
(scheme-theoretically) , it follows that A→ B is injective, and thus we have an injection on the fraction
fields. But the transcendance degree of the fraction field of A is d, and for B it is dimB, so dimB ≥ d. �

In [13], the dimension estimate used to use the criterion above is the following (it is adapted from [2,
Lemma 3.1]):
Theorem 1.7 Assume, in addition to the original setting, that U is a quotient of U2, so that its derived
subgroup is central. We are in the setting of “Quadratic Chabauty”. Let A be an abelian variety over
Q, which is a quotient of the Jacobian J of X. Assume that we have an exact sequence (in the sense
of Qp-complete groups with Galois actions) 1 → Qp(1)n → U(Qp) → Tp(A) ⊗Zp Qp → 1, where the
second-to-last map is the abelianization of U . Then:

1. Sel(U) has dimension at most the rank of A(Q).

2. H1
f (GQp , U) has dimension dimA+ n.

Corollary 1.8 With the notations and assumptions of the theorem, if moreover rank A(Q) < dimA+n
then X(Qp)U is finite and thus the cardinality of X(Q) can be bounded.

The strategy of the proof in [13] is now as follows, when X is a modular curve X0(N)+ or Xns(N)+

(we will define these curves more precisely):
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1. Find through modular form theory a suitable isogeny of abelian varieties J → A×B such Hom(A,B) =
0 (and, moreover, A(Q) has rank dimA).

2. Define a partial function θ : NS(A)→ B(Q)⊗Q whose kernel K has positive rank r.

3. Show that quadratic Chabauty works in this setting as soon as rkA(Q) < dimA+ r (that is, prove
Theorem 1.7).

The third point of this program is done in Section 3 of [13]. We will not focus on it, because it uses
more involved tools, and instead we will admit Theorem 1.7 and focus on the first two points of the
program.

2.2 Correspondences on curves and applications
2.2.1 Correspondences on curves

In the following (at least until we specialize), we consider general curves over fields K of characteristic
zero, that is, smooth projective geometrically connected one-dimensional K-schemes with a K-rational
point. Our first interest is to show that correspondances, as Cartier divisors of a product of two curves,
induce morphisms between the Picard groups and Jacobians.
Proposition 2.1 Let X1, X2 be curves with rational points b1, b2. Define πi : X1 ×K X2 → Xi the
projections, and i1 : X1 → X1 ×K X2 given by (id, b2) (and same for i2). Then we have maps π∗i :
Pic(Xi)→ Pic(X ×X), and i∗k : Pic(X ×X)→ Pic(Xk), such that, as abelian groups:

Pic(X1 ×X2) = π∗1 Pic(X1)⊕ π∗2 Pic(X2)⊕ (ker i∗1 ∩ ker i∗2).

Proof. – We have a right-to-left natural map, the addition a. Consider, as a map left-to-right, the map
c = (π∗1i∗1, π∗2i∗2, id−π∗1i∗1−π∗2i∗2). Indeed, since πk ◦ ik = id, i∗kπ∗k = id; if k 6= l, πl ◦ ik is constant, so i∗kπ∗l
is the trivial map. Thus c is well-defined. Clearly, a ◦ c = id. To show that c ◦ a = id, it is enough to
check it on the three coordinates separately.

If L = π∗kM , π∗ki∗kL ∼= π∗k(i∗kπ∗k)M ∼= π∗kM
∼= L ; if l 6= k, π∗l i∗lL ∼= π∗l i

∗
l π
∗
kM

∼= π∗l 0 ∼= 0 where 0 is
the trivial line bundle, and the third coordinate is by definition L −L − 0 = 0 (where the law group on
the Picard groups is denoted additively). �

Lemma 2.2 Let X1, X2 be curves over a field K. Let L be a line bundle over X2 ×K X1. Let X =
X1 ×K X1, p and q be the right projections from X to X1. Then M = (id×p)∗L ⊗ (id×q)∗L −1 is a
line bundle on X2 ×X, such that for each t ∈ X, Mt (which is a line bundle on the curve (X2)κ(t)) has
degree 0. Moreover, if ∆ is the diagonal subscheme of X, M|X2×∆ is trivial.
Proof. – Only the degree 0 part is not an easy verification. Let Lp = (id×p)∗L and Lq = (id×q)∗L ,
and K be any of them. We know t ∈ X 7−→ χ((id, t)∗OX2×KX) +χκ(t)(Kt) is locally constant, from the
cohomology of schemes (see e.g. [30, Theorem 4.2]). As X1 is geometrically connected, X is connected,
and the map above, which is t ∈ X 7−→ deg(X2)κ(t)

Kt, is constant.
Now, take s ∈ X1 a closed point, and t = (s, s) its image under the diagonal injection. One easily

checks that (Lp)t ∼= (Lg)t, hence the conclusion follows. �

Corollary 2.3 With the same notations, there is a unique morphism of abelian varieties ψ(L ) : J1 → J2
such that its composition with the difference map X1 ×X1 → J1 corresponds to the class of M in J2(X)
as described in [31, Theorem 1.1]. ψ : Pic(X2 × X1) → Hom(J1, J2) is a map with kernel containing
π∗1 Pic(X1) + π∗2 Pic(X2).
Proof. – We use the Albanese property from [31, Proposition 6.4], and the functor description of the
Jacobian ([31, Theorem 1.1]): the homomorphisms J1 → J2 are in bijection with the morphisms X1 ×
X1 → J2 vanishing on the diagonal. Some of these morphisms are represented by the line bundles P on
X2 × (X1 ×X1) such that for all t ∈ X1 ×X1, Pt has degree 0 as a line bundle on (X2)κ(t), and such
that P|X2×∆ is the pull-back of a line bundle on X1 under X2 ×∆ → ∆ → X1. This describes all the
morphisms if X2(X1 ×X1) is not empty. As there are morphisms X1 ×X1 → X1 and X1 → X1 ×X1,
X2(X1 ×X1) is not emmpty iff there is a morphism X1 → X2.

That, for i ∈ {1, 2}, ψ vanishes on π∗i Pic(Xi) is easy to see: if L = π∗2N , then M = (X2 × X →
X2)∗L ⊗ (X2 ×X → X2)∗L −1 is trivial. If L = π∗1N , then M = (X2 ×X → X)∗(p∗N ⊗ q∗N −1) so
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corresponds to the null morphism J1 → J2. �

The properties of this map are clearer when X1 and X2 have both rational points, thanks to the
existence of Abel-Jacobi injections.
Proposition 2.4 With the same notations, if bi ∈ Xi(K), ψ(L ) is uniquely defined by the equality
ψ(L ) ◦ AJb1 = µ, where AJb1 : X1 → J1 is the Abel-Jacobi injection mapping b1 to 0, and µ : X1 → J2
is defined by the line bundle (id, p, b1)∗M = (id, b1)∗L −1 ⊗L ∈ Pic(X2 ×X1). Then the kernel of ψ is
exactly π∗1 Pic(X1)⊕ π∗2 Pic(X2) and ψ is onto.
Proof. – Let δ : X1×X1 → J1 be the difference map, then δ◦(id, b1) = AJb1 , so that ψ(L )◦AJb1 = ψ(L )◦
δ ◦ (id, b1). But f = ψ(L ) ◦ δ is defined by M in the functor-of-points approach. Thus µ := f ◦ (id, b1) is
described by the corresponding pullback of M along (π2, p, b1) : X2 ×X1 ×X1 → X2 ×X1 × SpecK =
X2 ×X1.

Let L be a line bundle on X2 × X1 such that for each t ∈ X1, (id×t)∗L has degree 0. Let
M = (id, b1)∗L −1 (where b1 is the morphism X2 → Spec k = Specκ(b1)→ X1), then π∗2M ∼= ((id, b1) ◦
π2)∗L −1 = (id, b1)∗L −1. Thus ψ(L ) is the endomorphism associated to L by [31, Theorem 1.1]. By
the Albanese property, this shows that ψ is surjective.

If L is a line bundle on X2, then (id, b1)∗π∗2L ∼= π∗2L (as π2 ◦ (id, b1) = π2, thus π∗2 Pic(X2) ⊂ kerψ.
By the description of the Jacobian as a functor of points, see again [31, Theorem 1.1], π∗1 Pic(X1) ⊂

kerψ.
Let L ∈ Pic(X2 ×K X1) be such that ψ(L ) is the zero endomorphism. This implies that for some

line bundle M on X1, L ∼= (id, b1)∗L ⊗ π∗1M . But, as π2 ◦ (id, b1) = π2, it follows that the first term is
in π∗2 Pic(X2). This concludes thanks to the previous proposition. �

Note that this morphism is canonical and stable under base change by any field extension. This has
the following application:
Corollary 2.5 In the general case (ie X1, X2 no longer necessarily have rational points), π∗1 Pic(X1)
and π∗2 Pic(X2) are in direct sum. Moreover, the quotient of kerψ by this sum is a torsion group; the
cokernel of ψ is as well a torsion group. If there is a Galois field extension L/K such that X1(L) and
X2(L) are nonempty, then [L : K] vanishes both of these groups.
Proof. – Let L/K be a finite Galois extension such that both Yi = Xi ×SpecK SpecL have rational
points. Algebraic geometry results (something akin to [30, Lemmas 5.4, 6.2]) show that the pull-backs
Pic(Xi) → Pic(Yi) are injections (and similarly for Pic(X1 × X2) → Pic(Y1 × Y2)), so this proves the
“direct sum” part.

If ψ(L ) = 0 (with L line bundle over X1 ×X2), let L ′ be its pull-back to a line bundle on Y1 × Y2.
Then ψ(L ′) = 0 as well, so L ′ = π∗1M ′

1⊗π∗2M ′
2 for line bundles M ′

i on Yi. Let Mi be the tensor product
of all the images of M ′

i under the action of the Galois group of L/K: then Mi is a Galois-invariant line
bundle on Xi ×K SpecL, so is the pull-back of a line bundle Ni defined on Xi. As L ′ is invariant under
the action of the Galois group of L/K, L ′[L:K] = π∗1M1⊗π∗2M2. By the injectivity in the Picard groups
of the pullback of Y1 ×L Y2 → X1 ×X2, L [L:K] = π∗1N1 ⊗ π∗2N2.

Let u : J1 → J2 be a homomorphism, we know that there is a line bundle L on Y1 × Y2 such that
ψ(L ) = u. For any σ in the Galois group of L/K, one easily sees that ψ(σ∗L ) = σ∗u = u, since u is
defined over K itself. In particular, by the same reasoning as the above, there is a line bundle M on
X1 × X2 whose pull-back N under Y1 ×L Y2 → X1 ×K X2 is the tensor product of all the conjugates
of L under the action of the Galois group. Thus ψ(N ) = [L : K]u, and by stability under base change
ψ(M ) = [L : K]u, which implies the conclusion. �

We now give two more explicit descriptions of the construction, which will be useful when considering
the θ morphism later on.
Lemma 2.6 Let b, b′ ∈ X1(K) and L be a line bundle on X2×K X1. Then the image of ψ(L )([b− b′])
is the point of J2 associated with L|X2×{b} −L|X2×{b′}.
Proof. – It is enough to show it when b′ = b1. By the description of the functor of points of the Jacobian
from [31], the conclusion follows. �

Lemma 2.7 Assume K is algebraically closed. With the same notations, if Z is a prime divisor on
X1 × X2 (i.e. an integral closed subscheme of codimension 1) associated to the line bundle L , then,
ψ(L ) : J1(K)→ J2(K) is the quotient of the map Div(X1)→ Div(X2) given by DivCartier(X1) (π1:Z→X1)∗−→
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DivCartier(Z) → DivWeil(Z) (π2:Z→X2)∗−→ DivWeil(X2). That map maps divisors of degree 0 to divisors of
degree 0, and, by construction, divisors of meromorphic functions to divisors of meromorphic functions,
so it induces a map Pic(X1)→ Pic(X2) (that is the corresponding Jacobian map on the bundles of degree
0).
Proof. – The second part follows from standard properties of Cartier and Weil divisors, see [25, Definition
7.2.17, Proposition 7.3.8], and from the first part. Let us thus see the first one. As Ji(K) is generated
by Xi(K) − bi, it is enough to check the statement for inputs of the form [P ] − [b1] for P ∈ X1(K).
Given P ∈ X1(K), its image under our divisor map is

∑
Q∈X2(K),(Q,P )∈Z eOZ,(Q,P )/OX1,P

[Q] (the factor
will from now on be denoted as eQ simply). Let U2 ⊂ X2, U1 ⊂ X1 be affine open subsets containing all
the Q in the sum above and b2, and P and b1 respectively, with coordinate rings A2 and A1 (Dedekind
rings and finitely generated K-algebras). Let I be the kernel of A2 ⊗K A2 → A2, L|U2×U1 correspond to
a locally principal ideal J of A2 ⊗K A1.

We show that, as ideals of A2 through the canonical identifications {P} ∼= {Q} ∼= SpecK, L|U2×{P}
is equal to the product of the I|U2×{Q} = IQ, each factor being counted eQ times. Indeed, L|U2×{P} is
J/mPJ , an ideal of (A2 ⊗A1)/(mP (A2 ⊗A1)) = A2 ⊗ (A1/mP ) = A2. By definition, eQ is the length of
the ((A2)mQ ⊗ (A1)mP )/(J)-module ((A2)mQ ⊗ (A1)mP )/(J,mP ).

For each Q, we have a split exact sequence of K-vector spaces 0→ I → A2 ⊗A2 → A2 → 0, the last
arrow being given by the multiplication. So its restriction to U2 × {Q} is 0 → IQ → A2 ⊗ (A2/mQ) →
A2/mQ → 0. Thus, seen as an ideal of A2, IQ becomes mQ. So the goal is to show that if J ′ is the ideal
of A2 given by reducing mod mP all the elements of J ⊂ A2 ⊗ A1, then J ′ is the product of the meQ

Q .
But by the above, eQ is the length of (A2)mQ/(J ′).

It follows that, letting U1 and U2 run over all possible affine open subsets, L|X2×{P}
∼=
⊗

Q I
⊗eQ
|X2×{Q}.

Now, let M = (π2, b1)∗L −1 ⊗L , then

M|X2×{P} = L|X2×{P} ⊗L −1
|X2⊗{b1}

∼=
⊗
j

I
⊗mj
|X2×{Qj},

where
∑
jmjQj is the image of [P ]−[b1] under the divisor map. By the interpretations and identifications

of the Jacobian in [31], that line bundle is the bundle U|X2×{[
∑

j
mjQj ]}, so the image of P under the

map X1 → J2 constructed while defining ψ(L ) is
∑
jmjQj . The image of b1 under this map is zero,

which concludes. �

2.2.2 Definition of the θ morphism

Let K be a field of characteristic zero and X be a curve over K. We make the following assumptions:

• X has a rational point b.

• The Jacobian J of X has a map of abelian varieties (πA, πB) : J → A×B.

We denote AJ (or AJb when there is an ambiguity) the immersion X → J mapping b to 0. Define
the map ÃJ : Pic(J)→ Pic(X) as L 7−→ AJ∗L ⊗ (−AJ)∗L .

If δ : X × X → J is the difference map, ∆ = (id, id) : X → X, i1 = (id, b) : X → X × X,
i2 = (b, id) : X → X ×X, one easily checks that the following diagram commutes:

Pic(J) Pic(X)

Pic(X ×X)

ÃJ

δ∗ i∗1+i∗2−∆∗

Figure 4 – Factorization of ÃJ

We recall the following definitions from [30]:
Definition Let U be an abelian variety over a field K. Let π1, π2 denote the projections U × U → U ,
and m denote the multiplication map. We define Pic0(U) to be the subgroup of Pic(U) of equivalence
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classes of line bundles L over U satisfying m∗L ∼= π∗1L ⊗ π∗2L . The Néron-Severi group of U is the
group NS(U) = Pic(U)/Pic0(U). It is free with finite rank denoted ρ(U).
Lemma 2.8 In Figure 4, the maps δ∗ and ÃJ vanish at all elements of Pic0(J).

Definition Let G(A) be the inverse image of Pic0(X) under NS(A) π∗A→ NS(J) ÃJb→ Pic(X) (we will
see below that it does not depend on b, hence justifying the notation). The θ morphism, based at b
(depending also of πA, πB but we leave the dependency nonexplicit for the sake of easier notation), is the
map θb : G(A)→ Pic0(X) = J(K) πB→ B(K).

The previous study gives us an important criterion for the vanishing of θb:
Proposition 2.9 Let b ∈ X(K) and Ω ⊃ K be an algebraically closed field. Let F be a group of Cartier
divisors on X ×X. Assume that :

1. There is a subset S ⊂ X(Ω) such that every K-divisor of null degree on X with support in S projects
into B(K) as a torsion point.

2. For every k = 1, 2, D ∈ F , the supports of (i∗k(b)D)(Ω), and ∆∗D(Ω) are in S.

3. End(J)/ψ(F ) is a torsion group.

Then θb maps into B(K)tors.
Proof. – Let L be a line bundle on A reducing to an element of G(A). Let M = (πA ◦ δ)∗L . We know
that there exists an integer d ≥ 1 such that ψ(M d) = ψ([D]) for some D ∈ F . Therefore, there are line
bundles N1,N2 on X such that M d = π∗1N1 + π∗2N2 + [D]. By definition,

−dθb(L ) = πB
(
∆∗M d − i1(b)∗M d − i2(b)∗M d

)
.

But for each k ∈ {1, 2}, ∆∗π∗kNk − ik(b)∗π∗kNk − i3−k(b)∗π∗kNk = Nk −Nk − b∗Nk = 0 computed in
Pic(X). Thus

−dθ(L ) = πB ([∆∗D − i1(b)∗D − i2(b)∗D]) .
Now, ∆∗D− i1(b)∗D− i2(b)∗D is a K-divisor on X with support in S, and with degree 0 by the assump-
tions on L . So its image under πB is torsion in B(K), which concludes. �

The homomorphism θb can seem a little far-fetched: its interest comes from the following theorem
from [13, Section 3], which asserts that it suits the Chabauty-Kim-related part of the program, that is,
Theorem 2.10 With the above notations, assume that (πA, πB) : J → A×B is an isogeny, K = Q and
Hom(A,B) = 0. Let r be the rank of the kernel of θb ⊗ Q : G(A) → B(Q) ⊗ Q. Assume finally that X
has genus at least 2. Then there exists a Galois-stable quotient U of U2(b) such that its abelianization
has Tp(A)⊗Qp as space of Qp-points and such that the space of Qp-points of [U,U ] is Qp(1)r (all of this
being compatible to the Galois actions).

From the theorems quoted in Section 2.1,
Corollary 2.11 If A(Q) has rank less than dimA+ r, then X(Qp)U is finite and thus so is X(Q).

2.2.3 A basepoint-free definition under further assumptions

We immediately notice that the θ morphism commutes with base change under a finite field extension,
provided the base point is the same. We could stop our study of the construction there, but we would
struggle with a major technical difficulty in Section 2.4, due to the fact that points that behave well
enough under the Hecke operators, i.e. the cusps, are not rational. To address this issue, we investigate
the changes θ morphisms undergo when changing the base point.
Lemma 2.12 Let L be a line bundle on X×X and b, b′ ∈ X(K). We denote i1(b) = (id, b) : X → X×X,
i1(b′) = (id, b′) : X → X × X, and similarly for i2(b), i2(b′). Then i1(b)∗L + i2(b)∗L − i1(b′)∗L −
i2(b′)∗L = ψ(L )([b − b′]) + ψs∗L ([b − b′]) as points in J(K) = Pic0(X), where s : X × X → X × X
exchanges the coordinates. In particular, if P is a line bundle on J , deg ÃJbP = deg ˜AJb′P, thus
Gb(A) = Gb′(A), justifying the notational abuse above.
Proof. – By Lemma 2.6, ψ(L )([b−b′]) = i2(b)∗L −i2(b′)∗L , and similarly ψ(s∗L )([b−b′]) = i1(b)∗L −
i1(b′)L . �
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Lemma 2.13 If b, b′ ∈ X(K), L a line bundle on A, (πA ◦ δ)∗L = M , as a line bundle, then
ψ(M )([b− b′]) = (πA ◦AJb′)∗(t∗[b′−b]AL ⊗L −1).
Proof. – Computation. �

Lemma 2.14 Let L be a line bundle on A. There is a morphism rb′,L : A → J corresponding, for
every finite field extension L, to the map P ∈ A(L) 7−→ AJ∗b′π

∗
A(t∗P (AL → A)∗L ⊗ (AL → A)∗L −1) ∈

Pic0(XL) = J(L).
Proof. – Clearly π∗A extends to a morphism A∨ → J∨ and AJb′ extends to a map J∨ → J . The
inner map is the morphism A → A∨ associated to the line bundle m∗L ⊗ p∗L −1 ⊗ q∗L −1, where
m, p, q : A × A → A are respectively the multiplication, the first and the second projection (see [30,
Sections 9,10] for elaborations on this). �

Corollary 2.15 Let b, b′ ∈ X(K), and L ∈ G(A) then θb(L ) − θb′(L ) = πB ◦ (rb′,L + rb′,(−1)∗L ) ◦
πA(AJb′(b)).
Proof. – Follow the computations. �

Proposition 2.16 Let L/K be finite a Galois extension with group G, b a point of XL(L), b′ ∈ X(K).
We have θ morphisms associated with b′ (G(A)→ B(K)), and to the σ(b), σ ∈ G, defined G(AL)→ B(L).
Assume that Hom(A,B) = 0. Then

∑
σ∈G θσ(b) restricts to a homomorphism G(A) → B(K), which is

|G|θb′ .
Proof. – Let σ ∈ G. Let L be a line bundle on A that is in G(A). Then θσ(b)(L ) − θb′(L ) =
πB ◦ (rb′,L + rb′,(−1)∗L )◦πA ◦AJb′(σ(b)) by following all the calculations in L from the previous lemmas.
But the last two morphisms in the composition become a K-homomorphism A→ B, so must vanish, and
the right hand side vanishes. Then we sum over σ. �

Definition So, given a curve X over K with a rational point b, a Jacobian J , and an isogeny (πA, πB) :
J → A×B such that Hom(A,B) is zero, the associated θ morphism is the θb : G(A)→ B(K) as defined
above, quotiented by torsion, so that θ : G(A)→ B(K)⊗Z Q. It does not depend on the base point.

Corollary 2.17 Let b′ ∈ X(K), b ∈ X(L) for a Galois extension L/K with group G. Let Ω ⊃ L be an
algebraically closed field. Let F be a group of Cartier divisors on X ×X. Assume that :

1. Hom(A,B) = 0.

2. There is a subset S ⊂ X(Ω) such that every K-divisor of null degree on X with support in S projects
into B(K) as a torsion point.

3. For every σ ∈ G, k = 1, 2, D ∈ F , the supports of [i∗k(σ(b))D] (Ω), and ∆∗D(Ω) are in S.

4. End(J)/ψ(F ) is a torsion group.

Then θ is the null homomorphism.
Proof. – Let L be a line bundle on A reducing to an element of G(A). Let M = (πA ◦ δ)∗L . We know
that there exists an integer d ≥ 1 such that ψ(M d) = ψ([D]) for some D ∈ F . Therefore, there are line
bundles N1,N2 on X such that M d = π∗1N1 + π∗2N2 + [D]. By definition,

−[L : K]dθ(L ) = πB

[L : K]∆∗M d −
∑

σ∈G,1≤k≤2
ik(σ(b))∗M d

 .

But for each k ∈ {1, 2}, ∆∗π∗kNk − ik(σ(b))∗π∗kNk − i3−k(σ(b))∗π∗kNk = Nk − Nk − σ(b)∗Nk = 0
computed in Pic(XL). Thus

−d[L : K]θ(L ) = πB

[L : K]∆∗D −
∑

σ∈G,k∈{1,2}

ik(σ(b))∗D

 .

Now, if σ ∈ G, Dσ = ∆∗D− i1(σ(b))∗D− i2(σ(b))∗D is a divisor on XL with support in S, and the sum
of all the Dσ is a divisor defined over K, with support in S, and with degree 0 by the assumptions on
L . So its image under πB is torsion in B(K), which concludes. �
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2.3 The θ morphism for the curves X0(N) and X+
0 (N)

2.3.1 Reminders about modular forms

We start with a few reminders on modular curves – for proofs, examples or details, one may consult for
instance [10].

H = {z ∈ C, Im(z) > 0} is the upper half-plane. It has a natural action of GL+
2 (R) (invertible 2× 2

matrices with real entries and positive determinant) given by
[
a b
c d

]
· τ = aτ+b

cτ+d .

SL2(Z) has the following family of finite-index normal subgroups, called the congruence subgroups,
the Γ(N) = ker(SL2(Z) → SL2(Z/(n))), for N ≥ 1. A congruence subgroup of SL2(Z) is any subgroup
containing some Γ(N).

Natural examples of congruence subgroups include Γ0(N), the group of SL2(Z) matrices that are
upper triangular mod N , and the group of Γ1(N), its subgroup of matrices that are unipotent mod N .

If Γ is a congruence subgroup, it is possible to endow Y (Γ) = Γ\H with the structure of a connected
(noncompact) Riemann surface Y (Γ). This Riemann surface can be compactified into X(Γ) = Γ\(H∗),
where H∗ is the completed Poincaré half-plane, corresponding to H ∪ P1(Q), where the point at infinity
corresponds to the limit Im(z)→ +∞ in H.

We denote X0(N), X1(N) (and similarly Y0(N), Y1(N) for the noncompact version) the compact
connected Riemann surfaces X(Γ) for Γ = X0(N), X1(N). The (finitely many) points in Xi(N)\Yi(N)
are the cuspidal points.
Theorem 3.1 Let N ≥ 1. Y0(N) represents the set S0(N) of equivalence classes of (E,C), where E is
a complex elliptic curve, and C is a cyclic cubgroup of order N in the following sense: the application
ψ : τ ∈ H 7−→ (C/(τZ ⊕ Z), 〈[1/N ]〉) satisfies ψ(τ) ∼= ψ(τ ′) iff τ and τ ′ are in the same orbit under the
action of Γ0(N), and every pair (E,C) as above is isomorphic to some ψ(τ). Similarly, the application
τ ∈ H 7−→ (C, (τZ ⊕ Z), [1/N ]) realizes a bijection between Y1(N) and the set S1(N) of isomorphism
classes of (E,Q) where E is a complex elliptic curve and Q is a point of order N .

For each k ∈ Z, there is a right action of GL2(R)+ of weight k on the space of functions and H→ C,

given by
(
f |k
[
a b
c d

])
(τ) = (ad−bc)k−1

(cτ+d)k f
(
aτ+b
cτ+d

)
. In the rest of the section, we are concerned only with

the action of weight 2. When Γ is a congruence subgroup, S2(Γ) is the space of holomorphic functions
f : H → C that are invariant under the weight-2 action of Γ, and such that for each α ∈ SL2(Z)
f |2α(τ)→ 0 as Im(τ)→∞.

For each congruence group Γ, S2(Γ) is a Hermitian space with the Petersson scalar product, defined
up to a constant in [10, Chapter 5.4].
Lemma 3.2 Let Γ be any congruence subgroup.

• For any f ∈ S2(Γ), f(τ)dτ goes to the quotient to a holomorphic differential form on Y0(N), such
that it can be extended into a global holomorphic differential form on X0(N).

• If ω is a holomorphic differential form on X0(N), its pullback under the natual map H→ Y0(N)→
X0(N) is some f(τ)dτ with f ∈ S2(Γ).

Proof. – Let f be a holomorphic function on H such that it is invariant under the weight-2 action of Γ.
Then the 1-form f(τ)dτ is invariant under the action of Γ so extends to a differential form u on Y0(N).
It remains to check when u extends to a differential form on X0(N) as a whole.

Let s ∈ Q∪{∞} be a cusp point, let γ ∈ SL2(Z) be a matrix mapping s to∞, with second row (c, d),
let 0 < h <∞ be the index of γΓγ−1{±I2} in the stabilizer of∞ in SL2(Z). Now, letM > 10 and consider
the image U ′ of U = γ−1({τ ∈ H, Im(τ) > M} ∪ {∞}) in X0(N); we have a map τ ∈ U 7−→ e2iπγ(τ)/hC
which factors into an injective holomorphic map U ′ → C mapping s to 0. Now, the push-forward us
under U ′ → C of u is the push-forward of f(τ)dτ under τ ∈ U 7−→ e2iπγ(τ)/h = qh(τ) ∈ C, and
dqh(τ) = qh(τ) 2iπ

h (cτ + d)−2, thus the push-forward is f(τ)(cτ + d)2 h
2iπ

dqh(τ)
qh(τ) . One easily checks that

f [γ−1]2(γ(τ)) = f(τ)(cτ + d)2, thus us = h
2iπf [γ−1]2(γq−1

h (z))dzz .
u is holomorphic at s if and only if us is holomorphic at 0, iff f [γ−1]2(γq−1

h (z)) goes, as z → 0, to 0.
This occurs iff f [γ−1]2 goes to 0 at i∞. Now, the reunion of the Γγ−1, over all the γ ∈ SL2(Z) mapping
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∞ to some cusp, is exactly SL2(Z). Thus u extends to a global holomorphic differential iff f is a cusp
form. In particular, this implies the first point.

For the second point, note that said pullback f(τ)dτ must be holomorphic on the Poincaré half-
plane and invariant under Γ, which forces f to be invariant under the weight-2 action of Γ. But now u is
the global holomorphic extension of the pushforward of f(τ)dτ , so by the above f must be a cusp form.�

We denote as J0(N), J1(N) the Jacobians of X0(N), X1(N) respectively.

A particular family of operators acts on J0(N) and J1(N), and especially on their spaces of holo-
morphic differential forms. They are the Hecke operators. All these operators commute, and for each
integer N ≥ 1, there is an orthogonal decomposition into subspaces stable under the Hecke operators
S2(Γ0(N)) = S2(Γ0(N))old ⊕ S2(Γ0(N))new (the “oldspace” and the “newspace”), where S2(Γ0(N))old is
generated by the f |2diag(q, 1) where f ∈ S2(Γ0(p)) for all pq|N . Moreover, there exists an orthogonal
basis of S2(Γ0(N))new made with functions f that are eigenvectors for each Hecke operator and such that
f(τ) ∼ e2iπτ as Im(τ)→∞. They are called newforms of level N .

If f is a newform of level N , we get a morphism from the level N Hecke algebra TZ,N into End(J0(N)).
We also have a natural morphism TZ,N → C given by T 7−→ a1(Tf), with kernel If . The abelian variety
associated with f is Af = J0(N)/IfJ0(N).

There is also in level N , an involution we will call the Atkin-Lehner involution of S2(Γ0(N)), denoted

as wN =
[

0 −1
N 0

]
. We can check it is self-adjoint for the Petersson inner product, and that it preserves

the oldspace and newspace. By [10, Theorem 5.5.3, (5.16)], it commutes with the Hecke operators, so that
every newform must be an eigenvector of wN , that is, either wN (f) = f (f is “positive”) or wN (f) = −f
(f is “negative”).

If N is prime, there is an isogeny J0(N) →
∏
f Af , where f runs over the equivalence classes of

newforms of S2(Γ0(N)) modulo the Galois action. We will divide these Af in two groups, so that we
get two isogeny factors for J0(N) (and J+

0 (N) as we will see later), according to whether L′(f, 1) vanishes.

All the constructions above of holomorphic varieties can actually be realized algebraically as proper
algebraic varieties over Q. Let us show a result from [40]; we reproduce the proof because the document
is unpublished.
Proposition 3.3 Let f be a newform for Γ0(N) for some integer N ≥ 1. Every Hecke operator acts
on Af as an algebraic endomorphism defined over Q. Let T be the subring of EndQ(Af ) generated by
the Hecke operators. Then Af is simple, the abelian group EndQ(Af )/T is finite, and T ⊗Q is naturally
isomorphic to the quotient TQ,N/If .
Proof. – By [34, Corollary 4.2], Af is simple with rational endomorphism algebra E isomorphic to the
coefficient field of f , i.e. dimE = dimTQ,N/If . But we have a natural morphism TQ,N/If → T ⊗ Q
which is injective, because f is a natural holomorphic differential form on Af , and a Hecke operator acting
trivially on Af must thus vanish f . This morphism is also surjective, so that dimT ⊗Q = dimTQ,N/If =
dimE, and thus E = T ⊗Q. This concludes because End(Af ) is free of finite rank by [30, Theorem 12.5].
�

We want to be able to apply Corollary 2.17 to show that the θ morphism for X+
0 (N) vanishes. To do

that, we need a set of geometric points and a group of Cartier divisors with specific properties. They will
be the Heegner points (and cusps) and Hecke correspondances, as detailed in the following subsection,
which checks conditions 2 and 3. The two base points are the cusp point at infinity, which is defined overQ.

2.3.2 Heegner points and Hecke correspondances

Let N and m be two integers, we have two maps i1m, i2m : X0(mN)→ X0(N), which are best expressed in
terms of moduli spaces for the complex points (algebraic geometry arguments such as [25, Corollary 4.1.17]
ensure that such maps, provided that they are, indeed, algebraic, which we admit here, can be extended
to the whole curve). These two maps are given by (E,C) 7−→ (E,mC) and (E,C) 7−→ (E/NC,C/NC).

Let Cm be the image of X0(mN) under (i2m, i1m), and ∆m be inverse image under the diagonal
morphism: as i1m is different from i2m, ∆m is a divisor on X0(N).
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Definition A Heegner point on Y0(N) corresponds to a pair (E,C) such that E and E/C have isomorphic
orders of an imaginary quadratic field K with conductor prime to N as endomorphism rings.

Lemma 3.4 Assume m is coprime to a prime integer N , and m < N2/4, then the non-cuspidal complex
points in the support of ∆m correspond to Heegner points.
Proof. – Let R be an order in a quadratic imaginary field. For any ω ∈ R such that (1, ω) generates R,
we have a unique degree 2 vanishing polynomial for ω: Pω = X2 − aωX + bω. Its negative discriminant
4bω − a2

ω is positive and does not depend on ω. We call it the discriminant of R.
Let E be a complex elliptic curve with an endomorphism ν : E → E with cyclic kernel of cardinality

m. Thus ν is no multiple of identity, thus E has complex multiplication. Let R = Z⊕ Zω be its ring of
endomorphisms with discriminant D, with ω2−Aω+B = 0 and A2− 4B < 0, so that ω̂ = A−ω. Write
ν = aω + b, then m = (aω + b)(aω̂ + b) = a2ω(A− ω) + ab(ω + (A− ω)) + b2 = a2B + abA+ b2, so that
4m = a2(4B −A2) + (b+ 2aA)2. In particular, there are integers a, b such that 4m = Da2 + b2.

Let P be a noncuspidal point in the support of ∆m: P is some pair (E,C) ∈ S0(N) such that
there is a pair (E1, C1) ∈ S0(mN) satisfying (E,C) ∼= (E1,mC1) ∼= (E1/NC1, C1/NC1). Now, let

µ1 : E1 → E1/NC1 be the isomorphism: we have an endomorphism ν1 : E1 → E1/NC1
µ−1

1→ E1 with
cyclic kernel of order m, NC1. So if R1 is the endomorphism ring of E1, with discriminant D1, there are
integers a1, b1 such that 4m = D1a

2
1 + b21.

Now, we similarly have an isomorphism µ2 : E1/mC1 → E1/C1, with kernel C1/mC1 cyclic of order
m, and, as above, if R2 is the ring of endomorphisms of E1/mC1 with discriminant D2, then we have
integers a2, b2 such that 4m = D2a

2
2 + b22.

To conclude, we apply the next lemma to the elliptic curves E1 and E1/mC1 to show that if R1 6= R2,
then some Di is a multiple of N2, which contradicts 4m < N2 (and by construction, R1 is the ring of
endomorphisms of E, R2 that of E/C).

If the conductor of Ri is not coprime to N , then there is an algebraic integer x /∈ Ri such that
Nx ∈ Ri. If (1, u) is a basis of Ri, write Nx = a + bu with a, b integers. If b is divisible by N , then,
up to adding a multiple of u to x, we may assume b = 0. Then x is a rational algebraic integer, thus an
integer and x ∈ Ri, a contradiction. Otherwise, let X2 − yX + z be the minimal polynomial of u, then
the minimal polynomial of bu is X2 − byX + b2z, thus the minimal polynomial of Nx = a+ bu must be
X2 − (by − 2a)X + (a2 − bya + b2z) = X2 + CX + D. So the minimal polynomial of x (with integral
coefficients) must be X2 − by−2a

N X + a2−bya+b2z
N2 . From computing the discriminant of this polynomial

(which must be an integer), it follows that N2|C2 − 4D = b2Di, so Di is divisible by N2 and we get as
above a contradiction. �

Lemma 3.5 Let E,E′ be complex elliptic curves with rings of endomorphisms R and R′, both with
complex multiplication, and let π : E → E′ be an isogeny with cyclic kernel of order a prime number
N . Then R and R′ are orders of the same quadratic imaginary field, and D

D′ ∈ N
2Z. If D = D′, then

R = R′.
Proof. – We have Z-linear morphisms φ : R → R′, ψ : R′ → R, given respectively by f 7−→ π ◦ f ◦ π̂,
f 7−→ π̂ ◦ f ◦ π. It is easy to see that φ, ψ are injections, and φ ◦ ψ = N2, φ ◦ ψ = N2. Thus
φ ⊗ 1

N : R ⊗ Q → R′ ⊗ Q, ψ ⊗ 1
N : R′ ⊗ Q → R ⊗ 1

N are inverse multiplicative isomorphisms, hence R
and R′ have the same fraction fields.

We know that detφ detψ = N4, and φ(1) = N , ψ(1) = N , so we may assume that (up to exchanging
R and R′) detφ ∈ {±N,±N2}. Let (1, u) be a basis of R, it is mapped by φ to (N, u′) ∈ R′2. Write[
N
u′

]
=
[
N 0
c d

] [
1
v

]
, where (1, v) is a basis of R′. Since Nd = detφ, d ∈ {±1,±N}. Now, write

X2 − aX + b the minimal polynomial of u: then an easy computation yields u′2 = φ(Nu), so that
u′2 = φ(Nau − Nb) = Nau′ − N2b, and u′ has N2a2 − 4N2b = N2D as discriminant of its minimal
polynomial (we call it the discriminant of u′ for short).

But the discriminant of dv = u′ − c is easily seen to be the same as that of u′, thus the discriminant
of v (which is D′) is N2D

d2 , which proves the second statement.
It remains to study the case D = D′, which implies d = ±N thus detφ = detψ. With the same

notations as above, note that the minimal polynomial of Nv = ±(u′−c) is (X+c)2−Na(X+c)+N2b =
X2 − (Na − 2c)X + (c2 − Nac + N2b). Taking X = Nv and reducing mod N , it follows that c2

N is an
algebraic integer and a rational number, thus N |c. It follows that φ (and by symmetry, ψ) has exactly
NR′ (resp. NR′) as its image, and thus the morphisms φ

N : R → R′ and ψ
N : R′ → R are well-defined,

additive and multiplicative, and they are inverse one of the other. So R and R′ are isomorphic, so (they
are orders in an imaginary quadratic number field) they are either equal or Galois conjugates. But in
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quadratic number fields, orders are invariant under Galois (the conjugate y of an nonreal element x is
uniquely defined by the property that xy, x + y are real numbers, and if x2 = ax − b is the minimal
polynomial, then y = a− x works). �

The intrinsic interest of Heegner points is the following explicit Gross-Zagier formula, from [4, Theorem
1.1] that allows us to study their behavior through L-functions:
Theorem 3.6 Let f ∈ S2(Γ0(N)) be a positive newform – meaning that the sign of the functional equation
is Λ(f, s) = −Λ(f, 2 − s). Let Af the abelian variety associated with f that is consequently defined over
Q. Let K be a quadratic imaginary field extension of Q, P a Heegner point of X0(N) with complex
multiplication by an order O of K with ray class field H (see [32, Chapter 16] for elaboration on these
properties). Let P ′ =

∑
σ∈Gal(H/K) [σ(P )− degQ([σ(P )])∞] ∈ J0(N)(K) ⊂ J0(N)(H). If L′(f, 1) = 0,

the projection of P ′ into Af (K) is a torsion point.
Proof. – By [4, Theorem 1.1], complex multiplication theory and height theory (for instance, [37, Theorem
4.3]), we know that P ′ is torsion in Af (K) as soon as L′(f, 1O, 1) = 0. Now, L′(f, 1O, 1) is a multiple of
L′(f, 1K , 1), but L(f, 1K , s) = L(f, s)L(f ⊗ χK , s). Because f is positive, L(f, s) vanishes at s = 1 with
order 2, thus so does L(f, 1K , s). Therefore L′(f, 1K , 1) = 0 and thus L′(f, 1O, 1) = 0, which concludes.
�

Corollary 3.7 Let f ∈ S2(Γ0(N)) be a positive newform, let D ∈ Div0(X0(N))(Q) be invariant under
the Galois group of Q/Q and supported on Heegner points and cusps. Assume L′(f, 1) = 0. Then the
image of D in Af (Q) is actually in Af (Q) and is torsion.
Proof. – Write D = αc1 + βc2 +

∑d
i=1 niPi where Pi is a Heegner point of X0(N) corresponding to

complex multiplication by an order Oi of a quadratic imaginary field extension Ki/Q with ray class field
Hi (and ni ∈ Z), and the ci are the two rational cusp points of X0(N). Let L/Q be a finite Galois
extension containing all the Hi. Then a simple computation gives

Si =
∑

σ∈Gal(L/Q)

[σ(Pi)− degQ(σ(Pi))∞] = [L : Hi](P ′i + σi(P ′i )) ∈ J0(N)(Q),

where P ′i is defined as in the previous theorem and σi is the unique nontrivial automorphism of Ki. It
follows from the previous theorem that the projection of Si in Af (Q) is torsion.

Now, [L : Q]D =
∑
s∈Gal(L/Q) s(D) =

∑d
i=1 niSi + [L : Q]

∑d
i=1 ni degQ(Pi)[∞] + [L : Q]αc1 + [L :

Q]βc2. Now X0(N) has two cusps, 0 and ∞, so they are exchanged by the Atkin-Lehner involution,
therefore, in Af , [c1 − c2] = 0. As D has degree zero, the second part of the sum projects to [L :
Q](α[c1 −∞] + β[c2 −∞]) which is zero by the previous sentence. Thus D projects to a torsion point
π(D) ∈ Af (Q). But as D is stable under Gal(Q/Q), so is π(D) thus π(D) ∈ Af (Q). �

2.3.3 Hecke correspondances and Jacobian endomorphisms

This paragraph aims at showing the fourth condition of Corollary 2.17.
Lemma 3.8 If m ≥ 1 is an integer and N is prime, with m and N coprime, then the complex divisor

map induced by Cm is the coset operator Γ0(N)
[
1 0
0 m

]
Γ0(N).

Proof. – The non-cuspidal complex points of X0(N) are the τ mod Γ0(N) for τ ∈ H, τ corresponding to
the elliptic curve C/(τZ ⊕ Z) with the cyclic subgroup generated by 1/N . Thus, the set of noncuspidal
points of Cm(C) (with a transparent notation) is {(τ mod Γ0(N), τ/mmod Γ0(N)), τ ∈ H}. Not taking
the ramification of the map H → X0(N) into account, the image by the divisor map of some Γ0(N)τ is

the sum of the set of Γ0(N)τ ′/m = Γ0(N)
[
1 0
0 m

]
τ ′, where τ ′ ∈ Γ0(N)τ . We get the exact definition of

the coset operator. �

Corollary 3.9 If l and N are coprime, the endomorphism Tl of J0(N) is a linear combination of the
ψ(Cm), for l ≥ m ≥ 1 coprime with N .
Proof. – See the formulas in [10, Chapter 5.3]. �

Lemma 3.10 Let A be an abelian variety over a field of characteristic zero, and u be an endomorphism
of A such that for all global differentials ω on A, u∗ω = 0. Then u = 0.
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Proof. – We can assume that the field is algebraically closed and the variety is simple. Then if u is
nonzero, u is an isogeny. By [30, Section 8], there are integers n > 0, and an endomorphism v of A such
that nA = v ◦ u. Thus, if ω is a nonzero global differential on A, nω = n∗Aω = u∗(v∗ω) is nonzero, hence
a contradiction. �

Corollary 3.11 If a Z-linear combination of Hecke operators vanishes on S2(Γ0(N)), it vanishes as a
linear combination of endomorphisms of J0(N).
Proof. – The space of holomorphic differential forms of J0(N) is the same as that of X0(N), and this one
is exactly S2(Γ0(N)) by Lemma 3.2. This space is a supspace of the space of global algebraic differential
forms on J0(N)C and the action of the Hecke operators is, by construction, equivariant. �

Proposition 3.12 If N is a prime number, then every element in the Hecke ring over Z for S2(Γ0(N))
has a multiple which is a Z-linear combination of the Tk, 1 ≤ k ≤ (N + 1)/6.
Proof. – It is the bound from [41, Theorem 9.23], since Γ0(N) has index N + 1 in SL2(Z). Indeed,
the index of Γ0(N) in SL2(Z) is exactly the index of the subgroup of upper triangular matrices with
determinant 1 of M2(Z/NZ) into SL2(Z/NZ). The former group has cardinality (N − 1)N (the first
row determines the matrix, the only constraint being that the first diagonal coefficient is nonzero); the
second group has cardinality (N2 − 1)(N2 −N)/(N − 1) = N(N2 − 1). �

Corollary 3.13 If N is prime, any endomorphism of J0(N) has a scalar multiple in the abelian group of
endomorphisms generated by the Hecke operators Tl, 1 ≤ l ≤ (N+1)/6. In particular, if F is the subgroup
of Cartier divisors of X0(N)×X0(N) generated by the Cl, for 1 ≤ l ≤ (N + 1)/6, End(J0(N))/ψ(F ) is
a torsion group.
Proof. – It is standard (see for instance [33, Corollary 3.3]) that for N prime, the endomorphism algebra
of J0(N) is generated (as a Q-algebra) by the Hecke operators. Then we apply Proposition 3.12 and
Corollary 3.11. �

2.3.4 Vanishing of the θ morphism for X+
0 (N).

In this paragraph, we apply the results proved in the previous section to show that with respect to a
specific decomposition of the Jacobian of X0(N)+, the θ morphism vanishes. First, we define this curve
and give some of its properties.
Lemma 3.14 We recall that the Atkin-Lehner involution on X0(N) is the extension of the quotient of
the Γ0(N)-equivariant map τ 7−→ −1

Nτ from Y0(N) to itself. In terms of moduli spaces, it corresponds to
the map (E,C) 7−→ (E/C,E[N ]/C). It is an involution defined over Q. The quotient of X0(N) under
this involution is denoted as X+

0 (N).
Proof. – From [10, Chapter 7.7], the function field of X0(N) over Q is Q(j, jN ) where jN (τ) = j(Nτ) and
j is the usual modular invariant. It is easy to see that τ 7−→ −1

Nτ exchanges j and jN , so that application
is defined over Q. �

Lemma 3.15 The Atkin-Lehner involution exchanges the two cusps of X0(N), which are rational, so
that X+

0 (N) has a single cusp, defined over Q.
Proof. – First recall from e.g. [10, Chapter 3.8] that X0(N) has two cusps defined over C, the point at∞
and the point at 0. Let us now show that the Atkin-Lehner involution, as a complex-analytic function,
exchanges the two cusps. Let τ ∈ H have imaginary part t ≥ 2. Let M =

[
a b
c d

]
∈ Γ0(N) be any

matrix, so that d 6= 0: then M · 1
−Nτ = a−bNτ

c−dNτ has imaginary part Nt
|c−dNτ |2 ≤

Nt
N2t2 = 1

Nt < 2. Thus the
image of −1

Nτ in X0(N) remains away from infinity. Thus the cusp at infinity is not a fixed point of the
Atkin-Lehner involution. As this map preserves Y0(N), the image of infinity must be the other cusp.

Now we show that the cusps must be defined over Q. Consider the rational function k = jN/j
N

defined on X0(N) over Q. As τ goes to infinity, k(τ) ∼ e−2iπNτ (e2iπτ )N = 1 using the usual q-expansion
of j. However, as τ goes to infinity, k(−1/τ) = j(τ/N)/j(τ)N ∼ e−2iπτ/N (e2iπτ )N → 0. So scheme-
theoretically, the rational cusps (we call i the cusp at infinity and c the other one) are distinct closed
points of the rational curve X0(N). No point in i(C) or c(C) can be in Y0(N), because the rational
function 1/j would be vanishing at these points and it doesn’t vanish on Y0(N). As i(C) and c(C) are
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Pic(J0(N)) Pic(X0(N))

Pic(J0(N)+) Pic(X0(N)+)

ÃJb0

ÃJb

(qJ )∗ q∗

(a) Twisted Abel-Jacobi maps and the
Atkin-Lehner involution

G(J0(N)) J0(N)(Q)

G(J0(N)+) J0(N)+(Q)

ÃJb0

ÃJb

(qJ )∗ q∗

(b) Partial θ morphism and the
Atkin-Lehner involution

clearly nonempty, disjoint, and contained in X0(N)(C)\Y0(N)(C) which has two elements, it follows that
i(C) and c(C) have one element.

If K is a number field, (SpecK)(C) is the set of morphisms K → C and always has dimension [K : Q].
So the residue fields of c and i have dimension 1 over Q, i.e. i and c are rational. �

Lemma 3.16 Take b the cusp at infinity of X0(N). Let f be a positive newform of weight 2 and level
N such that L′(f, 1) = 0. Then the morphism θb⊗Q associated to the map J0(N)→ J0(N)×Af is zero.
Proof. – Apply the first vanishing criterion, i.e. Proposition 2.9, with S being the set of Heegner points
and cusps, F being the subgroup generated by the Hecke correspondances. The conditions of the criterion
are satisfied according to Corollary 3.7, Lemma 3.4, and Corollary 3.13. (and notice that the Hecke
correspondances always associate only cusps to cusps). �

Proposition 3.17 Let b be the cusp of X0(N)+ and f be a positive newform of weight 2 and level N
such that L′(f, 1) = 0. Then the morphism θb⊗Q associated to the map J0(N)+ → J0(N)+×Af is zero,
where J0(N)+ is the Jacobian of J0(N).
Proof. – Let q : X0(N)→ X0(N)+ be the quotient map, qJ : J0(N)→ J0(N)+ the associated morphism
of Jacobians, and b0 ∈ X0(N)(Q) be the cusp at infinity. The diagram of Figure 5a commutes, thus so
does the diagram from Figure 5b (where the notation G is defined in Section 2.2).

However, as f is positive, the projection J0(N) → Af factors through qJ : J0(N) → J+
0 (N) (as f is

invariant under the Atkin-Lehner involution, so is Af , and qJ : J0(N) → J+
0 (N) is the quotient under

said involution), and the map J0(N)+ → Af used above is the map involved in the construction of
the θ morphism above. If L ∈ G(J0(N)+, then 2ÃJb(L ) = qJq

∗ÃJb(L ) = qJ(ÃJb0((qJ)∗L )). Thus
2θb(L ) = θb0((qJ)∗L ). By the above lemma, θb ⊗Q = 0. �

We have essentially proven the third bullet of the following statement, which is essentially the first
case of [13, Proposition 1.8], one of the main ingredients of the proof. Let us note that, according to
the authors of [13], the first two bullets follow from standard theory about simple abelian varieties and
modular forms (for instance, the first point is mostly done in [10, Chapter 6.6]).

Theorem 3.18 Let X = X+
0 (N) and b be the image of the point at infinity. Let J be the Jacobian of

the curve, let A,B be the product of the abelian varieties Af over the Galois conjugation classes of the
positive newforms f of S2(Γ0(N)) such that L′(f, 1) 6= 0 and L′(f, 1) = 0 respectively. Then:

1. (πA, πB) : J → A×B is an isogeny.

2. Hom(A,B) = 0

3. The θ morphism defined above is zero.

Proof. – The first two points follow (at least in part) from [10, Chapter 6.6], standard theory about
simple abelian varieties, and the fact that the Af are simple and pairwise non-isogenous. The third point
comes from the proposition above (θ is the “product” of the θb ⊗ Q morphism for all the Af appearing
in B, composed with G(A)→ G(J)). �

2.4 Case of the non-split Cartan modular curve
Here, we reproduce the reasoning of Sections 2.3 and 2.2 to prove the equivalent of Theorem 3.18 another
modular curve, the nonsplit Cartan curve, which we now define. The process is similar: we define
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Hecke correspondances and Heegner points, show that (up to a scalar multiple torsion) enough Hecke
correspondances generate the endomorphism ring of the Jacobian, that these are supported on Heegner
points, and that such Heegner points are torsion in a suitable isogeny factor of the Jacobian.

Here, N is a prime number, and ε ∈ Z is a non-square mod N .

2.4.1 Definitions

Definition The non-split Cartan group of level N is the group Γns(N) = {A =
[
a b
c d

]
∈ SL2(Z), a =

dmodN, c = bεmodN}.

The normalized non-split Cartan group of levelN is the group Γ+
ns(N) = {A =

[
a b
c d

]
∈ SL2(Z), ∃s ∈

{±1}, a = dsmodN, c = bεsmodN}.
Both of these groups are congruence subgroups; the former is normal in the latter. The quotients of

the extended Poincaré plane under these groups are the modular curves Xns(N) and X+
ns(N). The set

of non-cuspidal points of these curves are denoted Yns(N) and Y +
ns(N).

Both of these curves can be realized algebraically as smooth projective curves over Q.
Proof. – Just note that Γ(N) ⊂ Γns(N) ⊂ Γ+

ns(N) ⊂ SL2(Z). For the normality, it is enough to note
that in the notations, the application mapping a matrix of Γ+

ns(N) to the corresponding s is a group
homomorphism with kernel Γns(N). Thus Γns(N) is a subgroup of Γ+

ns(N) with index 2, hence normal.
�

Again, we have a moduli space interpretation of Yns(N).
Lemma 4.1 Consider a morphism τ 7−→ µ(τ) = (Eτ , φε,τ ), where τ ∈ H, Eτ = C/Λτ , Λτ = τZ ⊕ Z),
and φε,τ is the endomorphism of (Λτ/N)/Λτ = Eτ [N ] with square ε mapping τ/N to 1/N and 1/N to
ετ/N .

Then, for τ, τ ′ ∈ H, there is an isomorphism ψ : Eτ → Eτ ′ mapping φε,τ to φε,τ ′ iff τ ′ ∈ Γns(N)τ . If
these conditions do not hold, τ ′ ∈ Γns(N)τ iff there is an isomorphism Eτ → Eτ ′ mapping φε,τ to −φε,τ ′ .

If E is a complex elliptic curve with a morphism φ : E[N ]→ E[N ] with square ε, there exists a τ ∈ H
and an isomorphism (E, φ)→ (Eτ , φε,τ ).

In particular, Yns(N) represents the isomorphism classes of pairs (E, u), where E is a complex elliptic
curve and u is an endomorphism of E[N ] with square ε (and u need not come from an endomorphism of
E).

Proof. – LetM =
[
a b
c d

]
∈ SL2(Z) be a matrix such that τ ′ = M ·τ . Then Λτ = (cτ+d)Λτ ′ , so division

by cτ+d is an isomorphism ψ : Eτ → Eτ ′ . Moreover, ψ maps 1/N to 1/(N(cτ+d)) = (a−cτ ′)/N and τ/N
to (dτ ′− b)/N . So the image φ′ of φε,τ as an endomorphism of Eτ ′ [N ] maps (a− cτ ′)/N to ε(dτ ′− b)/N
and (dτ ′ − b)/N to (a− cτ ′)/N . Thus, this endomorphism maps [1/N ] = d[(a− cτ ′)/N ] + c[(dτ ′ − b)/N ]
to dε[(dτ ′ − b)/N ] + c[(a− cτ ′)/N ] = (−dbε+ ac)[1/N ] + (d2ε− c2)[τ ′/N ], and [τ ′/N ] = a[(dτ ′ − b)/N ] +
b[(a− cτ ′)/N ] to (a2 − b2ε)[1/N ] + (bdε− ac)[τ ′/N ].

So φ′ = φε,τ iff a2 − b2ε = 1 modN , bdε = acmodN , d2ε − c2 = εmodN . Write c′ = cε1 where ε1
is the multiplicative inverse of ε mod N , so that the condition is equivalent to a2 − b2ε = d2 − c′2ε =
ad − εbc′modN = 1 and ac′ = bdmodN . Let F be the field FN [

√
ε], let u± = a − b

√
ε, v± = d − c

√
ε,

then the condition is equivalent to u−u+ = v−v+ = u−v+, which is equivalent to u− = v− and thus to
M ∈ Γns(N).

Similarly, φ′ = −φε,τ iff M ∈ Γ+
ns(N)\Γns(N).

Finally, we show that for any Eτ and any endomorphism u of Eτ [N ] with square ε, there exists an
isomorphism Eτ ∼= Eτ ′ mapping u to φε,τ such that u = φε,τ ′ . To do that, we first show that there
exists x0 ∈ Eτ [N ] such that Q(x0) = det (x0, u(x0)) = 1 (in the basis [1/N ], [τ/N ]). Indeed, given any
nonzero x, det (x, u(x)) ∈ F×N ; if it is a square, a scalar multiple of x works. If not, let α ∈ FN , then
Q(αx+u(x)) = (α2− ε)Q(x). If neither x nor any αx+u(x) work, then Q(x) is not a square and neither
are all the α2 − ε. Thus, if β is a square, so is β − ε, and we get a contradiction.

So take x0 = a[1/N ] + b[τ/N ] such that u(x0) = c[1/N ] + d[τ/N ] and Q(x0) = ad − bc = 1 modN .
We can choose the integers a, b, c, d such that ad− bc = 1. Consider now τ ′ = aτ+b

cτ+d , and the isomorphism
Eτ ′ → Eτ given by multiplication by cτ + d. �
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2.4.2 Hecke correspondances and Heegner points

Now, we define Hecke correspondances on the curves Xns(N): by Section 2.2 they define endomorphisms
of the Jacobians.
Definition Let m be an integer coprime with N , let Xns(N,m) = Xns(N)×X(1) X0(m) (it is a disjoint
reunion of finitely many Riemann surfaces, and is a compactified moduli space for the triples (E, u,C),
(E, u) corresponding to the classes of Yns(N), and C is a cyclic subgroup of E of order m). We define
two maps im1 , im2 : Xns(N,m) → Xns(N), the first one being the projection, and the second one is (as a
moduli space problem) (E, u,C) 7−→ (E/C, πC ◦ u ◦ π−1

C ), where πC : E → E/C is the projection, and is
an isomorphism on the N -torsion points.

The Hecke correspondance Cm is the image of the map (i1m, i2m).

Proposition 4.2 The curves Xns(N) and X+
ns(N) can be defined over Q. The Hecke correspondances

from above arise from algebraic, rational correspondances.
The following Chen-Edixhoven theorem (from [6, 8]) gives us information on the Jacobian of these

nonsplit Cartan curves, linking them to the corresponding X0(N2) curves.
Theorem 4.3 The new part of the Jacobian of X0(N2) (resp. of X+

0 (N2)) is isogenous to the Jacobian
of Xns(N) (resp. of X+

ns(N)), and the isogenies are Hecke equivariant.
In particular, we have isomorphisms of Hecke modules S2(Γns(N)) ∼= S2(Γ0(N2))new and S2(Γns(N)+) ∼=

S2(Γ0(N2))+,new.

Now, as in Section 2.3, we introduce a class of geometric points on Xns(N) that (as we will see later)
behave well with respect to the Hecke correspondances.
Definition A (Kohen-Pacetti) Heegner point on Yns(N) is a pair (E, u) such that E has complex
multiplication by an order Oc of a quadratic imaginary extension K of Q, with Oc = Z + cOK and u
comes from an endomorphism of E, where K is inert at N and c and N are coprime.

Lemma 4.4 If m ≤ N2/4 is coprime with N , the complex points of ∆−1(Cm) (a Cartier divisor of
Xns(N)) are Heegner points or cusps.
Proof. – A complex non-cusp point of ∆−1(Cm) is a pair (E, u) such that E has a cyclic subgroup C
of order m, such that (E, u) and (E/C, πC ◦ uπ−1

C ) are isomorphic: let ψ be this isomorphism. Let
thus α = ψ−1 ◦ πC : α is an endomorphism of E with cyclic kernel C, so E has complex multiplication,
and α commutes with u. Let β be an endomorphism of E such that (id, β) is a basis of the ring of
endomorphisms of E. Up to substracting a multiple of id to β, we may assume that β + β∗in{0, id}.

Assume α = k+Nrβ, with k, r integers. Then the norm of α is m = k2 + kNr(β+ β∗) +N2r2 deg β.
Now, k2 + kNr(β + β∗) + (Nr)2/4 ≥ 0, so N2 ≥ 4m ≥ N2r2(4 deg β − 1), which implies r = 0 and α
scalar, a contradiction.

Assume that α acts as a scalar on E[N ]. We want to show that α is of the form above. We may
assume that α is zero on E[N ] and we want to show that α is N times an endomorphism of E. Write
E = C/Λ, then α is the multiplication by a scalar λ that preserves Λ, and λΛ/N ⊂ Λ, thus λ/N preserves
Λ so defines a complex endomorphism of E, and we are done.

As α commutes with u on E[N ] and that none are scalars, and since u2 = ε, then u = a+ bα for some
integers a, b with b and N coprime, so that u comes from an endomorphism of E.

If the order Oc satisfies N |c, then as α is not a scalar, we can write α = k+Na, where k, a are algebraic
integers, such that r = a+a is either 0 or 1. Taking norms, it follows N2 ≥ 4m ≥ (4k2+4rNk+N2)+3N2

and we get a contradiction as |r| ≤ 1. �

Now, we show that the Hecke correspondances we consider are enough to generate enough of the ring
of endomorphisms of Jns(N)+ to be able to use Corollary 2.17.
Lemma 4.5 Let f ∈ S2(Γ0(p2)), then Tp(f) is invariant under Γ0(p), where p is a prime number.

Proof. – Let M =
[
a b
pc d

]
∈ Γ0(p2). For each i ∈ Z, we denote ji = bd + id2, so that i 7−→ ji is a

bijection from Z/pZ to itself. Let j′i be the remainder of ji mod p, and ji = qjp + j′i. Thus, we have a
bijection i ∈ [[0; p− 1]] 7−→ j′i ∈ [[0; p− 1]]. The conclusion then follows from the identity[

1 i
0 p

]
M =

[
a+ ipc −bc(b+ id)− ijic
p2c d− pcji

] [
1 ji
0 p

]
,
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as the right hand side is in Γ0(p2)
[
1 qj
0 1

] [
1 j′i
0 p

]
= Γ0(p2)

[
1 j′i
0 p

]
. �

Lemma 4.6 Let N be an odd prime number. Then the Hecke algebra over Z acting on J0(N2)new is
generated as an abelian group by the Hecke operators Tl, for 1 ≤ l ≤ N2/4 with l and N coprime.
Proof. – Note that the complex-analytic global differentials on J0(N2)new are naturally identified to
S2(Γ0(N2))new. Arguing as in the proof of Corollary 3.11, we first show the claim for operators acting
on S2(Γ0(N2)), without requiring the condition l coprime with N .

We can apply the Sturm bound from [41, Theorem 9.23], as the index of Γ0(N2) in SL2(Z) is
[SL2(Z):Γ(N2)]
[Γ0(N2):Γ(N2)] = |SL2(Z/N2Z)|

N2ϕ(N2) . Now, given a, b ∈ Z/N2Z, there exists c, d ∈ Z/N2Z with ad − bc = 1
iff N does not divide both a and b, a situation that happens for all but N2 pairs, i.e. for N4 − N2

pairs. For each couple (a, b) such that N does not divide both a and b, (c, d) 7−→ ad − bc is an
onto group homomorphism (Z/N2Z)2 → Z/N2Z so the inverse image of 1 has cardinality N2. Thus
|SL2(Z/N2Z)| = N2(N4 − N2) = N4(N − 1)(N + 1), so that [SL2(Z) : Γ0(N2)] = N(N + 1), and the
Sturm bound is thus N(N+1)

6 ≤ N2

4 .
To conclude, we show that if 1 ≤ l ≤ N2/4 is not coprime with N , then Tl vanishes on S2(Γ0(N2))new.

Indeed, we can write Tl = ATN for some operator A, so it is enough to show it in the case l = N . If f is
a newform, TNf is a multiple of f in S2(Γ0(N)), so f and TNf = aN (f)f are orthogonal, thus TNf = 0.
�

Lemma 4.7 The quotient of End(J0(N2)new) by the Hecke algebra is a torsion abelian group.
Proof. – J0(N2)new is isogeneous to a product of Af (which are simple and pairwise non-homogenous)
over the Galois equivalence classes of newforms for Γ0(N2). The endomorphism algebra of Af is the
quotient of the Hecke algebra TQ by If , the ideal of operators T that vanish at f (by Proposition 3.3).
It follows from usual facts about abelian varieties that End(J0(N2)new) ⊗ Q =

∏
f TQ/If . To conclude,

we need to show that TQ →
∏
f TQ/If is onto. To do that, it is enough to show that the If are pairwise

distinct maximal ideals of TQ. Indeed, let f be a newform for Γ0(N2). Then If is the kernel of the ring
surjective homomorphism T ∈ TQ 7−→ a1(Tf) = Tf

f ∈ Kf (we follow the notations of [10, Chapter 6.5])
where Kf is the number field generated by the coefficients of f . So each If is a maximal ideal.

Let f be a newform. We have a surjective morphism ef,Q : T ∈ TQ 7−→ Tf/f = A1(Tf) ∈ Kf ,
with kernel If .Thus if f and g are newforms with If = Ig, then Kf = Kg and therefore eg,Q ◦ e−1

f,Q is a
Q-automorphism of Kf and is thus a σ in the absolute Galois group of Q. Thus σ(an(f)) = σ(a1(Tf)) =
σ(ef,Q(Tn)) = eg,Q(Tn) = an(g) so f and g are Galois conjugates. �

Corollary 4.8 The quotient of End(J0(N2)+,new) by the subgroup generated by the Hecke operators Tl,
for 1 ≤ l ≤ N2/4 with l and N coprime, is a torsion abelian group.
Proof. – It follows from the two previous lemmas, the fact that the Atkin-Lehner involution (defined in
Section 2.3 commutes with the Hecke operators. �

Corollary 4.9 If F is the subgroup of Cartier divisors on Xns(N)+ ×Xns(N)+ generated by the Hecke
correspondances Cm for 1 ≤ m ≤ N2/4 and m and N coprime, Jns(N)+/ψ(F ) is a torsion group.
Proof. – It follows from the previous result and the Hecke-equivariant isogeny i : J0(N2)+,new → Jns(N)+

(so there is a j : Jns(N)+ → J0(N2)+,new with j ◦ i = (deg i)J0(N2)+,new , i ◦ j = deg iJns(N)+). Indeed,
the Hecke correspondance Cm induces, on almost every complex point (minus cusps, ramification, and
possible identity of the different terms) the “geometric” Hecke operator T ε

m from [24, Section 1.3], so
they are equal over C thus over Q, and the corresponding operator on the other side is Tm (where
1 ≤ m ≤ N2/4 and m and N are coprime).

So, let u be an endomorphism of Jns(N)+. Then v = j ◦ u ◦ i is an endomorphism of J0(N2)+,new

so for some d ≥ 1, dv is a Z-linear combination of the Tm, 1 ≤ m ≤ N2/4 with m and N coprime.
But i ◦ dv ◦ j = (d(deg i)2)Jns(N)+ ◦ u, and, for each m coprime with N , i ◦ Tm ◦ j is T ε

m ◦ i ◦ j so is a
multiple of the corresponding Hecke operator on Jns(N)+. As a consequence, a scalar multiple of u is a Z-
linear combination of Hecke operators with subscripts 1 ≤ m ≤ N2/4 such that m and N are coprime. �

2.4.3 Gross-Zagier theorem for X+
ns(N)

To be able to show that the θ morphism vanishes for Xns(N)+, we want to apply the criterion from
Corollary 2.17 with the Heegner points and cusps as set of geometric points and Hecke correspondances
as the set of good Cartier divisors. To apply the criterion, we need to prove that rational divisors with
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null degree and geometric support on cusps and Heegner points project to torsion points in the second
isogeny factor of the Jacobian. As in Section 2.3, we use a formula akin to Gross-Zagier, shown by
Zhang in [44] to show that components of such divisors have null height. The added difficulty is that the
formalism the formula is proved in differs from ours.

Until explicitly said otherwise, f ∈ S2(Γ0(N2))+ is a newform with L′(f, 1) = 0 with N an odd prime
number. We choose a positive integer c coprime to N and a quadratic imaginary extension K of Q inert
at N , a basis (1, ω) of OK such that ω has positive imaginary part, and we define Oc = Z + cOK . We
write ω2 = rω − ν for integers r, ν with r ∈ {0, 1}. Af is the ring of adeles of Q for the finite places of Q
(ie the ring of families (xp)p∈P where xp ∈ Qp for each p and xp ∈ Zp for every prime p but finitely many).

The choice of the basis (1, ω) defines an embedding K → M2(Q) and, hence, a subring Rc = Oc +
NM2(Z) ⊂M2(Z).
Definition The subgroup Uc ⊂ GL2(Af ) is the set of families of (Mp)p∈P such that if p 6= N ,
Mp ∈ GL2(Zp), and MN ∈ GL2(ZN ) ∩ (Rc ⊗ ZN ). The corresponding complex Shimura variety is
MUc(C) = GL2(Q)+\(H × GL2(Af ))/Uc, where Uc acts on the right component only by right multipli-
cation, and GL2(Q)+ acts on both components by left multiplication.

Lemma 4.10

1. GL2(Q)+ · Uc = GL2(Af ).

2. There are a, b ∈ Z with b ∈ Z×N such that (a+ bω)2 = εmodN .

3. Write T = a+ bω ∈M2(Z): there is Pω ∈ SL2(Z) such that PωTP−1
ω =

[
0 1
ε 0

]
modN := T0.

4. If P ′ is another matrix satisfying the conditions of the claim above (for the role of Pω), then
P ′ = N1Pω with N1 ∈ Γns(N), and Pω = P ′N2 with N2 modN being in the image mod N of the
embedding of Oc. The converse statements also hold.

5. GL2(Q)+ ∩Uc ⊃ Γ(N) and the quotient is SL2(Z/NZ)∩P−1
ω CPω, where C = {M ∈M2(Z/NZ), M1,1 =

M2,2,M2,1 = εM1,2}.

6. The map [(τ, I2)] 7−→ [Pω(τ)] defines an isomorphism MUc(C) → Yns(N), not depending on the
choice of Pω.

7. Through this isomorphism, the coset of a pair [(τ, I2)] represents the pair (C/(Zτ ⊕ Z), u) from the
moduli problem of Lemma 4.1, where u is the endomorphism of Eτ [N ] given in the basis (1/N, τ/N)

by the matrix T =
[
a −bν
b a+ br

]
.

Proof. –

1. Clearly the left hand side is a subset of the right hand side. For the reverse inclusion, we first
replace Uc with the product of the GL2(Zv). Clearly, using diagonal matrices, it is enough to
consider the case when all the entries are (p-adic) integers. As all but finitely many of the matrices
are in GL2(Zv) for the relevant v, by iterating, it is enough to show the following: given a prime
number p, a p-adic 2× 2 matrix M with nonzero, noninvertible determinant, there exists a rational
matrix N with entries in Z[p−1] and determinant p−1 such that NM still has p-adic integral entries.
Indeed, we can write, as Zp is a PID, M = MlDMr with Ml,Mr ∈ GL2(Zp), D diagonal, D1,1|D2,2
and detMl = 1. Take then N = diag(1, p−1)Nl where Nl is a matrix with integral coefficients and
determinant 1 congruent to M−1

l mod p.
To conclude, we want to show that any matrix M ∈ GL2(ZN ) can be written as QS, where
Q ∈ SL2(Z) and S being congruent mod N to a matrix of Oc. It is elementary to show that
there is a matrix S1 ∈ Oc such that detS1 = (detM) modN , so that S1 ∈ GL2(ZN ); indeed,
for S1 ∈ Oc, (detS1) modN is the norm of [S1] ∈ Oc/(N) = OK/(N) = FN2 over FN , which is
surjective (indeed, it is s 7−→ sN+1 which is onto as F×N2 is cyclic and |F×N | =

|F×
N2

N+1 ). Then we take
Q ∈ SL2(Z) congruent mod N to MS−1

1 , and then S = Q−1M .
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2. It is a simple reformulation of the fact that OK/(N) is FN2 and OK = Z ⊕ ωZ, and that ε is a
nonsquare in FN .

3. We claim that if M ∈ M2(Z/NZ) has square εI2, then M is similar to T0, and we can choose
the similarity matrix to have determinant 1. For the first part, we simply consider the matrix
of the endomorphism M of F2

N in the basis (Mx, x) for any nonzero vector x. Let us deal with
the second part: clearly FN [M ] is isomorphic as a ring to FN2 , and clearly this isomorphism
maps det : FN [M ] → FN to the norm, so if PMP−1 has the desired form with P invertible,
there is a matrix M ′ commuting with M and determinant equal to the determinant of P . Then
PMP−1 = (PM ′−1)M(PM ′−1)−1 and we are done.

4. Write P ′ = N1Pω, so that N2 commutes with T0 mod N . A straightforward calculation shows that
N2 must be a polynomial in T0 mod N , so that N1 ∈ Γns(N). For N2, then PωN2TN

−1
2 P−1

ω =
PωTP

−1
ω = T0 modN , hence N2TN

−1
2 = T modN so that N2 commutes with T mod N . Thus

PωN2P
−1
ω commutes with T0 mod N , so is a polynomial in T0 mod N , so N2 = P−1

ω (PωN2P
−1
ω )Pω

is a polynomial in T mod N , which is what we wanted to prove.

5. If a rational matrix M with positive determinant is in Uc, then its entries are in every ZN and its
determinant is in every Z×N , so it must be in SL2(Z). Conversely, a matrix M ∈ SL2(Z) is in Uc
iff it is congruent mod N to a matrix given by a element of Oc. As c and N are coprime, it is
equivalent to require that M be congruent mod N to a matrix of OK . Since (1, a + bω) is a basis
of OK/(N) over FN , it is equivalent to require that PωMP−1

ω be congruent mod N to a linear
combination of I2 and T0, which is exactly the description written.

6. Follows from the claims one, four and five.

7. Follows from the above.

�

Next, we show that Heegner points on Yns(N) correspond to CM points on the Shimura curve.
Lemma 4.11 Let τ ∈ H be a point such that Eτ = C/(Zτ ⊕ Z) has complex multiplication by Oc. Let
ρ = −ω = ω − r. There exist coprime integers u, v, w such that τ = v

cρ+u , and u
2 − ruc+ νc2 = vw.

Proof. – Write τ ′ = vρ+u = −1
τ , α = bρ+a ∈ OK . Then α ∈ Zτ ′⊕Z iff b

v , a−
ub
v ∈ Z. Since ατ ′ = (au−

vbν)+ρ(av+bu−bvr), α is an endomorphism of Eτ ′ iff b
v , a−

ub
v ,

av+bu−bvr
v , au−vbν− u

v av + bu− bvr ∈ Z.
As Eτ and Eτ ′ are isomorphic, α is an isomophism of Eτ ′ iff α isomorphism of Eτ iff c|b. But the other
condition is equivalent to b

v ,
ub
v , vbν + bu2

v − bru ∈ Z. It follows that for any integer b, c|b is equivalent
to b

v ,
ub
v , vbν − bru + bu2

v ∈ Z. Therefore, the subgroup of Q generated by 1/v, u/v, vν − ru + u2/v is
c−1Z. In particular, we can write v = c

v1
,u = u1

v1
for some integers u1, v1, and the final condition can be

rewritten as v1, u1, w1 = c2ν−ru1c+u2
1

v1
generating Z, which shows that u1,−v1,−w1 work. �

Lemma 4.12 With the notations above, let p be any prime number, R =
[
0 v
c u

]
. For any a, b ∈ Qp,

R

[
a −bν
b a+ br

]
R−1 has entries in Zp iff a, bc ∈ Zp.

Proof. – With a = 0, b = c,

M

[
0 −cν
c cr

]
M−1 = −1

v

[
0 v
c u

] [
0 −ν
1 r

] [
u −v
−c 0

]
= −1

v

[
v vr
u cν + ur

] [
u −v
−c 0

]
= −1

v

[
v(u− rc) −v2

u2 − ruc+ νc2 −uv

]
=
[
rc− u v
−w u

]
,

so that shows the “if” part.
For the “only if” part, it is enough to show that if α, β ∈ Qp are such that α+β(rc−u), βu+α, βv, βw ∈

Zp (we say that the pair (α, β) is nice), then α, β ∈ Zp. If (α, β) is nice, and α ∈ Zp, then βu, βv, βw ∈ Zp
so β ∈ Zp. Similarly, if βu ∈ Zp for a nice pair (α, β), then α, β ∈ Zp.

So let us assume (α, β) is a nice pair such that “α, β ∈ Zp” is false. Then p|w and p|v. As u, v, w
are coprime, p and u are coprime, and p2|vw = u2 − c(ru− νc), so that p and c are coprime as well. As
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α, β /∈ Zp by the above, and α+β(rc−u), α+βu ∈ Zp, it follows that the quotient s = α/β is congruent
to −u and rc− u mod p, so that p|2u− rc.

Let I be the ideal (cρ + u, p): then I is an ideal of OK that divides (p), and as cu and p are
coprime, I 6= (p). If I = OK , then (cρ + u, p) = OK , thus (|cρ + u|2, p) = OK , which contradicts
|cρ + u|2 = νc2 − ruc + u2 = vw. As OK is a Dedekind domain, this forces p to not be inert. If p
splits, then p = q1q2 for some prime ideals qi, and q1 = q2 (because K/Q is Galois with only nontrivial
automorphism the conjugation, and the Galois group must act transitively on the places above p). As
I = I (ρ = −r−ρ, so cρ+ u = u−rc−cρ = (2u−rc)− (cρ+u) with p|2u−rc), I has the same valuation
for both qi, which entails (p) = q1q2|I, another contradiction. So p is ramified, and I2 = (p). It follows
that ((cρ+u)p, (cρ+u)p, p2) = (p), thus there are s, t ∈ OK such that α(cρ+u) +β(cρ+u) is an integer
congruent to 1 mod p. So 1 ∈ (cρ+ u, cρ+ u, p) = I, a contradiction. �

Proposition 4.13 Let P = [(τ, I2)] ∈ MUc(C) correspond to a Heegner point in Yns(N) with complex
multiplication by Oc. Then P = [(ρ,R−1)] for some matrix R as above; moreover, under this expression,
P is a CM point in the sense of [44, Section 6].
Proof. – The existence of R is ensured by Lemma 4.11, and Lemma 4.12 ensures that M2(Zp)∩R{Ka,b :=[
a −bν
b a+ br

]
, a, b ∈ Qp}R−1∩R{Ka,b, a ∈ Zp, b ∈ cZp}R−1 as rings, so that by taking invertible elements,

in the notation of [44] R−1GL2(Zp)R ∩ {Ka,b, a, b ∈ Qp} = {Ka,b, a ∈ Zp, b ∈ cZp}×, for any prime
number p. Next, we show that ρ is stable under all the Ka,b for a, b ∈ Q not both zero: indeed, if
a, b ∈ Q are both nonzero, Ka,bρ = aρ−bν

bρ+(a+br) = aρ+bρ2+rbρ
bρ+(a+br) = ρ. To conclude, it is enough to show that if

a ∈ ZN , b ∈ cZN , RKa,bR
−1 =

[
a+ b(rc− u) bv
−bw a+ bu

]
is congruent mod N , as a ZN matrix, to a matrix

of Oc. In other words, we want to show bv = (−ν)(−bw) modN and a+bu = a+b(rc−u)+r(−bw) modN .
In other words, we need to show that N |v − νw and N |2u+ rw − rc.

There is one hypothesis which we did not use: the fact that the endomorphism of Eτ [N ] came from

an endomorphism of Eτ . That endomorphism has, in the basis (1/N, τ/N), the matrix
[
a −bν
b a+ br

]
with the notation of Lemma 4.10, with N not dividing b. By taking an appropriate multiple of this
endomorphism, it follows that there is an α ∈ Oc such that its matrix in the basis (1, τ) is integral and

congruent mod N to
[
0 −ν
1 r

]
. In other words, there are integers a, b, d, e such that α = Na+ (1 +Nb)τ

and ατ = (−ν+Nd)+(r+Ne)τ . The second equation can be rewritten as α = (−ν+Nd) cρ+uv +r+Ne.
But

τ = v

cρ+ u
= v(cρ+ u)
|cρ+ u|2

= v(−cρ− cr + u)
vw

= cρ+ (cr − u)
−w

,

so that cρ = −wτ + u− cr, and α = r +Ne+ (−ν +Nd) 2u−cr
v + −w(−ν+Nd)

v τ .
Identifying the two equalities (everything being rational and (1, τ) being Q-free) yields vNa = rv +

Nev+ (−ν+Nd)(2u− cr) and v+Nbv = −w(−ν+Nd). The second identity implies N |v−wν, and the
first one implies N |rv− 2uν + crν. Thus, using the congruence just before, N |ν(rw− 2u+ cr). Thus, to
conclude, it is enough to show that N and ν are coprime. As ν = ωω and N is prime and inert in K, it
is enough to show that N does not divide ω. But (1, ω) is a Z-basis of OK , so N cannot divide ω. �

Given this correspondance of definitions of CM points, we can apply Zhang’s Gross-Zagier formula,
taking the following technical facts for granted:

1. The Shimura curve can be canonically compactified into a Riemann surface which has a smooth
projective model XUc over Q and an action by Hecke operators – it is this model which is implicitly
used in [44].

2. The isomorphism defined above MUc(C) → Yns(N) comes from an algebraic isomorphism over Q:
XUc → Xns(N) which preserves Hodge classes and Hecke operators.

3. If f is a positive newform of level 2, weight N2 and nebentypus 1 such that L′(f, s) = 0, which
becomes under the Chen isogenies an eigenvector fns for the Hecke ring of S2(Γns(N)+), and an
automorphic representation with trivial character φns for XUc , then L(φns, s) (in the notation of
[44, Section 5], which is shifted with respect to the usual notations from e.g. [10]) vanishes with
order 2 at s = 1/2.
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4. The above isogeny between Jac(XUc) and Jns(N) maps the φns-isotypical component to the fns-
isotypical component.

Theorem 4.14 Let P be a Heegner point with complex multiplication by Oc on Xns(N), it is defined on
a Galois extension Hc of K. Let ξ be the Hodge class (which is a rational Cartier divisor supported on
cusps). Then the fns-isotypical component of

∑
σ∈Gal(Hc/K) [σ(P )− ξ] ∈ Jns(N) is torsion.

Proof. – The corresponding φns-isotypical point has null height by Zhang’s Gross-Zagier formula ([44,
Theorem 6.1]) so is torsion. �

Corollary 4.15 The fns-isotypical decomposition of any rational divisor on Xns(N) with zero degree
supported on cusps and Heegner points is torsion.
Proof. – Using the previous theorem, we argue as in the proof of Corollary 3.7. �

We have now all the ingredients to use the criterion of Corollary 2.17 for the vanishing of the θ
morphism for Jns(N)+. Define indeed A to be the product of the Af , f running through the orbits under
the Galois action of the newforms of S2(Γ0(N2))+ such that L′(f, 1) 6= 0, and B the product of the Af
where L′(f, 1) = 0.
Proposition 4.16 If Xns(N)+ has a rational point, then we can apply the critetion of Corollary 2.17
to show that in this situation, the θ morphism vanishes.
Proof. – Using the Chen isogeny we have an isogeny Jns(N)+ → A × B with Hom(A,B) = 0 (because
again, the Af are Q-simple and pairwise non-isogenous). By Corollary 4.9, the Hecke correspondances
generate enough of the endomorphisms of Jns(N)+ to satisfy the fourth condition. By Corollary 4.15,
and the Manin-Drinfeld theorem, the second condition is met. As for the third condition, it follows from
the fact that the Hecke correspondances map cusps to cusps (and conversely do not map non-cusps to
cusps), so it is satisfied using Lemma 4.4, Q.E.D. �

2.5 Rank estimates for the Heegner quotient
2.5.1 Motivation

In the Sections 2.3 and 2.4, when X = X0(N)+ or X = Xns(N)+ is a modular curve of genus at least 2
with a rational point, we have constructed an isogeny J → A×B of rational abelian varieties such that
its θ morphism is zero (so that its kernel has rank at least ρ(A)− 1) and Hom(A,B) = 0. To show that
the Chabauty-Kim method applies, the rank of A(Q) must be lower than dimA + ρ(A) − 1. First, we
will partially show that ρ(A) = dimA is the rank of A(Q) ; so the final step in the proof is to show that
(at least for large enough N) this rank is at least 2, so that the inequality is satisfied.
Lemma 5.1 Let U, V be two rational abelian varieties such that Hom(U, V ) = 0. Then ρ(U × V ) =
ρ(U) + ρ(V ), dim(U × V ) = dimU + dimV and the rank of (U × V )(Q) is the sum of the ranks of U(Q)
and V (Q).
Proof. – Only the first claim isn’t obvious. Define the natural maps i1 : U → U × V , i2 : V → U × V ,
then by definition Hom(U, V ∨) = ker i∗1 ⊕ i∗2 ⊂ Pic(U × V ). There exists a rational isogeny V ∨ → V ,
which entails that the left hand side is zero. Thus, arguing as in the proof of Proposition 2.1, it follows
Pic(U × V ) = π∗1 Pic(U) ⊕ π∗2 Pic(V ), where π1 : U × V → U , π2 : U × V → V are the projections, and
the k-th coordinate is given by applying π∗ki∗k to the line bundle. Given the operations, it follows that
this decomposition entails another one Pic0(U × V ) = π∗1 Pic0(U) ⊕ π∗2 Pic0(V ), so that NS(U × V ) =
π∗1NS(U)⊕ π∗2NS(V ). To conclude, it is enough to show that π∗1 : NS(U)→ π∗1NS(U) is injective (and
the same will hold for V ). Indeed, let L be a line bundle on U such that π∗1L ∈ Pic0(U × V ). Then
L = i∗1π

∗
1 Pic0(U), and we are done. �

Proposition 5.2 Let M ∈ {N,N2} where N is an odd prime number, f ∈ S2(Γ0(M)) be a positive
newform such that L′(f, 1) 6= 0. Then Af (Q) has rank dimAf = ρ(Af ).
Proof. – It is the “rank 1 BSD for modular abelian variety”, i.e. [13, Proposition 7.1]. It only remains
to show that ρ(Af ) = dimAf . Now, by the proof of Proposition 3.3, the endomorphism ring of Af has
dimension dimAf and is generated (up to a finite cokernel) by the Hecke operators. In other words,
its endomorphism algebra E0 is the quotient of the Hecke ring over Q by the ideal made up with the
operators T with Tf = 0, that is, E0 = Kf and is commutative. It is known (used in the same proof in
[13]) that the endomorphisms of Af are symmetric with respect to any polarization. It follows that for
any polarization, the Rosati involution is trivial and by the Galois-equivariant version of [30, Proposition
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17.2], it follows that ρ(Af ) is the dimension of the self-dual endomorphism algebra over Q, so is dimAf .
�

Corollary 5.3 In the cases of Sections 2.3, 2.4, A(Q) has rank dimA = ρ(A), which is the number of
newforms f for Γ0(N),Γ0(N2) respectively, such that L′(f, 1) 6= 0.
Proof. – We use the fact that if f and g are newforms, Af and Ag are isogenous over Q only if f and
g are Galois conjugates, and they are simple over Q. For the final equality, we use the fact that for any
newform f , dimAf is the number of forms conjugate to f under the Galois action, and that for any
newform f and Galois automorphism σ, L′(f, 1) = 0 iff L′(fσ, 1) = 0. The second fact (which we have
used implicitly in the Sections 2.3, 2.4) is from the Gross-Zagier paper, [16, Corollary V.1.3].

The first fact is because dimAf is the dimension of the holomorphic complex abelian variety Af (C)
as well as the dimension of the algebra (over Q) of Hecke operators (by the above proposition) acting on
Af (C), which is the dimension of the quotient of the Q-space generated by the Hecke operators by the
subspace of such operators T with Tf = 0. But this quotient is isomorphic to the number field generated
by the coefficients of f , which concludes. �

We have thus proved the following:
Proposition 5.4 Let M = N (resp. M = N2) where N is a prime number. If there are two dis-
tinct positive newforms in S2(Γ0(M)) the L-function of which has a simple zero at 1, then the quadratic
Chabauty-Kim method applies to X0(N)+ (resp. Xns(N)+).

In the rest of the section, we show that for large enough M , the condition above is satisfied.

2.5.2 Trace formulae

From now on, we take some notations: N is an odd prime number, M is N or N2. If f, g ∈ S2(Γ0(M)),
〈f, g〉M is the Petersson inner product of f and g, that is,

〈f, g〉M =
∫
DM

f(τ)g(τ)|Im(τ)|2 dxdy
y2 =

∫
DM

f(x+ iy)g(x+ iy) dxdy,

where DM is a fundamental domain in H for Γ0(M). The associated Euclidean norm is denoted as ‖ ·‖M .
If E is a Hermitian space, and A,B are linear forms on E, the E-product of A and B is

∑
f
A(f)B(f)
‖f‖2

E

,
where the sum runs over any orthogonal basis of E. In the following, E will always be a subspace
of S2(Γ0(M)) with the Petersson inner product, corresponding to the eigenspaces of the self-adjoint

symmetry wM : f 7−→ f |2
[

0 −1
M 0

]
, or spaces of newforms or oldforms. This will be explained by using

superscripts and subscripts: for instance, 〈A, B〉−,new
M is the E-product of A and B, where E ⊂ S2(Γ0(M)

is the space of f orthogonal to the old space and such that wMf = −f .
L′ : S2(Γ0(M)) → C denotes f 7−→ L′(f, 1) (which is well-defined using standard computations, see

e.g. [10, Chapter 5.10]). If m ≥ 1 is an integer, am is f ∈ S2(Γ0(M)) 7−→ am(f), the m-th coefficient of
the q-expansion of f .

We will estimate 〈am, L′〉+,new for m = 1, 2, in view of the following sufficient condition (it is practi-
cally quite ad hoc, and much better asymptotic estimates are known at least when N = M ; however, it
is far more explicit).

Lemma 5.5 If 〈a1, L
′〉+,new
M is nonzero and 0 < 〈a2, L

′〉+,new
M < 〈a1, L

′〉+,new
M , then dimA ≥ 2 (for

X0(N)+ if M = N , for Xns(N)+ if M = N2).
Proof. – If dimA = 0, then for any positive newform f of levelM , L′(f, 1) = 0, so that 〈a1, L

′〉+,new
M = 0.

If dimA = 1, then there is exactly one positive newform f of level M with L′(f, 1) 6= 0. For any embed-
ding σ : Kf → C, fσ is also a positive newform of level M such that L′(fσ, 1) 6= 0, so that fσ = f . It
follows that f has rational q-expansion. Then for any m ≥ 1, 〈am, L′〉+,new

M = L′(f,1)
‖f‖2

M

am(f), so that the
quotient is a2(f), hence a rational algebraic integer, thus in Z, so not in (0, 1). We have thus proved the
contraposition of the stated result, which concludes. �

Definition We define now the basic special functions we need in our estimates.
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1. E1 is the exponential integral function, defined by E1(x) =
∫∞
x
e−t dtt defined for x > 0. One has,

for every ε > 0,

e−x =
∫ ∞
x

e−tdt ≥ xE1(x) ≥ 1
1 + ε

∫ (1+ε)x

x

e−tdt = e−x
1− e−εx

1 + ε
,

thus E1(x) ∼
x→∞

e−x

x .

2. For the sake of symmetry, as seen in lemma Lemma 5.6, we define E−1(x) = e−x for x ≥ 0.

3. J1 is the first Bessel function, given by J1(x) = π−1 ∫ π
0 cos(x sin θ − θ) dθ.

4. The Kloosterman sums are defined, for integers m,n, c ≥ 1, by

S(m,n; c) =
∑

k∈(Z/cZ)×
exp

(
2iπ
c

(mk + nk−1)
)

if c > 1, where k−1 is the multiplicative inverse of k mod c, and S(m,n; 1) = 1 (note that it only
depends on mmod c, nmod c).

Using the integral exponential function, we can express L and L′ as functions of the am for certain
modular forms. L′ is the one we are ultimately interested in, but it turns out that we will need estimates
for L as well:
Lemma 5.6 Let M ≥ 1 be an integer.

1. If f ∈ S2(Γ0(M)), |an(f)| ≤ 2πne‖f(x+ iy)y‖L∞(H) <∞.

2. If f ∈ S2(Γ0(M))+, then L′(f, 1) = 2
∑
n≥1

an(f)
n E1

(
2πn√
M

)
.

3. If f ∈ S2(Γ0(M))−, then L(f, 1) = 2
∑
n≥1

an(f)
n e−2πn/

√
M .

Proof. – The first point is classical, see e.g. [10, Proposition 5.9.1]. For the second part, classical
calculations, e.g. [10, Section 5.10], show that for any complex number s with large enough real part,

Ms/2(2π)−sΓ(s)L(f, s) =
∫ ∞

1

dt

t

(
f

(
it√
M

)
ts − wM (f)

(
it√
M

)
t2−s

)
= 2

∫ ∞
1

f

(
it√
M

)
(ts − t2−s)dt

t
.

In the right-hand side, no factor but L(f, s) may vanish at s = 1, and the right hand side van-
ishes at s = 1, so L(f, 1) = 0 and, taking derivatives and evaluating at s = 1, it follows L′(f, 1) =
2 2π
M

∫∞
1 f

(
it√
M

)
ln t dt. Let us note that

∑
n≥1

∫ ∞
1
|an(f)e−2πnt/

√
M ln t|dt ≤ C

∑
n≥1

ne−2πn/
√
M

∫ ∞
0

te−2πnt/
√
Mdt

≤ C
∑
n≥1

ne−2πn/
√
M M

(2πn)2 <∞,

so that L′(f, 1) = 22π
M

∑
n≥1 an(f)

∫∞
1 e−2πnt/

√
M ln t dt. Now, let s > 0:∫ ∞

1
e−st ln t dt = −s−1 [e−st ln t

]∞
1 + s−1

∫ ∞
1

e−st

t
dt = s−1E1(s).

The argument is the same for the third claim, but the computation is simpler as it involves evaluating
directly the value of the integral instead of differentiating the integrand. �

The authors of [13] recall a trace formula, along with the classical bounds showing it is well defined:
Proposition 5.7

1. If x ∈ R, |2J1(x)| ≤ min(|x|, 4/π).
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2. If m,n, c are integers with gcd d (resp. m,n, c integers with gcd d/4, and M is a prime power
dividing c), if c (resp. c/M) has t divisors, then |S(m,n; c)| ≤ t

√
dc. In particular, when m or n

is fixed, as c grows, S(m,n; c) = O(c1/2+r) for any r > 0.

3. If m,n,M ≥ 1 are integers and ε = ±1 is a sign, then

1
2π
√
mn
〈am, an〉εM = δmn − 2π

∑
c=c′M>0

S(m,n; c)
c

J1

(
4π
√
mn

c

)
− 2πε

∑
d>0

(d,M)=1
nd=n/M∈Z/dZ

S(m,nd; d)
d
√
M

J1

(
4π
√
mn

d
√
M

)
,

and both sums are absolutely convergent.

Proof. – To show the first part, we expand:

πJ1(x) =
∫ π

0
cos(x sin θ − θ) dθ =

∫ π

0
cos(x sin θ) cos θdθ +

∫ π

0
sin(x sin θ) sin θdθ.

The integrand in the first term is antisymmetric with respect to the transformation x 7−→ π − x so the
integral is zero. The second integral is bounded in absolute value by

∫ π
0 x| sin θ|2dθ = π|x|/2. But it is

also bounded by
∫ π

0 sin θ dθ = 2.
The second part is the Weil bounds.
For the third part, we show only the absolute convergence of the sums: the fractions with the Kloost-

erman terms are O(c−1/3) and O(d−1/3) respectively thanks to the second point (all the rest are fixed
parameters), and the Bessel factor is by the first point O(c−1) (resp. O(d−1)), which concludes. �

We can finally compute 〈L′, am〉+M in our situation:
Proposition 5.8 Let m,M ≥ 1 be integers with M ≥ 2, let ε = ±1. Let us denote

S ε(n, c) = 1
cn1/2S(m,n; c)J1

(
4π
√
mn

c

)
Eε

(
2πn√
M

)
,

and, if d is an integer coprime to M ,

T ε(n, d) = S(m,nM−1; d)
d
√
Mn

J1

(
4π
√
mn

d
√
M

)
Eε

(
2πn√
M

)
.

1. The families (S ε(n, c))n≥1,M |c and (T ε(n, d))n≥1,(d,M)=1 are summable with sums denoted sε and
tε.

2. The following identity holds:

(4π)−1〈am, Lε〉εM = E1

(
2πm√
M

)
− 2π

√
m(sε + εtε),

where L+1 = L′, L−1 = L.

Proof. – Clearly only the summability is to show, as the remaining steps follow from Lemma 5.6 and
Proposition 5.7. Now, because of the Weil bounds and upper bounds on J1 and E1, if τ is the divisor-
counting function,

|S +(n, c)| ≤
√
mτ(c)√
cn

2π
√
mn

c

√
M

2πn e
−2πn/

√
M = m

√
M
τ(c)
c3/2

e−2πn/
√
M

n
,

and the conclusion follows for S +. The same estimates work as well for T +. When ε = −1, we have
instead |S −(n, c)| ≤ 2πm τ(c)

c3/2 e
−2πn/

√
M and thus summability still works, as above. �
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The formula above does not distinguish between the old and the new part in the inner product;
however, when M = N2, we are interested in the new part only. The following proposition enables us to
control the old part in the product. It is [13, Lemma 5.5]:
Proposition 5.9 If N is prime and m ≥ 1 is not divisible by N ,

〈am, L′〉+,old
N2 = 1

N − 1

(
〈am, L′〉+N + lnN

2 〈am, L〉−
)
.

Proof. – One easily sees that if JN = diag(N, 1), then JNwN2w−1
N /N ∈ Γ0(N), so wNwN2 ∈ Q∗Γ0(N)JN ,

thus if f ∈ S2(Γ0(N)), f |2wN2 = wN (f)|2JN is in the old space. So the Fricke involution wN2 pre-
serves the oldspace. Moreover, these computations show that wN (f) = εf , then f |2wN2 = εf |2JN and
wN2(f |2JN ) = wN (f) = εf .

By [10, Chapter 5.8], the f and f |2JN form a basis of the old space, if f goes through the eigenforms
of S2(Γ0(N)). If, for an eigenform f , we write εf = wN (f)/f (all the good Hecke operators are self-
adjoint and every eigenform at level N is new, so wN commutes with all the Hecke operators and thus is
diagonalized at the eigenforms, by multiplicity one), then by the above, f ± εff |2JN is an eigenvector of
wN2 for ±1. But all of these forms (when ε varies and f runs through the normalized eigenforms of level
N) make a basis of the old space, so that a basis of S2(Γ0(N2))+,old is given by the f + εff |2JN .

Now, let f, g be normalized eigenforms at levelN . ThenNaN (f)〈f, g〉N = 〈TNf, g〉N2 = 〈f, T ∗Ng〉N2 =
〈f, wN2(TNwN2g)〉N2 = εg〈wN2f, TN (g|2JN )〉N2 . But one easily notices TN (g|2JN ) = Ng, so that
NaN (f)〈f, g〉N = εgεfN〈f |2JN , g〉N2 . In particular the RHS is zero if f 6= g, which shows that the
f + εff |2JN are pairwise orthogonal, and, if f is a normalized eigenform of level N , aN (f)‖f‖2N =
〈f |2JN , f〉N2 .

Now, one can see that Γ0(N) acts by left multiplication on the set DN of 2× 2 matrices with integer
coefficients, determinant N , and a second row divisible by N , and that representatives of the cosets are
given by the matrices βk =

[
1 k
0 N

]
, 0 ≤ k < N , and β∞

[
0 −1
N 0

]
. It follows, as DN is stable unde

right multiplication by SL2(Z), that the collection of the cosets Γ0(N)βk, k ∈ P1(FN ), is invariant under
right multiplication by SL2(Z). Thus, the image of TN + wN is a subset of S2(Γ0(1)) = {0}, so that
TN = −wN , and 〈wN2f, f〉N2 = −‖f‖2N . Therefore, ‖f + wN2(f)‖2N2 = 2(N − 1)f .

As, for every eigenform f of level N , am(f |2JN ) = 0,

2(N − 1)〈am, L′〉old,+N2 =
∑
f

am(f)L′(f + wN2(f), 1),

where the sum runs through the newforms of level N . We have a functional equation in level N2 linking
f and wN2(f): if Λ(g, s) = Ns

(2π)sΓ(s)L(g, s), then Λ is defined at Re(s) > 2 but actually extends to an
entire function satisfying Λ(g, s) = −Λ(wN2(g), 2 − s) (see e.g. [10, Chapter 5.10] at level N2), so that,
if f is a normalized eigenform of level N , Λ′(f, 1) = Λ′(wN2(f), 1).

Note that 2π
N Λ′(g, 1) = L′(g, 1) + L(g, 1)

(
ln N

2π + γ
)
for any g ∈ S2(Γ0(N2)), and L(wN2(f), 1) =

−L(f, 1) by the functional equation. Summing the formulas for g = f and g = wN2(f) yields c(f) :=
L′(f + wN2(f), 1) = 4π

N Λ′(f, 1) = 2
(
L′(f, 1) +

(
ln N

2π + γ
)
L(f, 1)

)
.

But, if ΛN (f, s) = N−s/2Λ(f, s), we also have a functional equation (from the same properties of
modular forms, but at level N) ΛN (f, s) = −εfΛ(f, 2− s). So if εf = 1, ΛN (f, 1) = 0 so L(f, 1) = 0 and
c(f) = 2L′(f, 1); if εf = −1, Λ′N (f, 1) = 0, which is rewritten as L′(f, 1) +

(
ln
√
N

2π + γ
)
L(f, 1) = 0 so

that c(f) = 2 ln
√
NL(f, 1), which concludes. �

2.5.3 First estimates

We want to show that for m = 1, 2 and large enough M ∈ {N,N2} (with N odd prime), the term
Eε(2πm/

√
M) is the dominant one. Note that even with the crude estimates above, we still find (because

we sum over M |c) a O(1/
√
M) error term, which yields the result for large enough M . But we wish for

more explicit estimates, which require more careful computations.
Let, for each c ≥ 1, ε = ±1, S ε(c) =

∑∞
n=1 S ε(n, cM). The following result is mostly [13, Lemma 5.6].

Lemma 5.10 If m ≤ 2, and ε = ±1, then |S ε(c)| ≤ s(m, c)
√
m τ(c/d)
c3/2M

, with s(m, c) = 2 if c odd or
m = 1, s(m, c) = 1 +

√
2 else if c is not divisible by 4, and s(m, c) =

√
2 otherwise, and d = 2 if 4|c and

d = 1 else.
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Proof. – If m = 1, or m = 2 and c is odd, we apply the Weil bound |S(m,n; cM)| ≤ 2τ(c)
√
cM ,

the Bessel function bound 2|J1(x)| ≤ |x|, and a sum-integral comparison to show that
∑
n≥1E1(αu) ≤∫∞

0 E1(αu) du = α−1.
When m = 2 and c is even and not divisible by 4, we split the sum to cover the cases n odd and n

even, so that it becomes, after the Bessel function bound and the Weil bound,

4πτ(c)
√
m

(cM)3/2

∑
n≥1,n odd

E1

(
2πn√
M

)
+ 4πτ(c)

√
2m

(cM)3/2

∞∑
n=1

Eε

(
4πn√
M

)
.

The same sum-integral comparison shows that the second term is bounded by
√

2mτ(c)
Mc3/2 . For the

first term, let f(x) = Eε( 2πn√
M

). f is non-negative, decreasing, convex, so that for every odd integer n,
f(n) ≤ 1

2
∫ n+1
n−1 f(u)du. Summing over all odd integers n, it follows that

∑
n≥1,n odd f(n) ≤ 1

2
∫∞

0 f =
√
M

4π ,
so that the first term is bounded by

√
mτ(c)
Mc3/2 .

If c is divisible by 4 (and m = 2), we claim that S(2, n; cM) = 2S(1, n/2; cM/2) if n is even and 0 is
n is odd. Indeed, an element k ∈ Z/cMZ is invertible iff k + cM/2 is invertible, as (cM/2)2 = 0, and in
this case (k + n/2)−1 = (k−1 − k−2(cM/2)) = k−1 + cM/2. Thus,

S(2, n; cM) =
∑

1≤k<cM/2
k∈(Z/cMZ)×

exp
(

2iπ
cM

(2k + nk−1)
)

+ exp
(

2iπ
cM

(2k + 2(cM/2) + nk−1 + n(cM/2))
)
,

and if n is odd, the two terms in the sum cancel out; if n is even, they are equal and we can simplify the
argument in the exponential.

Thus, the sum S +(c) only needs to be on the even n and the Weil bound then reads |S(2, n;Mc)| =
2|S(1, n/2;Mc/2)| ≤ 4τ(c/2)

√
Mc/2 = 2

√
2τ(c/2)

√
Mc. The entire sum is thus bounded by

2π
√
mτ(c/2)

√
Mc2

√
2

(Mc)2

∞∑
n=1

Eε

(
4πn√
M

)
≤
√

2mτ(c/2)
Mc3/2

.

�

Corollary 5.11 If m = 1, M |sε| ≤ 2ζ(3/2)2 ≤ 13.65.
If m = 2, M |sε|/

√
2 ≤

(
3 + 1/

√
2
)
ζ(3/2)2

(
1− 1

2
√

2

)2
+
√

2
4 ζ(3/2)2 ≤ 12.986.

Proof. – If m = 1, we simply take the sum over the bound and use the fact that ζ2(s) =
∑
n τ(n)n−s

if s > 1. If m = 2, we split the bound according to the cases c odd (then by the Euler product the cor-
responding sum of τ(c)/c3/2) is ζ(3/2)2(1− 2−3/2)2), c divisible by 2 but not by 4 (then τ(c) = 2τ(c/2)
but c−3/2 = 2−3/2(c/2)−3/2 and c/2 is odd, so we come back to the previous sum but multiplied by
2(1+

√
2)

23/2 = 1 + 1/
√

2), and c divisible by 4 (so that τ(c/2)/c3/2 ≤ 1/4τ(c/4)/(c/4)3/2 and the total sum
is thus at most

√
2/4ζ(3/2)2). �

Next, we do a similar estimate for T ε(d) =
∑
n≥1 T ε(n, d):

Lemma 5.12 If d ≥ 2 is coprime toM , and m ≤ 2, then |T ε(d)| ≤ t(m, d)
√
m τ(d)
d3/2
√
M

where t(m, d) = 1
if m = 1 or d is odd, t(m, d) = (1 +

√
2)/2 if d = 2 mod 4, t(m, d) = 1/

√
2 if 4|d.

Proof. – If m = 1, or m = 2 and d is odd, the Weil bound yields |S(m,nM−1; d)| ≤ τ(d)
√
d. Using the

linear bound for J1, it follows |T ε(d)| ≤ 2πτ(d)
√
m

d3/2M

∑
n≥1Eε

(
2πn√
M

)
≤ τ(d)

√
m

d3/2
√
M
. Again, if d is even not

divisible by 4 and m = 2, we split between odd and even n, and use convexity to improve the sum-integral
comparison for the odd n. Finally, if d is divisible by 4, only the even n contribute, and we reason as in
the previous estimate. �

Putting these estimates together, along with the sum-integral inequality |T ε(1)| ≤
√
m, we obtain

our first bounds:
Corollary 5.13 The following bounds hold, where ζodd(3/2)2 =

∑
d≥1, d odd

τ(d)
d3/2 = ζ(3/2)2(1− 1/23/2)2:

1. If m = 1, |tε −T +(1)| ≤M−1/2(ζ(3/2)2 − 1).
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2. If m = 2, |tε −T +(1)| ≤M−1/2√2
(
ζ(3/2)2−1√

2 + (1− 1/
√

2)(ζodd(3/2)2 − 1) + ζodd(3/2)2/23/2
)
.

3. If m = 1, ∣∣∣∣ 〈am, Lε〉εM4π − Eε
(

2π√
M

)
+ 2πεT ε(1)

∣∣∣∣ ≤ 36.6√
M

+ 85.8
M

.

4. If m = 2, ∣∣∣∣ 〈am, Lε〉εM4π − Eε
(

4π√
M

)
+ 2π

√
2εT ε(1)

∣∣∣∣ ≤ 71.25√
M

+ 93.4
M

.

Proof. – The first two items come from the bounds just above by summing over d, recalling that the
original estimates only hold for d ≥ 2. For m = 2, we deal with the different constants for different
d by summing τ(d)/d3/2√2 for every d ≥ 2, then (1 − 1/

√
2)τ(d)/d3/2 for odd d > 1, and summing

0.5(τ(d)/d3/2) = 2−3/2τ(d/2)/(d/2)3/2 for all d ≥ 2 even and not divisible by 4, so that d/2 runs through
all odd integers.

The last two items follow from the first two, Corollary 5.11, and Proposition 5.8. �

Proposition 5.14 For M > 1207, then 〈a1, L
′〉+M > 0. If moreover M ≥ 26611, then 0 < 〈a2, L

′〉+M <
〈a1, L

′〉+M .
Proof. – We prove only the second part, the first one can be proven in a similar but simpler way by
numerically checking the estimate at every integer between 1207 and 22611.

The second inequality holds as soon as the following inequality holds (using the previous estimates
above): 107.85√

M
+ 179.2

M < 2π(
√

2T +
m=2(1)−T +

m=1(1)) +
∫ 2

1
e−2πu/

√
M

u du. When M > 22500 = 1502, the left
hand side is smaller than M−1/2(107.85 + 179.2/150) ≤ 109.05

M1/2 . Now, by sum-integral comparison and
the linear bound on J1, M1/2|T +

m=1| ≤ 1. Moreover, when n ≤
√
M
π , then 4π

√
2n√
M
≤ 4

√
2π

M1/4 ≤ 0.819, so

that, as x 7−→ 2J1(x)
x decreases on [0, 3.5] (see the next subsection for the argument), 1√

n
J1

(
4π
√

2n√
M

)
≥

2π
√

2√
M

2J1(0.819)
0.819 ≥ 0.91 2π

√
2√

M
. Omitting the positive term corresponding to

√
M/π < n ≤

√
M/π + 1, it

follows that that

√
MT +

m=2(1) ≥ 0.912π
√

2√
M

∑
1≤n≤

√
M/π

E1

(
2πn√
M

)
− 2π

√
2√

M

∑
n>
√
M/π+1

E1

(
2πn√
M

)

≥ 0.912π
√

2√
M

∫ √M/π

1
E1

(
2πu√
M

)
du− 2π

√
2√

M

∫ ∞
√
M/π

E1

(
2πu√
M
u−1/2 du

)
≥ 0.91

√
2
∫ 2

2π/
√
M

E1 −
√

2
∫ ∞

2
E1

≥
√

2(0.91× 0.8− 0.04) ≥ 0.68
√

2.

Finally, 2π
√
M(
√

2T +
m=2(1)−T +

m=1(1)) ≥ 0.72π.
Therefore, the right-hand side is greater (using e−u ≥ 1−u) ln 2−1.28π/

√
M . So if

√
M ≥ 109.05+1.28π

ln 2 ,
we are done. But

( 109.05+1.28π
ln 2

)2
< 26611.

As for the other inequality, we need to show that if M ≥ 26611, 71.25√
M

+ 93.4
M + 2π

√
2T +

m=2(1) <

E1

(
4π/
√
M
)
. By a sum-integral comparison, it follows that 2π

√
2T +

m=2(1) ≤ 4π√
M
, so that we only

need to show 83.82√
M

+ 93.4
M < E1

(
4π√
M

)
. The right-hand side is an increasing function of M , while the

left hand side is a decreasing function of M , so we only need to show the result for M = 26611, i.e.
83.82√
26611 + 93.4

26611 < E1

(
4π√
26611

)
. The LHS is bounded above by 0.518, and, as 26611 > 1602, the RHS is

bounded below by E1(4π/160) = E1(π/40) ≥ E1(0.1) ≥ 1
e

∫ 1
0.1 t

−1dt = ln 10
e ≥ 0.8. �
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We are interested in the case of newforms as well:
Corollary 5.15 The following bounds hold, where M = N2 > 1600:∣∣∣ 〈a1, L

′〉+,new
M

4π − E1

(
2π
N

)
+ 2πT +

N2,m=1(1) + 1
N − 1E1

(
2π√
N

)
+ e−2π/

√
N lnN

2(N − 1)

∣∣∣
≤ 36.6

N
+ 22.3 lnN + 44

N3/2 + 44.7 lnN + 172.2
N2∣∣∣ 〈a2, L

′〉+,new
M

4π − E1

(
4π
N

)
+ 2π

√
2T +

N2,m=2(1) + 1
N − 1E1

(
4π√
N

)
+ e−4π/

√
N lnN

2(N − 1)

∣∣∣
≤ 71.25

N
+ 42.96 lnN + 85.92

N3/2 + 47.9 lnN + 189.2
N2

Proof. – We use the formula on the old product and the estimates on the inner products for ε = ±1 at
level N and ε = 1 at level N2, along with the estimate 2π

√
mN |T +

m,N | ≤ 2πm. �

We thus get the fully explicit inequality:
Proposition 5.16 If N ≥ 47 is prime, then 〈a1, L

′〉+,new
N2 > 0. If, in addition, N ≥ 89, 〈a2, L

′〉+,new
N2 >

0. If moreover N > 220, then 0 < 〈a2, L
′〉+,new
N2 < 〈a1, L

′〉+,new
N2 .

Proof. – Again, we only show the last two inequalities. Using the estimates from Corollary 5.15 and the
method of the proof of Proposition 5.14, we reduce the second inequality in the last claim to proving that
for N > 220,

ln 2 ≥ 107.85 + 1.025 ln 2 + 1.28π
N

+ (65.2 + 1.025/π) lnN + 129.92
N3/2 + 92.6 lnN + 361.4

N2 ,

and this inequality does hold for N > 220.
For the first inequality of the final claim, we actually show the second claim. As in the proof of

Proposition 5.14, and using E−1 ≤ −1, we only need to show that

71.25 + 4π
N

+ 42.96 lnN + 85.92
N3/2 + 47.9 lnN + 189.2

N2 + lnN
2(N − 1) + 1

N − 1E1

(
4π√
N

)
≤ E1

(
4π
N

)
.

All the terms in the LHS are easy functions of N , except maybe for the last one, can be shown to be
lower than 0.0015. So the LHS is smaller than

LHS′ = 0.0015 + 71.25 + 4π
N

+ 42.96 lnN + 85.92
N3/2 + 47.9 lnN + 189.2

N2 + lnN
N − 1 ,

which is a decreasing function of N ≥ 89. For N = 89, LHS′ ≤ 1.378, while E1 (4π/89) ≥ E1 (π/22) ≥
E1(1/7) can be shown to exceed 1.5, which concludes. �

2.5.4 Refining the estimates into computable range

We see that the highest contribution to the error is from the constant in the O(M1/2), so we try to lower
this constant it in another way. To this end, the authors of [13] use the following average estimate on
Kloosterman sums to perform an Abel transform:
Lemma 5.17 Let d > 1, k be invertible mod d, m, a, b ≥ 1 be integers. Then∣∣∣∣∣

b∑
n=a

S(m,nk; d)
∣∣∣∣∣ ≤ 4d

π2 (log d+ 1.5).

Corollary 5.18 Let d ≥ 2 be coprime toM andm ≤ 2. Assume α > 1 satisfies α <
( 12.25

32π2 − 1
d4M

)
d2
√
M .

Then

|T +(d)| ≤ 4
π4M3/4α3/2

(1.5 + log d)e−2πd2α

d3 + 8
√
m

πM

1.5 + log d
d

E1

(
2π√
M

)
+ τ(d)

√
m

2παd7/2
√
M

(e−2πd2α),
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and

|T −(d)| ≤ 8
π3M3/4α1/2

(1.5 + log d)e−2πd2α

d
+ 8
√
m

πM

1.5 + log d
d

E−1

(
2π√
M

)
+ τ(d)

√
m

d3/2
√
M

(e−2πd2α)

Proof. – By the Weil bound and the Bessel uniform bound, for ε = +1 (the case ε = −1 is similar but
results in a denominator of d3/2

√
M):

1
d
√
M

∑
n>d2α

√
M+1

|S(m,nM−1; d)|n−1/2
∣∣∣∣J1

(
4π
√
mn

d
√
M

)∣∣∣∣E1

(
2πn√
M

)

≤ 2πτ(d)
d3/2M

∑
n>d2α

√
M+1

E1

(
2πn√
M

)

≤ τ(d)
√
m

d3/2
√
M

∫ ∞
2πd2α

E1

≤ τ(d)
√
m

2παd7/2
√
M
e−2πd2α

Moreover, we can see that if n ≤ αd2
√
M + 1, then 4π

√
mn

d
√
M
≤ 3.5. But one easily computes that J ′′1 ≤ 0

and J1 ≥ 0 on [0, 3.5], so that, as J1(0) = 0, x 7−→ J1(x)
x is nonnegative decreasing on this interval.

Therefore, for 1 ≤ n ≤ αd2
√
M + 1, the sequence J1

(
4π
√
mn

d
√
M

)
n−1/2 is positive decreasing, so that its

product with Eε
(

2πn√
M

)
is also nonnegative decreasing.

Thus, an Abel summation, along with the estimate from the previous lemma, yields (the 2/π comes
from the uniform bound on J1):∣∣∣∣∣∣ 1
d
√
M

∑
1≤n≤d2αM+1

T ε(d, n)

∣∣∣∣∣∣ ≤ 4(log d+ 1.5)
π2
√
M

(
2

πdα1/2M1/4Eε(2πd
2α) + J1

(
4π
√
m

d
√
M

)
Eε

(
2π√
M

))
,

and the conclusion follows (using E1(x) ≤ e−x/x). �

For small d, this bound, obtained through Abel summation, is better than the other one, as is has a
better decay with respect to M . However, it is unfortunately not summable as d goes to infinity, so that
we will need a trade-off between our two bounds. Let us make the cut at F ≥ 5. Then

2π
√
m

∣∣∣∣∣
F∑
d=2

T +(n, d)
∣∣∣∣∣ ≤ 0.51 8

√
me−8πα

π3M3/4α3/2 + m(ζ(7/2)2 − 1)e−8πα

α
√
M

+ 16m
M

E1

(
2π√
M

) F∑
d=2

1.5 + ln d
d

.

Now, ln2 is concave on (e,∞), so (ln d+ 1)2 − (ln d)2 ≥ 2 ln(d+1)
d+1 if d ≥ 3. x 7−→ 1/x is convex, so

1/s ≤
∫ s+1/2
s−1/2

du
u . As (ln 3)/3 + (ln 2)/2− (ln 3)2/2− 1.5 ∗ ln 1.5 + 1.5 ∗ 0.5/5 < −0.3, and ln is concave,

it follows

2π
√
m

∣∣∣∣∣
F∑
d=2

T +(n, d)
∣∣∣∣∣ ≤ 8m

M
E1

(
2π√
M

)(
(lnF )2 + 3 lnF − 0.6

)
.

To estimate the remainder of the T + series (i.e. for d > F ), we need an estimate on the remainder
of the L-series of the divisor-counting function.
Lemma 5.19 If ` ≥ 5 is an integer, then

∑
d>`

τ(d)
d3/2 ≤ 2 ln `+6.87√

`
.

Similarly, if ` ≥ 12,
∑
d>`,d odd

τ(d)
d3/2 ≤ ln `+3.487√

`
.

Proof. – For the first estimate, the sum is over k, t with kt > ` of the k−3/2t−3/2. The cases with k = 1
or t = 1 contribute 4/

√
l by sum-integral comparison on the remainder of ζ. The terms t ≥ 2, k > `/2

contribute 2(ζ(3/2) − 1)/
√
`. When 2 ≤ k ≤ `/2, the contribution is k−3/2∑

t>`/k l
−3/2 and the series
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is not greater than (k/`)3/2 + 2
√
`/k (again, by sum-integral comparison), and the convexity inequality

1
x ≤ ln x+0.5

x−0.5 enables us to treat the second term, as the first term contributes 0.5/
√
`, and we finally use

the numerical computation 2
√

2(ζ(3/2)− 1) + 4.5− 2 ln 3 < 6.87.
For the second sum, it is over the odd k, t with kt > `. The k = 1 or t = 1 contribute 2

∑
t>`,t odd t

−3/2 ≤
2`−1/2, because p−3/2 ≤ 1

2
∫ p+1
p−1 u

−3/2du. The t ≥ 3, k > `/3 contribute (ζodd(3/2)−1)
(

(`/3)−3/2 +
√

3/`
)
,

and 3/` ≤ 1/4. To deal with the 3 ≤ k ≤ `/3, t > `/k, with again a sum-integral comparison (as usual,
each term is bounded by half an integral over an interval of size 2 due to convexity, and given that the
first term is at most (k/`)3/2), we obtain 1

3
√
`

+ (4`)−1/2∑`/3
k=3,k odd k

−1, and, after another sum-integral
comparison, the sum is at most ln `/3+1

2 = ln(`+ 3)− ln 6 ≤ ln `− ln 6 + 3
` and the conclusion follows by

adding all the factors before `−1/2. �

We assume F ≥ 24 is even.
If m = 1, 2π

√
m
∣∣∑

d>F T +(d)
∣∣ ≤ 2π√

M

∑
d>F

τ(d)
d3/2 ≤ 4π√

MF
(lnF + 3.44).

If m = 2, as for the naive bound, we sum 1/
√

2 times over all d > F , 1− 1/
√

2 times over all the odd
d > F , and 1/2 times over the odd d > F/2, and it follows

2π
√
m

∣∣∣∣∣∑
d>F

T +(d)
∣∣∣∣∣ ≤ 4π√

M

(
2 lnF + 6.87√

2F
+ (1− 1/

√
2) lnF + 3.487√

F

+ 0.5 lnF − ln 2 + 3.487√
F

)
≤ 4π√

MF
(2.208 lnF + 4.811)

Using a Python script, we can ensure that for any 8000 ≤ M ≤ 50000 (we choose α = 3, and recall
that 50000 > 2202):

• For m = 1, 2π
√
m
∣∣∣∑d≥2 T +(d)

∣∣∣ ≤ 16.159√
M

+ 8e−24π0.502
π3M3/433/2 + e−24π(ζ(7/2)2−1)

3
√
M

≤ 16.16√
M

.

• For m = 2, 2π
√
m
∣∣∣∑d≥2 T +(d)

∣∣∣ ≤ 31.557√
M

+ 8
√

2e−24π0.502
π3M3/43.53/2 + e−24π2(ζ(7/2)2−1)

3
√
M

≤ 31.56√
M

.

So, for M ≥ 9000, splitting the sum for T +
m=2(1) at n ≥

√
M/π, using a lower linear bound for lw

now n and an upper uniform bound for high n and controlling each term with a sum-integral then, we
find

√
2MT +

m=2 ≥ 1.28, thus

1
4π
(
〈a1, L

′〉+M − 〈a2, L
′〉+M
)
≥
∫ 4π/M1/2

2π/M1/2

e−u

u
du+ 2π√

M

(√
2T +

m=2(1)−T +
m=1(1)

)
− 47.72√

M
− 179.2

M

≥
∫ 2

1

e−2πu/
√
M

u
du+ 0.56π√

M
− 49.73√

M

≥ ln 2− 2π√
M

+ 0.56π√
M
− 49.73√

M
≥ ln 2− 54.26√

M
> 0.

Moreover, still for M ≥ 8000,

〈a1, L
′〉+M − 〈a2, L

′〉+M
4π ≥ E1

(
4π√
M

)
− 93.4

M
− 2π

√
2 + 31.56√
M

≥ E1

(
4π√
M

)
− 41.5√

M

≥ E1

(
4π√
8000

)
− 41.5√

8000
≥ E1(π/22)− 0.464 ≥ e−1 ln 22/π − 0.464 > 0.
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From this calculation, and others similar to this one and to those of the proofs of Corollary 5.15 and
Proposition 5.16, we infer that:
Proposition 5.20 If M = N ≥ 8000 is prime, then for X = X+

0 (N), A has rank at least 2. If N ≥ 137
is prime, then for X+

ns(N), A has rank at least 2.
Now, it remains to see what happens for primes in the ranges not covered by the above.
Querying information from the LMFDB [26], we find that if N < 8000 is an odd prime and A has

rank at most 1, then N ∈ {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 79, 83, 89, 101, 131},
all of which have less than two positive newforms, so that X0(N)+ has genus at most 1. Similarly, if
N < 100 is an odd prime and (for Xns(N)+) A has rank at most 1, then N ∈ {3, 5, 7, 11} and there is at
most one positive newform of level N2, so that X+

ns(N) has genus at most 1.
For 101 ≤ N ≤ 137 and Xns(N)+, we know that 〈a1, L

′〉+,new
N2 > 0 so that A has rank at least 1.

If this rank is 1, then there exists exactly one positive newform f of level N2, with integer coefficients,
and A = Af is an elliptic curve of conductor N2 and rank 1. According to the LMFDB [26] (querying
elliptic curves of analytic rank 1 and conductor N2), it is possible only if N ∈ {101, 109, 113, 119}. In
these cases, we find that there exists only one such elliptic curve, which must thus be Af . Thus, we must
have a2(f) = 〈a2, L

′〉+,new
N2

〈a1, L′〉+,new
N2

> 0 by Proposition 5.16. But each of these times, a2(f) ≤ 0.
Thus, we have proved that

Proposition 5.21 ([13], Theorem 1.3) If N is an odd prime number such that the genus of X0(N)+

(resp. Xns(N)+) is at least 2, then in the isogeny J0(N)+ → A × B constructed in Section 2.3 (resp.
Jns(N)+ → A × B constructed in Section 2.4), A has dimension, rational rank, and Néron-Severi rank
all equal and at least 2.
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A Construction of Coleman integrals
A.1 Structure of smooth Zp-schemes
In this part, we consider a smooth proper Zp-scheme Y of relative dimension d with connected generic
fiber, where p is a prime number, and prove some of its properties. We use the notations and definitions
of section 1.2.
Proposition 1.1

• The generic fiber of Y is a dense open subscheme.

• Y is a regular integral scheme.

• Every nonempty closed subset of Y meets the closed fiber.

• The natural map Y (Zp)→ Y (Qp) is a bijection.

• The map of sets Y (Fp)→ {y ∈ YFp , κ(y) = Fp} mapping P to the unique point in the set-theoretical
image of P is a bijection.

• The map of sets Y (Qp)→ {y ∈ YQp , κ(y) = Qp} mapping P to the unique point in the set-theoretical
image of P is a bijection.

• If the generic fiber is geometrically connected, so is the special fiber.

Proof. – Let V ⊂ Y be a nonempty open subset. Let s : Y → SpecZp be the structural morphism. We
want to show that s(V ) contains the generic point. But s is a smooth morphism of locally Noetherian
schemes so is open, thus s(V ) is a nonempty open subset of SpecZp and we are done.

To show that Y is regular integral, it is enough to show that it is regular at every point and irreducible.
But its generic fiber is smooth over a field and connected, so is integral thus irreducible. Since that generic
fiber is dense, Y is irreducible. Also, Y is smooth over a field at each point of its generic fiber, thus regular;
let us check regularity for the points on the special fiber F . Let x ∈ F be a closed point and A the ring
of stalks of Y at p. Then the ring A/pA = OF,x is local regular because F is smooth over Fp. To show A
is regular, it is thus enough to show that dimA/pA < dimA, because then the difference in dimensions is
one (see [25, Theorem 2.5.15]). From the same source, we only need to show that p is a regular element
of A. As Y is flat over Zp, A is flat over Zp, thus is torsion-free (p id : Zp → Zp is injective, so it must
remain so when tensoring with A) and we are done.

The third point is an immediate consequence of the fact that Y → SpecZp is a closed map. The
fourth point is the valuative criterion of properness, see for instance [25, Theorem 3.3.25].

We prove the fifth point only, the sixth is proved in the same way. Let y ∈ YFp be such that κ(y) = Fp.
We have a morphism of local rings OY,y → κ(y), which we denote P ∈ Y (Fp). One easily checks that
y 7−→ P is the inverse to the map in the statement of the theorem.

For the last point, we use Zariski’s connectedness principle, see [25, Theorem 5.3.15, Remarks 5.3.3,
5.3.20]. We only need to prove that if G is the generic fiber of Y , then OY (G) = Qp and OY (Y ) = Zp.
As Y is flat proper over Zp, OY (Y ) is finitely generated (see [11, Théorème III.3.2.1]) and torsion-free
over Zp, thus free of finite rank. As G = Y×Qp

Zp , and Y is Noetherian, [25, Proposition 3.1.24] ensures
OY (Y )⊗Zp Qp = OG(G) = OY (G), so it is enough to prove the statement for OG(G). But G→ SpecQp
is proper and integral, thus by [25, Proposition 3.3.18], OG(G) is an integral Qp-algebra, the elements of
which are algebraic over Qp, so is an algebraic field extension of Qp. By [25, Corollary 3.2.14], as G is
smooth geometrically connected, it is geometrically integral, so K(G) ⊃ OG(G) cannot contain nontrivial
algebraic elements over Qp. �

Now, we formalize the definitions for the second part of the section, about uniformizers and their
generalizations.
Definition Let z ∈ Y (Fp). As seen in the earlier proof, p ∈ mz, which is generated by d+ 1 = dimOY,z
elements. A system of uniformizers is a tuple (t1, . . . , td) ∈∈ mdz such that (p, t1, . . . , td) generate mz.

Lemma 1.2 With the above notations, there always exists a system of uniformizers.
Proof. – We know that OYFp ,z

= OY,z/(p) is a regular Noetherian local ring of dimension d. Thus it
follows that p ∈ mz/m

2
z is nonzero. So we can complete this one-element family into a Fp-basis of mz/m2

z,
and the conclusion follows. �
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As seen in Section 1.2, there are two important properties we want to associate to uniformizers. We
recall the definitions of reduction mod p, and the various residue disks.
Definition Given P ∈ Y (Qp), we know from the above lemma that it comes from a P1 ∈ Y (Zp). The
reduction mod p of P is the morphism P1 ◦ q ∈ Y (Fp), where q : SpecFp → SpecZp is the natural closed
immersion.

Definition Given a point z ∈ Y (Fp), its residue disk is the set Y (Qp)z of all points reducing mod p
to z. The completed residue disk is the scheme SpecOY,z, and the schematic residue disk is the scheme
SpecOY,z[p−1].

This preliminary lemma ensures that the schematic and complete residue disks are scheme-theoretical
versions of the point-set residue disk.
Lemma 1.3 The schematic residue disk and the completed residue disk have the same Qp-points, which
are canonically identified to the points of Y (Qp)z.
Proof. – Let S denote the schematic residue disk and C denote the completed residue disk. We have a nat-
ural injection S(Qp)→ C(Qp). To show it is an isomorphism, it is enough to prove S = C×SpecZpSpecQp.
But it is clear from the description of S and C as affine Zp-schemes. Now, if P ∈ Y (Qp)z, it extends to
a morphism P1 : SpecZp → Y with set-theoretical image {P, z} (for the generic point and closed point
s, respectively). So P1 induces a morphism of local Zp-algebras µ : OY,z → (Zp)s = Zp. So µ induces
a morphism OY,z[p−1] → Qp thus an element of S(Qp). Conversely, we have a natural morphism of
Zp-schemes S → C → Y mapping a point in P ∈ S(Qp) to P1 ∈ C(Qp), and P2 ∈ Y (Qp), and we thus
get a morphism ν : OY,z → Qp. If ν has an image into Zp, we are done: indeed, this proves that P1
comes from a P ′1 ∈ C(Zp), with the closed point of Zp to that of C, so P2 comes from a P ′2 ∈ Y (Zp)
where the closed point of Zp is mapped to the image by C → Y of the closed point, ie z; in other words,
P2 ∈ Y (Qp)z. We then check that these operations are inverse one of the other. Now, OY,z contains Zp.
Thus, if the image of ν is not contained in Zp, ν is onto, so the kernel of ν is a maximal ideal of OY,z.
Hence, the residual field of OY,z would be Qp. But we know that field is actually Fp, a contradiction.
Thus the image of ν is contained in Zp. �

Now we can prove the structure theorem for residue disks:
Proposition 1.4 If t ∈ OY,z[p−1], P ∈ Y (Qp)z, then P induces a morphism of local rings OY,z → Zp,
localizing to µP : OY,z[p−1]→ Qp, and we write t(P ) := µP (t). In particular, if t ∈ mY,z, t(P ) ∈ pZp.

Let (t1, . . . , td) be a system of uniformizers for z. Then P ∈ Y (Qp)z 7−→ (ti(P ))1≤i≤d ∈ (pZp)d is a
bijection. Moreover, the mY,z-adic completion of OY,z is isomorphic to Zp[[t1, . . . , td]].
Proof. – Recall that every P ∈ Y (Qp)z induces (by valuative criterion of properness) a morphism of local
rings OY,z → Zp. Conversely, a morphism of local rings OY,z → Zp induces a morphism f : SpecZp → C
where C is the completed residue disk. But we have canonical morphisms SpecQp → SpecZp, C → Y
so f induces a morphism P ∈ Y (Qp) by compositions. Following the links, we see that P ∈ C(Qp) thus
P ∈ Y (Qp)z. We easily see that these constructions are each other’s inverses.

Thus, let A = OY,z, A is a local Noetherian regular Zp-algebra, has dimension d + 1 and p /∈
A×. We know that (p, t1, . . . , td) is a system of parameters of A (in the usual sense for regular rings),
and we want to show that f ∈ HomZp,local(A,Zp) 7−→ (f(ti))1≤i≤d ∈ pZp is an isomorphism. Let A′
denote the completion of A with respect to its maximal ideal. Then we have a canonical isomorphism
HomZp,local(A,Zp)→ HomZp,local(A′,Zp) given by morphism completion (and the inverse is the restriction
of the morphism from A′ to A).

To conclude, we want to prove that A′ ∼= Zp[[t1, . . . , td]]. We first note that we have a natural mor-
phism of local rings Zp[[T1, . . . , Td]] → A′ given by Ti 7−→ ti. This morphism can easily be checked to
be surjective, so A′ is a quotient of the Noetherian local integral domain Zp[[t1, . . . , td]] of dimension
d + 1 = dimA = dimA′ (see for instance [25, Lemma 4.2.26]), so the morphism must also be injective,
and we are done. �

Second, we can prove a structure theorem for differential forms on scheme-theoretic residue disks.
Proposition 1.5 Let z ∈ Y (Fp), S and C the respectively schematic and complete residue disks (both
of them affine schemes) at z, (t1, . . . , td) a system of uniformizers at z. We denote as mC and mS the
ideals of OC(C) and OS(S) that they generate.

Ω1
C/Zp(C) and Ω1

S/Qp(S) are free OC(C) and OS(S)-modules, respectively, with basis dt1, . . . , dtd.
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Let ω ∈ Ω1
C/Zp(C). There is a unique d-uple of formal power series (fi)1≤i≤d ∈ Zp[[T1, . . . , Td]]d such

that

ω =
d∑
i=1

fi(t1, . . . , td)dti,

where the equality occurs mC-adically.
Let ω ∈ Ω1

S/Qp(S). There is l ∈ Z such that plω ∈ Ω1
C/Zp(C). There is a unique d-uple of formal

power series (fi)1≤i≤d ∈ Qp[[T1, . . . , Td]]d such that mS-adically,

ω =
d∑
i=1

fi(t1, . . . , td)dti,

and each plfi has coefficients in Zp.
Proof. – We know that Ω1

S/Qp(S) = Ω1
C/Zp(C)[p−1] and Ω1

C/Zp(C) = Ω1
Y/Zp,z is free of rank d because Y

is smooth of relative dimension d over Zp at z. Now, one easily checks that Ω1
C/Zp is generated by the

dti, modulo the maximal ideal of OC(C) = OY,z. By Nakayama, the dti generate Ω1
C/Zp . But there are

d of them, the rank of Ω1
C/Zp . Thus, the dti are a basis of this module. The rest follows by localizing to

make p invertible, and using the fact that OC(C) is a local ring with mC-adic completion Zp[[t1, . . . , td]].
�

A.2 Differential forms on abelian varieties
This part aims at giving proofs as elementary as possible of the results on abelian varieties we will need
to construct Coleman integrals. The properties of abelian varieties can be consulted, for instance, in [30].
Theorem 2.1 Let G → Spec k be a smooth connected group scheme (hence integral). Then Ω1

G/k is a
trivial vector bundle. Moreover, if G is proper over k, then, if c ∈ G(k), the reduction H0(G,Ω1

G/k) →(
Ω1
G/k

)
c
⊗OG,c κ(c) = T ∗G,c is an isomorphism.

Proof. – Consider the group scheme G×k G, the left and right projections p1 and p2, the multiplication
m : G×k G→ G. The following diagrams are easily seen to be Cartesian:

G×k G G G×k G G

G Spec k G Spec k

p2

p1

m

p1

We deduce the following isomorphisms of vector bundles:

p∗1Ω1
G/k ⊕ p

∗
2Ω1

G/k
∼= Ω1

G×kG/k

p∗1Ω1
G/k ⊕m

∗Ω1
G/k
∼= Ω1

G×kG/k

where the map f∗Ω1
G/k → Ω1

G×kG/k is the canonical map for f : G → G ×k G being pi or m. It follows
that p∗2Ω1

G/k and m∗Ω1
G/k are two vector subbundles of Ω1

G×kG/k that have a common supplementary
subsheaf, so they are isomorphic. Pulling back by the map (id, 0) : G→ G×k G, we get an isomorphism
Ω1
G/k = id∗ Ω1

G/k
∼= 0∗Ω1

G/k. The right-hand side is the pull-back by the structural morphism of e∗Ω1
G/k,

which is a coherent sheaf on Spec k, so is free. Thus so is Ω1
G/k.

If G is proper over k, G is smooth so locally integral, G is connected so G is integral. By [25, Propo-
sition 3.3.18], OG(G) is an integral algebra over k made with only algebraic elements, so is an algebraic
field extension of k. But, we have a reduction morphism OG(G) → κ(e), which must thus be injective.
So OG(G) = k and the conclusion follows. �

Lemma 2.2 Let G → Spec k be a smooth group scheme with unit section e and multiplication m :
G×k G→ G. Define i1 = (id, e) : G→ G×k G, i2 = (e, id) : G→ G×k G.
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• The tangent maps to i1 and i2 are injections giving an isomorphism of k-vector spaces TG,e⊕TG,e →
TG×kG,(e,e), the coordinate projections being given by the tangent maps of the projections.

• In this decomposition, the tangent map to m at (e, e) maps the pair (x, y) ∈ TG,e ⊕ TG,e to x+ y ∈
TG,e.

Proof. – The first part is a general fact from algebraic geometry: it works with two k-schemes of finite
type with rational points. It is enough to work in the affine case, that is, A,B are finite type k-algebras
with maximal ideals mA and mB such that the quotients are k, then, in A ⊗k B, mA and mB generate
a maximal ideal µ with residual field k. If we denote iA, iB the projections A → k, B → k, pA, pB the
injections A → A ⊗k B, B ⊗k B (the letters are consistent with the scheme-theoretical interpretation
instead of the ring-theoretical ones), then we want to show (before taking duals) that i· induce a map
µ/µ2 → m·/m

2
· , of which a section is p· : m·/m2

· → µ/µ2, such that µ/µ2 becomes by (iA, iB) the product
of both m·/m

2
· . Note that if x ∈ mA, y ∈ mB , x⊗ 1 + 1⊗ y ∈ µ has image (x, y); if z ∈ µ/µ2 has image 0,

we can write it, up to µ2 elements, as some x⊗ 1 + 1⊗ y. So its image is (x, y), thus x must be in m2
A, y

must be in m2
B and z = 0 modµ2.

For the second part, as the tangent map must be k-linear, there are endomorphisms u, v of TG,e such
that the tangent map of m is written, in the decomposition, x⊕y 7−→ u(x)+v(y). But, since m◦ i1 = id,
it follows that u is the tangent map at e of idG, so u = id. Similarly, v = id and we are done. �

Theorem 2.3 Let G → Spec k a smooth proper geometrically connected group scheme. Let p1, p2,m :
G×k G→ G be the left and right projections, and the multiplication, respectively. Then, if ω is a global
1-form on G, the following equality holds in H0(G×k G,Ω1

G×kG/k): m∗ω = p∗1ω + p∗2ω.
Proof. – G → Spec k is smooth proper geometrically connected, so G ×k G → Spec k is smooth proper
connected. So the vector bundle of its 1-forms is trivial, and the equality above holds if it holds at the
unit point (e, e). But at the unit point, this version is exactly the dual of the lemma above. �

Corollary 2.4 If A→ Spec k is an abelian variety, the global 1-forms on A are translation-invariant.
Proof. – Let ω be a global 1-form on A, let c1 ∈ A(k), let c denote the morphism A→ Spec k c1→ A. We
know that in A×kA, m∗ω = p∗1ω+p∗2ω. So, in the vector bundle (id, c)∗Ω1

A×A/k, we have (id, c)∗(m∗ω) =
(id, c)∗(p∗1ω)+(id, c)∗(p∗2ω). Applying the canonical map (id, c)∗Ω1

A×A/k → Ω1
A/k, it follows t∗cω = ω+c∗ω,

where c∗ω is given by the canonical map for the constant morphism c : A→ A:

c∗Ω1
A/k

can→ Ω1
A/k

α→ Ω1
c → 0.

Now, as c is the composition of the structural morphism f and a closed immersion c1 : Spec k → A, we
also have a canonical exact sequence f∗Ω1c1 → Ω1

c → Ω1
A/k → 0. The first term is zero as c1 is a closed

immersion, so Ω1
c is isomorphic to Ω1

A/k so is a free vector bundle of same rank. Therefore, the map α is
a surjection between isomorphic free OA-modules, so is an isomorphism. Thus the map can is zero and
the result follows. �

Theorem 2.5 Let A→ Spec k be an abelian variety in characteristics not 2. Then global 1-forms on A
are closed.
Proof. – Consider the map [2] : A→ A. It acts on the tangent space of the unit element as multiplication
by 2. As Ω1

A/k is free, so is Ω2
A/k; the map [2]∗ acts on the vector spaces of these sheaves at the unit point

as 2 and 4 respectively, because of the construction of Ω2. Therefore, the same holds for global sections
of these sheaves. So if ω is a global 1-form, 4dω = [2]∗dω = d([2]∗ω) = d(2ω) = 2dω so dω = 0. �

A.3 Proof of Coleman’s theorem
In this section, we provide a proof of the Coleman theorem, admitting only the following fact: if a smooth
projective geometrically connected curve over Qp has a smooth proper model over Zp (we say it has good
reduction mod p), then its Jacobian (over Qp) has good reduction mod p. We actually construct integrals
with the desired properties over all abelian varieties over Qp with good reduction at p. The Coleman
theorem (at least, the version we are using here) follows from the properties of the Jacobian and in
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particular the isomorphism j∗ : H0(J,Ω1)→ H0(X,Ω1) for a smooth projective geometrically connected
curve X over any field, its Jacobian J and an Abel-Jacobi map j : X → J .

We consider V an abelian variety over Qp and A its Néron model over Zp, smooth of relative dimension
d.
Definition V has good reduction mod p if V has a smooth proper model over Zp.

Lemma 3.1 V has good reduction if and only if A is proper over Zp.
Proof. – The “if” part is easy. We prove the “only if”: let Z be a smooth proper model of V over
Zp. By the universal property of Neron models, the identity on the generic fiber induces a Zp-morphism
f : Z → A. Now, f is the composition of the closed immersion Z×AA→ Z×Zp and the proper morphism
Z ×Zp A→ A, so f is closed. Thus the complement C of the set-theoretical image of f is an open subset
of A completely contained in its closed fiber: as A→ SpecZp is smooth between Noetherian schemes, the
image of C in SpecZp is open and contained in the closed point. So it must be empty and f is surjective.
Now, A→ SpecZp is of finite type, separated, so consider a morphism B → SpecZp. Then we know that
the closed map cB : Z →Zp B → B decomposes into fB : Z ×Zp B → A ×Zp B and pB : A ×Zp B → B.
As f is onto, fB is onto as well. So if T ⊂ A×ZpB is a closed subset, then pB(S) = cB(f−1

B (S)) is closed.�

In the rest of the subsection, we assume V has good reduction mod p.

Lemma 3.2 The reduction mod p map V (Qp)→ A(Fp) is a group homomorphism.
Proof. – The applications p : A(Zp) → A(Fp) and g : A(Zp) → A(Qp) are group homomorphisms, the
latter is a bijection thus a group isomorphism, and the reduction mod p is p ◦ g−1. �

Proposition 3.3 Let z ∈ A(Fp), consider a system of uniformizers t1, . . . , td at z. Let ω be a global differ-
ential on V . The pull-back u of ω to the schematic residue disk S of z can be written as

∑d
i=1 Fi(t1, . . . , td)dti,

where the Fi are formal power series in d variables and coefficients in Qp with bounded absolute value,
and the equality holds (ti)1≤i≤d-adically in OS(S). Moreover, there exists (up to an additive constant)
a unique formal power series F in d variables with coefficients in Qp such that for every 1 ≤ i ≤ d,
Fi = ∂F

∂Ti
. Finally, a coefficient of degree d in F has p-adic absolute value at most polynomial in d.

Proof. – The first part stems from the facts of section A.1. For the second part, we use the fact from
A.2 that ω is closed, so du = 0. As Ω1

S(S) has basis the dti, it follows that (ti)-adically in OS(S), the
series ∂Fi

∂Tj
(t1, . . . , td) converge, their sums are the si,j and satisfy si,j = sj,i. Multiplying by a large power

of p, we may assume that all the coefficients of the power series are in Zp. Thus the identity holds in
OA,z and in particular in its completion Zp[[t1, . . . , td]]. Thus ∂Fi

∂Tj
= ∂Fj

∂Ti
. The rest is simply algebraic

manipulation of formal power series, and the identity |n|−1
p ≤ |n|arch for integers n. �

Definition Let us keep the same notations. Let P,Q ∈ V (Qp)z. We define the tiny integral from P to

Q of ω as the quantity
Q∫
P

ω = F (t1(Q), . . . , td(Q))− F (t1(P ), . . . , td(P )) ∈ Qp.

Theorem 3.4
Q∫
P

ω is well-defined does not depend on a choice of uniformizers.

Proof. – The definition (dependent on a choice of uniformizers) of the integral works because F ((ti(Q))1≤i≤d)
is the sum of a series in Qp such that a term of degree d has p-adic norm at most p−d (contribution of
ti(Q)) times a polynomial in d (the coefficient of F ), so the series is normally convergent.

Changing the system of uniformizers in full generality corresponds to applying an invertible (because
it must be invertible in the local ring, as we are changing Fp-bases in mA,z/mA, z

2) (n+1)×(n+1) square
matrix with first unit first row to the (vertical) vector (p, t1, . . . , td). Such a matrix can be decomposed
in a product of elementary operations, corresponding to elementary uniformizer changes: permutations,
ti replaced by ti − utj or ti − up, u ∈ OA,z or ti replaced by u′ti, u′ ∈ O×A,z.

Permutations are the easy case. All three other are treated the same way: we write explicitly how the
basis of differential forms changes, how the Fi transform, and thus how F must transform. We treat the
case of ti becoming ti − utj , which seems the most difficult case. We use superscript o for the original
power series, and n for the new ones. The new system of uniformizers is denoted s1, . . . , sd to avoid
confusion, even though only si differs from ti: si = ti − utj .
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We can write du =
∑d
k=1 ukdtk, where uk = ∂U

∂Tk
(t1, . . . , td) and u = U(t1, . . . , td) in mA,z-adic

topology, so that
dsi = (1− tjui) dti − (u+ ujtj) dtj −

∑
k/∈{i,j}

tjukdtk.

Thus, if k 6= i, j, Fnk (s1, . . . , sd) = F ok (t1, . . . , td) + tjuk
1−tjuiF

o
i (t1, . . . , td). Moreover, Fnj (s1, . . . , sd) =

F oj (t1, . . . , td) + tjuj+u
1−tjui F

o
i (t1, . . . , td) and Fni (s1, . . . , sd) = 1

1−tjuiF
o
i (t1, . . . , td). It follows that formally,

F kn (T1, . . . , Ti − TjU, . . . , Td) = F ok (T1, . . . , Td) + TjUk
1− TjUi

F oi (T1, . . . , Td), k 6= i, j

Fnj (T1, . . . , Ti − TjU, . . . , Td) = F oj (T1, . . . , Td) + TjUj + V

1− TjUi
F oi (T1, . . . , Td))

Fni (T1, . . . , Ti − TjU, . . . , Td) = 1
1− TjUi

F oi (T1, . . . , Td).

Now, let Fm = Fn(T1, . . . , Ti − TjU, . . . , Td). One easily checks that ∂Fm

∂Tk
= F ok , so that Fm is F o up

to an additive constant, and the conclusion follows. �

Theorem 3.5 With the same notations, take R ∈ V (Qp). Then
Q∫
P

ω =
Q+R∫
P+R

ω, both members being tiny

integrals.
Proof. – By the universal property of Néron models the translation by R in V induces a Zp-morphism
tR from A to itself. Using the explicit inverse and the uniqueness in the universal property, we get that
R→ tR ∈ AutZp(A) is a group homomorphism, and each tR preserves residue disks.

Let z′ ∈ A(Fp) be the point to which P + R and Q + R reduce and let S′ its schematic residue
disk. We have an isomorphism (tR)# : OA,z′ → OA,z. Let s1, . . . , sd be uniformizers at z′, write
ω|S′ =

∑d
i=1 Fi(s1, . . . , sd)dsi. Let F be as in the integral construction, a formal power series the formal

gradient of which is (Fi). Let S be the schematic residue disk at z; let the ui = (tR)#(si) be our system
of uniformizers at z. Then si(P +R) = ui(P ), and similarly for Q. By A.2,

ω|S = (t∗Rω)|S = ((tR)#)∗ω|S′ =
d∑
i=1

Fi(u1, . . . , ud)dui,

thus
Q∫
P

ω = F (u·(Q))− F (u·(P )) = F (s·(Q+R))− F (s·(P +R)) =
Q+R∫
P+R

ω.

�

Corollary 3.6 In particular, if z = 0A(Fp), O = 0A(Qp), then P ∈ V (Qp)z 7−→
P∫
O

ω is a group homomor-

phism.
Proof. –

P+Q∫
O

ω =
P∫
O

ω +
P+Q∫
P

ω =
P∫
O

ω +
Q∫
O

ω,

where the first equality stems directly from the definition and the second one follows from the theorem.
�

Definition With the same notations, A(Fp) is finite nonempty; let c denote its cardinality. For any two
points P,Q ∈ V (Qp), cP and cQ are in the residue disk of 0A(Fp), and we define the integral of ω from P

to Q to be
Q∫
P

ω = 1
c

cQ∫
cP

ω, where the right-hand side is a tiny integral.

Now, we are equipped to prove Coleman’s theorem.
Proof. – Since we admitted the curve-specific part, it remains to check that the pairing is bi-additive and
can be computed with power series on residue disks.
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We first notice that from the properties of tiny integrals, the integral we defined matches the tiny in-
tegral on the residue disk of 0A(Fp). We also notice that this definition of integral is translation-invariant.
It follows that the two bounds of the integral are in the same residue disk, the integral is the same as the
tiny integral. After these, the bi-additivity is obvious. �

B Non-abelian continuous group cohomology
In this section, we recall the bases of non-abelian group cohomology.
Definition Let G,U be two topological groups, and consider an continuous action G × U → U . A
continuous map f : G → U is a cocycle if for each g, h ∈ G, f(gh) = f(g)(g · f(h)). The set of such
cocycles is denoted as Z1(G,U).

In the rest of the section, we keep the notations of this definition.
Lemma 0.1 There is a natural action of R to Z1(G,U), given by, for z ∈ R, f ∈ Z1(G,R),

(z · f) : h ∈ G 7−→ zf(g)(g · z−1).

Proof. – First, we need to check that z · f is a cocycle. Indeed, for g, h ∈ G,

(z · f)(gh) = zf(gh)((gh) · z−1) = zf(g)(g · f(h))(g · (h · z−1)) = zf(g)(g · z−1)(g · (zf(h)(h · z−1)))
= (z · f)(g)(g · (z · f)(h)).

Clearly, the neutral element of G leaves every cocycle unchanged. Now, let z, y ∈ U , f ∈ Z1(G,U),
g ∈ G. Then

((zy) · f)(g) = zyf(g)(g · (y−1z−1)) = z(yf(g)(g · y−1))(g · z−1) = [z · (y · f)](g).

�

Definition The quotient set U\Z1(G,U) is denoted as H1(G,U). We always consider it as an object of
the category PtSet of pointed sets, because of the trivial cocycle given by the constant function equal
to the neutral element.

Remark If U is a commutative group, then Z1(G,U) is naturally a subgroup of the abelian group of
functions G → U . Moreover, H1(G,U) is a quotient of Z1(G,U) by the subgroup generated by the
f−1(z · f), f ∈ Z1(G,U), z ∈ U . In the former sentence, f−1 is the function g 7−→ f(g)−1 and the opera-
tion between f−1 and z ·f is the group multiplication in Z1(G,U), that is, the pointwise multiplication.

Searching for natural examples of cocycles yields the following construction:
Definition A principal U -bundle over G is a topological space P endowed with continuous actions from
G and U , such that

• G has a left action and U has a right action.

• U acts freely and transitively and if p ∈ P , the continuous bijection u ∈ U 7−→ p · u ∈ P is
a homeomorphism. (in other words, when forgetting about the actions of G, the choice of any
base-point identifies P to U)

• The actions are compatible, that is, for any p ∈ P, z ∈ U, g ∈ G, g ·G,P (p ·P,U z) = (g ·G,P p) ·P,U
(g ·G,U z).

We adopt the following notations in the next steps for the sake of simplicity: · is the action of G on R,
g(p) denotes the action of G on P and p.u is the action of U on P .

Proposition 0.2 Let P be a principal U -bundle over G. For any p ∈ P , the function fp : g ∈ G 7−→
fp(g) ∈ U such that p.fp(g) = g(p) is a cocycle. Furthermore, if z ∈ U , fp.z = (z−1 · fp).
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Proof. – Let g, h ∈ G, then

p.(fp(g)(g · fp(h))) = p.fp(g).(g · fp(h)) = g(p).(g · fp(h)) = g(p.fp(h)) = g(h(p)) = ((gh)(p),

thus fp is a cocycle. If z ∈ U , g ∈ G,

(p.z).(z−1 · fp)(g) = (p.z).(z−1fp(g)(g · z)) = (p.fp(g)).(g · z) = g(p).(g · z) = g(p.z),

which ends the proof. �

Definition Let P be a principal U -bundle over G. The element of H1(G,U) defined by fp (p ∈ P ) does
not depend of p, and is denoted as [fP ].

Actually, this construction can be seen as an alternative definition of H1(G,U).
Proposition 0.3 Let α ∈ H1(G,U). There exists a principal U -bundle P over G with α = [fP ].

If P,Q are two principal U -bundles over G such that [fP ] = [fQ], then there is a bijection P → Q
that is equivariant for the actions of both G and U .

In other words, through P → [fP ], H1(G,U) is the space of isomorphism classes of principal U -bundles
over G.
Proof. – Let f ∈ Z1(G,U) be a cocycle represented by α. Let P be the set U , where U acts by right
multiplication, and G acts by g(p) = f(g)(g ·p), p ∈ P . Note that f(eG) = f(eGeG) = f(eG)(eG ·f(eG)) =
f(eG)2 so f(eG) = eU . Thus eG(p) = p for all p ∈ P . Futhermore, for g, h ∈ G, p ∈ P , g(h(p)) =
f(g)(g · h(p)) = f(g)(g · h(p)) = f(g)(g · (f(h)(h · p)) = f(g)(g · f(h))(gh · p) = f(gh)(gh · p) = (gh)(p), so
we have defined a left action of G on P . Finally, g(p.z) = f(g)(g · (pz)) = f(g)(g ·p)(g ·z) = g(p)(g ·z), for
g ∈ G, p ∈ P, z ∈ U , so the actions of G and U on P are compatible. Therefore P is a principal U -bundle
over G.

Let p ∈ P , q ∈ Q, we know that for some z ∈ R, fq = z ·fp. Thus, with p′ = p.z−1, fp′ = fq. We define
an application L : P → Q such that for any r ∈ U , L(p′.r) = q.r. Clearly L is bijective and equivariant
for the action of U ; as fp′ = fq, we also have, for g ∈ G, L(g(p′)) = g(q). Now, let s ∈ P , write s = p′.z,
z ∈ U . For g ∈ G, L(g(s)) = L(g(p′).(g · z)) = L(g(p′)).(g · z) = g(q).(g · z) = g(q.z) = g(L(s)), so L is
the claimed bijection. �

This cohomology space satisfies some functoriality properties with respect to a suitable notion of mor-
phism. We consider the category C of pairs (G,U) of topological groups endowed with a continuous left
action of G over U . A morphism of C from (G,U) to (H,V ) is a pair (p, q) of continuous maps, p : H → G
and q : U → V satisfying, for all y ∈ U , h ∈ H, q(p(h)y) = hq(y). Two pairs (p, q) : (G,U)→ (H,V ) and
(p′, q′) : (H,V )→ (K,W ) of morphisms compose to (p′ ◦ p, q′ ◦ q) : (G,U)→ (K,W ) (which is, indeed,a
morphism).

Proposition 0.4 Let (G,U), (H,V ) be two objects of C and let (p, q) : (G,U) → (H,V ). Then f ∈
Z1(G,U) 7−→ q ◦ f ◦ p ∈ Z1(H,V ) is well-defined and descends to H1 on both sides. Thus we have a
functor F : C → PtSet mapping a pair (G,U) to its cohomology space H1(G,U).
Proof. – The statement relies on similar computations. �

Remark H1(G, 1) being trivial, if we have a trivial morphism (id, f) : (G,A)→ (G,B), H1(id, f) is the
trivial map.

To justify this functorial (if low-degree only) cohomological notation theory, we construct some exact
sequences:
Theorem 0.5 Let G be a topological group, and consider (G,A), (G,B), (G,C) three objects of C , with
morphisms (id, u) : (G,A) → (G,B) and (id, v) : (G,B) → (G,C). Assume that 1 → A

u→ B
v→ C → 1

is an exact sequence of groups, with u a homeomorphism onto its image, and v be a topological quotient
map. Let δ : CG → H1(G,A) be given the reduction of, for a given c = v(b) ∈ CG, g 7−→ u−1(b−1(g · b)).
Then δ is well-defined (i.e. doesn’t depend on the choice of b) and the following sequence is exact (the
first three arrows as morphisms of groups, the three last ones as morphisms of pointed sets):

1→ AG → BG → CG
δ→ H1(G,A) H

1(id,u)−→ H1(G,B) H
1(id,v)−→ H1(G,C).
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Proof. – First, we check the good definition of δ. For a given c = v(b) ∈ CG, b ∈ B, if g ∈ G,
v(b−1(g · b)) = v(b)−1(g · v(b)) = c−1(g · c) = eC thus b−1(g · b) ∈ u(A). If now we consider g, h ∈ G,
b−1(gh · b) = b−1(g · b)(g · b−1)(g · (h · b)) = b−1(g · b)(g · (b−1(h · b))), thus cb : g 7−→ u−1(b−1(g · b))
is a cocycle. Now, we need to study what happens when we change our b, that is, b is replaced with
some b′ = u(a)b for some a, a′ ∈ A. Then, b′−1(g · b′) = u(a)−1b−1(g · b)(g · u(a)) = u(a−1cb(g)g · a) and
therefore cb′ = (a−1 · cb), which finally shows δ to be well-defined.

For the exactness, only the exactness from CG on needs to be checked. For c ∈ CG, by the above
computation, δ(c) is trivial iff we can write c = v(b) with b ∈ B, cb trivial, iff we can write c = v(b) with
b ∈ B, b−1(g · b) = eB for all g ∈ G, iff we can write c ∈ v(BG).

For the exactness inH1(G,A), note that a cocycle f ∈ Z1(G,A) has trivial image inH1(G,B) iff there
is some b ∈ B such that for all g ∈ G, u(f(g)) = b−1(g · b). But for such a b, b−1(g · b) ∈ u(A) = ker v,
thus v(b) ∈ CG. Therefore, f has trivial image in H1(G,B) iff f = cb, for some b ∈ v−1(CG), so iff
[f ] ∈ δ(CG).

For the exactness inH1(G,B), we already know that the composition of the two arrows is trivial. Now,
let f ∈ Z1(G,B), f has a trivial image in H1(G,C) iff for some c ∈ C, for all g ∈ G, v(f(g)) = c−1(g · c).
As v : B → C is onto, f is trivial in H1(G,C) iff for some b ∈ B, for all g ∈ G, v(f(g)) = v(b−1(g · b)),
that is, v ◦ (b · f) is trivial. Now, there is a b ∈ B such that v ◦ (b · f) is trivial iff b · f has values in A,
ie iff b · f is u(A)-valued, ie iff b · f = u ◦ f1 for some f1 ∈ Z1(G,A). Therefore f has a trivial image in
H1(G,C) iff [f ] ∈ H1(G,B) is in the image of H1(G,A). �

The construction of this exact sequence gives us an even better statement:
Theorem 0.6 Let G,H be topological groups, consider (G,A), (G,B), (G,C), (H,A′), (H,B′), (H,C ′)
six objects of C . Assume that we have a map of exact sequences of groups with the topological condi-
tions detailed in the previous theorem: Assume furthermore that we have a map p : H → G such that

1 A B C 1

1 A′ B′ C ′ 1

a

u v

b c

u′ v′

(p, a), (p, b), (p, c), (idG, u), (idG, v), (idH , u′), (idH , v′) are all morphisms of C . Then we have a mor-
phism between the exact constructed by the previous theorem:

1 AG B C H1(G,A) H1(G,B) H1(G,C)

1 (A′)H (B′)H (C ′)H H1(H,A′) H1(H,B′) H1(H,C ′)

a b c H1(p,a) H1(p,b) H1(p,c)

In the rest of this annex, we define the construction of the Kummer A(Q) ⊗ Qp → H1(GT , V (A))
which is used in Section 2.1 to define Selmer schemes, where A is an abelian variety over Q, GT is a
Galois group unramified outside p and the primes of bad reduction, and V (A) = Tp(A) ⊗Zp Qp, where
Tp(A) is the Tate module of A (endowed with a Galois action).
Lemma 0.7 Let (G,U) be objects of C and R be a topological ring. Assume that U is a topological
R-module and that G acts R-linearly. Then Z1(G,U) is a submodule of the R-module of continuous
functions G→ U , and H1(G,U) is the quotient of Z1(G,U) by the submodule generated by the (z ·f)−f ,
for z ∈ U, f ∈ Z1(G,U), where U is noted additively.
Proof. – It is clear given the definitions and constructions. �

Lemma 0.8 Let us keep the above notations, with R = Zp and U free finitely generated (so as to
keep topological concerns away). Then there are natural compatible isomorphisms Z1(G,U) ⊗Zp Qp →
Z1(G,U ⊗Zp Qp) and H1(G,U)⊗Zp Qp → H1(G,U ⊗Zp Qp).
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Lemma 0.9 Let G be a profinite group, and ((G,Ui))i≥1 be a projective system in C with each Ui finite,
and the morphisms being (id, fj,i) : (G,Uj) → (G,Ui) for j > i. Let U be the projective limit of the Ui
(as a topological space) and the fj,i. Then the following statements are true:

• (G,U) is an object of C , and for each i we have a morphism of C (id, pi) : (G,U) → (G,Ui).
In other words, there exists a continuous action of G on U such that the projections U → Ui are
G-equivariant.

• We have a projective system H1(G,Ui), i ≥ 1, with maps H1(id, fj,i) for j > i, and we denote as P
the set-theoretical projective limit.

• The (id, pi) : (G,U)→ (G,Ui) induce maps H1(G,U)→ H1(G,Ui) making H1(G,U) the projective
limit of the system above.

• If the Ui are topological modules over a ring R and fj,i are R-linear, all the constructions, maps,
and limits are defined as R-modules.

Proof. – A formal check using the definition shows that Z1(G,U) is the projective limit of the Z1(G,Ui)
under the natural morphisms fj,i, j > i, and the generators of the sub-modules match. �

The following lemma is well-known, being closely related to the Ogg-Shafarevich criterion (see [36]),
but we include nonetheless a brief proof for the sake of completeness.
Lemma 0.10 Let A be an abelian variety over Q with good reduction at a prime number p. Let ` 6= p
ne a different prime, and x ∈ A be a closed point with residue field F unramified at `. Then every closed
point y ∈ A with p · y = x has residue field unramified at `. Moreover, such y always exist.
Proof. – By [30, Proposition 8.1, Theorem 8.2], multiplication by p is a finite étale surjective map A→ A,
moreover by e.g. [25, Proposition 2.5.10], the pre-image of a closed point is a closed point, which settles
the second part.

For the first statement, let V be the Néron model over Z(`) of A. By [30, Proposition 20.7], the
multiplication by p from V to itself is finite étale (between proper Z(`)-schemes, hence surjective). Let v
be any place of F unramified above `: by the valuative criterion of properness, x extends to a morphism
x : SpecOv → V , and let xr ∈ V be the image of the closed point. Let y ∈ A be a closed point with
p · y = x, with residual field L ⊃ F . Let w be any place above L, similarly y extends to y : SpecOw → V ,
and denote by yr the image of the closed point.

It follows that in V , p · yr = xr (indeed, p ◦ y and x ◦ (SpecOw → SpecOv) are two morphisms
SpecOw → V extending x ◦ (SpecL → SpecF ) : SpecL → A). Thus, as the multiplication by p is
unramified in V , OV,xr → OV,yr is an unramified morphism of local rings.

But the following diagram commutes, with all morphisms being maps of local rings, the horizontal
arrows being onto:

OV,xr Ov

OV,yr Ow

x

p inc

y

It follows that Ov → Ow is unramified, so that Z(`) → Ow is unramified and thus L/Q is unramified
at `. �

Proposition 0.11 Let A be an abelian variety over Q with good reduction at a prime number p, and
let G be a quotient of the absolute Galois group of Q that corresponds to the maximal extension K/Q
unramified outside p and the primes of bad reduction of A. For each n ≥ 1, we have an exact sequence

1→ A[pn](Q)→ A(Q) p
n

→ A(Q) δn→ H1(G,A[pn](K))

that yields the following commutative diagram of Zp-modules, for each n ≥ 1:
Proof. – Consider the following morphism of exact sequences (Lemma 0.10 shows that pA(K) = A(K))
of discrete groups with continuous actions of G: �
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A(Q)/pn+1A(Q) H1(G,A[pn+1](K))

A(Q)/pnA(Q) H1(G,A[pn](K))

δn+1

p

δn

1 A[pn+1](K) A(K) A(K) 1

1 A[pn](K) A(K) A(K) 1

p

pn+1

p id

pn

Corollary 0.12 If A is an abelian variety over Q with good reduction at a prime number p, with the
notations above, then these maps above combine into a natural Zp-linear homomorphism from the p-adic
completion of A(Q) into H1(G,Tp(A)). It induces a natural Qp-linear map A(Q)⊗Qp → H1(G,Tp(A)⊗Zp
Qp).
Proof. – The only nontrivial part of the proof is the fact that the projective limit of the A[pn](K) is the
Tate module of A, ie that any pn-torsion point has a residue field unramified at any prime number ` 6= p
of good reduction. But this is exactly Lemma 0.10. �
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