
On Young towers assoiated with in�nite measurepreserving transformationsH. Bruin∗, M. Niol†, D. Terhesiu‡July 28, 2009AbstratFor a σ-�nite measure preserving dynamial system (X,µ, T ), we formulate ne-essary and su�ient onditions for a Young tower (∆, ν, F ) to be a (measure the-oreti) extension of the original system. Beause F is pointwise dual ergodi byonstrution, one immediate onsequene of these onditions is that the DarlingKa theorem arries over from F to T . One advantage of the Darling Ka theo-rem in terms of Young towers is that su�ient onditions an be read o� from thetail behaviour and we illustrate this with relevant examples. Furthermore, any twoYoung towers with a ommon fator T , have return time distributions with tails ofthe same order.1 IntrodutionIf T is a onservative, ergodi measure preserving transformation (.e.m.p.t.) ofan in�nite measure spae (X,B, µ), then Birkho�'s Ergodi Theorem is not veryinformative about the asymptoti behavior of the ergodi sums Sn(f) =
∑n−1

k=0 f ◦T
ksine, in ontrast to the �nite measure ase, for all f ∈ L1(µ)

Sn(f)

n
→ 0 µ-a.e. as n→ ∞.In fat, as proved by Aaronson in [1, Theorem 2.4.2℄, for an in�nite .e.m.p.t. of

(X,B, µ) there are no onstants cn > 0 suh that for all f ∈ L1(µ)

Sn(f)

cn
→

∫

X
fdµ µ-a.e. as n→ ∞.Still, for ertain in�nite measure preserving transformations T of (X,B, µ), thereexist onstants an suh that for all f ∈ L1(µ), a−1

n Sn(f) onverges in distribution toa non-trivial limit (see §3.2 − §3.6 in [1℄ for a desription of the general setting andexamples).Representative systems of this kind have been found within the lass of in�nitemeasure preserving transformations with a �nite number of indi�erent �xed points
∗The support of EPSRC grant EP/F037112/1 is gratefully aknowledged, and also the hospitality ofDelft University of Tehnology
†MN gratefully aknowledges the support of NSF grants DMS 0600927 and DMS-0607345
‡DT thanks EPRS and MASCOS at UNSW and EPSRC grant EP/F031807/1 for �nanial supportand the University of Houston for hospitality. 1



or orbits (see [1, Chapter 4℄ and referenes therein; see also [3, 19, 20, 23, 24, 16,13, 12, 9℄). A standard example is the Pomeau-Manneville (PM) map. For a �xed
α ≥ 0, this map is given by

T : [0, 1] 	, T (x) = x+ x1+α (mod 1),and it has an indi�erent �xed point at 0. It is well known that T admits a uniquea..i.m. µ ≪ m (m is Lebesgue) whih is �nite for α < 1 and in�nite for α ≥ 1.In the works ited above, it has been shown that a distributional limit theorem (ofDarling Ka type) holds for PM maps for all α ≥ 1. At the threshold value α = 1(alled the barely in�nite measure ase in [3℄) it gives a weak law. In probabilistiterms this is a weak law of large numbers for α = 1: for all f ∈ L1(µ) with µ(f) 6= 0and every ǫ > 0

lim
n→∞

ν(A ∩ {x : |a−1
n Sn(f)(x) − µ(f)| ≥ ǫ}) = 0, (1)where an = n/ log n, ν is any probability measure ν ≪ µ and A ∈ B([0, 1]) with

0 < µ(A) <∞. Distributional limit theorems for transformations similar to the oneabove have been generalized to ertain in�nite measure sets at the threshold value
α = 1 in [3, 16℄. Under further onditions, distributional limit theorems for theoupation times of in�nite measure sets assoiated with transformations similar tothe one above have been obtained in [3, 16, 24℄.In this work we model in�nite measure preserving transformations via Youngtowers, derive a new version of the Darling Ka (DK) theorem and argue for itse�ient appliation in some partiular examples.Aknowledgement: We would like to thank the referee whose omments havehelped to improve the presentation of this paper onsiderably. DT also thanks OmriSarig and Roland Zweimüller for useful disussions on related topis.2 Main results and bakground reviewThe study of the ergodi properties of dynamial systems by means of indued trans-formations and tower (sky-sraper) onstrutions goes bak to Renyi, Kakutani andRohlin. Originally these were formulated for �rst return maps TE(x) = TϕE(x)(x)and �rst return times ϕE(x) = min{j ≥ 1 : T j(x) ∈ E}, whenever de�ned. How-ever, return times R that are not neessarily �rst return times an be used as well,and makes the method more widely appliable. Young in [17, 18℄ gave an axiomatiapproah, introduing onditions on distortion in terms of separation times, see(YT6) below. It is her approah that we will follow in this paper, see Setion 3 fordetails. Our main aim in this work is to formulate neessary and su�ient onditionsthat ensure that the invariant measure of the tower system projets to the σ-�niteinvariant measure of the original system. Building on the results of Zweimüller [21℄we show the following:Theorem 2.1. Let T be a non-singular, ergodi transformation of (X,B,m) with a
σ-�nite invariant measure µ ≪ m. Suppose that T has a Young tower desription
(∆,B(∆), F,m′) with base map (∆0, T

R,m0) and ∫

Rdm0 = ∞ and fator map
π : ∆ → X. Furthermore, let ν ≪ m′ be an F -invariant measure.Then µ = π∗ν (up to a multipliative onstant) if and only iffor every set E ⊆ ∆0, 0 < π∗ν(E) <∞ and for induing time

τ : E → N given by (TR)E = (TE)τ we have ∫

E τdm <∞.
(2)2



We emphasize that TE and (TR)E are the �rst return maps to E under T and
TR respetively; if TR happens to be the �rst return map to ∆0, then τ ≡ 1 and (2)holds trivially. If a YT satisfying (2) is found, it is immediate that F and hene Tis pointwise dual ergodi and ∆0 is a Darling Ka set for the Young tower (∆, F ),see Lemma 4.5. To state further onsequenes of the above theorem, we �rst reallsome important tools of in�nite ergodi theory.2.1 Prerequisites from in�nite ergodi theoryNotation. We write an ∼ bn if an

bn
→ 1 as n → ∞ and an ∝ bn if an

bn
→ c as

n → ∞ for some 0 < c < ∞. In the latter ase we all the sequenes (an) and
(bn) asymptotially equivalent. In�nite σ-�nite measures are only determined up toa positive multipliative onstant, and this means that some limits are only takenup to a multipliative onstant, see e.g. Remark 2.2 and Proposition 2.5 below.A funtion a : (c0,∞) → (0,∞) (or a sequene interpreted as t 7→ a[t]) is slowlyvarying at ∞ if a is Borel measurable and a(ct)

a(t) → 1 as t → ∞. A funtion b :

(c0,∞) → (0,∞) is regularly varying at ∞ with index γ, denoted as b ∈ Rγ , if
b(t) = tγa(t) with a(t) slowly varying at in�nity.When T is a .e.m.p.t. of the (σ-�nite) in�nite measure spae (X,B, µ), distributionalharaterizations of T are often given in terms of a referene set Y of �nite measure,for instane Darling Ka type theorems in [1, 16, 23℄. Essentially, Y is a andidatefor being a suitable referene set if its wandering rate

wn(Y ) := µ(∪n−1
k=0T

−kY ) =
n−1
∑

k=0

µ(Y ∩ {ϕY > k})belongs to Rγ for some γ ∈ [0, 1] (see for instane [3, 16, 23℄).The wandering rate (wn(Y )) depends on the set Y . However, for some transfor-mations T of (X,B, µ) there are sets A, 0 < µ(A) <∞ of minimal wandering rate inthe sense that for all B ∈ B, 0 < µ(B) <∞, we have lim infn→∞wn(B)/wn(A) ≥ 1.In this situation wn(A) is a harateristi of the system (X,T, µ); is alled the wan-dering rate of the system and denoted as wn(T ). One suh situation is given bypointwise dual ergodi (p.d.e.) transformations, see §3 in [1℄. A onservative ergodimeasure preserving transformation T of (X,B, µ) is alled pointwise dual ergodi ifthere is a positive sequene {an(T )}n≥1, alled return sequene, suh that for all
f ∈ L1(µ)

1

an(T )

n−1
∑

k=0

T̂
k(f) →

∫

X
fdµ, µ-a.e. as n→ ∞. (3)Here T̂ : L1(µ) 	 is the assoiated dual operator de�ned by

∫

X
T̂f · gdµ =

∫

X
f · (g ◦ T )dµfor f ∈ L1(µ) and g ∈ L∞(µ). Many proofs in the literature on pointwise ergodiduality require that ∫

X fdµ > 0, and we will make this assumption throughout thispaper.Remark 2.2. As a onsequene of [1, Theorem 3.3.1 and Proposition 3.7.1℄ fora p.d.e. transformation, the sequene an(T ) in (3) above is uniquely determinedup to asymptoti equivalene, just as the σ-�nite measure is determined up to a3



multipliative onstant. One mathing hoies of an(T ) and µ are made, (3) holdsfor all f ∈ L1(µ).The set A ∈ B, 0 < µ(A) < ∞ is a Darling Ka set for T if the onvergene in(3) takes plae uniformly almost everywhere on A for the indiator funtion f = 1A.The Darling-Ka (DK) property is diretly linked to pointwise dual ergodiity.More preisely, aording to [1, Proposition 3.7.5℄, if T is a .e.m.p.t. of (X,B, µ)and T has a Darling-Ka set, then T is pointwise dual ergodi.Both the return sequene and the wandering rate of a p.d.e. transformation anbe obtained diretly by estimating these quantities for its orresponding measuretheoreti extensions.De�nition 2.3. Given that (X ′,B′, µ′, T ′) and (X,B, µ, T ) are measure preservingtransformations, T ′ is said to be a measure theoreti extension of T if there exist amap Θ : X ′ → X and some c > 0 suh that
Θ−1B ⊂ B′, Θ ◦ T ′ = T ◦ Θ and µ′(Θ−1A) = cµ(A) for all A ∈ B.In this ase the map T is said to be a fator of T ′ with fator map Θ.Aording to [1, Proposition 3.7.6℄ and [15℄, any fator T of a p.d.e. transforma-tion T ′ is also p.d.e. Furthermore, wn(T ′) ∝ wn(T ) and an(T ) ∝ an(T

′).As proved in [1℄, in some ases an estimate of the wandering rate wn(T ) of ap.d.e. transformation gives an immediate estimate of its return sequene an(T ).Lemma 2.4. [1, Proposition 3.8.7℄ Let T be a p.d.e. transformation and supposethat A is a Darling-Ka set suh that wn(A) ∈ Rγ for some γ ∈ [0, 1]. Then
an(T ) ∝

n

wn(A)
∈ R1−γ .The sequene (Un)n≥1 on X is said to onverge strongly in distribution to a ran-dom variable U written as Un =⇒L(µ) U , if Un =⇒P U for all probability measures

P ≪ µ.A DK type theorem for p.d.e. transformations (see also [16℄ for a di�erent proofof the same statement) reads as followsProposition 2.5 (Corollary 3.7.3, [1℄). If T is a pointwise dual ergodi transforma-tion of (X,B, µ) and the return sequene an(T ) ∈ Rγ for some γ ∈ [0, 1] then forevery f ∈ L1(µ) with µ(f) > 0

1

an(T )

n−1
∑

k=0

f ◦ T k =⇒L(µ) Yγ

∫

X
fdµ.where Yγ the normalized Mittag-Le�er distribution of order γ.2.2 The Darling-Ka Theorem and tail behavior.After establishing the p.d.e. property of the Young tower map F (see Lemma 4.4below and its proof), we show that one onsequene of Theorem 2.1 (together withresults realled in the previous setion) is the following version of the DK theorem:Corollary 2.6. Suppose that (X,B, T,m) and (∆,B(∆), F,m′) satisfy the ondi-tions (2) of Theorem 2.1. Let ν be the F -invariant measure and let µ = π∗ν. If

m0({R > n}) ∈ R−β for some β ∈ [0, 1], then:4



i1) for all f̂ ∈ L1(ν), ν(f̂ ) 6= 0, we have SF
n (f̂)
an

=⇒L(ν) Yβν(f̂);i2) for all f ∈ L1(µ), µ(f) 6= 0, we have ST
n (f)
an

=⇒L(µ) Yβµ(f),where an ∈ Rβ and Yβ is a random variable distributed aording to the Mittag-Le�er distribution.One interesting onsequene of Theorem 2.1 onerns the asymptoti tail be-havior of the YTs assoiated with in�nite measure preserving transformations thathas no analog in the �nite measure ase. This result, whih provides a version of[1, Proposition 5.4.5℄ formulated in terms of renewal sequenes for general Markovtowers, states:Corollary 2.7. Let T be a non-singular, ergodi transformation of (X,B,m) andassume that T admits an in�nite, σ-�nite invariant measure µ ≪ m. Suppose that
T admits two Young towers (∆1,B(∆1), F1,m

′
1) with base map (∆01

, TR1 ,m01
) and

(∆2, B(∆2), F2,m
′
2), respetively with base map (∆02

, TR2 ,m02
).If the base map of eah tower satis�es the onditions (2) of Theorem 2.1 andif m01

({R1 > n}) ∈ R−β for some β ∈ [0, 1], then m02
({R2 > n}) ∈ R−β. Inpartiular, if m01

({R1 > n}) ∝ n−β for some β ∈ (0, 1], then
m01

({R1 > n}) ∝ m02
({R2 > n}) ∝ n−β.Young towers an be found for many σ-�nite measure preserving systems in anydimension, also when no a priori Markov partition is available. Due to the Markovstruture of the YT, pointwise dual ergodiity (whih is, in general, hard to hek)of these systems an be immediately established via [1, Propositions 3.7.5 and 3.7.6℄or [2℄. Furthermore, as Corollary 2.6 establishes, su�ient onditions for the DKtheorem are read o� diretly from the tail behavior of the return time sequene.Previously, Zweimüller proved the p.d.e. property for in�nite measure preservingpieewise monotone interval maps with indi�erent �xed points in [20℄ that are notMarkov. He used a �rst return map TY to an interval Y that is bounded awayfrom the neutral �xed points. As TY has no Markov partition, he built a anonialMarkov extension (Hofbauer tower) over (Y, TY ) to establish and analyze the TY -invariant absolutely ontinuous measure.1 Alternatively, as observed in [7℄, well-hosen �rst return maps within the anonial Markov extension of an interval map

(I, T ) produe an indued Markov map over (I, T ), for whih a Young tower an bebuilt. From either approah one an onlude that (I, T ) is a pointwise dual ergoditransformation w.r.t. its σ-�nite invariant measure µ.2 In order to establish Darling-Ka type theorems further spei� information about the the map in question isrequired. More preisely, one needs to establish the regular variation of the returnsequene an(T ), whih is a neessary ondition (see e.g. [25℄). We notie that forthe lass of maps onsidered in [20℄, the regular variation of an(T ) an be veri�edusing partiular properties of the original map and not of the extension.The p.d.e. property in the DK theorem an sometimes be replaed by other easierto hek onditions (see [16, 23℄) and in this sense onsidering a speial extensionthat establishes this property beomes needless.We notie that Zweimüller's version of the DK theorem [23, Theorem 2.1℄ is moregeneral and overs ases that annot be overed by earlier the version [16, Theorem1Proving �niteness of this measure requires detailed information of the map T .2However, there are (logisti) maps for whih µ(Y ) = ∞ for every nondegenerate interval Y , see [4℄;hene Darling-Ka sets, if they exist, must be more ompliated than intervals in this ase.5



1℄. However, in both versions, the regular variation (with some index β ≤ 1) ofthe wandering rate of a speial referene set seems to be essential. This regularlyvarying ondition is not always easy to hek. In Setion 5 we onsider an examplebased on Example 7.1 in [16℄, where the regular variation of the wandering rateof the speial referene set Y (as de�ned in [16℄) is nontrivial to establish via themethods of [16, 23℄. As we argue in Setion 5, this example an be easily dealt withvia Corollary 2.6.3 Young towers with non-integrable return timeLet N = {0, 1, 2, 3, 4, . . . } and N
∗ = {1, 2, 3, 4, . . . }. A transformation (X,B, T,m)is non-singular w.r.t. m if T is m-measurable and m(A) = 0 implies m(T−1A) = 0for all A ∈ B.Suppose T : X → X is an ergodi non-singular transformation with respet to areferene measurem (m is not neessarily invariant). A Young Tower for (X,B, T,m)is a quartet (∆,B(∆), F,m

′

) with the following properties:(YT1) There exist a set ∆0 ⊆ X with 0 < m(∆0) < ∞ and a ountable partition
P0 := {∆0,i}i∈N of ∆0 with m(∆0,i) > 0 for eah i. Let m0 := m|∆0

.(YT2) There is a return time funtion R : ∆0 → N
∗ whih is onstant on eah ∆0,i,

R|∆0,i
= Ri and g.c.d.{Ri} = 1. We also assume that TRi(∆0,i) = ∆0 for all i.(YT3) The tower ∆ over T is the set

∆ := {(y, l) ∈ ∆0 × N : 0 ≤ l < R(y)}with partition P := {∆l,i} where ∆l,i = {(y, l) : y ∈ ∆0,i, l < R(y)}.(YT4) The dynamis F : ∆ 	 on the tower is given by
F (y, l) =

{

(y, l + 1), if R(y) > l + 1,

(TR(y), 0), otherwise.The projetion
π : ∆ → X, π(y, l) = T lyde�nes a semi-onjugay T ◦ π = π ◦ F .(YT5) The measure m′ on ∆ is obtained by opying m0 on eah level, i.e., m′ :=

m0×dl where dl is a ounting measure. Notie thatm′|∆0
= m0 andm′(∆l,i) =

m0(∆0,i).(YT6) The partition P := {∆l,i} is a generating m′-measurable partition. For x, y ∈
∆0, let

s(x, y) = min{n ≥ 0 : (FR)n(x), (FR)n(y) lie in distint elements of P}be the separation time of x and y. There exist onstants C > 0 and 0 < θ < 1suh that for all x, y ∈ ∆0,i and all i
∣

∣

∣
log

dm0

dm|∆0,i
◦ FR

(x) − log
dm0

dm|∆0,i
◦ FR

(y)
∣

∣

∣
≤ Cθs(F

R(x),FR(y)).
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This axiomati struture was introdued by L.-S. Young in [17, 18℄ to studystatistial properties of a (probability measure preserving) non-uniformly hyperbolisystem, by isolating the uniformly hyperboli system FR : ∆0 → ∆0 and using thestruture of the tower and the height funtion R to make statements about thesystem T : X → X.If the return funtion R is integrable w.r.t. m, then F admits an exat invariantprobability measure ν equivalent to m′ (see the proof of [18, Theorem 1℄). The mea-sure µ = π∗ν is then an invariant probability measure on (T,X) whih is absolutelyontinuous with respet to m. Note that π∗ν is neessarily a �nite a..i.m. for T .Furthermore, statistial properties of T an be inferred from those of F (see forinstane §6 and §7 in [18℄).To study in�nite measure preserving transformations (X,T, µ) (in partiular, toobtain distributional limit theorems for T ) using properties of the orrespondingtower (∆, F,m), further lari�ation about the relationship between the T -invariantand F -invariant measures is required.3.1 σ-�nite measures for FIn this setion we formulate a partial version of [18, Theorem 1℄ for the ase of anon-integrable R, see [18, �5℄ for a omplete version. A non-singular transformation
(X,T, α), where α is a generating measurable partition, is said to be Markov ifi) T satis�es the Markov property, i.e., m(TA∩B) > 0 ⇒ B ⊆ TA (mod m) for all
A,B ∈ α, andii) T is loally invertible, i.e., for all A ∈ α,m(A) > 0, T : A → TA is one-to-oneand T−1 : TA→ A is measurable.A Markov map (X,B,m, T, α) is aperiodi if for all A,B ∈ α, there exist an N ∈ Nsuh that m(A ∩ T−nB) > 0 for all n ≥ N .Proposition 3.1. Let (∆, F,m′) be a YT for some non-singular dynamial system
(X,T,m). Let P = {∆l,i} be the partition of ∆ desribed above. If ∫

Rdm0 = ∞then1. F admits an in�nite, but σ-�nite invariant measure ν ≪ m′ suh that dν
dm′ isbounded and bounded away from zero.2. The system (∆,B(∆), F,m′,P) is aperiodi.Proof. This proof is based on that of [18, Theorem 1℄.

i) S �nite FR-invariant measure ν0 ≪ m|∆0
on ∆0 with dν0

dm0
bounded andbounded away from 0. is obtained, exatly as in the ase of integrable R, i.e., usingan argument based on the Arzela-Asoli Theorem (see the proof of [18, Theorem 1℄).The measure ν(A) :=

∑∞
l=0 ν0(F

−lA ∩ {R > l}) is F -invariant, absolutely on-tinuous with respet to m′ and σ-�nite invariant. This measure is not �nite sine
∫

Rdm0 = ∞ and thus ν(∆) = ∞.
ii) It is lear that (∆,B(∆), F,m′,P) is a Markov map. Aperiodiity followsfrom g.c.d.{Ri} = 1 by the standard argument, whih we reall here for omplete-ness. Sine 1∆0

(x)R(x) = 1∆0
(x)ϕ∆0

(x) for all x and g.c.d.{Ri} = 1 we have that
g.c.d.{ϕ∆0

(x) : 0 < 1∆0
(x)ϕ∆0

(x) < ∞} = 1. Thus, for all [A] ∈ P, there existan N ∈ N suh that [A] ∩ F−n(∆0) 6= ∅ for all n ≥ N . Sine we also know thatfor all B ∈ P, there exist N ′ ∈ N suh that ∆0 ∩ F−N ′

([B]) 6= ∅, the aperiodiityfollows. 7



If in the setting of this proposition, ∫

Rdm0 <∞, then the resulting F -invariantmeasure ν ≪ m′ is �nite, and µ = (
∫

R dν
dm′m0)

−1π∗ν is an absolutely ontinuous
T -invariant probability measure.If ∫

Rdm0 = ∞, then sine ν is always σ-�nite, the measure π∗ν is still anabsolutely ontinuous T -invariant measure for T . This is an immediate onsequeneof the fat that ν ≪ m is invariant for F; see also [21, Proposition 1.1℄ for therelationship between the invariant measures of a general indued transformation TRand that of the original system. However, it is not always true that π∗ν is a σ-�nitemeasure for T .Further onditions are required for a anonial link between the T -invariant mea-sure and the projetion of F -invariant measures.3.2 σ-�nite measures for TIn this setion we give onditions under whih the σ-�nite measure ν on the YTprojets to a σ-�nite measure µ = π∗ν on (X,T ). We start with example showingthat this is not automati: the YT onstrution an produe an in�nite T -invariantmeasure whih is not σ-�nite, if a non-integrable return time funtion is suitablyhosen (see also a similar Example 2.2 in [21℄).Example 1. Let T : [0, 1] → [0, 1] be the doubling map T (x) = 2x mod 1.The ountable partition {In}, where In = ( 1
2n+1 ,

1
2n ] is Markov for T . Subdivideeah interval In into 22n intervals of equal length and all them In,j. It follows that

m(In,j) = 1/2n+2n and ∑

jm(In,j) = m(In) = 1/2n.Let ∆0 = (0, 1] and onsider the ountable partition {∆0,i} := {In,j}. De�ne
R : ∆ → N suh that R|In,j

= n + 2n. This hoie gives TR(In,j) = ∆0 and thus
(Y T1) and (Y T2) are veri�ed. Notie that (Y T6) is trivially satis�ed for m0 := mbeause T is expanding and linear on eah branh. Furthermore, it is obvious thatthe TR-invariant measure is exatly m. Thus, one obtains the exat form of thetower F by applying (Y T3), (Y T4) and (Y T5). Also, sine ∑

jm(In,j) = 1/2n, onehas
∫

Rdm =
∑

n

∑

j

R|In,j
m(In,j) =

∑

n

(n+ 2n)
∑

j

m(In,j) =
∑

n

n+ 2n

2n
= ∞.So, we are in the non-integrable ase. By Proposition 3.1 we know that F admitsan in�nite, but σ-�nite invariant measure ν ≪ m given by ν(A) :=

∑∞
l=0m(F−lA∩

{R > l}).Sine F−l ◦ π−1 = π−1 ◦ T−l
1 , by projeting bak with π we have

π∗ν(E) = ν(π−1E) =
∑

l≥0

m({R > l}) ∩ F−lπ−1E)

=
∑

l≥0

m(π−1({R > l}) ∩ T−lE))

=
∑

l≥0

m({R > l} ∩ T−lE) (4)and thus π∗ν([0, 1]) = ∞. It is always the ase that the measure µ := π∗ν isinvariant for T and µ ≪ m. However, in this partiular ase the measure µ annotbe σ-�nite sine already Lebesgue measure m is ergodi and T -invariant, and everypair of equivalent σ-�nite invariant ergodi measures di�er by a �nite multipliativeonstant. 8



The example given above shows that when the return funtion is non-integrable, theaxiomati struture of the tower is not enough to guarantee that the measure π∗νis σ-�nite and thus if one wants to use YT onstrutions to study in�nite measurepreserving transformations, then some further onstraints are required.If R is the �rst return time of T to ∆0, i.e., TR = Tϕ∆0 , then the measure π∗νis always σ-�nite as a onsequene of [14℄, see also [1, 20, 21℄. Indeed, the expliitformula
µ(E) :=

∑

n≥0

ν0(T
−nE ∩ {ϕ∆0

> n}) (5)for ν0 = ν|∆0
shows that the sets X \ ∪kT

−k(∆0) and T n({φ∆0
) > n}), n ≥ 0,form a ountable partition of X into sets of �nite measure. Conversely, if µ≪ m is

T -invariant then ν0 := µ|∆0
is T∆0

-invariant.A standard example of an in�nite m.p.t. that an be modeled by a YT by taking
R as the �rst return time of T to ∆0 is the PM map (with α ≥ 1) mentioned in theintrodution, the onstrution being idential to the �nite ase (given by α < 1).Another well-understood non-integrable R ase is given by the lass of trans-formations (T,X,m) for whih the base tower map (TR,∆0,m0) an be obtainedby letting R be the �rst passage time of T to some set A with T (A) = ∆0, i.e.,
τ(x) := 1 + min{n ≥ 0 : T n(x) ∈ A}. As proved by Shweiger (see e.g. [14, 21, 1℄)the map T τ is similar to Tϕ∆0 (that is, they have a ommon measure theoreti exten-sion), whih implies that if T τ admits a probability invariant measure ν0 ≪ m0 then
Tϕ∆0 admits a probability invariant measure ν̃0 ≪ m0 and there exist Θ : ∆0 → Xand c > 0 suh that

Θ−1(∆0 ∩ B(X)) ⊂ B(X),Θ ◦ Tϕ∆0 = T τ ◦ Θ and ν̃0(Θ
−1A) = cν0(A) (6)for all A ∈ B(X). As a onsequene,

π∗ν(E) = ν(π−1E) =
∑

l≥0

ν0({τ > l} ∩ F−lπ−1E)

=
∑

l≥0

ν0(π
−1({τ > l} ∩ (T̃ τ )−lE)

=
∑

l≥0

ν0({τ > l} ∩ (T̃ τ )−lE). (7)Therefore, the last equation is exatly the σ-�nite measure of (5) and thus, π∗νis σ-�nite.Example 2. We onsider the Farey map given by T : [0, 1] → [0, 1] with
T (x) :=

{

T1(x) = x
1−x , if x < 1/2

T2(x) = 1−x
x , if x ≥ 1/2Let m denote Lebesgue measure. There exists a ountable Markov partition α =

{An}n≥0, where An = ( 1
n+1 ,

1
n ]. Take A = A1 = (1

2 , 1] and ∆0 = T (A). Theninduing on A w.r.t. �rst passage time τ yields the Gauss map G(x) = 1
x − ⌊ 1

x⌋,see e.g. [11℄, for whih good distortion properties are well known. From here on,the tower onstrution is standard. Take ∆0 := (0, 1] and let R(x) := τ(x) for all
x ∈ ∆0. Let {∆0,i} := {A0}n≥0. It is easy to see that (YT1) and (YT2) hold. Wean use standard arguments (see e.g. [11℄) to onlude that for all x, y ∈ ∆0,i andfor all i

∣

∣

∣

∣

log
(T τ )′(x)

(T τ )′(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

log
G′(x)

G′(y)

∣

∣

∣

∣

≤
C

D
θs(x,y)9



where θ = 1/2 and s(x, y) is the separation time w.r.t. T τ . Thus, taking m0 := m,(YT6) is satis�ed. The tower onstrution is ompleted by applying (YT3), (YT4)and (YT5), whih give the exat form of F . Sine τ is the �rst passage time, (7)guarantees that π∗ν is σ-�nite.Neessary and su�ient onditions for when a TR-invariant measure orresponds to a
σ-�nite T -invariant measure (via formula (8) below) in the ase of a general induedmap TR with non-integrable R an be obtained based on results of Zweimüller, [21℄.For larity of exposition, we provide these results below. To avoid onfusion lateron, when we apply these results to the ontext of YTs, we will state them keepingour notation TR : ∆0 → ∆0 even though in [21℄, R and ∆0 do not need to behosen so that they produe a YT (∆,B(∆), F,m′) for the original transformation
(X,B, T,m). Namely, [21℄ works with the following general setting:The setting of [21℄. Let (X,B, T,m) be a nonsingular transformation. For anarbitrary set ∆0 ⊆ X, m(∆0) > 0, the measurable funtion R : ∆0 → N

∗ is a generalinduing time (mod m) for T on ∆0, if it is �nite m-a.e. and TRx := TR(x)x ∈ ∆0for m-a.e. x ∈ ∆0. Hene TR is a nonsingular transformation of (∆0,B(∆0),m0),where m0 := m|∆0
and B(∆0) = {A ∈ B : A ⊂ ∆0}. (This is now more generalthan the YT setting beause we do not assume that TR(∆i) = ∆0 or the distortiononstraint of (YT6).) Given any measure ν̃ on ∆0, a new T -invariant measure on

(X,B) an be de�ned as follows:
R×T ν̃(A) :=

∑

l≥0

ν̃({R > l} ∩ T−lA). (8)The work of [21℄ provides an answer for the following two questions:(i) The original liftability problem, i.e., given that µ is a σ-�nite invariant measurefor T , is there a TR-invariant measure ν̃ ≪ µ suh that µ = R×T ν̃?(ii) The inverse liftability problem, i.e., given that ν̃ ≪ m0 is TR-invariant, is themeasure R×T ν̃ a σ-�nite invariant measure for T ?We will onsider Zweimüller's results on the inverse liftability problem in theontext of YTs. We reall the following:Lemma 3.2. [21, Lemma 4.1℄ Let (X,B, T,m) be a nonsingular transformation.Let E ⊆ ∆0 ⊆ X, m(E) > 0. Let ρ be an induing time for T on E, let R be aninduing time for T on ∆0 and let ψ be an induing time for TR on E suh that
ρ = Rψ :=

∑ψ−1
k=0 R ◦ (TR)k. This implies that T ρ = (TR)ψ. Moreover, let ν̃ ≪ mbe a measure (not neessarily TR-invariant) on (∆0,B(∆0)). Then

ρ×T ν̃ = R×T (ψ ×TR ν̃).Fat 3.3. As observed in [21℄, the �rst return map of TR to some set E ∈ B(∆0),
m(E) > 0, an be represented as T ρ = (TR)E = (TE)τ , where ρ : E → N and
τ : E → N are general induing times for T and TE, respetively. We notie that
(TR)E = (TR)ϕ

R
E , where ϕRE(x) := min{n ≥ 1 : (TR)n(x) ∈ E}. Also, the induingtime ρ an be equivalently represented as

ρ(x) =

ϕR
E

∑

k=0

R ◦ (TR)k and ρ(x) = ϕE,τ :=

τ
∑

k=0

ϕE ◦ (TE)k.10



In the ontext of YTs we have brie�y mentioned that the integrability of thereturn time is a su�ient ondition for the inverse liftability problem. The resultbelow says that this ondition is also su�ient for the original liftability problemand it is already well known.Lemma 3.4. ([21, Theorem 1.1℄) Let (X,B, T, µ) be an e.m.p.t. and let τ be ageneral induing time for T on E ∈ B, µ(E) > 0. If ∫

E τdµ < ∞, then T τ has aninvariant measure ν satisfying µ = τ ×T ν.The next two lemmas by Zweimüller lead up to the main result of this setion.Lemma 3.5. ([21, Proposition 4.1℄) Let T be .e.m.p.t. of the σ-�nite measurespae (X,B, T, µ). Let R be an induing time for T on ∆0 ⊆ X, 0 < µ(∆0) < ∞.Suppose that E ∈ (∆0,B(∆0)), µ(E) > 0 with (TR)E = (TE)τ . Then
ν̃ satis�es µ = R×T ν̃if and only if

ν̂ satis�es µ|E = τ ×TE
ν̂.If one of the two measures ν̃ and ν̂ exists (and thus both) then ν̂ = ν̃|E or equivalently

ν̃ = (ϕRE) ×TR
ν̂.Lemma 3.6. [22, Proposition 1℄ Let T be a measurable transformation (X,B) andlet E ∈ B. Let ρ and τ be induing times for T and TE on E suh that T ρ = (TE)τ .Moreover, let ν̃ be a measure on E. Then

ρ×T ν̃(E) =

∫

E
τdν̃.Equipped with the above, we an proeed toProof of Theorem 2.1. First, we observe that by Proposition 3.1 the F -invariantmeasure ν ≪ m′ is σ-�nite. Then, under the assumptions of the proposition, equa-tion (4) holds and thus, π∗ν = R ×T ν0. By the same assumptions, (TR,∆0, ν0) isan ergodi transformation preserving the probability measure ν0 ≪ m.Let E ⊆ ∆0 and onsider the �rst return time of TR to E. By Fat 3.3 we may write

T ρ = (TR)E = (TE)τ for some measurable funtions ρ : E → N and τ : E → N. Let
ν̃E = ν0|E be a �nite measure on E.By Lemma 3.2 applied to T ρ = (TR)E we have

ρ×T ν̃E(A) = R×T (ϕRE ×TR ν̃E)(A). (9)On the other hand, another appliation of Lemma 3.2 to T ρ = (TE)τ gives
ρ×T ν̃E(A) = ϕE ×T (τ ×TE

ν̃E)(A). (10)Sine µ ≪ m (by assumption) and ν0 ≪ m (whene ν̃E ≪ m), Lemma 3.5 impliesthat
ν0 is a solution for µ = R×T ν0if and only if

ν̃E is a solution for µ|E = τ ×TE
ν̃E.In this ase, ν0 = (ϕRE) ×TR

ν̃E, whih further implies that11



µ = R×T ν0 = R×T (ϕRE ×TR ν̃E). (11)Therefore, if ν̃E is a solution for µ|E = τ ×TE
ν̃E (or equivalently if ν0 is a solutionfor µ = R×T ν0), then (9), (10) and (11) imply that

µ = R×T ν0 = R×T (ϕRE ×TR ν̃E) = ρ×T ν̃E = ϕE ×T (τ ×TE
ν̃E) (12)We now take a look at the �nite e.m.p.t. (TE , E, µ|E) (the ergodiity of TE followsfrom our assumption that T is ergodi). Reall that τ is an induing time for TE on

E. Therefore, if ∫

E τdm <∞, then by Lemma 3.4, ν̃E satis�es µ|E = τ ×TE
ν̃E and

(TE)τ has a (unique) �nite invariant measure ν̃E ≪ m. By our disussion above,this further implies that ν0 satis�es µ = R ×T ν0, whih proves the �if� part of theproposition.Conversely, assume that there exist E and τ as above suh that ∫

E τdm = ∞.By Lemma 3.6 we have
ρ×T ν̃E(E) =

∫

E
τdν̃E =

∫

E
τdm = ∞.Suppose that ν̃E is a solution for µ|E = τ ×TE

ν̃E. But then the above equationtogether with (12) implies
π∗ν(E) = R×T ν0 =

∫

E
τdm = ∞whih ontradits the hypothesis and we are done.Remark 3.7. As µ is σ-�nite, there is E ∈ B suh that 0 < µ(E) < ∞ and bythe proof of the proposition above, we know 0 < π∗ν(E) < ∞. Thus the aboveproposition implies that if µ = π∗ν then there exists a set E ⊆ ∆0, m(E) > 0 with

τ : E → N given by (TR)E = (TE)τ suh that ∫

E τdm < ∞. This would beome asu�ient ondition as well if we also assume that the induing time ρ is de�ned and�nite π∗ν-a.e., sine this would guarantee that ⋃

n≥0 T
−nE = X mod π∗ν and thusthat π∗ν is σ-�nite.4 Pointwise dual ergodiityTo prove Corollary 2.6 we only need to establish the p.d.e. property for the towermap F . Then the result follows immediately from Theorem 2.1, an estimate of thewandering rate wn(F ) together with Proposition 3.7.5 in [1℄ and Proposition 2.5.Corollary 2.7 follows by a similar argument together with the following standardresults on regularly varying funtions (sequenes).Proposition 4.1 (Karamata's Theorem [5℄). The funtion a(t) is slowly varyingand loally bounded if and only if for any onstant c:

•
∫ x
c t

γa(t)dt ∼ xγ+1

γ+1 a(x), if γ > −1

•
∫ ∞
x tγa(t)dt ∼ xγ+1

|γ+1| a(x), if γ < −1Furthermore, the following theorem gives an exat haraterization of funtions(sequenes) that produe regularly varying funtions (sequenes):12



Proposition 4.2 (Monotone Density Theorem [5℄). Let U(x) =
∫ x
0 u(y)dy andsuppose U(x) ∼ xγa(x) for some γ ∈ R and funtion a ∈ R0. If u is monotone,then

u(x) ∼ γxγ−1a(x).4.1 Pointwise dual ergodiity for FIn the following we show that a YT is p.d.e. under a less restritive ondition than(YT2) formulated in Setion 3. That is, we replae the previous YT2 with:(YT2') There is a return time funtion R : ∆0 → N
∗ whih is onstant on eah ∆0,i. Wealso assume that TRi(∆0,i) is a union of ∆0,k's and infi∈Nm0(T

Ri(∆0,i)) > 0.In order to obtain good properties of the F -invariant measure, under the weaker(YT2') above, we need the following extra-assumption, (see also [8℄ for obtainingestimates of the orrelation deay on towers via one tehniques under (YT2')):(YT7) (∆,B(∆), F,m′) is aperiodi.We �rst reall the following onepts and results. Let (X,B,m, T ) be a Markovmap with Markov partition α and for a0, . . . , an−1 ∈ α let [a0, . . . , an−1] = ∩n−1
i=0 T

−iaidenote an n-ylinder. Let αn−1
0 =

∨n−1
k=0 T

−k(α) and α+ = {a ∈ ∪n∈N∗αn−1
0 : m(a) >

0}. A olletion of ylinders ζ ⊆ α+ is said to be a Shweiger olletion for T ifi) for every b ∈ ζ and a ∈ α+ if the onatenation [a, b] 6= ∅ then [a, b] ∈ ζ;ii) ∪b∈ζb = X (mod m);iii) if there exist r ∈ (0, 1) and C > 1 suh that for every n-ylinder b ∈ ζ and
m×m-a.e. (x, y) ∈ b× b

∣

∣

∣
log

dm

dm ◦ T n
|b(x) − log

dm

dm ◦ T n
|b(y)

∣

∣

∣
≤ Crs(x,y) (13)where

s(x, y) := min{n ≥ 1 : x, y lie in distint ylinders of ζ}.The existene of a Shweiger olletion for a .m.p.t. and aperiodiity have thefollowing onsequenes:Lemma 4.3 (Theorem 3.1 and Theorem 3.2, [2℄). Let (X,B,m, T, α) be a onser-vative, aperiodi Markov map and suppose that ζ ⊆ α+ is a Shweiger olletion for
T . Then T admits a σ-�nite invariant measure µ ∼ m suh that

log
dµ

dm
∈ L∞(b) for all b ∈ ζand µ is exat under T . Moreover, any A ∈ α+ is a Darling Ka set whose returntime proess is ontinued fration mixing.We now showLemma 4.4. Let (∆,B(∆), F,m′) be a YT that satis�es (YT2') and (YT7) above.3Then the following hold:1. F admits an in�nite, but σ-�nite invariant measure ν equivalent to m′ suhthat dν

dm′ is bounded and bounded away from zero. Furthermore, ν is exatunder F .3so the original ondition (YT2) of Setion 3 need not be satis�ed13



2. For any n ∈ N, every n-ylinder is a Darling-Ka set whose return time proessis ontinued fration mixing.3. F is pointwise dual ergodi w.r.t. ν.Proof. Let P be the generating partition of ∆ and let [A0, . . . , An−1] =
⋂n−1
i=0 F

−iAifor A0, . . . , An−1 ∈ P denote an n-ylinder. It is lear that (∆,B(∆), F,m′,P)is a onservative Markov map. By (YT1), m(∆0,i) > 0 for eah i and hene
m(A) > 0 for all A ∈ P and and thus m′ is positive on all n-ylinders. Also, itis lear that (∆0,B(∆), FR,m0) is a onservative Markov map w.r.t. the ount-able partition P0 = {∆0,i}; let R := {TR(∆0,i)} be the image partition and
R̃+ := {a ∈ ∪k∈N

∨k−1
0 (FR)−kR}.It follows from (YT6) that there exist C > 1 and 0 < θ < 1 suh that for all

x, y ∈ b, for all b ∈ R+, and for all k ∈ N and k-ylinders b
∣

∣

∣

k−1
∑

j=0

log
dm0

dmb ◦ (FR)j
(x) −

k−1
∑

j=0

log
dm0

dmb ◦ (FR)j
(y)

∣

∣

∣
≤ Cθs(x,y) (14)and thus R+ is a Shweiger olletion for FR w.r.t. the measure m0. By [2, Lemma2.1℄ (whih requires ondition (YT2')), there exist an FR-invariant probability mea-sure ν0 ≪ m0 suh that dν0

dm0
is bounded and bounded away from zero.By aperiodiity and (YT2'), there exist N ∈ N and b ∈ P0 suh that (FR)N (b) =

∆0. Therefore for all a ∈ P0 and x ∈ a we an �nd x′ ∈ b suh that (FR)N (x′) = x,and we have
dν0

dm0
(x) ≥

dm0

dmb ◦ (FR)N
·
ν0

m0
(x′) > 0uniformly over all a ∈ P and x ∈ a. This also implies that ν0 ∼ m0.Fix some arbitrary ∆l,i and let

P∆l,i
= {[A0, . . . , An−1] : A0, . . . , An−1 ∈ P, n ∈ N

∗, An−1 = ∆l,i}be the olletion of ylinders that land on ∆l,i after some number of iterates. Notiethat P∆l,i
⊂ P+ := {A ∈ ∪k∈N

∨k−1
0 F−kP}.For all x′, y′ ∈ ∆l,i there exist unique x, y ∈ ∆0,i suh that F l(x′) = x, F l(y′) = y;let us extend the de�nition of separation time to ∆l,i by setting s(x, y) = s(x′, y′). Itfollows from (14) that there exist C > 1 and 0 < θ < 1 suh that for all x′, y′ ∈ ∆l,iand for t = R− l

∣

∣

∣

t−1
∑

k=0

log
dm′

dm′|∆l,i
◦ F k

(x′) −
t−1
∑

k=0

log
dm′

dm′|∆l,i
◦ F k

(y′)
∣

∣

∣
≤ Cθs(x

′,y′)whih further implies for all B ∈ P∆l,i
and for all x, y ∈ B we have

∣

∣

∣

t−1
∑

k=0

log
dm′

dm′|B ◦ F k
(x) −

t−1
∑

k=0

log
dm′

dm′|B ◦ F k
(y)

∣

∣

∣
≤ Cθs(x,y).Also, for every B ∈ P∆l,i

and A ∈ P+ if [A,B] 6= ∅ then [A,B] ∈ P∆l,i
. Furthermore,by aperiodiity for all A ∈ P there exist N = N(A) ∈ N suh that for all j ≥ N ,

m′(F−jA ∩ (∪B∈P∆l,i
B)) > 0. As a onsequene, ∪B∈P∆l,i

B = ∆ (mod m′) andthus, P∆l,i
is a Shweiger olletion for F w.r.t. m′. Therefore, by Lemma 4.3, Fadmits an exat, σ-�nite invariant measure ν ∼ m′ and dν

dm′ is bounded away from
0 and ∞ uniformly on ∆l,i. 14



The same lemma implies that eah element of P∆l,i
is a Darling-Ka set for Fw.r.t. ν. Thus, by Theorem 3.8.3 in [1℄, F is pointwise dual ergodi w.r.t. ν. Thatis, there exist a positive sequene {an(F )}n≥1 suh that for all f ∈ L1(ν) with

∫

X fdν > 0

1

an(F )

n−1
∑

k=0

F̂
k(f) →

∫

∆
fdν, ν − a.e. as n→ ∞ (15)where F̂ : L1(ν) → L1(ν) is the dual operator of F .Sine ν ∼ m′ is exat, it follows that this measure is unique and thus ν isindependent of ∆l,i. In fat ν|∆0

= ν0 and we saw already that dν0
dm0

is boundedaway from zero and ∞, so dν
dm′ is bounded away from zero and ∞ uniformly on ∆.Similarly, all elements of ∪l,iP∆l,i

are Darling-Ka sets for F w.r.t. µ. This onludesthe proof.4.2 Pointwise dual ergodiity for T .Pointwise dual ergodiity for T an be immediately derived from that of F :Lemma 4.5. Suppose that (X,B, T,m) and (∆,B(∆), F,m′) satisfy the onditionsof Theorem 2.1. Then T is pointwise dual ergodi w.r.t. its invariant measure µ =
π∗ν and the return sequene an(F ) from (15) oinides, up to asymptoti equivalene,with the return sequene for T .Proof. We �rst observe that Theorem 2.1 ensures that F is indeed a measure theo-reti extension of T , or equivalently T is a fator of F . By Proposition 3.7.6 in [1℄,we know that any fator of a p.d.e. transformation is also p.d.e. This together with(3) of Lemma 4.4 implies that T is indeed pointwise dual ergodi. Furthermore, a-ording to Proposition 3.7.6 in [1℄, an(F ) is a return sequene for T , whih is uniqueup to asymptoti equivalene.Next we will estimate the return sequene an(F ).Lemma 4.6. Let (∆,B(∆), F,m′) be a Young tower with base ∆0 (for some non-singular dynamial system (X,B,m, T )) and suppose that m0({R > n}) ∝ n−β forsome 0 < β ≤ 1. Then wn(F ) ∈ R−β and an(F ) ∈ Rβ.Proof. Let ϕ∆0

(x) := min{n ≥ 1 : Fn(x) ∈ ∆0} be the �rst return time funtionof F to ∆0 and observe that ϕ∆0
(x) = R(x) for all x ∈ ∆0. From Lemma 4.4 weknow that F admits an invariant measure ν with ν|∆0

= ν0 where ν0 ∼ m0 is theinvariant for measure for Fϕ∆0 . Thus,there exist c > 0 suh that,
wn(∆0) = ν(∪n−1

k=0F
−k∆0) =

n−1
∑

k=0

ν(∆0 ∩ {ϕ∆0
> k})

= c
n−1
∑

k=0

ν0({R > k}) ∝
n−1
∑

k=0

m0({R > k}) ∈ R1−β ,where ∑n−1
k=0 m0({R > k}) ∈ R1−β by Karamata's Theorem (part 1) if 0 < β < 1and ∑n−1

k=0 m0({R > k}) = (log n)l(n) if β = 1, where l(n) ∈ R0.From Lemma 4.4 we know that ∆0 is a Darling-Ka set for F . Therefore, wn(F ) ∈
R−β by Theorem 3.8.3 in [1℄. Furthermore, an(F ) ∈ Rβ by Lemma 2.4.We an now onlude 15



Proof of Corollary 2.6. Sine an(F ) ∈ Rβ with β ∈ [0, 1], i1) follows by Proposi-tion 2.5.i2) follows by the same argument sine an(F ) is also a return sequene for T .Proof of Corollary 2.7. The onditions of Theorem 2.1 together with Lemma 4.5and Lemma 4.6 implies that wn(T ) ∝ wn(F1) ∈ R−β as n → ∞. By the sameargument for F2, wn(T ) ∝ wn(F2) =
∑n−1

k=0 m02
({R2 > k}). Thus,

n−1
∑

k=0

m02
({R2 > k}) ∝

n−1
∑

k=0

m01
({R1 > k})and the onlusion follows immediately by Proposition 4.1 and Proposition 4.2.Remark 4.7. We notie that from the above proof we have that

wn(T ) ∝
∑

k>n

m01
({R1 > k}) ∝

∑

k>n

m02
({R2 > k})independently of the assumption of the regular variation of the tail sequenes. Thefat that ∑

k>nm01
({R1 > k}) ∝

∑

k>nm02
({R2 > k}) trivially holds in the proba-bility ase β > 1, γ > 1, sine the two tail sequenes are summable. However, as it isobvious from the proof, in this ase, the onlusion m01

({R1 > k}) ∝ m02
({R2 > k})does not follow.5 In�nite osillation at one of the indi�erent�xed pointsAs mentioned in Setion 2.2, we onlude with one example that illustrates the useof Corollary 2.6 and as suh, the usefulness of modelling in�nite measure preservingtransformations via YTs. Darling Ka-like theorems were proved for inreasinglygeneral systems. The version in Aaronson's book [1, Theorem 3.6.4. and Corollary3.7.3℄ requires that T is p.d.e. and the return sequene (an) is regularly varying,whih is in general di�ult to hek. In [20℄, the p.d.e. property was established fornon-uniformly expanding interval maps with indi�erent �xed points (AFN-maps).Thaler and Zweimüller [16, Theorem 1℄ then replaed the regular variation of thereturn sequene by that of the wandering rate wn(T ) (whih is easier to hek)together with the requirement that

hN :=
1

wN (Y )

N−1
∑

n=0

T̂1{x∈X\Y :R(x)=n}be onvergent4 uniformly on the Darling Ka set Y . In [23, Theorem 2.1℄ �nally,Zweimüller weakened the onvergene requirement to (hN )N∈N being preompat in
L∞(µ). This enabled him to treat maps with multiple indi�erent �xed points wherethe strength of the one mutually majorizes and minorizes the strength of another,depending on the distane to these �xed points.The example we onsider below is a partiular ase of the somewhat abstratExample 7.1 in [23℄ whih Zweimüller gave to show the advantage of [23℄ over [16℄.The regular variation of the wandering rate wn(T ) with some index β ∈ [0, 1] inExample 7.1 of [23℄ is expliitly given, whih allows an immediate appliation of [23,4with a uniformly sweeping limit 16



Theorem 2.1℄. In ontrast, the example below does not provide an expliit form of
wn(T ). By onsidering an appropriate YT extension for T , we simultaneously obtainthe p.d.e. property, regular variation of the return sequene an, and our DK versionCorollary 2.6.Let T : [0, 1] → [0, 1] be a map with two indi�erent �xed points at 0 and 1 with
T ([0, 1/2)) = (0, 1), T ([1/2, 1)) = (0, 1) suh that for a, b 6= 0 and p > 1,

T (x) =

{

x+ bx1+pl(1/x) + o(x1+pl(1/x)) as x→ 0,
x+ a(1 − x)1+p + o((1 − x)1+p) as x→ 1,

(16)where l(t) = exp[(log t)1/3 cos(log t)1/3], t > 0 is in R0 with in�nite osillation, i.e.,
lim
t→∞

inf l(t) = 0 and lim
t→∞

sup l(t) = ∞.Take 0 < · · · < x2 < x1 < x0 = 1/2 = x′0 < x′1 < x′2 < · · · < 1 suh that
T (xn) = xn−1 and T (x′n) = x′n−1 for all n ≥ 1. Let In = (xn+1, xn), I ′n = (x′n, x

′
n+1)for n ≥ 0 and let R|In∪I′n := n + 1. By (16), the asymptoti of {xn}, {xn}′ are asfollows:

xn ∼ n−pl(n) and 1 − x′n ∼ n−p.Thus the tail of the induing sheme is
m({R > n}) =

∑

k≥n

m(Ik ∪ I
′
k) ∼ n−p(l(n) + 1).Construt a Young tower with ∆0 = (0, 1), partition {∆0,i} = {Ii}∪{I ′i} and returntime R as indiated. Then TR(In) = (1

2 , 1) and TR(I ′n) = (0, 1
2) for eah n, so(YT2') of Setion 4.1 is satis�ed.The distortion ondition (YT6) follows by the argument of Lemma 5 in [17℄.Also, notie that g.c.d(Ri) = 1, (so (YT7) holds) and thus, the good properties for

F follow immediately by Lemma 4.4.To hek the onditions of Theorem 2.1, we just need to observe that induingw.r.t. �rst returns on any ∆0,i gives rise to a �nite (TR)
ϕR

∆0,i -invariant measure,whih proves the integrability of ϕ∆R
0,i

on ∆0,i. Thus, if τ and ρ are given by
T ρ = (TR)∆0,i

= (T∆0,i
)τ , the integrability of τ follows immediately sine {τ >

n} = {ρ > ϕ∆R
0,i
} by Fat 3.3 (see also [21℄ for details). Beause we also have

m({R > n}) ∈ R1/p, Corollary 2.6 immediately applies. In partiular, Lemma 2.4gives the exat form of an(T ).Referenes[1℄ J. Aaronson, An Introdution to In�nite Ergodi Theory, MathematialSurveys and Monographs, 50 Amerian Mathematial Soiety, Providene,(1997)[2℄ J. Aaronson, M. Denker, M. Urbanski, Ergodi theory for Markov �bred sys-tems and paraboli rational maps, Trans. AMS. 337 (1993), 495�548.[3℄ J. Aaronson, M. Thaler, R. Zweimüller, Oupation times of sets of in�nitemeasure for ergodi transformations, Ergod. Th. & Dynam. Sys. 25 (2005),959�976.[4℄ J. Al-Khal, H. Bruin, M. Jakobson New examples of S-unimodal maps with
sigma-�nite absolutely ontinuous invariant measures, Dis. Cont. Dyn. Sys.22 (2008), 35�61. 17
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