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Abstract

In this work, we introduce a new technique for operator renewal sequences
associated with dynamical systems preserving an infinite measure that improves
the results on mixing rates obtained in Melbourne and Terhesiu [21]. Also, this
technique allows us to offer a very simple proof of the key result in [21] that
provides first order asymptotic of operator renewal sequences associated with
dynamical systems with infinite measure. Moreover, combining techniques used
in this work with techniques used in [21], we obtain first order asymptotic of
operator renewal sequences under some relaxed assumption on the first return
map.

1 Introduction and main results

Let (X,µ) be a measure space (finite or infinite), and f : X → X a conservative,
ergodic measure preserving map. Fix Y ⊂ X with µ(Y ) ∈ (0,∞). Let ϕ : Y → Z+

be the first return time ϕ(y) = inf{n ≥ 1 : fny ∈ Y } (finite almost everywhere by
conservativity). Let L : L1(X)→ L1(X) denote the transfer operator for f and define

Tn = 1YL
n1Y , n ≥ 0, Rn = 1YL

n1{ϕ=n}, n ≥ 1.

Thus Tn corresponds to general returns to Y and Rn corresponds to first returns to Y .
The relationship Tn =

∑n
j=1 Tn−jRj generalizes the notion of scalar renewal sequences

(see [10, 6] and references therein).
Operator renewal sequences were introduced by Sarig [24] to study lower bounds

for mixing rates associated with finite measure preserving systems, and this technique
was substantially extended and refined by Gouëzel [12, 15].

In the infinite mean setting a crucial ingredient for the asymptotics of renewal
sequences is that
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(H) µ(y ∈ Y : ϕ(y) > n) = `(n)n−β where ` is slowly varying1 and β ∈ (0, 1).

For the necessity of this assumption in the setting of scalar renewal sequences we refer
to Garsia and Lamperti [11] and Erickson [9]. Under the same assumption, Melbourne
and Terhesiu [21] developed a theory of renewal operator sequences for dynamical
systems with infinite measure, generalizing the results of [11, 9] to the operator case.
Imposing suitable assumptions on the first return map Tϕ, [21] shows that for a
(’sufficiently regular’) function v supported on Y and a constant d0 = 1

π
sin βπ, the

following hold: i) when β ∈ (1
2
, 1] then limn→∞ `(n)n1−βTnv = d0

∫
Y
v dµ, uniformly

on Y ; ii) if β ∈ (0, 1
2
] and v ≥ 0 then lim infn→∞ `(n)n1−βTnv = d0

∫
Y
v dµ, pointwise

on Y and iii) if β ∈ (0, 1
2
) then Tnv = O(`(n)n−β). As shown in [21], the above

results on Tn extend to similar results on Ln associated with a large class of systems
preserving an infinite measure.

The apparently weaker results for the case β < 1/2 are in fact optimal under the
general assumption µ(ϕ > n) = `(n)n−β (see [11]). Under the additional assumption
µ(ϕ = n) = O(`(n)n−(β+1)), Gouëzel [14] obtains first order asymptotic for Lnv for
all β ∈ (0, 1).

Apart from first order theory, the method developed in [21] also yields mixing
rates and higher order asymptotics of Tn, which for ’nice’ maps leads to the desired
asymptotic for Ln. By higher order asymptotics of Tnv, for some v in a suitable
function space with norm ‖‖, we mean the existence of real constants d0, d1, . . . , dq,

q ≥ 1 such that Tnv =
(
d0n

β−1 +d1n
2(β−1) + · · ·+dqn

q(β−1)
) ∫

vdµ+D, where ‖D‖ =

o(nq(β−1)). The weaker notion of mixing rates refers to the existence of an upper bound
for ‖n1−βTnv−d0

∫
Y
v dµ‖. As shown in [21], higher order asymtptotics/mixing rates

can be obtained by exploiting higher order expansions of µ(ϕ > n). Exploiting a tail
condition of the form µ(ϕ > n) = cn−β+O(n−2β), for some c > 0, [21] obtains mixing
rates for β > 1/2 and higher order asymptotics for β > 3/4.

In this work, we introduce a new technique for operator renewal sequences associ-
ated with dynamical systems preserving an infinite measure that allows us to explore
higher order expansions of µ(ϕ > n); for a precise formulation of such an expansion
we refer to assumption (H3) below. As far as we understand, the advantage of tail
expansion of the type (H3) below cannot be exploited using the techniques in [21](see
the explanatory Remark 1.2). Along the way, we obtain improved higher order the-
ory for scalar renewal sequences (see Remark 1.4). Previous results on higher order
theory for scalar renewal sequences are contained in [21].

Moreover, combining the techniques used in this work with the techniques in [21,
11], we obtain first order asymptotics for Tn under the general assumption µ(ϕ >
n) = `(n)n−β and some relaxed (weaker than in [21]) assumption on the first return
map. For a precise formulation of our main results we need to provide a description

1We recall that a measurable function ` : (0,∞) → (0,∞) is slowly varying if
limx→∞ `(λx)/`(x) = 1 for all λ > 0. Good examples of slowly varying functions are the asymptot-
ically constant functions and the logarithm.
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of the abstract framework and main assumptions for operator renewal sequences.

1.1 Main assumptions and general setup

Throughout we assume that (H) holds.
Recall that the transfer operator R : L1(Y ) → L1(Y ) for the first return map

F : Y → Y is defined via the formula
∫
Y
Rv w dµ =

∫
Y
v w ◦ F dµ, w ∈ L∞(Y ).

Let D = {z ∈ C : |z| < 1} and D̄ = {z ∈ C : |z| ≤ 1}. Given z ∈ D̄, we
define R(z) : L1(Y ) → L1(Y ) to be the operator R(z)v = R(zϕv). Also, for each
n ≥ 1, we define Rn : L1(Y ) → L1(Y ), Rnv = R(1{ϕ=n}v). It is easily verified that
R(z) =

∑∞
n=1Rnz

n.
As in [21, 22], our assumptions on the first return map F : Y → Y are functional-

analytic. We assume that there is a function space B ⊂ L2(Y ) containing constant
functions, with norm ‖ ‖ satisfying ‖v‖L2 ≤ ‖v‖ for v ∈ B, such that for some constant
C > 0:

(H1) For all n ≥ 1, Rn : B → B is a bounded linear operator satisfying
∑

j>n ‖Rj‖ ≤
C`(n)n−β, with β and ` as in (H).

For several comments on the assumption B ⊂ L2(Y ) we refer to Remark 1.3.
As shown in [22] the assumption

∑∞
n=1 ‖Rn‖ < ∞ turns out to be sufficient for

several results on the average operator
∑n−1

j=0 L
n. In this work we show the following

stronger version is enough for first order of Tn (this is the content of Theorem 1.5).

(H1′)
∑

j>n ‖Rj‖ < n−τ , where τ is such that τ > max{1− β, β/2} for 1/2 < β < 1.

We notice that z 7→ R(z) is a continuous family of bounded linear operators on B
for z ∈ D̄. Since R(1) = R and B contains constant functions, 1 is an eigenvalue of
R(1). Throughout we assume:

(H2) (i) The eigenvalue 1 is simple and isolated in the spectrum of R(1).

(ii) For z ∈ D̄ \ {1}, the spectrum of R(z) does not contain 1.

In particular, we note that z 7→ (I − R(z))−1 is an analytic family of bounded
linear operators on B for z ∈ D. Define Tn : L1(Y ) → L1(Y ) for n ≥ 0 and T (z) :
L1(Y )→ L1(Y ) for z ∈ D̄ by setting

Tnv = 1YL
n(1Y v), T (z) =

∞∑
n=0

Tnz
n.

(Here, T0 = I.) We have the usual relation Tn =
∑n

j=1 Tn−jRj for n ≥ 1. An
induction argument on n together with the boundedness of Rj (see (H1) above)
shows that ‖Tn‖ grows at most exponentially. Hence, T (z) is well defined for z in a
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small disk around 0. Furthermore, T (z) = I + T (z)R(z) on D and thus, the renewal
equation T (z) = (I −R(z))−1 holds for z ∈ D. It follows that T (z) =

∑∞
n=0 Tnz

n can
be analytically extended to the whole of D.

As shown in [21], the higher order expansion of T (eiθ), as θ → 0 is an essential
ingredient in obtaining higher order asymptotics of Tn. In [22], the higher order
expansion of T (z) for z ∈ D is essential for higher order expansion of

∑n
j=1 Tj.

Our main idea is to exploit the analyticity of T (z) for z ∈ D. As it will be made
clear in Sections 3, 4 and 5, good estimates on d

dθ
T (z) (at least for z outside a small

neighborhood of 1) allow us to obtain good estimates on the coefficients Tn of T (z).
In Section 2 we obtain a higher order expansion of d

dθ
T (z), under the following

assumption (stronger than the ones used in [21, 22]):

(H3) Let β ∈ (1/2, 1). Assume that µ(ϕ > n) = cn−β + b(n) + H(n), for some
positive constant c, some function b such that nb(n) has bounded variation and
b(n) = O(n−2β), and some function H such that H(n) = O(n−γ) with γ > 2.

In this work we show that (H3) is enough to improve the results on mixing rates
obtained in [21] for the range β ∈ (2/3, 1) (this is the content of Theorem 1.1 below).

1.2 Main results

To state the first result we need to specify the following
Notation. Let c , b(n) and H(n) be as given in (H3). Let H1(x) = c([x]−β −

x−β)+b([x])+H([x]), where by [.] stands for the ceiling function. With the convention
0−β = 0, the function H1(x) is well defined in [0, 1) and we set cH =

∫∞
0
H1(x) dx.

Let q = max{j ≥ 0 : (j + 1)β − j > 0}. Set CH = −cHc−1Γ(1 − β)−1. For
p = 0, . . . , q define dp = (CH)pc−1Γ(1− β)−1Γ((p+ 1)β − p)−1.

In what follows, P denotes the spectral projection corresponding to the eigenvalue
1 for R(1). So, we can write Pv(y) ≡

∫
Y
v dµ. With these specified we can state

Theorem 1.1 Assume (H1), (H2) and (H3). Then

Tn = d0n
β−1P + d1n

2(β−1)P + d2n
3(β−1)P + · · ·+ dqn

q(β−1)P +D.

where ‖D‖ = O(n−β).

Remark 1.2 Theorem 1.1 improves the error term of Theorem [21, Theorem 9.1]; the
error term in Theorem [21, Theorem 9.1] is O(n−1/2). Thus, Theorem [21, Theorem
9.1] provides second order asymptotic for Tn for β > 3/4, while Theorem 1.1 provides
second order asymptotic for Tn for β > 2/3.

As explained below, the proof of Theorem 1.1 is based on a good understanding of
the asymptotic behavior of d

dθ
T (z), z ∈ D. We do not know how to prove Theorem 1.1

using the techniques in [21], which require a careful analysis of T (z) on the circle
{z ∈ C : |z| = 1}.
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Remark 1.3 We believe that the proofs of the abstract results on higher order theory
in [21, 22] can also be adjusted to the requirement B ⊂ L2(Y ) instead of the stronger
requirement B ⊂ L∞(Y ) used in these works. However, the assumption B ⊂ L∞(Y )
is important for uniform convergence results (see Subsection 1.3 below).

For first order theory under (H1), as pointed to me by Ian Melbourne in one
discussion, the assumption B ⊂ L1(Y ) suffices (see Section 5).

Remark 1.4 Along the proof of Theorem 1.1, we obtain that Theorem 1.1 holds for
scalar renewal sequences as well (see Remark 3.1). To make this explicit we recall the
required terminology. Let (Xi)i≥1 be a sequence of positive integer-valued independent
identically distributed random variables with probabilities P (Xi = j) = fj. Define
the partial sums Sn =

∑n
j=1Xj, and set u0 = 1 and un =

∑n
j=1 fjun−j, n ≥ 1.

Then it is easy to see that un =
∑n

j=0 P (Sj = n). The sequences (un)n≥0 are called
renewal sequences. The assumption on µ(ϕ > n) in the dynamical systems setting
corresponds to an equivalent assumption

∑
j>n fj in the scalar setting and the scalar

renewal sequences un correspond to the operator renewal sequences Tn.
As far as we understand, the technique in [11] (generalized to the operator case

in [21]) does not allow one to prove the scalar version of Theorem 1.1.

Our second result reads as follows

Theorem 1.5 Suppose that µ(ϕ > n) = `(n)n−β, where `(n) is a slowly varying
function. Assume (H1′) and (H2) . Then

lim
n→∞

`(n)n1−βTn = d0P.

At the moment we do not have an interesting example where [21, Theorem 2.1] applies,
but Theorem 1.1 does not. However, there are indications that the above result might
apply to the type of maps considered in [17]. More importantly, since B ⊂ L2(Y ),
both Theorem 1.1 and Theorem 1.5 might be applied to two dimensional maps with
B = BV (Y ), where BV is the usual notation for the space of functions of bounded
variation.

So far we said that the techniques considered here improve the results on mixing
rates obtained in [21]. As a matter of completeness, in Section 5, we show that our
techniques offer a very simple proof of the key [21, Theorem 2.1], which provides first
order asymptotics of Tn, under the general assumption µ(ϕ > n) = `(n)n−β.

Strategy of the proofs By the arguments in [21] (equivalently, by the simplified
argument in [22]), the Fourier coefficients of T (z), z ∈ S1 coincide with the coefficients
of T (z)), z ∈ D. Hence, first and higher order of Tn can be obtained by estimating
either the Fourier or Taylor coefficients of T (z), z ∈ D̄.

As already mentioned, the techniques in [21] require a careful analysis of T (z)
on the circle {z ∈ C : |z| = 1}, which lead to the desired estimates for the Fourier
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coefficients of T (z), z ∈ S1. In this paper, we shift the computation in the open unit
disk D, where we can exploit the analyticity of T (z).

In order to prove Theorem 1.1, we need a higher order asymptotic of d
dθ

(T (z)) for
both z ∈ D̄ ∩ Bε(1) and z ∈ D̄ \ Bε(1). The asymptotic of d

dθ
(T (z)), z ∈ D̄ ∩ Bε(1)

(see Section 2) is obtained using the strenght of (H3). The symptotic of d
dθ

(T (z))
for z ∈ D̄ \ Bε(1) is much easier to obtain (see Section 2) and it only requires (H1).
The precise asymptotic of d

dθ
(T (z)), z ∈ D allows us to obtain higher order of Tn (in

Section 3) integrating by parts on a well chosen contour.
For the proof of Theorem 1.5, it is still very important that we can do the com-

putation on a well chosen contour in D. This allows us to exploit un upper bound of
d
dθ

(T (z)), z ∈ D̄ \ Bε(1), for which (H1’) suffices. To control the asymptotic of T (z),
z ∈ D̄ ∩ Bε(1) we use techniques similar to the ones in [21], although the required
estimates are much trickier. For details we refer to Section 4.

1.3 Application of Theorem 1.1 to intermittency maps of the
interval

An important class of maps to which Theorem 1.1 is given by the family of Pomeau-
Manneville intermittency maps [23]. These are interval maps with indifferent fixed
points; that is, they are uniformly expanding except for an indifferent fixed point at
0. To fix notation, we recall the version studied by Liverani et al. [20]:

fx =

{
x(1 + 2αxα), 0 < x < 1

2

2x− 1, 1
2
< x < 1

. (1.1)

It is well known that in this case µ(ϕ = n) = O(n−(β+1)) with β = 1/α. We also
recall that for α ≥ 1, we are in the situation of infinite ergodic theory; there exists a
unique (up to scaling) σ-finite, absolutely continuous invariant measure µ.

In the special case of (1.1), we exploit the fact that µ(ϕ > n) = cn−β + c1n
−2β +

c2n
−3β+ĉn−(β+1)+c̃(log n)n−(β+1)+H(n) where H(n) = O((log n)2n−(β+2)+n−4β) and

c, c1, c2, ĉ, c̃ are real constants (see Proposition B.1 in Appendix B). Hence, assumption
(H3) is satisfied and we state

Proposition 1.6 Assume the setting of (1.1). Let v : [0, 1] → R be a Hölder or
bounded variation observable supported on a compact subset of (0, 1]. Let q = max{j ≥
0 : (j + 1)β − j > 0}. If β ∈ (1/2, 1) then there exist positive constants d0, . . . , dq
(that depend only on f) such that

Lnv =
(
d0n

β−1 + d1n
2(β−1) + d2n

3(β−1) + · · ·+ dqn
q(β−1)

)∫
vdµ+O(n−β),

uniformly on compact subsets of (0, 1].
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Proof The conclusion follows immediately from Theorem 1.1, Proposition B.1 and
the fact that in this case the Banach space B (of either Hölder or bounded variation
supported on Y ) is embeded in L∞(Y ). As noted in [21], the fact that B ⊂ L∞(Y )
implies almost sure convergence at a uniform rate on Y . Redifinig sequences on a set
of measure zero, we obtain uniform convergene on Y .

Proposition 1.6 (via Theorem 1.1) improves the error term of [21, Corollary 11.13]
by, essentially, improving the error term in [21, Theorem 9.1] which provides second
asymptotics order for Tn. The error term in [21, Theorem 9.1] is O(n−1/2). Thus,
while [21, Theorem 9.1/ Corollary 11.13] provide second order asymptotics for Tn and
Ln for β > 3/4, Theorem 1.1/ Proposition 1.6 provide second order asymptotics for
Tn and Ln for β > 2/3.

We also note that using Proposition 1.6, one can obtain second order asymptotics
of Lnv for observables v supported on the whole [0, 1] (the corresponding statement
and proof are identical to the statement and proof [21, Theorem 11.4]) with the
improved error term O(n−β).

As shown in [21], higher order asymptotics/mixing rates can be used to obtain
error rates for some limit laws (such as arcsine laws) associated with systems pre-
serving an infinite measure. For typical limit laws for infinite measure preserving
transformations we refer to [1, 2, 5, 26, 28, 30] (see also [7, 19, 10, 6] and references
therein for the setting of Markov chains). An interesting consequence of Theorem 1.1
is an improved convergence rate in the Dynkin-Lamperti arcsine law for waiting times.
Proposition 1.7 below improves the convergence rate obtained in [21, Corollary 9.10].
It is known that the arcsine law holds for a large class of interval maps with indiferent
fixed points (not necessarily Markov) for all β [30]. See also [27, 28] for more general
transformations.

To state our result we recall the following. For x ∈
⋃n
j=0 f

−jY , n ≥ 1, let

Zn(x) = max{0 ≤ j ≤ n : f jx ∈ Y },

denote the time of the last visit of the orbit of x to Y during the time interval [0, n].
Let ζβ denote a random variable distributed according to the B(1−β, β) distribution:

P(ζβ ≤ t) = d0

∫ t

0

1

u1−β
1

(1− u)β
du, t ∈ [0, 1],

where d0 = 1
π

sin βπ.

Proposition 1.7 Assume the setting of (1.1). Suppose β ∈ (1/2, 1) and let γ =
min{1− β, 2β − 1}.

Let ν be an absolutely continuous probability measure on Y with density g ∈ B.
Then there is a constant C > 0 independent of ν such that∣∣ν{ 1

n
Zn ≤ t} − P(ζβ ≤ t)

∣∣ ≤ C‖g‖n−γ.
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Proof The proof goes exactly as the proof of Corollary [21, Corollary 9.10], except
for the use of Proposition 1.6 instead of [21, Theorem 11.4].

Remark 1.8 Corollary [21, Corollary 9.10] differs from the above result in the fact
that γ = min{1 − β, β − 1/2}. Thus, Corollary [21, Corollary 9.10] is optimal for
β > 3/4, while the above result is optimal for β > 2/3.

Finally, we note that one can obtain a higher order tail expansion (better than the
estimate obtained in Proposition B.1). In this sense, a natural question is whether
one can improve Proposition 1.6. In fact, given the results of [14], it seems natural
to seek for a method that can provide mixing rates for all β. The techniques used
here are not suitable for this task (see the explanatory Remark 3.2). Mixing rates for
all β in the special case of (1.1), where we exploit the stronger, but much harder to
take advantage of, assumption on the small tail µ(ϕ = n) = O(n−(β+1)) is work in
progress.

The rest of the paper is organized as follows. Sections 2, 3 are devoted to the
proof of Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.5. In Section 5,
we offer a short proof of the [21, Theorem 2.1]. Appendix A contains the proof of
several technical results used in Section 2. In appendix B we improve the estimate
on the tail sequence µ(ϕ > n) associated with ( 1.1) obtained in [22, Proposition C2];
this is the content of Proposition B.1.

Notation We use “big O” and � notation interchangeably, writing an = O(bn) or
an � bn as n→∞ if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1.

2 Asymptotics of d
dθT (z)

Throughout this section we assume (H1), (H2) and (H3).
For p = 0, . . . , q define Cp = (CH)p((p+ 1)β − p). The main result of this section

reads as follows

Lemma 2.1 Write z = e−u+iθ, u > 0. Choose ε > 0 such that λ(z) is well defined
for z = e−u+iθ, u ∈ (0, ε) and θ ∈ (−ε, ε). Then, for all u ∈ (0, ε) and all θ ∈ (−ε, ε),

cΓ(1− β)
d

dθ
T (z) = i

q∑
p=0

Cp(u− iθ)(p−1)−(p+1)βP + E(z),

where ‖E(z)‖ = O(|u− iθ|−1) +O(uβ−1|u− iθ|−β).
Also, for all u > 0 and all θ ∈ [ε, π], ‖ d

dθ
T (z)‖ = O(uβ−1).

Below we collect some results that will be instrumental in the proof of Lemma 2.1.
By (H1′) and (H2), there exist ε > 0 and a continuous family of simple eigenvalues
of R(z), namely λ(z) for z ∈ D̄ ∩ Bε(1) with λ(1) = 1. Let P (z) : B → B denote
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the corresponding family of spectral projections with P (1) = P and complementary
projections Q(z) = I − P (z). Also, let v(z) ∈ B denote the corresponding family of
eigenfunctions normalized so that

∫
Y
v(z) dµ = 1 for all z. In particular, v(1) ≡ 1.

Then we can write

T (z) = (1− λ(z))−1P (z) + (I −R(z))−1Q(z), (2.1)

for z ∈ D̄ ∩Bε(1), z 6= 1.

Proposition 2.2 Assume (H1′) and (H2). There exists ε, C > 0 such that ‖(I −
R(z))−1Q(z)‖ ≤ C for z ∈ D̄ ∩Bε(1), z 6= 1 and ‖T (z)‖ ≤ C for z ∈ D̄ \Bε(1).

The following consequence of (H1’) (and thus (H1)) is standard (see, for instance,
step 1 of the proof of [12, Lemma 3.1])).

Proposition 2.3 Assume
∑

j>n ‖Rj‖ � n−ρ`(n) with ` is slowly varying and ρ ∈
(0, 1). Then there is a constant C > 0 such that for all u ≥ 0, θ ∈ [0, 2π) and h > 0,
‖R(e−u+iθ)−R(e−u+i(θ−h))‖ ≤ C`(1/h)hρ and ‖R(e−u+iθ)−R(1)‖ ≤ C`(1/|u−iθ|)|u−
iθ|ρ.

Corollary 2.4 The estimates for R(z) in Proposition 2.3 are inherited by the families
P (z), Q(z), λ(z) and v(z), where defined.

Proposition 2.5 Suppose
∑

j>n ‖Rj‖ � n−ρ`(n) where ρ ∈ (0, 1) and ` is slowly

varying. Write z = e−u+iθ, u > 0. Then,

‖ d
dθ
R(z)‖ � uρ−1`(1/u).

Moreover, these estimates are inherited by the families d
dθ
P (z), d

dθ
Q(z), d

dθ
λ(z) and

d
dθ
v(z), where defined.

Proof The result follows by standard computations. We provide the argument for
completeness. Put Sj =

∑∞
q=j+1 ‖Rq‖ and note that Sj � j−ρ`(j). Compute that

‖ d
dθ
R(z)‖ � ‖

∞∑
j=1

j‖Rj‖e−(j−1)u �
∞∑
j=1

j(Sj−1 − Sj)e−(j−1)u =
∞∑
j=1

Sj−1e
−(j−1)u

+
∞∑
j=1

(
(j − 1)Sj−1 − jSj

)
e−(j−1)u =

∞∑
j=1

Sj−1e
−(j−1)u + (1− eu)

∞∑
j=1

jSje
−uj

Hence,

‖ d
dθ
R(z)‖ �

∑
j

j−ρ`(j)e−uj + u
∑
j

j1−ρ`(j)e−uj � 1

u
uρ`(1/u)

∫ ∞
0

σ−ρ`(σ/u)`−1(1/u)e−σdσ

+ uρ−1`(1/u)

∫ ∞
0

σ1−ρe−σ`(σ/u)`−1(1/u)dσ � uρ−1`(1/u).
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The estimates for the families d
dθ
P (z), d

dθ
Q(z), d

dθ
λ(z) and d

dθ
v(z) follow from the

above estimate and their corresponding definitions (see, for instance, [18]).

Before stating the next result, we recall the meaning of the parameters in (H3):
µ(ϕ > n) = cn−β + b(n) + H(n) for c > 0, b(n) = O(n−2β), and H(n) = O(n−γ),
γ > 2. The other assumptions on the function b(n) will be recalled in the proof below.

Proposition 2.6 Assume the conditions of Lemma 2.1. Choose ε > 0 such that λ(z)
is well defined for z = e−u+iθ, u ∈ (0, ε) and θ ∈ (−ε, ε). Then,

1− λ(z) = cΓ(1− β)(u− iθ)β + cH(u− iθ) +D(z),

where D(z) is such that |D(z)| = O(|u − iθ|2β) and | d
dθ
D(z)| = O(|u − iθ|2β−1 +

uβ−1|u− iθ|β).

Proof The proof below is a refinement of the proof of [22, Lemma A.4] for the case
β > 1/2.

Recall that v(z) ∈ B denotes the family of eigenfunctions of R(z) corresponding
to the eigenvalue λ(z), normalized so that

∫
Y
v(z) dµ = 1 for all z. In particular,

v(1) ≡ 1. Also, under (H3) Corollary 2.4 applies (with ρ = β and ` bounded),
yielding ‖v(z) − 1‖ � |u − iθ|β. For a short argument for the desired estimate , we
follow the formalism in [13] (a simplification of [3]) and write

1−λ(z) = 1−
∫
Y

λ(z)v(z)dµ = 1−
∫
Y

R(e(−u+iθ)φv(z))dµ =

∫
Y

(1−e(−u+iθ)φ) dµ−V (z),

(2.2)
where V (z) =

∫
Y

(R(z)−R(1))(v(z)− v(1))dµ. Since B ⊂ L2(Y ),

|V (z)| ≤
(∫

Y

(R(z)−R(1))2 dµ
)1/2(∫

Y

(v(z)− v(1))2 dµ
)1/2

� ‖v(z)− v(1)‖ ‖R(z)−R(1)‖

� |u− iθ|2β.

where the last inequality was obtained using Proposition 2.3 (with ρ = β and `
bounded).

Write

d

dθ
(V (z)) =

∫
Y

d

dθ
(R(z))(v(z)− v(1))dµ+

∫
Y

(R(z)−R(1))
d

dθ
(v(z))dµ

= V1(z) + V2(z).

The fact thatB ⊂ L2(Y ) together with Proposition 2.5 and Corollary 2.4 (with
ρ = β) yields

|V1(z))| �
(∫

Y

( d
dθ

(R(z)
)2

dµ
)1/2(∫

Y

(v(z)− v(1))2 dµ
)1/2

� uβ−1|u− iθ|β.

10



Similarly, |V2(z))| � uβ−1|u− iθ|β and thus, | d
dθ

(V (z))| � uβ−1|u− iθ|β.
It remains to estimate

∫
Y

(1 − e−(u−iθ)ϕ) dµ. We proceed as in the proof of [22,
Lemma A.4 ]. Define the distribution function G(x) = µ(ϕ ≤ x). Then

∫
Y

(1 −
e−(u−iθ)ϕ) dµ =

∫∞
0

(1− e−(u−iθ)x)) dG(x), where 1−G(x) = cx−β +H1(x). We recall
that H1(x) = c([x]−β−x−β)+ b([x])+H([x]), where b is such that xb(x) has bounded
variation and b(x) = O(x−2β) and H(x) = O(x−γ), γ > 2. So, H1(x) = O(x−2β).

Integrating by parts,∫ ∞
0

(1− e−(u−iθ)x)) dG(x) = c(u− iθ)β
∫ ∞

0

e−(u−iθ)x

[(u− iθ)x]β
(u− iθ) dx+ (u− iθ)

∫ ∞
0

e−(u−iθ)xH1(x) dx

= c(u− iθ)βI + (u− iθ)M(u, θ).

By [22, Proposition B1], I = Γ(1 − β). By Proposition A.1 (a) (with M(x) =
H1(x) and ρ = γ) we have (u − iθ)M(u, θ) − cH(u − iθ) = O(|u − iθ|γ). Hence,∫∞

0
(1− e(−u+iθ)x)) dG(x) = cΓ(1− β)(u− iθ)β + cH(u− iθ) +O(|u− iθ|γ).
Define D(z) =

(
(u − iθ)M(u, θ) − cH(u − iθ)

)
+ V (z) and note that |D(z)| =

O(|u− iθ|γ, |u− iθ|2β).
We continue with the estimate for d

dθ
D(z). Since, we already know | d

dθ
(V (z))| �

uβ−1|u− iθ|β, we just have to estimate d
dθ

(
(u− iθ)M(u, θ)− cH(u− iθ)

)
.

Put ∆(x) = [x]−β − x−β. Recall H1(x) = c∆(x) + b([x]) +H([x]) and write

M(u, θ) = c

∫ ∞
0

e−(u−iθ)x∆(x) dx+

∫ ∞
0

e−(u−iθ)xb([x]) dx+

∫ ∞
0

e−(u−iθ)xH([x]) dx

= W (u, θ) + Jb(u, θ) + JH(u, θ).

Put C∆ =
∫∞

0
∆(x) dx. By Proposition A.4 (a), (u−iθ)W (u, θ) = C∆(u−iθ)+O(|u−

iθ|β+1). By Proposition A.4 (b),
∣∣∣ ddθ((u− iθ)W (u, θ)−C∆`

(u− iθ)
)∣∣∣ = O(|u− iθ|β).

Recall that b(x) = O(x−2β), 2β > 1. Put Cb =
∫∞

0
b([x]) dx. By Proposition A.1

(a) (with M(x) = b([x]) and ρ = 2β), (u − iθ)Jb(u, θ) = Cb(u − iθ) + O(|u − iθ|γ).
Next, recall that xb(x) has bounded variation. By Proposition A.1 (b),

∣∣∣ ddθ((u −

iθ)Jb(u, θ)− Cb(u− iθ)
)∣∣∣ = O(|u− iθ|2β−1).

Finally, recall that H(x) = O(x−γ), γ > 2 and put Ch =
∫∞

0
H([x]) dx. By

Proposition A.3 (a) (with M(x) = H([x]) and ρ = γ), (u − iθ)JH(u, θ) = Ch(u −
iθ) + O(|u − iθ|γ). By Proposition A.3 (b) ,

∣∣∣ ddθ((u − iθ)JH(u, θ) − Ch(u − iθ)
)∣∣∣ =

O(|u− iθ|γ−1). The conclusion follows by putting all these estimates together.

Proof of Lemma 2.1 Recall CH = −cHc−1Γ(1−β)−1. By Proposition 2.6 we know
that for all u ∈ (0, ε), θ ∈ (−ε, ε),

1− λ(z) = cΓ(1− β)(u− iθ)β
(

1−
(
CH(u− iθ)1−β + (u− iθ)−βD(z)

))
,
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where |D(z)| = O(|u− iθ|2β) and | d
dθ
D(z)| � uβ−1|u− iθ|β.

Recall q = max{j ≥ 0 : (j + 1)β − j > 0} and compute that

cΓ(1− β)(1− λ(z))−1 =

q∑
p=0

(CH)p(u− iθ)p−(p+1)β +O(1).

Furthermore, by Proposition 2.6 we also know that for all u ∈ (0, ε), θ ∈ (−ε, ε),

(cΓ(1− β))−1 d

dθ
(λ(z)) = iβ(u− iθ)β−1 − iCHcΓ(1− β) +O(|u− iθ|2β−1, uβ−1|u− iθ|β).

Note that

d

dθ

(
(1− λ(z))−1

)
= ie−u+iθ d

dz
(λ(z))(1− λ(z))−2 =

d

dθ
(λ(z))(1− λ(z))−2.

The asymptotic expansions of (1−λ(z))−1 and d
dθ

(λ(z)) above together with standard
calculations show that for all u ∈ (0, ε), θ ∈ (−ε, ε),

cΓ(1− β)
d

dθ

(
(1− λ(z))−1

)
= i

q∑
p=0

Cp(u− iθ)(p−1)−(p+1)β + E(z),

where ‖E(z)‖ � |u− iθ|γ−2β−1 + |u− iθ|−β + |u− iθ|−1 +uβ−1|u− iθ|−β � |u− iθ|−1 +
uβ−1|u− iθ|−β.

Next, for z = e−u+iθ, u ∈ (0, ε) and θ ∈ (−ε, ε) we write

T (z) = (1− λ(z))−1P + (1− λ(z))−1(P (z)− P ) + (I −R(z))−1Q(z).

By Proposition 2.5, ‖ d
dθ

(P (z) − P )‖ � uβ−1. We already know | d
dθ

(1 − λ(z))−1)| �
|u − iθ|−(β+1) + |u − iθ|−1 + uβ−1|u − iθ|−β. These last two estimates together with

Corollary 2.4 imply that | d
dθ

(
(1− λ(z))−1(P (z)−P )

)
| � |u− iθ|−1 + uβ−1|u− iθ|−β.

Note that (I − R(z))−1Q(z) is well defined for all z = e−u+iθ, u ∈ (0, ε) and θ ∈
(−ε, ε). Since d

dθ
(I−R(z))−1 = ie−u+iθ(I−R(z)−1 d

dz
R(z)(I−R(z))−1, differentiating

(in θ) yields

d

dθ
((I−R(z))−1Q(z)) = ie−u+iθ

(
(I−R(z))−1 d

dz
R(z)(I−R(z))−1Q(z)+(I−R(z))−1 d

dz
R(z)

)
.

We already know ‖(I − R(z))−1‖ � |u − iθ|−β. This together with Proposition 2.2
and Proposition 2.5 implies that ‖ d

dθ
((I − R(z))−1Q(z))‖ � uβ−1|u − iθ|−β for all

z = e−u+iθ, u ∈ (0, ε) and θ ∈ (−ε, ε). Putting all these estimates together we obtain
the desired estimate for d

dθ
T (z) for z = e−u+iθ, u > 0 and θ ∈ (−ε, ε).

To conclude, we just need to recall that by Proposition 2.2, ‖(I − R(z))−1‖ ≤ C
for z = e−u+iθ, u > 0 and θ ∈ [ε, π). This together with Proposition 2.5 implies
‖ d
dθ

(I −R(z))−1‖ � uβ−1 for z = e−u+iθ, u > 0 and θ ∈ [ε, π), ending the proof.
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Remark 2.7 For use below, we note that within the proof above we obtained higher
order asymptotic of Ψ(e−(u−iθ)ϕ) :=

∫
Y

(1 − e−(u−iθ)ϕ) dµ for all u > 0, θ ∈ (−π, π].
More precisely,

1−Ψ(e−(u−iθ)ϕ) = cΓ(1− β)(u− iθ)β + cH(u− iθ) +D(z),

where D(z) is such that |D(z)| = O(|u − iθ|2β) and | d
dθ
D(z)| = O(|u − iθ|2β−1 +

uβ−1|u− iθ|β).

3 Proof of Theorem 1.1

The proof of Theorem 1.1 will be completed once we estimate the coefficients of T (z)
for z ∈ D.

Proof of Theorem 1.1 Put Γ = {e−ueiθ : −π ≤ θ < π} with e−u = e−1/n, n ≥ 1.
Write

Tn =
1

2πi

∫
Γ

T (z)

zn+1
dz =

e

2π

∫ π

−π
T (e−1/neiθ)e−inθdθ =

i

n

e

2π

∫ π

−π
T (e−1/neiθ)

d

dθ
(e−inθ)dθ.

Put a = [−π,−ε] ∪ [ε, π]. Integration by parts together with Lemma 2.1 imply

2π

e
cΓ(1− β)Tn = − i

n

∫ π

−π

d

dθ
(T (e−1/neiθ))e−inθdθ =

1

n

q∑
p=0

Cp

∫ ε

−ε
(
1

n
− iθ)(p−1)−(p+1)βe−inθdθ

)
P

− i

n

∫ ε

−ε
E(e−1/neiθ)e−inθdθ − i

n

∫
a

d

dθ
(T (e−1/neiθ))e−inθdθ

=

q∑
p=0

CpIpP + J + J ′.

By Lemma 2.1, for all θ ∈ [ε, π], d
dθ

(T (e−1/neiθ))‖ � n1−β . Hence, |J ′| � n−β. Also,
by Lemma 2.1 we have ‖E(e−1/neiθ)‖ = O(| 1

n
− iθ|−1) +O(( 1

n
)β−1| 1

n
− iθ|−β). Thus,

|J | � 1

n

(∫ ε

−ε
| 1
n
− iθ|−1dθ + n1−β

∫ ε

−ε
|θ|−βdθ

)
� 1

n

(
1 +

∫ ε

1/n

θ−1dθ
)

+
n1−β

n

� log n

n
+ n−β � n−β.

Next, by [22, Corollary B.3](with ρ = (p+ 1)β − p for p = 0, . . . , q) we have

1

n

q∑
p=0

Cp

∫ ε

−ε

e−inθ

( 1
n
− iθ)(p+1)β−p+1

dθ =
2π

e

q∑
p=0

Cp
Γ((p+ 1)β − p+ 1))

n(p+1)(β−1) +O(1/n).
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Finally, note that

Cp
Γ((p+ 1)β − p+ 1)

=
(CH)p((p+ 1)β − p)
Γ((p+ 1)β − p+ 1)

=
(CH)p

Γ((p+ 1)β − p)
= cΓ(1− β)dp.

Remark 3.1 We recall that µ(ϕ > n) in the dynamical systems setting corresponds
to an equivalent assumption

∑
j>n fj in the scalar setting and the scalar renewal

sequences un correspond to the operator renewal sequences Tn (see Remark 1.4).
Replacing T (z) in the proof above with Ψ(z) defined in Remark 2.7, we obtain the
scalar version of Theorem 1.1, that is higher oder asymptotic for un.

Remark 3.2 The present techniques do not allow one to improve Theorem 1.1. Al-
though, assuming a better tail expansion (better than (H3), for instance), one can
obtain very good estimates on first and second derivatives of

∫
Y

(1 − e(−u+iθ)ϕ) dµ,
one cannot hope for good enough estimates for d

dθ
V (z). Assuming a good enough tail

expansion and that the invariant density is smooth enough, the best one can hope
for is that the term E(z) in Lemma 2.1 can be improved to uβ−1|u − iθ|qβ for some
q ≥ 1. Clearly, this improvement is useless when estimating coefficients: due to the
presence of uβ−1, the error term in the expansion of Tn is n−β and this cannot be
improved using the current techniques.

4 Proof of Theorem 1.5

The results below will be instrumental in the proof of Theorem 1.5.

Proposition 4.1 Suppose that µ(ϕ > n) = `(n)n−β. Assume (H1′) and (H2)(i).
Write z = e−u+iθ. Then as u, θ → 0,

1− λ(e−u+iθ) = `(1/|u− iθ|)(u− iθ)β(1 + o(1))

Proof By equation (2.2),

1− λ(z) =

∫
Y

(1− e(−u+iθ)ϕ) dµ− V (z),

where V (z) =
∫
Y

(R(z)−R(1))(v(z)− v(1))dµ. Since B ⊂ L2(Y ),

|V (z)| ≤
(∫

Y

(R(z)−R(1))2 dµ
)1/2(∫

Y

(v(z)− v(1))2 dµ
)1/2

� ‖v(z)− v(1)‖ ‖R(z)−R(1)‖

� |u− iθ|2τ .
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where the last inequality was obtained using Corollary 2.4 (with ρ = τ). As shown
in [22, Proof of Lemma A.4] (a generalization of the arguments used, for instance,
in [11]), under (H) we have∫

Y

(1− e(−u+iθ)ϕ) dµ = 1− dβ`(1/|u− iθ|)(u− iθ)β(1 + o(1)), (4.1)

as u, θ → 0.
Putting together the last two equations,

1− λ(e−u+iθ) = `(1/|u− iθ|)(u− iθ)β(1 +G(e−u+iθ)),

where |G(e−u+iθ)| � |u − iθ|2τ−β. The conclusion follows immediately since under
(H1′), 2τ > β.

By (2.1), T (z) = (1−λ(z))−1P+(1−λ(z))−1(P (z)−P )+(I−R(z))−1Q(z). Thus,
an immediate consequence of Proposition 4.2, Corollary 2.4 and Proposition 2.2 is
that as u, θ → 0,

T (z) = `(1/|u− iθ|)(u− iθ)β(1 + o(1)) (4.2)

Proposition 4.2 Suppose that µ(ϕ > n) = `(n)n−β. Assume (H1′) and (H2)(i).
Choose ε > 0 such that λ(z) is well defined for z = e−u+iθ, u ∈ (0, ε) and θ ∈

(−ε, ε). Then for any h > 0, h ≤ min{|θ|, u} we have

|λ(e−u+iθ)− λ(e−u+i(θ−h))| � hβ`(1/h) + hτ |u− iθ|τ .

Proof Put ∆λ = λ(e−u+iθ)− λ(e−u+i(θ−h)). Using eq.(2.2) we write

∆λ =

∫
Y

(e(−u+i(θ−h))ϕ − e(−u+iθ)ϕ)dµ+

∫
Y

(R(e−u+i(θ−h))−R(e−u+iθ))(v(e−u+i(θ−h))− 1)dµ

+

∫
Y

(R(e−u+iθ)−R)(v(e−u+i(θ−h))− v(e−u+iθ))dµ

By Proposition 2.3 and Corollary 2.4, ‖R(e−u+i(θ−h)) − R(e−u+iθ)‖ � hτ and
‖v(e−u+i(θ−h)) − v(e−u+iθ)‖ � hτ . Also, ‖R(e−u+i(θ−h)) − R‖ � |u − i(θ − h)|τ �
|u− iθ|τ and ‖v(e−u+i(θ−h))− 1‖ � |u− i(θ − h)|τ � |u− iθ|τ .

Using the fact that B ⊂ L2(Y ) and reasoning as in the proof of Proposition 4.1,

|
∫
Y

(R(e−u+i(θ−h))−R(e−u+iθ))(v((e−u+i(θ−h))− 1)dµ| � hτ |u− iθ|τ

and

|
∫
Y

(R(e−u+iθ)−R)(v(e−u+i(θ−h))− v(e−u+iθ))dµ| � hτ |u− iθ|τ .
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Let G(x) = µ(ϕ ≤ x). Proceeding as in the proof of Proposition 2.6,
∫
Y

(e(−u+i(θ−h))ϕ−
e(−u+iθ)ϕ)dµ =

∫∞
0
e−(u−iθ)x(eihx − 1)dG(x). The estimate |

∫∞
0
e−(u−iθ)x(eihx −

1)dG(x)| � hβ`(1/h) follows by the argument used in the proof of [11, Lemma 3.3.2],
ending the proof.

Corollary 4.3 Assume the setting of Proposition 4.2. Let u ∈ (0, ε), θ ∈ (−ε, ε) and
h > 0, h ≤ min{|θ|, u}. Then

‖T (e−ueiθ)−T (e−uei(θ−h))‖ � `(1/|u−iθ|)−2hτ |u−iθ|τ−2β+`(1/|u−iθ|)−2`(1/h)hβ|u−iθ|−2β.

Proof Let ∆T = T (eueiθ)− T (e−uei(θ−h)). Set

∆λ,P = (1− λ(e−ueiθ))−1P (e−ueiθ)− (1− λ(e−uei(θ−h)))−1P (e−uei(θ−h))

and

∆(I−R)−1Q = (I −R(e−ueiθ))−1Q(e−ueiθ)− (I −R(e−uei(θ−h)))−1Q(e−uei(θ−h)).

So, we can write ∆T = ∆λ,P + ∆(I−R)−1Q. Next,

‖∆λ,P‖ � ‖(1− λ(e−ueiθ))−1(P (e−ueiθ)− P (e−uei(θ−h)))‖

+ ‖P (e−uei(θ−h))
(

(1− λ(e−ueiθ))−1 − (1− λ(e−uei(θ−h)))−1
)
‖.

By Proposition 4.1, |(1− λ(e−u+iθ))−1| � `(1/|u− iθ|)−1|u− iθ|−β. This together
with Corollary 2.4 yields ‖(1− λ(e−ueiθ))−1(P (e−ueiθ)− P (e−uei(θ−h)))‖ � `(1/|u−
iθ|)−1`(1/h)hτ |u− iθ|−β. Also, by Proposition 4.1 and Proposition 4.2,

‖P (e−uei(θ−h))
(

(1− λ(e−ueiθ))−1 − (1− λ(e−uei(θ−h)))−1
)
‖ �`(1/|u− iθ|)−2`(1/h)hβ|u− iθ|−2β

+ `(1/|u− iθ|)−2hτ |u− iθ|τ−2β.

Thus,

‖∆λ,P‖ � `(1/|u− iθ|)−1`(1/h)hτ |u− iθ|−β + `(1/|u− iθ|)−2`(1/h)hβ|u− iθ|−2β

+ `(1/|u− iθ|)−2hτ |u− iθ|τ−2β.

To estimate ‖∆(I−R)−1Q‖, we compute that

‖∆(I−R)−1Q‖ � ‖(I −R(e−ueiθ))−1(Q(e−ueiθ)−Q(e−uei(θ−h)))‖
+ ‖(I −R(e−ueiθ))−1(R(e−ueiθ)−R(e−ueiθ−h))(I −R(e−uei(θ−h)))−1Q(e−uei(θ−h))‖.

By (4.2), ‖(I−R(e−ueiθ))−1‖ � `(1/|u−iθ|)−1|u−iθ|−β and ‖(I−R(e−ueiθ−h))−1‖ �
`(1/|u− i(θ− h)|)−1|u− i(θ− h)|−β � `(1/|u− i(θ− h)|)−1|u− iθ|−β. This together
with Corollary 2.4 and Proposition 2.2 implies that

‖∆(I−R)−1Q‖ �
(
`(1/|u− iθ|)−1 + `(1/|u− i(θ − h)|)−1

)
hτ |u− iθ|−β.
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Putting these together,

‖∆T‖ � `(1/|u− iθ|)−2hτ |u− iθ|τ−2β + `(1/|u− iθ|)−2`(1/h)hβ|u− iθ|−2β

+ `(1/|u− iθ|)−1`(1/h)hτ |u− iθ|−β +
(
`(1/|u− iθ|)−1 + `(1/|u− i(θ − h)|)−1

)
hτ |u− iθ|−β.

Under (H1′), β > 1/2 and τ > 1−β. Assume without loss, τ < β. Hence, 2β− τ > β
and thus

`(1/|u− iθ|)−1`(1/h)hτ |u− iθ|−β +
(
`(1/|u− iθ|)−1 + `(1/|u− i(θ − h)|)−1

)
hτ |u− iθ|−β

� `(1/|u− iθ|)−2hτ |u− iθ|τ−2β,

which ends the proof.

Proposition 4.4 [22, Proposition B.2] Let ρ ∈ (0, 1). Then∫ ∞
−∞

e−iσ

(1− iσ)ρ
dσ =

2π

e

1

Γ(ρ)
.

Remark 4.5 The above estimate is actually contained in the proof of [22, Proposi-
tion B.2], which establishes

∫∞
−∞ e

−iσ(1− iσ)−(ρ+1) dσ = 2π
e

1
Γ(1+ρ)

.

Proposition 4.6 Suppose that µ(ϕ > n) = `(n)n−β. Assume (H1′) and (H2).
Choose ε > 0 such that λ(z) is well defined for z = e−u+iθ, u ∈ (0, ε) and θ ∈ (−ε, ε).
Then for n ≥ 1 and b ∈ (0, εn),

lim
b→∞

lim
n→∞

n1−β`(n)

∫ b/n

−b/n
T (e−1/neiθ)e−inθdθ =

2π

e

1

Γ(1− β)Γ(β)
P.

Proof The proof below is standard (see, for instance, [21, Proof of Lemma 5.2]. We
recall the argument for completeness.

By (4.2),

Γ(1− β)T (e−1/neiθ) = `(1/| 1
n
− iθ|)−1(

1

n
− iθ)−βg(n, θ),

where limn→∞,θ→0 g(n, θ)→ P . Hence,

Γ(1− β)

∫ b/n

−b/n
T (e−1/neiθ)e−inθdθ =

∫ b/n

−b/n
`(1/| 1

n
− iθ|)−1(

1

n
− iθ)−βg(n, θ)e−inθdθ

= nβ−1`−1(n)

∫ b

−b

`(n)

`(n/|1− iσ|)
1

(1− iσ)β
g(n, σ/n)e−iσdσ.

Hence,

17



n1−β`(n)Γ(1− β)

∫ b/n

−b/n
T (e−1/neiθ)e−inθdθ =

(∫ b

−b

e−iσ

(1− iσ)β
dσ
)
P.

For b fixed, the DCT applies and thus,

lim
n→∞

n1−β`(n)Γ(1− β)

∫ b/n

−b/n
T (e−1/neiθ)e−inθdθ =

(∫ b

−b

e−iσ

(1− iσ)β
dσ
)
P.

By Proposition 4.4 (with ρ = β), limb→∞
∫ b
−b

e−iσ

(1−iσ)β
dσ = 2π

e
1

Γ(β)
, which ends the

proof.

Proof of Theorem 1.5 Let Γ = {e−ueiθ : −π ≤ θ < π} with e−u = e−1/n, n ≥ 1.
Choose ε > 0 such that λ(e−1/neiθ) is well defined for θ ∈ (−ε, ε). Let b ∈ (0, εn). Let
A = [−π,−ε] ∪ [ε, π].

With the above specified, we proceed to estimate Tn.

Tn =
1

2πi

∫
Γ

T (z)

zn+1
dz =

e

2π

∫ π

−π
T (e−1/neiθ)e−inθdθ =

e

2π

(∫ b/n

−b/n
T (e−1/neiθ)e−inθdθ

+

∫ −b/n
−ε

T (e−1/neiθ)e−inθdθ +

∫ ε

b/n

T (e−1/neiθ)e−inθdθ +

∫
A

T (e−1/neiθ)e−inθdθ
)

=
e

2π

∫ b/n

−b/n
T (e−1/neiθ)e−inθdθ +

e

2π
(Iε + I−ε + IA).

By Proposition 4.6, limb→∞ limn→∞ n
1−β`(n)Γ(1 − β)

∫ b/n
−b/n T (e−1/neiθ)e−inθdθ =

2π
e

1
Γ(β)

P . Hence, the conclusion will follow once we show that IA = o(1) and

limb→∞ limn→∞ n
1−β`(n)(Iε + I−ε) = 0.

We first estimate IA. Compute that

IA =
i

n

∫
A

T (e−1/neiθ)
d

dθ
(e−inθ)dθ =

1

in

∫
a

d

dθ
(T (e−1/neiθ))e−inθdθ + E(n),

where E(n) � n−1(‖T (e−1/neiεb/n) + T (e−1/neiπ)‖). By Proposition 2.2,
‖T (e−1/neiθ)‖ = O(1) for all θ ∈ A. Hence E(n) = O(n−1). Also, note
that d

dθ
(T (e−1/neiθ)) = T (e−1/neiθ) d

dθ
R(e−1/neiθ)T (e−1/neiθ). By Proposition 2.5,

‖ d
dθ
R(e−1/neiθ)‖ � n1−τ . Since ‖T (e−1/neiθ)‖ = O(1) for all θ ∈ a, we obtain that

n−1‖ d
dθ

(T (e−1/neiθ))‖ � n−τ . Putting these together, |IA| � n−τ +n−1 � n−τ . Since
τ > 1− β, we have n1−β`(n)|IA| = o(1).

Next, we estimate Iε. The estimate for I−ε follows by a similar argument. Pro-
ceeding as in the proof of [21, Lemma 5.1](see also [11]), we write

Iε =

∫ ε

b/n

T (e−1/neiθ)e−inθ dθ = −
∫ ε+π/n

(b+π)/n

T (e−1/nei(θ−π/n))e−inθ dθ.
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Hence

2Iε =

∫ ε

b/n

T (e−1/neiθ)e−inθ dθ −
∫ ε+π/n

(b+π)/n

T (e−1/nei(θ−π/n))e−inθ dθ = I1 + I2 + I3,

where

I1 =

∫ ε+π/n

ε

T (e−1/nei(θ−π/n))e−inθ dθ, I2 =

∫ (b+π)/n

b/n

T (e−1/nei(θ−π/n))e−inθ dθ,

I3 =

∫ ε

(b+π)/n

{T (e−1/neiθ)− T (e−1/nei(θ−π/n))}e−inθ dθ.

By Proposition 2.2, |I1| � 1/n. By (4.2), ‖(I −R(e−ueiθ))−1‖ � `(1/|u− iθ|)−1|u−
iθ|−β. Thus, |I2| � nβ−1`(n)nβ−1b−(β−δ), for any 0 < δ < β. Putting the above
together, n1−β`(n)Iε = n1−β`(n)I3 +O(b−(β−δ)).

Next, we estimate I3. By Corollary 4.3, for all θ ∈ ((b+ π)/n, ε)

‖T (e−1/neiθ)−T (e−1/nei(θ−π/n))‖ � `(n/|1−inθ|)−2n−τ | 1
n
−iθ|τ−2β+`(n)`(n/|1−inθ|)−2n−β| 1

n
−iθ|−2β.

Hence,

|I3| � n−τ
∫ ε

(b+π)/n

`(n/|1− inθ|)−2θτ−2βdθ + n−β`(n)

∫ ε

(b+π)/n

`(n/|1− inθ|)−2θ−2βdθ

� `(n)−2n−τ
∫ ε

(b+π)/n

θ−(2β−τ) `(n)2

`(n/|1− inθ|)2
dθ + `(n)−1n−β

∫ ε

(b+π)/n

θ−2β `(n)2

`(n/|1− inθ|)2
dθ

= `(n)−2n−τI1
3 + `(n)−1n−βI2

3 . (4.3)

Using Potter’s bounds (see, for instance, [6]), for any δ > 0,

I2
3 = n2β−1

∫ nε

b+π

σ−2β `(n)2

`(n/|1− iσ|)2
dσ � n(2β−1)

∫ nε

b+π

σ−(2β−δ)dσ.

Taking 0 < δ < 2β − 1,

`(n)−1n−β|I2
3 | � `(n)−1n−βn2β−1nδb2β−δ−1 = `(n)−1nβ−1b−(2β−1−δ). (4.4)

In what follows, we continue to estimate I1
3 considering each of the two possible

cases: i) τ ≥ 2β−1 and ii) τ < 2β−1. Recall β > 1/2 and τ > 1−β. When β > 2/3,
we assume again without loss, that τ ∈ (1 − β, 2β − 1). When β ∈ (1/2, 3/2], we
assume without loss that τ ∈ [2β − 1, β/2).

We note that cases i) and ii) above correspond to: i) β ∈ (2/3, 1) and τ ∈
(1− β, 2β − 1); ii) β ∈ (1/2, 2/3] and τ ∈ [2β − 1, β/2).

In case i), using Potter’s bounds, we obtain that for any δ′ > 0,

I1
3 �

∫ ε

(b+π)/n

θ−(2β−τ)
(

(θn)δ
′
+ (θn)−δ

′
)
dθ � nδ

′
∫ ε

(b+π)/n

θ−(2β−τ−δ′) dθ.
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If 2β − τ < 1, taking δ′ < 1 − (2β − τ), we have I1
3 � nδ

′
. If τ = 2β − 1 we have

I1
3 � n2δ′ , for any δ′ > 0. Thus, `(n)−2n−τI1

3 � `(n)−2n−(τ−2δ′). This together with
(4.3) and (4.4) yields

`−2(n)n−τ |I3| � `−2(n)n−(τ−δ′) + `(n)−1nβ−1b−(2β−1−δ),

for any 0 < δ < 2β − 1, 0 < δ′ < 1 − (2β − τ) if 2β − σ < 1 and any δ′ > 0 if
τ = 2β − 1. Since τ > 1− β, limb→∞ limn→∞ n

1−β`(n)I1
3 = 0.

It remains to estimate I1
3 in case ii). Note that in this case 2β − σ > 1. Using

Potter’s bounds, for any δ′ > 0 we have

I1
3 = n2β−τ−1

∫ nε

b+π

1

σ2β−τ
`(n)2

`(n/|1− iσ|)2
dσ � n2β−τ−1

∫ nε

b+π

1

σ2β−τ−δ′ .

Taking δ′ < 2β − τ − 1, we have `(n)−2n−τI1
3 � `(n)−2n−(2τ−2β+1)b−(2β−τ−1−δ′).

This together with (4.3) and (4.4) implies that for any 0 < δ < 2β − 1 and any
0 < δ′ < 2β − τ − 1,

|I3| � `(n)−2n−(2τ−2β+1)b−(2β−τ−1−δ′) + `(n)−1nβ−1b−(2β−1−δ).

Hence, n1−β`(n)|I3| � `(n)−1n−(τ−(1−β)−γ(2β−τ−1)−δ′(1−γ)) + n−(2β−1−δ)(1−γ). Recalling
τ ∈ [2β − 1, β/2), we have limb→∞ limn→∞ n

1−β`(n)I3 = 0.
To conclude, recall that n1−β`(n)Iε = n1−β`(n)I3 + O(b−(β−δ)). Since

limb→∞ limn→∞ n
1−β`(n)I3 = 0, we have limb→∞ limn→∞ n

1−β`(n)|Iε| = 0. By a simi-
lar argument, limb→∞ limn→∞ n

1−β`(n)|I−ε| = 0, ending the proof.

5 A simple proof of [21, Theorem 2.1]

The main advantage of our proof below is that it bypasses the issue of identifying the
Fourier coefficients in [21]. However, we recall that the coefficients of T (z), z ∈ D
coincide with the Fourier coefficients of z ∈ S1 (see the last paragraph of Subsec-
tion 1.2).

As in the setting of [21, 22], for first order theory under (H1), the assumption
B ⊂ L1(Y ) suffices. In this sense we note that

Proposition 5.1 Suppose that B ⊂ L1(Y ). Assume (H), (H1) and (H2)(i). Write
z = e−u+iθ. Then as u, θ → 0,

T (z) = `(1/|u− iθ|)(u− iθ)β(1 + o(1))

Proof As we have already seen under (H) the asymptotic of T (z) is given by the
asymptotic of 1− λ(z).
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By (2.2),1 − λ(z) =
∫
Y

(1 − e(−u+iθ)ϕ) dµ − V (z), where V (z) =
∫
Y

(R(z) −
R(1))(v(z) − v(1))dµ =

∫
Y

(zϕ − 1)(v(z) − v(1))dµ. By (4.1),
∫
Y

(1 − e(−u+iθ)ϕ) dµ =
1− dβ`(1/|u− iθ|)(u− iθ)β(1 + o(1)), as u, θ → 0.

Using the fact that B ⊂ L1(Y ), the asymptotic of `(1/|u − iθ|)−1|u − iθ|−βV (z)
can be obtained by the dominated convergence theorem. Write

`(1/|u− iθ|)−1|u− iθ|−βV (z) =

∫
Y

`(1/|u− iθ|)−1|u− iθ|−β(v(z)− v(1))(e(−u+iθ))ϕ − 1) dµ.

By Corollary 2.4 (with ρ = β), ‖v(z)− v(1)‖ � `(1/|u− iθ|)|u− iθ|β. Hence, the
integrand is bounded by C|1−e(−u+iθ)ϕ| for some C > 0, which goes to zero pointwise
as u, θ → 0. Also, since z → v(z) is Cβ in L1, the infinity norm of the integrand
is bounded by C|zφ − 1|∞ ≤ 2C, for some C > 0. By the dominated convergence
theorem, as u, θ → 0,

1− λ(e−u+iθ) = `(1/|u− iθ|)(u− iθ)β(1 + o(1)).

Recall T (z) = (1 − λ(z))−1P + (1 − λ(z))−1(P (z) − P ) + (I − R(z))−1Q(z). The
conclusion follows immdeiately from the last displayed equation, Corollary 2.4 and
Proposition 2.2.

Proposition 5.2 [21, Theorem 2.1] Suppose that B ⊂ L1(Y ) and that (H) holds
with β > 1/2. Assume (H1) and (H2). Then

lim
n→∞

n1−βTn = d0P.

Proof Put Γ = {e−ueiθ : −π ≤ θ < π} with e−u = e−1/n, n ≥ 1. Let b ∈ (0, εn).
Write

Tn =
1

2πi

∫
Γ

T (z)

zn+1
dz =

e

2π

∫ π

−π
T (e−1/neiθ)e−inθdθ =

e

2π

(∫ b/n

−b/n
T (e−1/neiθ)e−inθdθ

+

∫ −π
−b/n

T (e−1/neiθ)e−inθdθ +

∫ π

b/n

T (e−1/neiθ)e−inθdθ
)

=
e

2π
I +

e

2π
(I− + I+).

By Proposition 4.6, limb→∞ limn→∞ n
1−β`(n)Γ(1 − β)

∫ b/n
−b/n T (e−1/neiθ)e−inθdθ =

2π
e

1
Γ(β)

P .

Hence, the conclusion will follow once we show that limb→∞ limn→∞ n
1−β`(n)(I−+

I+) = 0. Now,

I+ =
i

n

∫
A

T (e−1/neiθ)
d

dθ
(e−inθ)dθ =

1

in

∫ π

b/n

d

dθ
(T (e−1/neiθ))e−inθdθ + E(n),
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where ‖E(n)‖ � n−1‖T (e−1/neib/n)‖ + n−1‖T (e−1/neinπ)‖. By Proposition 5.1,
‖T (e−1/neiθ)‖ � `−1(1/|1/n − iθ|)|1/n − iθ|−β � `−1(1/|1/n − iθ|)|θ|−β for all
θ ∈ [−π, π). Hence,

‖E(n)‖ � `(n/|1−ib|)b−βnβ−1 � `−1(n)nβ−1b−β`−1(n/|1−ib|)`(n))� `−1(n)nβ−1b−β+δ,

for any δ > 0. The last estimate above was obtained using Potter’s bounds.
Next, d

dθ
(T (e−1/neiθ)) = T (e−1/neiθ) d

dθ
R(e−1/neiθ)T (e−1/neiθ). By Proposition 2.5,

‖ d
dθ
R(e−1/neiθ)‖ � `(n)n1−β. This together with the above estimate for E(n) and

Potter’s bounds implies that for any δ, δ′ > 0,

|I+| � `(n)n−β
∫ π

b/n

|u− iθ|−2β`−2(1/|u− iθ|) dθ + `−1(n)nβ−1b−β+δ

� `−1(n)nβ−1

∫ nπ

b

σ−2β `2(n)

`2(n/|1− iσ|)
dσ + `−1(n)nβ−1b−β+δ

� `−1(n)nβ−1b−(2β−1−δ′) + `−1(n)nβ−1b−β+δ.

Hence, n1−β`(n)|I+| � b−(2β−1−δ′) + b−β+δ, for any δ > 0 and δ′ >
0. It follows that limb→∞ limn→∞ n

1−β`(n)I+ = 0. By the same argument
limb→∞ limn→∞ n

1−β`(n)I− = 0, ending the proof.

A Proof of several results used in the proof of

Lemma 2.1

Proposition A.1 and Proposition A.4 below provide similar results for different regimes
of ρ > 1.

Proposition A.1 Let M : [0,∞] → R be such that M(x) = M ∈ R for x ∈ [0, 1)
and M(x) = O(x−ρ), for all x ≥ 1 and some ρ ∈ (1, 2). For u > 0, θ ∈ (−π, π),
define

J(u, θ) :=

∫ ∞
0

e−(u−iθ)xM(x) dx

Put cM =
∫∞

0
M(x) dx. Then

(a) (u− iθ)J(u, θ) = cM(u− iθ) +O(|u− iθ|ρ).

(b) Moreover, if xM(x) has bounded variation then d
dθ

(
(u − iθ)J(u, θ) − cM(u −

iθ)
)

= O(|u− iθ|ρ−1).

Remark A.2 We notice that since u > 0, dk

dθk
Integrand(J(u, θ)) is bounded for any

k ≥ 1, so we can move the derivative(s) inside the integral. This type of argument
will be used in the proofs of several results below without further explanation.
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Proof Item (a) follows by an argument used in the proof of [22, Lemma A.4](in
estimating I2 there).

(b). Compute that

d

dθ

(
(u− iθ)J(u, θ)− cM(u− iθ)

)
= −i(J(u, θ)− cM) + i(u− iθ)

∫ ∞
0

e−(u−iθ)xxM(x) dx

(A.1)

= −i(J(u, θ)− cM) + i(u− iθ)J1(u, θ).

By (a), J(u, θ)− cM = O(|u− iθ|ρ−1). Also, the desired estimate for (u− iθ)J1(u, θ)
follows by an argument used in the proof of [22, Lemma A.4], which we provide below
for completeness.

We assume θ > 0 (since the case θ < 0 follows similarly) and consider separately
each of two possible cases: (i) 0 ≤ θ ≤ u, (ii) 0 ≤ u ≤ θ. In case (i),

|(u− iθ)J1(u, θ)| � u

∫ ∞
0

e−uxx−(ρ−1) dx = uρ−1

∫ ∞
0

e−σσ−(ρ−1) dσ � |u− iθ|ρ−1.

We turn to case (ii). By assumption M̃(x) := xM(x) = O(x−(ρ−1)) has bounded
variation. Hence, we can write M̃(x) = M̃1(x) − M̃2(x), where M̃1(x), M̃2(x) are
positive decreasing. Put y = u/θ, so y ≤ 1. Substituting σ = θx,

θJ1(u, θ) =

∫ ∞
0

e−σyeiσM̃1(σ/θ) dσ −
∫ ∞

0

e−σyeiσM̃2(σ/θ) dσ.

Since for j = 1, 2, σ 7→ e−σyM̃j(σ/θ) is decreasing for each fixed value of u and θ, we
have∫ ∞

0

e−σy cosσ M̃j(σ/θ) dσ ≤
∫ π/2

0

e−σy cosσ M̃j(σ/θ) dσ � θρ−1

∫ π/2

0

σ−(ρ−1)dσ � θρ−1.

The integral with cos replaced by sin is treated similarly. Hence, |(u− iθ)J1(u, θ)| �
|u− iθ|ρ−1, which ends the proof of (b).

Proposition A.3 Let M : [0,∞] → R be such that M(x) = M ∈ R for x ∈ [0, 1)
and M(x) = O(x−ρ), for all x ≥ 1 and some ρ > 2. For u > 0, θ ∈ (−π, π), define
J(u, θ) :=

∫∞
0
e−(u−iθ)xM(x) dx. Put cM =

∫∞
0
M(x) dx. Then

(a) (u− iθ)J(u, θ) = cM(u− iθ) +O(|u− iθ|2) and

(b) d
dθ

(
(u− iθ)J(u, θ)− cM(u− iθ)

)
= O(|u− iθ|ρ−1 + |u− iθ|2).

Proof Item (a), (b) follow by an argument used in the proof of [22, Lemma A.4] (in
estimating I2 there in the case q > 1) together with the fact that ρ > 2.

The content of the next result is similar to the content of Proposition A.1. How-
ever, the assumption of bounded variation made in Proposition A.1, (b) is not satisfied
and thus, it requires a different proof.
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Proposition A.4 For ρ ∈ (0, 1), set ∆(x) = ([x]−ρ − x−ρ). For u > 0, θ ∈ (−π, π)
define

W (u, θ) :=

∫ ∞
0

e−(u−iθ)x∆(x) dx.

Put c∆ =
∫∞

0
∆(x) dx. Then for all u > 0 and for all θ 6= 0,

(a) (u− iθ)W (u, θ) = c∆(u− iθ) +O(|u− iθ|ρ+1) and

(b)
∣∣∣ ddθ((u− iθ)W (u, θ)− c∆(u− iθ)

)∣∣∣ = O(|u− iθ|ρ).

Proof As in the previous two propositions, item (a) follows by the argument used in
the proof of [22, Lemma A.4](in estimating I2 there).

(b). Compute that

d

dθ

(
(u− iθ)W (u, θ)− c∆(u− iθ)

)
= −i(W (u, θ)− c∆) + i(u− iθ)

∫ ∞
0

e−(u−iθ)xx∆([x]) dx

= −i(W (u, θ)− c∆) + (u− iθ)W̃ (u, θ).

By (a), W (u, θ)−c∆ = O(|u− iθ|ρ). Next, we estimate W̃ (u, θ). With the convention
0−β = 0, ∆(x) = x−ρ for x ∈ [0, 1). Hence,

(u−iθ)W̃ (u, θ) = (u−iθ)
∫ ∞

1

e−(u−iθ)xx∆([x]) dx+O(|u−iθ|) = (u−iθ)W̃1(u, θ)+O(|u−iθ|).

Put {x} = x− [x] and note that

x−ρ − [x]−ρ = x−ρ − x−ρ
(

1− {x}
x

)−ρ
= −ρ {x}

xρ+1
+O

({x}2

xρ+2

)
.

Hence,

(u− iθ)W̃1(u, θ) = −ρ(u− iθ)
∫ ∞

1

e−(u−iθ)x{x}
xρ

dx+O
(
|u− iθ|

∫ ∞
1

e−ux{x}x−(ρ+1) dx
)

= −ρ(u− iθ)I1 +O(|(u− iθ)|J).

Clearly, J = O(1) and thus |u− iθ|J � |u− iθ|. It remains to estimate (u− iθ)I1.

Write −(u− iθ)I1 = −(u− iθ)
∫ 1/|u−iθ|

1
−(u− iθ)

∫∞
1/|u−iθ| = −(u− iθ)L1− (u− iθ)L2.

With respect to the first term,

|(u− iθ)L1| � |u− iθ|
∫ 1/|u−iθ|

1

x−ρ dx� |u− iθ|ρ.

We continue with the estimate for (u−iθ)L2. Recall that {x} = x−j for x ∈ [j, j+1].
Hence,

−(u− iθ)L2 = −(u− iθ)
∑

j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)xx−ρ(x− j) dx = −
∑

j>1/|u−iθ|

(u− iθ)Lj.
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Compute that

−
∑

j>1/|u−iθ|

(u− iθ)Lj =
∑

j>1/|u−iθ|

∫ j+1

j

d

dx
(e−(u−iθ)x)x−ρ(x− j)) dx =

∑
j>1/|u−iθ|

e−(u−iθ)(j+1)

(j + 1)ρ

−
∑

j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x

xρ
dx+ ρ

∑
j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x

xρ+1
(x− j) dx

=
∑

j>1/|u−iθ|

e−(u−iθ)(j+1)

(j + 1)ρ
−

∑
j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x

xρ
dx+O(|u− iθ|ρ).

Write∑
j>1/|u−iθ|

e−(u−iθ)(j+1)

(j + 1)ρ
−

∑
j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x

xρ
dx =

∑
j>1/|u−iθ|

(e−(u−iθ)(j+1)

(j + 1)ρ
−
∫ j+2

j+1

e−(u−iθ)x

[x]ρ
dx
)

−
∑

j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x
( 1

xρ
− eu−iθ

[x− 1]ρ

)
dx.

But, [x− 1]−ρ = x−ρ + b(x), where b(x) = O((x− 1)−(ρ+1)). Thus,

∑
j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x
( 1

xρ
− eu−iθ

[x− 1]ρ

)
dx =

∑
j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x

xρ
(1− eu−iθ) dx

+
∑

j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)(x−1)b(x) dx

= (1− e−(u−iθ))Q1 +Q2.

Clearly, |Q2| � |u− iθ|ρ. By the argument used in the proof of [22, Lemma A.4](in
estimating I2 there), |Q1| � |u− iθ|ρ−1. Hence, |(1− eu−iθ)Q1| � |u− iθ|ρ and thus,∣∣∣ ∑

j>1/|u−iθ|

∫ j+1

j

e−(u−iθ)x
( 1

xρ
− e−(u−iθ)

[x− 1]ρ

)
dx
∣∣∣� |u− iθ|ρ.

Altogether,

−
∑

j>1/|u−iθ|

(u− iθ)Lj =
∑

j>1/|u−iθ|

(e−(u−iθ)(j+1)

(j + 1)ρ
−
∫ j+2

j+1

e−(u−iθ)x

[x]ρ
dx
)

+O(|u− iθ|ρ).
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Now,∑
j>1/|u−iθ|

(e−(u−iθ)(j+1)

(j + 1)ρ
−
∫ j+2

j+1

e−(u−iθ)x

[x]ρ
dx
)

= −
∑

j>1/|u−iθ|

e−(u−iθ)(j+1)

(j + 1)ρ

∫ j+2

j+1

(e−(u−iθ)(x−j−1) − 1) dx

= −
∑

j>1/|u−iθ|

e−(u−iθ)(j+1)

(j + 1)ρ

∫ 1

0

(e−(u−iθ)x − 1) dx

= g(u, θ)
∑

j>1/|u−iθ|

e−(u−iθ)(j+1)

(j + 1)ρ

where g(u, θ) = O(|u− iθ|).
Finally, we use the oscillatory nature of the sums above. As in the proof of

Proposition A.1, we assume without loss θ > 0 and consider separately each of the
two possible cases: (i) 0 ≤ θ ≤ u, (ii) 0 ≤ u ≤ θ.

In case (i),∣∣∣g(u, θ)
∑

j>1/|u−iθ|

e−(u−iθ)(j+1)

(j + 1)ρ

∣∣∣� |u− iθ| ∑
j>1/|u−iθ|

e−ujj−ρ � |u− iθ|
∫ ∞

1/|u−iθ|
e−uxx−ρ dx

= |u− iθ|uρ−1

∫ ∞
0

e−σσ−ρ dσ � |u− iθ|ρ

In case (ii), we recall that [31, Theorem 2.4] (see also [6, Theorem 4.3.2] for
an improved version) shows that

∑∞
1 cos(θj)j−ρ = Cρθ

ρ−1(1 + o(1)), where
Cρ is a positive constant that depends only on ρ. By the same argument,∑

j>1/|u−iθ| e
−uj cos(θj)j−ρ � θρ−1. Hence,∣∣∣g(u, θ)

∑
j>1/|u−iθ|

e−uj cos(θj)j−ρ dx
∣∣∣� |u− iθ|θρ−1 � |u− iθ|ρ.

The sum with cos replaced with sin is treated similarly, ending the proof.

B Tail sequence for (1.1)

The following proposition is an improved version of [22, Proposition C1]. Recall that
h denotes the density for the measure µ.

Proposition B.1 Suppose that f : [0, 1]→ [0, 1] is given as in (1.1) with β = 1/α ∈
(0, 1). Let C be a compact subset of (0, 1]. Then there exists Y ⊂ (0, 1] compact with
C ⊂ Y , such that the following hold

(i) The first return function ϕ : Y → Z+ satisfies µ(ϕ > n) = cn−β + c1n
−2β +

c2n
−3β + ĉn−(β+1) + c̃(log n)n−(β+1) +H(n) where H(n) = O((log n)2n−(β+2)) +

O(n−4β) and c, c1, c2, ĉ, c̃ are real constants.

26



(ii) The first return map F = fϕ : Y → Y satisfies hypotheses (H1) and (H2) with
B taken to consist of either Hölder or BV observables.

Proof Let Y = [1
2
, 1]. Let xn ∈ (0, 1

2
] be the sequence with x1 = 1

2
and xn = fxn+1 so

xn → 0. It is well known (see for instance [20]) that xn ∼ 1
2
ββn−β and moreover that

xn = 1
2
ββn−β + O((log n)n−(β+1)). First, we claim that xn = 1

2
ββn−β + Ĉn−(β+1) +

C̃(log n)n−(β+1) + b(n), where Ĉ, C̃ are some constants (to be specified below) that
depends only on β and b(n) is such that b(n) = O((log n)n−(β+2)). The proof of the
claim builds upon previous calculations such as [16].

Put g(x) = 2αxα. Since β = 1/α, xn = 1
2
ββn−β(1 + m(xn)), where m(xn) =

O((log n)/n). So, g(xn) = 2αxαn = β/n(1 +M(xn)), where M(xn) = O((log n)/n).
Next, put d(x) = 1/g(x) and compute that

d(xn) =
1

2αxαn
= d(xn+1)(1 + g(xn+1))−α = d(xn+1)

(
1− αg(xn+1) +

α(α + 1)

2!
g(xn+1)2

)
+O(g(xn+1)3) = d(xn+1)− α +

α(α + 1)

2
g(xn+1) +O(n−2). (B.1)

It follows that d(xn+1)− d(xn) = α − α(α+1)
2

g(xn+1) + O(n−2). Summing from j = 1
to n− 1,

d(xn) = 1 + (n− 1)α− (α + 1)

2

n−1∑
j=1

1

j
+O(1).

Since
∑n−1

j=1
1
j

= log n + γ + O(1/n), where γ is the Euler constant (see, for in-

stance, [8]), we have

d(xn) = (2xn)−α = nα− (α + 1)

2
(log n) +O(1) = nα

(
1− (α + 1)

2α

log n

n
+O(1/n)

)
.

Hence,

g(xn) =
1

d(xn)
=

1

nα

(
1− (α + 1)

2α

log n

n
+O(1/n)

)−1

=
1

nα
+

(α + 1)

2α2

log n

n2
+O(n−2).

Plugging the above estimate back into (B.1) we have

d(xn+1)− d(xn) = α− (α + 1)

2

1

n
− (α + 1)2

4α

log n

n2
+O(n−2).

Summing from j = 1 to n− 1,

d(xn) = 1 + (n− 1)α− (α + 1)

2

n−1∑
j=1

1

j
− (α + 1)2

4α

n−1∑
j=1

( log j

j2
+ b(j)

)
,
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where b(j) = O(j−2). Put C = (α+1)2

4α

∑∞
j=1

log j
j2

+ b(j). By Karamata’s theorem,∑∞
n−1

log j
j2

(1 + o(1)) = logn
n

(1 + o(1)). Recall
∑n−1

j=1
1
j

= log n+ γ +O(1/n). Thus,

d(xn) = 1 + (n− 1)α− (α + 1)

2
(log n+ γ)− C +O

( log n

n

)
.

Put C ′ = 1− α− (α+1)γ
2
− C. Note that

d(xn) = nα− (α + 1)

2
log n+C ′+O

( log n

n

)
= nα

(
1− (α + 1)

2α

log n

n
+
C ′

nα
+O
((log n)

n2

)
.

Since β = 1/α and d(xn) = (2xn)−α,

xn =
1

2
ββn−β

(
1− (β + 1)

2

log n

n
+
C ′β

n
+O

( log n

n2

))−β
=

1

2
ββ

1

nβ
+
β + 1

22
ββ−1 log n

nβ+1
− ββC ′

2

1

nβ+1
+O

((log n)2

nβ+2

)
.

To end the proof of the claim put Ĉ = −1
2
ββC ′ and C̃ = β+1

22
ββ−1.

It is known that the density h ∈ C3 (this follows, for instance, from the argument
of [26, Lemma 2]) . Hence for x ∈ [1

2
, 1] we can write h(x) = h(1

2
) + h

′
(1

2
)(x − 1

2
) +

1
2!
h”(1

2
)(x− 1

2
)2 +O

(
(x− 1

2
)3
)

.

Set yn = 1
2
(xn + 1) (so fyn = xn). Then ϕ = n on [yn, yn−1], hence {ϕ > n} =

[1
2
, yn]. It follows that

µ(ϕ > n) =

∫ yn

1/2

h(x) dx =
1

2
h(

1

2
)xn +

1

8
h
′
(
1

2
)x2

n +
1

25
h”(

1

2
)x3

n +O((xn)4)

= cn−β + c1n
−2β + c2n

−3β + ĉn−(β+1) + c̃(log n)n−(β+1) +H(n),

where c = 1
4
ββh(1/2), H(n) = O((log n)2n−(β+2)) + O(n−4β) and c1, c2, ĉ, c̃ are real

constants that depend only on β and h(j)(1/2), j = 0, 1, 2. This ends the proof of (i)
for the choice Y = [1

2
, 1]. Item (i) follows since the same estimates are obtained by

inducing on Y = [xq, 1] for any fixed q ≥ 0.
Finally, it is well-known that hypotheses (H1) and (H2) are satisfied on such sets

Y (see for example [21, Section 11]) and item (ii) follows.
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