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These are somewhat expanded notes for my talk in the Euler System online seminar organized
by Arshay Sheth. I take this opportunity to thank him again, as well as the other speakers. The
references from the seminar bibliography are good, but I offer additional references for some of
the needed intermediate results, which can be rather technical.

1 Setup

Let E be a modular elliptic curve over Q with conductor N , which does not have CM. It has a
modular parametrization φ : X0(N) → E, chosen so that it maps ∞X0(N) to 0E .
Let K/Q be an imaginary quadratic number field satisfying the Heegner assumption: every prime
q | N splits in K. Let us fix once and for all a complex conjugation τ acting on Q.
We let, for every integer n ≥ 1, Hn be the ring class field of Z+ nOK .
This lets us define, for every n ≥ 1 coprime to N , Heegner points xn ∈ X0(N)(Hn), and
yn = φ(xn) ∈ E(Hn). “The” Heegner point is yK = NH1/Ky1 ∈ E(K).

The theorem that we want to prove is:
Theorem 1.1 Let p be a prime satisfying the following conditions:

• p > 2,
• yK /∈ pE(K),
• for every q | N , p does not divide the number of connected components of the base change

to Fq of the Néron model of E,
• ρE : GQ → Aut(E[p]) is onto.

Then Selp(E/K) ∼= Fpδ(yK).

Remarks:
1. As long as yK is not a torsion point, the conditions are verified for all but finitely many

p, by the Mordell-Weil theorem [10, Theorem VIII.6.7] and more importantly Serre’s open
image theorem [9].

2. Even for those primes p where not all the conditions hold, we can show in many cases,
typically by working modulo pn for larger n, that Selp∞(E/K) has corank one and bound
its torsion part, see among others [5] or recent works of Castella such as [2, 1].

3. The third condition (which is not mentioned in Castella’s lecture notes, and is only useful
for Proposition 3.2) might in fact not be needed, but it seems that removing it requires
some nontrivial information on the reduction at bad places of Heegner points. Such facts
are discussed in [4, §III.3], but I am currently unable to determine whether this is enough
to carry out the argument.

4. The first and last conditions imply that for any abelian extension L/K, E(L) contains no
p-torsion. Indeed, up to enlarging it, we can assume that L is Galois over Q. Thus we have
a surjection Gal(L/Q) → GL2(Fp) (coming from ρE).

A collection of certain primes will be useful in the proof: the collection L of Kolyvagin
primes, that is, primes ℓ ∤ 6pN∆K that are inert in K, and such that p divides both aℓ(E) and
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ℓ+1. In other words, L is the set of primes ℓ ∤ 6pN∆ such that Frobℓ ∈ Gal(K(E[p])/Q) is the
class of the complex conjugation τ .

The set of (possibly empty) square-free products of Kolyvagin primes will be denoted by N .

2 Further remarks on Galois cohomology

Given a local or global field ∗ of characteristic zero, we have a Kummer short exact sequence

0 → E(∗)/pE(∗) δ→ H1(∗, E[p]) → H1(∗, E(∗))[p] → 0,

coming from the exact sequence of group schemes 0 → E[p] → E
p→ E → 0.

Definition: Let v be a finite place of K and take ∗ = Kv. We denote by H1
f (Kv, E[p]) the

image of δ and we call its elements the geometric classes.
Recall that Selp(E/K) is the subspace of H1(K,E[p]) consisting of those classes whose lo-

calization at every place v of K is geometric (“classes that are geometric at every place”).
We have a perfect symmetric pairing coming from local Tate duality:

(−,−)v : H1(Kv, E[p])×H1(Kv, E[p])
∪→ H2(Kv, E[p]⊗ E[p])

Weil−→ H2(Kv, µp)
inv∼= Fp.

Recall that global duality implies that for every c, c′ ∈ H1(K,E[p]), the following formula is
well defined and true: ∑

v

(
locv(c), locv(c

′)
)
v
= 0.

Proposition 2.1 If v does not divise Np, then H1
f (Kv, E[p]) is exactly the kernel of the restric-

tion H1(Kv, E[p]) → H1(Knr
v , E[p]), where Knr

v is the maximal unramified extension of Kv (the
set of “unramified classes”).
Proof. – Note that E/Kv has good reduction. Let c ∈ H1

f (Kv, E[p]). So c is represented by the
cocycle z : σ 7−→ σ(P ) − P , for some point P ∈ E(Kv) such that pP ∈ E(Kv). When σ lies in
the inertia group of Kv, σ(P ) and P have the same image in E(k), where k is the residue field
of Kv. In particular, z(σ) is a p-torsion point with trivial reduction in E(k), so is zero by [10,
Proposition VII.3.1]. Thus z vanishes when restricted to the inertia group.

We showed that the geometric classes were unramified. Now note that the set of unramified
classes has the same cardinality as |E[p](Kv)| (see [11, Lemma 1]). On the other hand, the set
of geometric classes has cardinality |E(Kv)/pE(Kv)| = |E(Kv)[p]| by [7, Lemma I.3.3]. □

Proposition 2.2 H1
f (Kv, E[p]) is a maximal isotropic subspace under (−,−)v.

Proof. – By [7, Corollary I.3.4] and the following discussion, there is a pairing

H0(Kv, E)×H1(Kv, E) → Q/Z

compatible with (−,−)v (since elliptic curves are self-dual). It is then straightforward from
the definitions that H1

f (Kv, E[p]) is orthogonal to itself. All we need to show is thus that
|H1

f (Kv, E[p])|2 = |H1(Kv, E[p])|. By local Tate duality (eg [8, Proposition 7.2.10]), the local
Euler-Poincaré characteristic formula ([8, Theorem 7.3.1]) and [7, Lemma I.3.3],

|H1
f (Kv, E[p])|2 = |E(Kv)/pE(Kv)|2 = |E[p](Kv)|2|OKv/pOKv |2

= |H0(Kv, E[p])||H2(Kv, E[p])||OKv/(p
2)| = |H1(Kv, E[p])|.

□

Now, suppose, until the end of the section, that v is the place associated to a Kolyvagin prime
ℓ – we will abusively write v = ℓ. Then we naturally have Gal(Kℓ/Qℓ) ∼= {1, τ}. In particular, τ

2



acts as an involution on H1(Kℓ, E[p]), H1
f (Kℓ, E[p]), and H1

s (Kℓ, E[p]) = H1(Kℓ, E[p])/H1
f (Kℓ, E[p]).

We will denote its eigenspaces (with eigenvalues ±1) with the superscripts ±.
Proposition 2.3 H1(Kv, E[p])+ and H1(Kv, E[p])− are orthogonal.
Proof. – τ acts equivariantly on (−,−)ℓ, and trivially on H2(Kℓ, µp). So if x± ∈ H1(Kv, E[p])±,
then (x+, x−)ℓ ∈ H2(Kv, E[p])− = {0}. □

Proposition 2.4 dimH1(Kℓ, E[p]) = 4. For any sign ϵ, H1
f (Kℓ, E[p])ϵ, H1

s (Kℓ, E[p])ϵ are lines,
and (−,−)ℓ is a perfect duality between them.
Proof. – For the first part, we use the local Euler-Poincaré characteristic formula and local Tate
duality as above:

dimH1(Kℓ, E[p]) = dimH0(Kℓ, E[p]) + dimH2(Kℓ, E[p]) = 2 dimH0(Kℓ, E[p]) = 2 · 2 = 4,

since E[p] is unramified at ℓ and the Frobenius at ℓ acts by an involution.
For the second part, we first note that by Proposition 2.2, dimH1

f (Kℓ, E[p]) = dimH1
s (Kℓ, E[p] = 2.

Moroever, by the inflation-restriction exact sequence [11, Proposition 2] (since Kℓ/Qℓ has degree
two, coprime to p), and [11, Lemma 1]

dimH1
f (Kℓ, E[p])+ = dimH1(Knr

ℓ /Kℓ, E[p])Gal(Kℓ/Qℓ) = dimH1(Qnr
ℓ /Qℓ, E[p]) = dimE[p](Qℓ) = 1.

Hence dimH1
f (Kℓ, E[p])− = 1. Now, for any sign ϵ, H1

f (Kℓ, E[p])+H1(Kℓ, E[p])−ϵ is orthog-
onal to H1

f (Kℓ, E[p])+, so H1
s (Kℓ, E[p])ϵ has dimension dϵ > 0. Since d+ + d− = 2, it follows

d+ = d− = 1. The final statement follows from this argument and the fact that (−,−)ℓ is perfect
(as a bilinear pairing on H1(Kℓ, E[p])). □

3 Local properties of Kolyvagin’s derived classes

Let H∞ be the field generated by all the Hn; it is an abelian extension of K and is Galois over
Q.

For every Kolyvagin prime ℓ, we choose an element σℓ ∈ Gal(H∞/H1) satisfying the following
properties: it restricts to a generator of Gal(Hℓ/H1) (which is cyclic of order ℓ+1), and, for any
integer n prime to ℓ, σℓ is the identity on Hn. Such a choice is possible because, for any coprime
integers n,m ≥ 1, Hn ∩Hm = H1.

We then denote Dℓ =
∑ℓ

i=1 iσ
i
ℓ. For every n ∈ N , we denote Dn =

∏
ℓ|nDℓ.

Let finally T ⊂ Gal(H∞/K) be a set of representatives for the quotient Gal(H1/K). We
then denote, for every n coprime to N , Pn =

∑
s∈T sDnyn ∈ E(Hn). Note that the definition of

Pn depends on the choice of T , but Pn (mod pE(Hn)) does not.

Definition: As we saw in a previous talk, the derived class cn ∈ H1(K,E[p]) is the unique
c ∈ H1(K,E[p]) whose restriction to Hn is δ(Pn).

It is known that the completed L-function Λ(E, s) satisfies a functional equation

Λ(E, s) = −ϵΛ(E, 2− s)

for some sign ϵ. This follows from the existence of a special involution on X0(N), the Fricke invo-
lution wN . Formally, it maps a pair (E,C) (where E is an elliptic curve and C a cyclic subgroup
of order N) to (E/C,E[N ]/C). An explicit computation yields that φ(wN (x)) = ϵ(φ(x)−φ(0))
for every x ∈ X0(N), where φ(0) ∈ E(Q)tors by Manin-Drinfeld’s theorem [6, 3].

Proposition 3.1 For every n ∈ N , cτn = ϵµ(n)cn, where µ is the Möbius function.
Sketch of proof. – We saw in a previous talk that the restriction H1(K,E[p]) → H1(Hn, E[p])
was injective, so it is enough to show that their restrictions as classes in H1(Hn, E[p]) agree,
that is, that τ(Pn) and ϵµ(n)Pn are congruent modulo pE(Hn).
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Because ρE is onto, the order of φ(0) is prime to p, so φ(0) ∈ pE(Q).
Let now n ∈ N . Applying the definitions of wN and τ , we see that wN (xn) = τ(xn). It follows
from the above that τ(yn) = ϵyn−ϵφ(0). By construction, τ acts on Gal(H∞/K) by inversion, so
that Dτ

ℓ+Dℓ = (ℓ+1)
∑ℓ

i=1 σ
i
ℓ. Therefore, τ(Pn) ≡

∑
s∈T s−1

∏
ℓ|n (−Dℓ)(ϵyn − ϵφ(0)) ≡ ϵµ(n)Pn

(mod pE(Hn)). □

Proposition 3.2 Let v be a finite place of K not dividing some n ∈ N . Then cn is geometric
at v.
Proof. – Let w be any place of Hn above v. Let c = locv(cn) ∈ H1(Kv, E[p]), and c′ be its
image in H1(Kv, E(Kv)). We know that c′ restricts trivially to (Hn)w, because the restriction
of cn to Hn is δ(Pn) (where Pn ∈ E(Hn)). So c′ comes from H1((Hn)w/Kv, E((Hn)w)), has
order dividing p, and we want to show that it is zero. But this cohomology group injects into
H1(Knr

v /Kv, E(Knr
v ))[p], which is isomorphic1 by [7, Proposition I.3.8] to H1(Knr

v /Kv, π0(EFv
))[p].

By our assumption on p, this cohomology group is trivial, which concludes.
□

Proposition 3.3 Let m ∈ N and ℓ ∈ L be coprime, let n = ℓm. Then cn is geometric at ℓ iff
locℓ(cm) = 0.

Sketch of proof. – For any σ ∈ GK , we know that there is a unique point (σ−1)(Pn)
p ∈ E(Hn)

whose p-th power is σ(Pn) − Pn (its existence follows from the existence of the Kolyvagin class
cn, its uniqueness from the fact that E[p](Hn) = 0, which we saw in a previous talk). Choose
now some finite extension L of Hn and some Rn ∈ E(L) such that pRn = Pn. We can then check
that the cocycle zn : σ ∈ GK 7−→ σ(Rn) − Rn − (σ−1)(Pn)

p ∈ E[p] represents cn (it is a cocycle,
and has the correct restriction to Hn).

As above, cn is geometric at ℓ iff the image of zn in H1(K,E(K))[p] (which actually lies in
H1(Hn/K,E(Hn))[p]) vanishes when restricted to Gal((Hn)λ/Kℓ), where Λ is a prime of Hn

above ℓ; it can be easily shown that (Hn)Λ/Kℓ is totally ramified, cyclic of order ℓ + 1, with
Galois group generated by σℓ.

This implies, by [10, Propositions IV.3.2, IV.6.4, Chapter VII.2], that the reduction mod Λ
map H1((Hn)Λ/Kℓ) → H1(⟨σℓ⟩, E(Fℓ2)) is an isomorphism (since the kernel of the reduction is
a pro-ℓ-group).

Clearly, the image of zn in H1(K,E(K))[p] is given by the cocycle z′n : σ 7−→ − (σ−1)(Pn)
p , so

that cn is geometric at ℓ iff the reduction mod Λ of (σℓ−1)(Pn)
p is zero.

Now, we can compute thanks to the norm relation that

(σℓ − 1)(Pn)

p
=

∑
s∈T

sDm

(
ℓ+ 1

p
yn − aℓ

p
ym

)
= −aℓ

p
Pm +

ℓ+ 1

p

∑
s∈T

sDmyn.

On the other hand, because Hm/K is totally split above ℓ, locℓ(cm) = 0 iff for some (thus
for all) prime λ ⊂ OHm above ℓ, Pm ∈ pE((Hm)λ); by Hensel’s lemma, this is equivalent to the
reduction mod λ of Pm being in pE(F2

ℓ ); we saw that this condition was independent from the
choice of λ′.

Then it’s apparently a simple computation using the congruence relation2. □

1Briefly, it is a combination of Hensel’s lemma and “Lang’s lemma” for connected algebraic groups over finite
fields (roughly, Frob · id−1 is surjective)

2it features in Castella’s lecture notes that I encourage you to read. I personally do not understand it, because
it seemingly claims that the sDm meaningfully exist as operators on the geometric fibre of E(Fℓ2) (insofar as they
map a global point with trivial reduction modulo a fixed prime above ℓ to another such point) – which I do not
think can be true. I will hopefully edit these notes when I find an explanation.
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4 Proof of the theorem

Define L = K(E[p]).
Recall that we chose a complex conjugation τ . It is clear that τ acts on E[p] and on

H1(K,E[p]); it preserves Selp(E/K).
Lemma 4.1 The restriction map H1(K,E[p]) → HomGK

(GL, E[p]) is an isomorphism.
Proof. – Its kernel (resp. cokernel) is (resp. is contained in) H1(Gal(L/K), E[p](L)) ∼= H1(ρE(GK), E[p])
(resp the H2). Since ρE(GK) is a subgroup of index at most 2 of Aut(E[p]), so it contains the
central element −id with order 2. Thus, −id must act on H∗(ρE ,−) by the identity; yet it acts
on E[p] by −1, so that H∗(ρE(GK), E[p]) vanishes. □

Proposition 4.2 (see [5, Lemma 1.6.2]3) Let c± ∈ H1(K,E[p])± be two nonzero classes, one
lying in the + eigenspace for τ and one lying in the − eigenspace. There are infinitely many
ℓ ∈ L such that both localizations at ℓ of c+ and c− do not vanish.
Proof. – Choose cocycles representing c± (denoted in the same way). Consider the restriction
map J : H1(GK , E[p]) → HomGK

(GL, E[p]) where L = K(E[p]), which is an isomorphism. We
denote f± = J(c±).

Define the finite extension M/K by GM = ker c+ ∩ ker c− ∩ GL. It is a Galois extension
of K: indeed, the right-hand side is clearly a closed subgroup of finite index, and if τ ∈ GM

and σ ∈ GK , then c±(στσ
−1) = (1 − στσ−1) · c±(σ) + σ · c±(τ) = (1 − id)c±(σ) + σ · 0 = 0.

Moreover, M is clearly stable under τ , so that M/Q is Galois. The same computation also shows
that f± : Gal(M/L) → E[p]⊕2 is an injective group homomorphism, so that H = Gal(M/L) is
a Fp-vector space with action of τ , so there are eigenspaces H+ and H−.

Note that the image of f± is nonzero and stable under GK . Since ρE(GK) ⊃ Aut(E[p])′ = SL(E[p]),
the image of f± it is all of E[p]. Let now g± be the projection of f± to E[p]±. They are
not GK-homomorphisms any more; however, they are still surjective group homomorphisms
Gal(M/L) → E[p]±.

A formal computation shows that, for any z ∈ H−, f+(z) ∈ E[p]−, so that g+(H
−) = 0.

Similarly, g−(H−) = 0, so that ker g±∩H+ are two proper subspaces of H+. In particular, there
is some η ∈ H+ outside ker g+ ∪ ker g−. Let now σ = τ · z ∈ Gal(M/Q), so that σ2 = z2.

Now let ℓ ∤ 6p be a rational prime such that E has good reduction at ℓ, c±, L are unramified
at ℓ (these conditions are true for all but finitely many ℓ), and such that the image of FrobℓZ in
Gal(M/Q) is σ. By Cebotarev, there are infinitely many such primes. In particular, FrobℓZ acts
as τ on E[p] so ℓ ∈ L .

Moreover, c±(FrobℓOK
) = c±(Frob

2
ℓZ) = c±(z

2) = 2f±(z) ̸= 0. □

Proof of the main theorem. – By the assumptions, c1 ∈ (Selp(E/K))ϵ is a nonzero class.
First, let c ∈ (Selp(E/K))−ϵ be nonzero. By Proposition 4.2, there is a Kolyvagin prime ℓ

at which c1 and c do not vanish. Therefore, by Proposition 3.3, cℓ is not geometric at ℓ. By
Proposition 3.1, cℓ ∈ (Selp(E/K))ϵ.

By global duality, we know that

(locℓ(c), locℓ(cℓ))ℓ = −
∑
v ̸=ℓ

(locv(c), locv(cℓ))v.

At any place v ̸= ℓ, both c and cℓ are geometric (by Proposition 3.2), so by Proposition 2.2
the right-hand side is a sum of zeros. Therefore (locℓ(c), locℓ(cℓ))ℓ = 0. But the two local classes
are nonzero in H1

f (Kℓ, E[p])−ϵ and H1
s (Kℓ, E[p])−ϵ, which contradicts Proposition 2.4.

Hence Selp(E/K)−ϵ = 0.
3I learnt of this lemma through G. Grossi’s MSRI talk in January 2023. The proof of the main theorem also

follows the argument she then described.
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Suppose that Selp(E/K) ̸= Fp · c1: then (Selp(E/K))ϵ has dimension at least two, so there
is a nonzero element d in the kernel of the localization (Selp(E/K))ϵ → H1

f (Kℓ, E[p])ϵ. Now
d and cℓ are nonzero cohomology classes with opposite signs, so by Proposition 4.2 there is a
Kolyvagin prime m at which both localizations do not vanish. As above, this means that cmℓ is
not geometric at m, and that cmℓ, d ∈ H1(K,E[p])ϵ.

By global duality, we know that

(locℓ(d), locℓ(cmℓ))ℓ + (locm(d), locm(cmℓ))m = −
∑

v ̸=m,ℓ

(locv(d), locv(cmℓ))v.

As above, the right-hand side is zero, since both d and cmℓ are geometric at all places v ̸= m, ℓ.
Moreover, since locℓ(d) = 0, we find that (locm(d), locm(cmℓ))m = 0. But both elements are
nonzero in the lines H1

f (Km, E[p])ϵ and H1
s (Km, E[p])ϵ, so this contradicts again the Proposition

2.4.
Thus Selp(E/K) = Fp · c1. □
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