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Abstract

This work provides rates of convergence in the Darling Kac law for infinite
measure preserving Pomeau-Manneville (unit interval) maps.

Along the way we obtain error rates for the stable law associated with the
first return map and the first return time to some suitable set inside the unit
interval.

1 Introduction and main results

1.1 Darling-Kac limit laws for dynamical systems preserving
an infinite measure

To understand a chaotic dynamical system, methods from probability theory are an
important tool. This goes back to Birkhoff’s ergodic theorem, which states that for
a dynamical system f : X → X that preserves a probability measure µ, the ergodic
average 1

n
Sn(v) = 1

n

∑n−1
k=0 v ◦ fk converges almost everywhere (a.e.) to the space

average
∫
vdµ, for all integrable functions v (v ∈ L1). In contrast, if µ(X) = ∞,

Birkhoff’s ergodic theorem is not very informative, since in this case 1
n
Sn goes to

0 a.e., for all v ∈ L1. Even stronger, as proved in [1], the ergodic theorem cannot
be recovered by re-scaling. More precisely, for any positive sequence cn and for any
v ∈ L1, either 1

cn
Sn goes to 0 a.e. or it goes to ∞ along subsequences. However,

in certain cases there exists a positive sequence an such that for all v ∈ L1, 1
an
Sn

converges in a weaker sense, namely in distribution, to a non-trivial limit (see for
instance [1, 19, 3] and the plethora of references therein). Such a limit law is referred
to as the Darling Kac (DK) theorem, and usually when this applies, one can prove
the existence of other interesting limit laws, such as arc-sine laws [17, 18, 19, 22].
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As shown in [1, Theorem 3.6.4, Theorem 3.7.2], pointwise dual ergodicity together
with regular variation of the return sequence guarantee the existence of the DK law.
We recall these notions below.

Pointwise dual ergodicity provides information about the asymptotic behavior of
the transfer operator L : L1(X) → L1(X) associated with (X,A, f, µ), defined by∫
Y
Lv w dµ =

∫
Y
v w ◦ f dµ, w ∈ L∞(Y ). More precisely, f is pointwise dual ergodic,

if there exists a positive sequence an such that a−1n
∑n−1

j=0 L
jv →

∫
X
v dµ a.e. for all

v ∈ L1. The sequence an is referred to as the return sequence for f (see [1] for a
definition of an in terms of the weaker property of rational ergodicity). A necessary
and sufficient condition for f to be pointwise dual ergodic is the existence of sets
Y ∈ A, 0 < µ(Y ) <∞ such that for v ∈ L1 and an(Y ) := µ(Y )−2

∑n−1
j=0 µ(Y ∪f−jY ),

one has an(Y )−1
∑n−1

j=0 L
jv →

∫
X
v dµ uniformly on Y (see [1]). The return sequence

an(f) of f is determined up to a multiplicative constant (corresponding to an arbitrary
scaling of the measure µ) and asymptotic equivalence satisfies an(f) = an(Y )(1+o(1)).
In the sequel, we will choose a suitable set Y (in accordance with the inducing method
below), scale µ so that µ(Y ) = 1, and fix an := an(Y ) for this choice.

While the existence of a DK law for (X, f, µ) does not require the strong property
of pointwise dual ergodicity (see [3]), it does require that the return sequence an is
regularly varying, i.e. that an = `(n)nβ for some slowly varying function ` and some
index β ∈ [0, 1]). Regular variation is an important assumption of the Darling Kac
theory for Markov chains (see, for instance, [4]). For a pointwise dual ergodic (X, f, µ)
with an = `(n)nβ the Darling Kac law says that for all v ∈ L1,

Ca−1n Sn(v)→d Yβ as n→∞.

where an is as defined above, C is a positive constant that depends only on f and Yβ
is a positive random variable distributed according to the normalized Mittag-Leffler
distribution of order β, that is E(ezYβ) =

∑∞
p=0 Γ(1 + β)pzp/Γ(1 + pβ) for all z ∈ C.

A standard way of verifying regular variation for an associated with dynamical
system (X, f) is by inducing with respect to the first return time to some ‘good’ set
Y ⊂ X. To simplify notation, fix Y ⊂ X with µ(Y ) = 1. Let ϕ : Y → Z+ be the first
return time to Y defined by ϕ(y) = inf{n ≥ 1 : fny ∈ Y }. If µ(ϕ > n) = `(n)n−β

for some slowly varying function ` and some index β ∈ [0, 1] then an(Y ) = `(n)nβ for
β ∈ [0, 1), an(Y ) = n

∑n
1 `(j)j

−1 for β = 1 (see [1, Section 3.8]).

1.2 A classical example

A standard example of a dynamical system with infinite measure that has the desired
properties (pointwise dual ergodicity along with regular variation) is given by the
family of Pomeau-Manneville intermittency maps [14]. These are interval maps with
indifferent fixed points; that is, they are uniformly expanding except for an indifferent
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fixed point at 0. To fix notation, we recall the version considered in [10]:

f(x) =

{
x(1 + 2αxα), 0 < x < 1

2

2x− 1, 1
2
< x < 1

. (1.1)

For α ≥ 1, we are in the situation of infinite ergodic theory; there exist a unique (up
to scaling) σ-finite, absolutely continuous invariant measure µ. In the setting of (1.1),
we let x0 = 1/2 and xp+1 < xp = f(xp+1) for each p ≥ 0, and then set Y = [xp, 1]
for some arbitrary p ≥ 0. Note that one can rescale µ such that µ(Y ) = 1 and recall
that µ(ϕ = n) = O(n−(β+1)) with β = 1/α.

The methods employed so far [1, 18, 19] to establish limit theorems for dynamical
systems with infinite measure do not allow one to determine the error rate present
in the involved convergence. Recent progress in this sense has been made in [11, 16],
which establish sharp error rates in arc sine laws associated with systems such as (1.1).
The results in [11, 16] are established by exploring a ’good’ expansion of the tail
distribution µ(ϕ > n). For higher order expansion of µ(ϕ > n) in the special case
of (1.1), we refer to [11, 12, 16].

Our aim in this work is to establish error rates in the Darling Kac law associated
with systems such as (1.1). In the rest of the paper we say that (f, µ), Y and
an := an(Y ) are defined by (1.1) in the following sense:
i) f is the map defined by (1.1);
ii) Y = [xp, 1] ⊂ (0, 1], where xp, p ≥ 0 is as defined in the paragraph following (1.1)
(by taking p sufficiently large, we will be able to deal with observables v that are
supported on a compact subset of (0, 1]);
iii) the f -invariant measure µ is rescaled such that µ(Y ) = 1;
iv) set an(Y ) =

∑n−1
j=0 µ(Y ∩ f−nY ) (a representative of the return sequence for f).

1.3 Main results

Our main result reads as follows

Theorem 1.1 (Error rates in the DK law associated with (1.1)) Let (f, µ),
Y and an := an(Y ) be as in Section 1.2. Suppose that the function v : [0, 1] → R
can be written as v = 1Y − ṽ, a.e. on Y , where ṽ is such that: i)

∫
ṽ dµ = 0 and

ii) µY (|Snṽ
an
| > g(n)) < g(n), where g is a positive decreasing function such that

g(n) = O(n−β).
Then for any z > 0,

|µY (a−1n Sn(v) > z)− P(Yβ > z)| = E(n),

where

E(n) =


O(nβ−1), if β ∈ (1/2, 1),

O((log n)2n−1/2), if β = 1/2,

O((log n)n−β), if β ∈ (0, 1/2).
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We are not aware of any result on error rates in the DK theorem associated with
null recurrent Markov chains characterized by regular variation. We claim that the
error rates in Theorem 1.1 are optimal. As we explain in the sequel, the proof of The-
orem 1.1 for the function 1Y is obtained via Lemma 1.2 below, which provides optimal
error rates for the stable law associated with the induced map fY and observable ϕ.

On the negative side, we acknowledge that the assumption on the zero mean
function ṽ (and thus, v) in the statement of Theorem 1.1 is very strong. Recent work
of Thomine [20] suggests that general zero mean functions ṽ such that

∑ϕ−1
j=0 |ṽ| ◦

f j belongs to Lp(Y, µ) for some p > 2 are not in the restrictive class of functions
considered in the statement of Theorem 1.1 (see the explanatory Remark 3.1). Hence,
finding a reasonably large class of functions v that yields the conclusion of Theorem 1.1
is open.

Theorem 1.1 is proved in Section 2. For a version of Theorem 1.1 for more gen-
eral dynamical systems satisfying the abstract assumptions of Section 4 we refer to
Lemma 5.2.

We recall that in the case of (1.1), regular variation of µ(ϕ > n) implies a stable
law for the induced map fY := fϕ (this follows from [2]). More precisely, let ϕn =∑n−1

j=0 ϕ◦f
j
Y and assume that the sequence bn is an asymptotic inverse of the sequence

an := an(Y ) =
∑n−1

j=0 µ(Y ∩f−nY ) (that is, if the corresponding functions t→ a[t], t→
b[t] satisfy a(b(n)) = n(1 + o(1)) and b(a(n)) = n(1 + o(1)). Then b−1n ϕn →d Zβ,
where Zβ =d (Yβ)−1/β and Yβ is a positive random variable distributed according
to the normalized Mittag-Leffler distribution of order β (see Section 1). Hence, the
real Laplace transform of Zβ is given by E(e−tZβ) = e−t

β
. Alternatively, the variable

Zβ can be defined in terms of its known characteristic function. For details we refer
to [2]; see also Section 5 below.

Our next result provides error rates for the stable law associated with the map fY
and observable ϕ. The corresponding proof is deferred to Section 5. In the present
context it serves as the key result: Theorem 1.1 for the case v = 1Y can be deduced
from it using standard computations (used in Proposition 2.3 and its corresponding
proof).

Lemma 1.2 (Error rates for the stable law associated with fY and ϕ) Let
(f, µ) and Y be as in Section 1.2. Assume β ∈ (0, 1). Let ϕ be the first return time
function to Y . Set bn = (n/C0)

1/β, where C0 is the constant defined in Lemma 2.1.
Then for any a > 0,

|µY (b−1n ϕn < a)− P(Zβ < a)| = d(n),

where

d(n) =


O(n1−1/β), if β ∈ (1/2, 1),

O((log n)/n), if β = 1/2,

O(1/n), if β ∈ (0, 1/2).
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Remark 1.3 Lemma 1.2 matches the optimal results on rates of convergence to a
stable law of index β ∈ (0, 1) for sequences of independent random variables in [9].
More generally, we refer to [5, 9, 15, 21] for rates of convergence to a stable law of
index β ∈ (0, 2) for sequences of independent random variables.

The paper is organized as follows. In Section 2, we prove Theorem 1.1 using
Lemma 1.2 and some results in [11], which we recall below.

Section 5 is allocated to the proof of Lemma 1.2 in the more general setting of
Section 4.

Notation We use “big O” and � notation interchangeably, writing cn = O(dn) or
cn � dn if there is a constant C > 0 such that cn ≤ Cdn for all n ≥ 1. We also write
µY ( · ) for µ(x ∈ Y : · ).

2 Results for the function 1Y

Given the existence of a stable law for (fY , ϕ), it seems natural that Theorem 1.1 for
the special case v = 1Y will follow from Lemma 1.2 together with the duality rule
µ(Sm(1Y ) > n) = µ(ϕn < m) (see Proposition 2.3 below).

Precise information on an(Y ) =
∑n−1

j=0 µ(Y ∩ f−nY ) follows from the asymptotic

behavior of the transfer operator L : L1(µ) → L1(µ) associated with f . Higher
order asymptotics of Ln and

∑n−1
j=0 L

j have been obtained in [11, 12]. For the present
purpose, we recall

Lemma 2.1 [12, Theorem 1.5] Let f be defined by (1.1) with β ∈ (0, 1). Suppose
that v : [0, 1] → R is Hölder or of bounded variation supported on a compact subset
of (0, 1]. Set k = max{j ≥ 0 : (j + 1)β − j > 0}. Let τ = 1 for β 6= 1

2
and τ = 2 for

β = 1
2
. Then

n−1∑
j=0

Ljv = (C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k)

∫ 1

0

v dµ+O(logτ n),

uniformly on compact subsets of (0, 1], where C0 = (cΓ(1 − β)Γ(1 + β))−1 with c a
positive constant depending only on f , and C1, C2, . . . are real constants (depending
only on f).

An immediate consequence of the above result is

Corollary 2.2 Suppose that (f, µ), Y and an := an(Y ) are as in Section 1.2.
Let C0, C1, . . . and C be the real constants defined in Lemma 2.1. If β ∈ (0, 1),

then an = (C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k) +O(logτ n).

The following result will be instrumental in the proof of Theorem 1.1.
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Proposition 2.3 Assume the setting of Lemma 1.2 with β ∈ (0, 1). Let am := am(Y )
be as in Section 1.2. Then for any z > 0,

|µY (a−1m Sm(1Y ) > z)− P(Yβ > z)| = e(m),

where

e(m) =


O(mβ−1), if β ∈ (1/2, 1),

O((logm)2m−1/2), if β = 1/2,

O((logm)m−β), if β ∈ (0, 1/2).

Proof By the triangle inequality,

|µY (a−1m Sm(1Y ) > z)− P(Yβ > z)| ≤ I + II (2.1)

for

I =
∣∣∣µY (Sm(1Y ) > zam)− P(Yβ >

[zam]

C0mβ
)
∣∣∣,

II =
∣∣∣P(Yβ > z)− P(Yβ >

[zam]

C0mβ
)
∣∣∣.

We start with I. Let bm = (m/C0)
1/β as in Lemma 1.2. Since

µY (Sm(1Y ) > zam) = µY (Sm(1Y ) > [zam]) = µY (ϕ[zam] < m)

and Zβ =d (Yβ)−1/β, we have

I = µY

(
Sm(1Y ) > zam

)
− P

(
Yβ >

[zam]

mβC0

)
= µY

(ϕ[zam]

b[zam]

<
m

b[yam]

)
− P

(
Zβ <

mC
1/β
0

[zam]1/β

)
= µY

(ϕ[yam]

b[zam]

<
mC

1/β
0

[zam]1/β

)
− P

(
Zβ <

mC
1/β
0

[zam]1/β

)
,

where for the last equality we used b[zam] = [zam]1/β/C
1/β
0 . Applying Lemma 1.2 with

n = [zam] and a =
C

1/β
0

[zc(m)]1/β
, we obtain

I =
∣∣∣µ(ϕ[yam]

b[zam]

<
C

1/β
0

[zam]1/β

)
− P

(
Zβ <

C
1/β
0

[zam]1/β

)∣∣∣ =: eI(m),

where

eI(m) = d([zam]) =


O(mβ−1) if β ∈ (1/2, 1),

O((logm)m−1/2) if β = 1/2,

O(m−β) if β ∈ (0, 1/2).
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We continue with II from (2.1). Since Zβ =d (Yβ)−1/β, we have

II = |P(Yβ > z)− P(Yβ >
[zam]

C0mβ
)| = |P(Zβ <

1

z1/β
)− P(Zβ <

mC
1/β
0

[zam]1/β
)|. (2.2)

It is known (see for instance [13]), that for every ε > 0 there exists C > 0 such that
for all a, b > 0 with |a− b| < ε, we have

|P(Zβ < a1/β)− P(Zβ < b1/β)| ≤ C|a−1 − b−1|. (2.3)

This fact together with (2.2) implies that

|P(Zβ <
1

z1/β
)− P(Zβ <

mC
1/β
0

[zam]1/β
)| ≤ C|z − [zam]

C0mβ
|.

Corollary 2.2 gives that am = C0m
β +O((logm)τ ) +O(m2β−1), so we get

|z − [zam]

C0mβ
| ≤ |z − zam

C0mβ
|+ 1

C0mβ
= O(mβ−1) +O(

(logm)τ

mβ
) +

1

C0mβ
=: eII(m),

satisfying

eII(m) =


O(mβ−1) if β ∈ (1/2, 1),

O((logm)2m−1/2) if β = 1/2,

O((logm)m−β) if β ∈ (0, 1/2).

Combining the estimates, we find e(m) = eI(m) + eII(m) of the required form.

3 Proof of Theorem 1.1

Recall that v : [0, 1]→ R is a function that on Y can be written as v = 1Y − ṽ, where
ṽ is such that: i)

∫
ṽ dµ = 0 and ii) µY (|Smṽ

am
| > g(m)) < g(m), where g is a positive

decreasing function such that g(m) = O(m−β).
Note that Sm(v) = Sm(1Y ) + Sm(ṽ) a.e. on Y . Since Proposition 2.3 gives

the desired estimate for 1Y , to conclude we need to estimate |µY (a−1m Sm(v) >
z)− µY (a−1m Sm(1Y ) > z)| for z > 0.

Remark 3.1 We note that the assumption ii) on the function ṽ is very strong. Sup-
pose that ṽ : [0, 1] → R is a mean zero function such that

∑ϕ−1
j=0 |ṽ| ◦ f j belongs

to Lp(Y, µ) for some p > 2. As shown inside the proof of [20, Theorem 4.7], the
following holds a.e. on Y

|
m−1∑
j=0

ṽ ◦ f j(x)| ≤ C(x)mβ/2+ε,
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for some C(x) > 0, for any ε > 0 and all m sufficiently large. Assuming that∫
C(x)dµY <∞, the above inequality implies that∫

|
m−1∑
j=0

ṽ ◦ f j|dµY � mβ/2+ε.

Together with Markov’s inequality, the above diplayed equation implies that given
some function h and some positive constant C such that h(m) > C and h(m) =
O(m−(β−ε)), for any ε > 0, we have

µY (|Smṽ
am
| > h(m)) ≤ C−1a−1m

∫
|Smṽ|dµ� a−1m mβ/2+ε � h(m)1/2.

The above inequality together with the argumeint used in the proof of Theorem 1.1
below (with g = h) shows that

|µY (
Sm(v)

am
> z)− µY (

Sm(1Y )

am
> z)| � h(m)1/2.

The last displayed inequality together with Proposition 2.3 implies that

|µY (a−1m Sm(v) > z)− P(Yβ > z)| = E(m),

where E(m)� m−(β/2−ε). Hence, a much weaker form of Theorem 1.1.

In the remainder of this section we complete the

Proof of Theorem 1.1 Let g be a function as defined above. We claim that

|µY (
Sm(v)

am
> z)− µY (

Sm(1Y )

am
> z)| ≤

(
µY (

Sm(1y)

am
> z − g(m))− µY (

Sm(1Y )

am
> z + g(m))

)
+ g(m)1/2.

By the triangle inequality,

|µY (
Sm(1Y )

am
> z − g(m))− µY (

Sm(1Y )

am
> z + g(m))

∣∣∣∣
≤ |µY (

Sm(1Y )

am
> z − g(m))− P(Yβ > z − g(m))|

+ |P(Yβ > z − g(m))| − P(Yβ > z + g(m))| (3.1)

+ |µY (
Sm(1Y )

am
> z + g(m))− P(Yβ > z + g(m))|,

The first and third term in (3.1) can be estimated using Proposition 2.3, but
we should be aware that the function e(m) from that proposition depends on z.
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Indicating this dependence as a subscript, we can estimate them by ez−g(m)(m) +
ez+g(m)(m). Following the estimates of Proposition 2.3, we can see that ez(m) can be
chosen to be decreasing in z, so ez−g(m)(m)+ez+g(m)(m) ≤ ez/2(m) which satisfies the
estimate in the statement of Proposition 2.3 with z/2 instead of z.

Recall Zβ =d (Yβ)−1/β. Using (2.3), the middle term of (3.1) can be estimated as

|P(Yβ > z − g(m))| − P(Yβ > z + g(m))| � g(m).

Combining these estimates,

|µY (
Sm(v)

am
> z)− µY (

Sm(1Y )

am
> z)| � g(m)

and the conclusion follows since g(m) = O(m−β).
It remains to prove the claim.

µY (
Sm(v)

am
> z)− µY (

Sm(1Y )

am
> z)

≤ µY (
Sm(v)

am
> z ∧ Sm(ṽ)

am
≥ g(m))− µY (

Sm(1y)

am
> z) + µY (

Sm(ṽ)

am
> g(m))

≤ µY (
Sm(1Y )

am
> z − g(m))− µY (

Sm(1Y )

am
> z) + µY (

Sm(ṽ)

am
> g(m))

≤ µY (
Sm(1Y )

am
> z − g(m))− µY (

Sm(1Y )

am
> z + g(m)) + µY (

Sm(ṽ)

am
> g(m))

and

µY (
Sm(v)

am
> z)− µY (

Sm(1y)

am
> z)

≥ µY (
Sm(v)

am
> z ∧ Sm(ṽ)

am
≥ −g(m))− µY (

Sm(1y)

am
> z)

≥ µY (
Sm(v)

am
> z + g(m) ∧ Sm(ṽ)

am
≥ −g(m))− µY (

Sm(1y)

am
> z)

≥ −
(
µY (

Sm(1y)

am
> z − g(m))− µY (

Sm(1y)

am
> z + g(m)) + µY (

Sm(ṽ)

am
< −g(m))

)
.

Recall that µY (|Smṽ
am
| > g(m)) < g(m). This fact together with the previous two

estimates implies that

|µY (
Sm(v)

am
> z)− µY (

Sm(1y)

am
> z)|

≤ µY (
Sm(1y)

am
> z − g(m))− µY (

Sm(1y)

am
> z + g(m)) + µY (|Sm(ṽ)

am
| > g(m))

≤
(
µY (

Sm(1y)

am
> z − g(m))− µY (

Sm(1y)

am
> z + g(m))

)
+ g(m).

which ends the proof of the claim.
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4 Abstract setting

Let (X,µ) be an infinite measure space, and f : X → X a conservative measure
preserving map. Fix Y ⊂ X with µ(Y ) = 1. Let ϕ : Y → Z+ be the first return time
ϕ(y) = inf{n ≥ 1 : fny ∈ Y } and define the first return map F = fϕ : Y → Y .

The return time function ϕ : Y → Z+ satisfies
∫
Y
ϕdµ = ∞. Throughout we let

β ∈ (0, 1) and assume

(H) µ(ϕ > n) = c(n−β + H(n)), where c > 0 and H(n) = O(n−q) for some q > β.
If q ≤ 1, we assume further that H(n) = m(n) + m̃(n), where m is monotone
with m(n) = O(n−q) and m̃(n) is summable.

Recall that the transfer operator R : L1(Y )→ L1(Y ) for the first return map fY
is defined via the formula

∫
Y
Rv w dµ =

∫
Y
v w ◦ F dµ, w ∈ L∞(Y ). Let D = {z ∈

C : |z| < 1} and D̄ = {z ∈ C : |z| ≤ 1}. Given z ∈ D̄, define the perturbed operator
R(z) : L1(Y )→ L1(Y ) by R(z)v = R(zϕv).

Also, for each n ≥ 1, we define Rn : L1(Y )→ L1(Y ),

Rnv = 1YR(1{ϕ=n}v) = R(1{ϕ=n}v).

It is easily verified that R(z) =
∑∞

n=1Rnz
n.

We assume that there is a function space B ⊂ L∞(Y ) containing constant func-
tions, with norm ‖ ‖ satisfying |v|∞ ≤ ‖v‖ for v ∈ B, such that

(H1) There is a constant C > 0 such that ‖Rn‖ ≤ Cµ(ϕ = n) for all n ≥ 1.

It follows that z 7→ R(z) is an analytic family of bounded linear operators on B
for z ∈ D, and that this family extends continuously to D̄. Since R(1) = R and B
contains constant functions, 1 is an eigenvalue of R(1). Throughout, we assume:

(H2) The eigenvalue 1 is simple and isolated in the spectrum of R(1), and the spec-
trum of R(z) does not contain 1 for all z ∈ D.

By (H1) and (H2), there exists ε > 0 and a continuous family of simple eigenvalues
of R(z), namely λ(z) for z ∈ D̄ ∩ Bε(1) with λ(1) = 1. In what follows, we let
λ(θ) := λ(z) for z = eiθ, θ ∈ [0, 2π).

As shown in [11, 12], the main assumptions above are enough for higher order
expansion of λ(z), z ∈ D̄ ∩Bε(1).

Lemma 4.1 [12, Lemma A.4], [11, Lemma 3.2]. Assume (H), (H1) and (H2).
If q > 1, set cH = −Γ(1− β)−1

∫∞
0
H1(x) dx where H1(x) = [x]−β − x−β +H([x]).

If q ≤ 1, set cH = 0.
Define cβ = −i

∫∞
0
eiσσ−β dσ. Then as θ → 0,

λ(θ) = 1− ccβθβ + iccHθ +O(θ2β) +D(θ),

where D(θ) = O(θq) if q 6= 1, and D(θ) = O(θ log 1
θ
) if q = 1.
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Proof The case q > 1 is contained in the proof of [11, Lemma 3.2]. For the case
q < 1, the argument for the exact term (1− ccβθβ) in the expression of λ(θ) is again
contained in the proof of [11, Lemma 3.2]. The estimate for D(θ) follows by the
argument used in the proof of [12, Lemma A.4] (in estimating D(z) there, with
z = e−u+iθ in the case 0 < u < θ).

Lemma 4.2 [12, Theorem 4.1] Assume (H1) and (H2). Suppose that (H) holds with
q = 2β. Let k = max{j ≥ 0 : (j + 1)β − j > 0}.

Let L : L1(X)→ L1(X) be transfer operator for f . Then for all v ∈ B, there exist
positive constants C0, . . . , Ck (depending only on f) such that

n−1∑
j=0

1YL
jv = (C0n

β + C1n
2β−1 + C2n

3β−2 + · · ·+ Ckn
(k+1)β−k)

∫
Y

v dµ+ Env,

where |Env|∞ ≤ C(logτn)|v|∞, C constant, and τ = 1 for β 6= 1
2
, τ = 2 for β = 1

2
.

The exact expression of the constants C0, . . . , Ck is provided in [12] and for later use
we recall that C0 = (cΓ(1− β)Γ(1 + β))−1.

5 Results for the abstract setting

In this section we provide a more general version of Lemma 1.2 and formulate a
version of Theorem 1.1 for systems that satisfy (H), (H1) and (H2).

Throughout this section we use the following notation. Define an(Y ) :=∑n
j=1 µ(Y ∪ f−jY ).
We assume that (H) holds. Lemma 4.2 gives

an(Y ) = C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k +O((logτn)).

Recall that C0 = (cΓ(1 − β)Γ(1 + β))−1 and set bn = (n/C0)
1/β. Define cβ =

−i
∫∞
0
eiσσ−β dσ and set Cβ = cβ(Γ(1− β)Γ(1 + β)−1.

In what follows, we let Zβ be a positive random variable with characteristic func-

tion E(eiθZβ) = e−Cβθ
β
. With these specified, we state

Lemma 5.1 For any a > 0,

|µY (b−1n ϕn < a)− P(Zβ < a)| = d(n),

where

d(n) =


O(n1−1/β), if β ∈ (1/2, 1), q > 1,

O(n1−1/β(log n) + n−1), if β ∈ (0, 1), q = 1,

O(n1−q/β), if β ∈ (0, 1), q < 1.

11



We can now complete the

Proof of Lemma 1.2 As shown in [11, 12], the map f defined by (1.1) satisfies
(H1), (H2). Moreover, if β ∈ (0, 1), (H) holds with q = 2β and Y = [xp, 1], p ≥ 0,
where xp is as specified in the paragraph following (1.1) (see [12, Proposition B1]).
The conclusion follows immediately from Lemma 5.1.

Lemma 5.1 allows us to establish a version of Theorem 1.1 for more general dy-
namical systems:

Lemma 5.2 Assume that either (H)(i) holds with q = 2β and β ∈ (0, 1) or H(ii)
holds with q > 1 and β = 1. Suppose that the function v : X → R can be written as
v = 1Y − ṽ, a.e. on Y , where ṽ is such that: i)

∫
ṽ dµ = 0 and ii) µY (|Snṽ

an
| > g(n)) <

g(n), where g is a positive decreasing function such that g(n) = O(n−β).
Then, there exists a positive constant C (depending only on f) such that for any

z > C,
|µY ((an(Y ))−1Spn(v) > z)− P(Yβ > z)| = E(n),

where E(n) = O(nβ−1) if β ∈ (1/2, 1), E(n) = O((log n)2n−1/2) if β = 1/2 and
E(n) = O((log n)n−β) if β ∈ (0, 1/2).

Proof The result follows by the argument used in the proof of Theorem 1.1 together
with Lemma 5.1.

The remainder of this section is devoted to the proof of Lemma 5.1. Below, we
collect some instrumental results.

Recall bn = (cΓ(1− β)Γ(1 + β))1/βn1/β, cβ = −i
∫∞
0
eiσσ−β dσ and Cβ = cβ(Γ(1−

β)Γ(1 + β)−1.

Proposition 5.3 Let c and cH be the real constants defined in (H) and Lemma 4.1,
respectively. Assume β ∈ (0, 1). Set eβ = ccH(cΓ(1− β)Γ(1 + β)−1/β.

Choose ε > 0 such that λ(θ) is well defined for θ ∈ (0, ε). In particular, this
ensures that θ < εbn, for all n large enough. Then

λ
( θ
bn

)n
= e−Cβθ

β
(

1− ieβn1−1/βθ + E(θ/bn)
)
,

where E(θ/bn) satisfies the following for all n sufficiently large and all θ < εbn

E(θ/bn)�

{
n−1θ2β + n1−q/βθq, if q 6= 1,

n−1θ2β + n1−1/βθ log(n/θ), if q = 1.

Proof The conclusion follows from Lemma 4.1 and standard computations. We
provide the argument for completeness.
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Note that for all n sufficiently large and all θ < εbn,

n log[λ(θ/bn)] = −n(1− λ(θ/bn)) +O(n|(1− λ(θ/bn))2|).

Lemma 4.1 and straightforward calculations imply that

1− λ(θ/bn) = Cβn
−1θβ − ieβn−1/βθ +D(θ/bn),

where

D(θ/bn)�

{
n−2θ2β + n−q/βθq, if q 6= 1,

n−2θ2β + n−1/βθ log(n/θ), if q = 1.

Thus, we can write

λ(θ/bn)n = e−Cβθ
β

exp(−ieβn1−1/βθ + nD(θ/bn) +D1(θ/bn)), (5.1)

where |D1(θ/bn)| � n|(1− λ(θ/bn))2|.
Using the expansion of 1− λ(θ/bn), we obtain that for all n sufficiently large and

all θ < εbn,

D1(θ/bn)�

{
n−1θ2β + n−q/βθq+β, if q 6= 1,

n−1θ2β + n−1/β log(n/θ)θβ+1 + n−1θ2β, if q = 1.

Hence, |D1(θ/bn)| � n−1θ2β for all q > β.
Clearly, |D1(θ/bn)| � n|D(θ/bn)|, as n→∞. Define

D2(θ/bn) = nD(θ/bn) +D1(θ/bn).

Note that

D2(θ/bn)�

{
n−1θ2β + n1−q/βθq, if q 6= 1,

n−1θ2β + n1−1/βθ log(n/θ), if q = 1.

This together with (5.1) yields,

λ(θ/bn)n = e−Cβθ
β

(1− ieβn1−1/βθ +D2(θ/bn) +D3(θ/bn)),

where |D3(θ/bn)| � n2(1−1/β)θ2. To conclude, put E(θ/bn) = D2(θ/bn) +D3(θ/bn).

A useful consequence of the above result is

Corollary 5.4 Choose ε > 0 such that λ(θ) is well defined for θ ∈ (0, ε). Then∫ εbn

0

θ−1|λ(θ/bn)− e−Cβθβ | dθ = d′(n),
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where

d′(n) =


O(n1−1/β), if β ∈ (1/2, 1), q > 1,

O(n1−1/β(log n) + n−1), if β ∈ (0, 1), q = 1,

O(n1−q/β), if β ∈ (0, 1), q < 1.

Proof Define dβ = Re(Cβ). By Proposition 5.3 with β > 1/2 and q > 1,

∫ εbn

0

θ−1|λ(θ/bn)− e−Cβθβ | dθ � n1−1/β
∫ εbn

0

e−dβθ
β

dθ

+ n−1
∫ εbn

0

e−dβθ
β

(θ2β−1 + θq−1) dθ.

Clearly, for any p > β − 1 and all n ≥ 1,∫ εbn

0

e−dβθ
β

θp dθ =

∫ 1

0

e−dβθ
β

θp dθ +
1

β

∫ (εbn)1/β

1

e−dβσσ(p+1)/β−1 dσ

�
∫ ∞
1

e−σσ(p+1)/β−1 dσ = constant.

Hence,
∫ εbn
0

θ−1|λ(θ/bn) − e−cβθβ | dθ � n1−1/β, as desired. The estimate for the case
q < 1, β ∈ (0, 1) follows by a similar argument.

It remains to consider the case q = 1, β ∈ (0, 1). By Proposition 5.3,

∫ εbn

0

θ−1|λ(θ/bn)− e−Cβθβ | dθ � n−1
∫ εbn

0

e−dβθ
β

θ2β−1 dθ + n1−1/β
∫ εbn

0

e−dβθ
β

log(n/θ) dθ

� n−1 + n1−1/β
∫ εbn

0

e−dβθ
β

log(n/θ) dθ.

By Potter’s bounds (see [4]), for any δ > 0,∫ εbn

0

e−dβθ
β

log(n/θ) dθ = log n

∫ εbn

0

e−dβθ
β

log(n/θ)(log n)−1 dθ

� log n

∫ εbn

0

e−dβθ
β

(θ−δ + θδ) dθ.

Hence, n1−1/β ∫ εbn
0

e−dβθ
β

log(n/θ) dθ � n1−1/β log n, providing the required esti-
mate.

We can now complete the
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Proof of Lemma 5.1 By the smoothness inequality for characteristic functions
(see, for instance, [8]), for any ε > 0,

|µY (b−1n ϕn < a)− P(Zβ < a)| ≤
∫ εbn

0

θ−1|E(eiθb
−1
n ϕn)− E(eiθZβ)| dθ +O(b−1n ).

Let d(n) be defined as in the statement of Lemma 5.1. Clearly, for all β ∈ (0, 1), b−1n �
n−1/β � d(n). Hence, the result will follow once we show that

∫ εbn
0

θ−1|E(eiθb
−1
n ϕn)−

E(eiθZβ)| dθ � d(n).
Choose ε > 0 such that λ(z) is well defined for z ∈ D̄ ∩ Bε(1). Let P (z) : B → B

denote the family of spectral projections associated with λ(z) with P (1) = P . Hence,
P (v)(y) ≡

∫
Y
v dµ.

By (H2), we can write R(z) = λ(z)P (z) + Q(z), where Q(z) is an operator on
B whose spectrum is contained in a disk of radius strictly less than 1. Hence, for
all n ≥ 1 and for all z ∈ D̄ ∩ Bε(1) , ‖Q(z)n‖ decays exponentially fast in n. Thus,
‖R(z)n − λ(z)nP (z)‖ � τn for some τ ∈ (0, 1). Also, (H1) together with µ(ϕ >
n) � n−β implies that ‖P (θ) − P‖ � θβ (see, for instance, [11, Proposition 2.7]).
Therefore there exists τ ∈ (0, 1) such that ‖R(θ)n − λ(θ)nP‖ ≤ ‖λ(θ)nG(θ)‖ + τn,
where ‖G(θ)‖ � θβ. This together with bn � n−1/β implies that for all θ ∈ (0, εbn)
and n sufficiently large,

E(eiθb
−1
n ϕn) =

∫
Y

eiθϕn/bn dµ =

∫
Y

Rn(eiθϕn/bn) dµ = λ(θ/bn)n + F (θ/bn), (5.2)

where

|F (θ/bn)| � |λ(θ/bn)n
∫
Y

G(θ/bn)| dµ� n−1θβ|λ(θ/bn)n|.

By Proposition 5.3, λ(θ/bn)n = e−Cβθ
β
1 +E(n), where E(n)→ 0, as n→∞. Hence,

|F (θ/bn)| � n−1θβe−dβθ
β

with dβ = Re(cβ).
Recall that for β ∈ (0, 1), Zβ is a random variable with characteristic func-

tion E(eiθZβ) = e−Cβθ
β
. Equation (5.2) together with the fact that ‖F (θ/bn)‖ �

n−1θβe−dβθ
β

implies that∫ εbn

0

θ−1|E(eiθb
−1
n ϕn)− E(eiθZβ)| dθ �

∫ εbn

0

θ−1|λ(θ)n − E(eiθZβ)| dθ

+ n−1
∫ εbn

0

e−dβθ
β

θβ−1 dθ.

By Corollary 5.4, we find
∫ εbn
0

θ−1|λ(θ)n − E(eiθZβ)| dθ � d′(n). Clearly,

n−1
∫ εbn
0

e−dβθ
β
θβ−1 dθ � n−1

∫ n
0
e−σ dσ � n−1. To conclude, put d(n) = d′(n)+1/n.
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