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Abstract
It is well known that for different classes of transformations, including the class
of piecewiseC2 expanding mapsT : [0, 1] �, Ulam’s method is an efficient way
to numerically approximate the absolutely continuous invariant measure of T .
We develop a new extension of Ulam’s method and prove that this extension
can be used for the numerical approximation of the Ruelle–Perron–Frobenius
operator associated with T and the potential φβ = −β log |T �|, where β ∈ R.
In particular, we prove that our extended Ulam’s method is a powerful tool for
computing the topological pressure P(T , φβ) and the density of the equilibrium
state.

Mathematics Subject Classification: 37M25, 37D20, 37D35, 37E05

1. Introduction

Let (X, B) be a measurable space and T : X � a measurable transformation. Let M(X, T )

denote the set of all T -invariant probability measures and hµ(T ) denote the metric entropy
of T with respect to µ. An invariant probability measure µφ ∈ M(X, T ) is said to be an
equilibrium state for a continuous potential φ : X → R if it satisfies the variational principle,
i.e. P(T , φ) := hµφ

(T ) +
∫
X

φ dµφ = supµ∈M(X,T )(hµ(T ) +
∫
X

φ dµ) where P(T , φ) is the
topological pressure associated with φ and T (see for example [21]).

Within the mathematical framework of the thermodynamical formalism [21], a key
ingredient in obtaining analytical expressions for the topological pressure P(T , φ) and related
thermodynamic quantities is the Ruelle–Perron–Frobenius (RPF) operator Lφ : B(X) �,
where B(X) is the space of all measurable bounded functions on X, defined as
Lφf (x) = ∑

y∈T −1(x) eφ(y)f (y). Ruelle [19] proved that the equilibrium state of a finite state
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topologically mixing Markov shift is given by µφ = hνφ , where νφ is a probability measure
and h is a density satisfying Lφh = λh, L∗

φνφ = λνφ and log(λ) = P(T , φ). Later on,
with some extra conditions on the potential φ, these results were extended to some other
classes of transformations (see for instance [3, 10, 14, 20, 22, 26, 27]; see also [1] for other
references). In all these settings the equilibrium measure µφ = h dνφ is absolutely continuous
w.r.t. the conformal measure (possibly non-Lebesgue) νφ (see [4] for background on conformal
measures).

Common choices of the potential are: φβ = −β log |T ′|, β ∈ R, yielding the operator
Lβf (x) = ∑

y∈T −1(x)
f (y)

|T �(y)|β , which is used to study the existence of phase transitions in
certain classes of transformations (e.g. [17, 23]) and φ = − log |T ′| which yields the well-
known Perron–Frobenius (PF) operator Lf (x) = ∑

y∈T −1(x)
f (y)

|T �(y)| . The densities of absolutely
continuous (w.r.t. Lebesgue) invariant measures are fixed points of L.

It is well known that for different classes of transformations, including the class of
expanding maps of the unit interval, Ulam’s method (see section 5 for details) gives good
estimates of the PF operator and thus of the absolutely continuous T invariant measure
[2,5,7,12]. In this work we show that Ulam’s method can be used to approximate the leading
eigenvalue and corresponding eigenfunction of the RPF operator Lβ for expanding, piecewise
monotonic maps T : [0, 1] � with a finite number of monotonicity intervals. More importantly,
we show that the approximated eigenfunction is exactly the density of the equilibrium state
and that its associated eigenvalue gives the value of P(T , φβ), where φβ = −β log(|T �|). Our
approach has also been successfully used to study non-uniformly expanding maps that exhibit
phase transitions [8].

The outline of the paper is as follows. In the first part, we develop a suitable Lasota–Yorke
(LY) inequality that allows us to prove that a normalized version of Lβ preserves a cone of
non-negative functions in L1. Related inequalities have been produced in [14] in terms of a
limiting measure ν that is not explicitly known. To our knowledge the explicit BV –L1 form of
the LY inequality developed in section 3 below has not been previously published. Next, we
prove that Lβ has a positive eigenfunction h, establish that the positive eigenvalue associated
with h satisfies λβ = eP(T ,φβ) and that h is the density of the equilibrium state for (T , φβ)

with respect to the corresponding conformal measure. Finally, we recall Ulam’s method and
state our main result on the numerical approximation of the density h and of the topological
pressure P(T , φβ).

2. Class of transformations considered

Let I be the unit interval [0, 1] and let T : I � be a piecewise C2 transformation. Let
℘ = {Ia} be a finite partition of I such that Ia are closed intervals, I = ⋃

a Ia and
int(Ia)

⋂
int(Ia′) = ∅, ∀a �= a′. The restriction of T to Ia , Ta = T | Ia : Ia → T (Ia)

is assumed to be strictly monotone. T −1
a : T (Ia) → Ia represents the inverse branches of T .

The nth iterate of T is defined by T n
a(n) = T | Ia(n) : Ia(n) → I where Ia(n) ∈ ∨n

i=0 T −i℘ and
its inverse is defined by T −n

a(n) : T n(Ia(n) ) → Ia(n) . Where necessary, we define T �(x) at the
endpoints of Ia by taking an appropriate one-sided derivative. We assume that there exists
α > 1 such that

|T �(x)| � α, ∀ x ∈ I. (1)

Note that under the above assumptions, T �(x) is finite and bounded away from zero for all
x ∈ I . Thus, there exists s � 0 such that

|T �(x)|
|T �(x)|2 � s, ∀ x ∈ I. (2)
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From (1) and (2) we have that there exists D � 0 such that
|(T −n

a(n) )
�(x)|

|(T −n

a(n) )
�(y)| � D � e

sα
α−1 , ∀n � 1, ∀x, y ∈ I. (3)

We further assume that T is covering (see [14, 13]), i.e. for each n ∈ N there exists N(n) > 1
such that T N(n)(Ia(n) ) = [0, 1], ∀Ia(n) ∈ ∨n

i=0 T −i℘. Under the above assumptions, we choose
c′ > 0 and cN(0) > 0 such that

m(T (Ia)) � c′, ∀ Ia ∈ ℘, (4)

m(Ia(N(0)) ) � cN(0), ∀ Ia(N(0)) ∈
N(0)∨
i=0

T −i℘, (5)

where m is Lebesgue measure.
For β ∈ R we consider the potential φβ : I → R defined as φβ(x) = −β log(|T �(x)|) and

the corresponding weight gβ : I → (0, 1), gβ(x) = exp(φβ(x)). In this setting, conditions
(1) and (2) are enough to guarantee that φβ : I → R (and consequently gβ : I → (0, 1)) is a
function of finite variation, i.e. VI (φβ) < ∞ where VI (φβ) = sup{∑k

i=1 |φβ(xi) − φβ(xi−1)| :
k � 1, x0 < · · · < xk, xi ∈ I }.

Notation. Throughout the paper ‖ . ‖1 will stand for the L1 norm and f ∈ L1 will refer
to functions f that are Lebesgue integrable. BV (I) is the space of functions of bounded
variation acting on I , i.e. BV (I) = {f : I → R : VI (f ) < ∞} and is endowed with the
norm ||f ||BV = VI (f ) + ||f ||∞.

3. Lasota–Yorke inequalities and cones for Lβ

Cone techniques have been used to establish the existence of the invariant density of T as
a fixed point of the PF operator [13] and to obtain the density of the equilibrium measure
(possibly not absolutely continuous w.r.t. Lebesgue) as an eigenfunction of the more general
RPF operator [14]. The rough idea behind this technique is to choose a cone1 of functions,
typically defined via a LY-type inequality on which the operator is a contraction. In section 4
we develop a convex set of BV functions that is compact in L1 and apply standard fixed point
theorems to establish the existence of the required L1 eigenfunction of the RPF operator. This
approach may be viewed as an extension of [15], which showed that the standard PF operator
associated with transformations similar to the ones introduced in section 2 preserves a suitable
cone of L1 functions and used this to prove convergence of Ulam’s approximation.

Our aim for the rest of this section is to build a LY inequality for Lβ associated with the
transformations introduced in section 2 in terms of BV functions in L1. Because Lβ is not
a Markov operator (see lemma 4), we need to treat the β < 1 and β � 1 cases separately.
Also, for technical reasons that will become obvious in the proofs we need to treat the β < 0
situation as a third separate case.

3.1. Properties of Lβ

We collect some properties of Lβ that will be used later to obtain the cone contraction. Under
the assumptions of the previous section we write

Lβf =
∑

a

(gβ ◦ T −1
a )(f ◦ T −1

a )χT (Ia) =
∑

a

f ◦ T −1
a

|T �

a ◦ T −1
a |β

χT (Ia). (6)

1 A convex subset P of a real vector space X is a cone if for any t > 0 and for all f ∈ P , tf ∈ P .
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Lemma 1.

(i) Lβ is a positive operator; that is, Lβf � 0 for all f ∈ L1, f � 0.
(ii) Lβ : L1(I ) → L1(I ) is a bounded operator.

Proof. See proofs section. �
Define the cone Bk , 0 � k < ∞ by Bk = {f ∈ L1 : f � 0, VI (f ) � k||f ||1}, and note

that Bk is a subset of BV (I).

3.2. Lasota–Yorke inequality

Lemma 2. Let α, s, D, c′ and cN(0) be given as in (1), (2), (3), (4) and (5), respectively.

(i) When β � 1 , for all f ∈ Bk

VI (Lβf ) � 2

αβ
VI (f ) + M1 ‖ f ‖1�

(
2

αβ
k + M1

)
‖ f ‖1,

where M1 = 2
αβ−1 (sβ + 1

c′ ).
(ii) When 0 � β < 1 for all f ∈ Bk

VI (Lβf ) � 2

αβ
VI (f ) + M2 ‖ f ‖1�

(
2

αβ
k + M2

)
||f ||1,

where M2 = 2
(

D
cN(0)

)1−β

(sβ + 1
c′ ).

(iii) When β < 0 for all f ∈ Bk

VI (Lβf ) � 2

(
cN(0)

D

)β

VI (f ) + M3 ‖ f ‖1�
(

2
(cN(0)

D

)β

k + M3

)
||f ||1,

where M3 = 2
(

D
cN(0)

)1−β

(s|β| + 1
c′ ).

Proof. See proofs section. �
By choosing k large enough, we can ensure that LβBk ⊆ Bk . However, in order to obtain

a fixed point, we need to consider a normalized operator.

4. A normalized operator and a fixed point theorem

In this section, we obtain an eigenfunction of Lβ by demonstrating the existence of a fixed point
of a normalized operator in a suitable convex set. Below we briefly summarize the method
of proof. The normalized operator we consider is L′

β : H �, where H = {f ∈ L1 : f � 0,
‖ f ‖1= 1}, defined as

L′
βf = Lβf

||Lβf ||1 . (7)

We prove that for some suitable k, the operator L′
β becomes a contraction for the convex set

B ′
k = Bk ∩ H = {f ∈ L1, f � 0 : VI (f ) � k, ‖ f ‖1= 1}. (8)

In this sense we first establish the following lemma.

Lemma 3. For each 0 < k < ∞, B ′
k is compact in L1.
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Proof. Let fn be a sequence in B ′
k . Then VI (fn) � k and ||fn||∞ � k +1. By Helly’s selection

principle, there exists nk s.t. fnk
→ f ∗ everywhere. Thus ‖fnk

− f ∗‖L1 � ‖fnk
− f ∗‖∞ → 0

as nk → ∞. It is easily checked that f ∗ ∈ B ′
k. �

We obtain the fixed point of L′
β via a standard fixed point theorem. We start by collecting

some properties of L′
β . To do so we use the following lemma that describes basic properties

on the relative sizes of ||f ||1 and ||Lβf ||1.

Lemma 4. For all f ∈ L1, f �= 0 the following hold:

(i) When β � 1,
‖ f ‖1

‖ Lβf ‖1
�

(
D

cN(0)

)β−1

(ii) When β < 1,
‖ f ‖1

‖ Lβf ‖1
� 1

α1−β
.

Proof. See proofs section. �

Lemma 5. For all β ∈ R, L′
β : H � is

(i) well defined and
(ii) continuous.

Proof. Follows immediately from lemma 1, the definition of L′
β and lemma 4. �

We can now obtain explicit bounds for the variation of L′
βf .

Lemma 6. Let B ′
k be as defined in (8). For all f ∈ B ′

k we have

(i) When β � 1,

VI (L′
βf ) �

(
2

k

αβ
+ M1

)(
D

cN(0)

)β−1

, (9)

where M1 = 2
αβ−1 (sβ + 1

c′ ).
(ii) When 0 � β < 1,

VI (L′
βf ) �

(
2

k

α
+ M2

1

α1−β

)
, (10)

where M2 = 2
(

D
cN(0)

)1−β

(sβ + 1
c′ ).

(iii) When β < 0,

VI (L′
βf ) �

(
1

α

)1−β(
2

(
cN(0)

D

)β

k + M3

)
, (11)

where M3 = 2
(

D
cN(0)

)1−β

(s|β| + 1
c′ ).

Proof. The result follows immediately from lemma 2(i) and lemma 4(i) when β � 1,
lemma 2(ii) and lemma 4(ii) when 0 � β < 1 and lemma 2(iii) together with lemma 4(ii)
when β < 0. �

We can now show that for suitably large k, B ′
k is invariant under the action of L′

β .



1958 D Terhesiu and G Froyland

Lemma 7. Let B ′
k be as introduced in (8). Then

(a) For each β � 1, if αβ

2 > ( D
cN(0)

)
β−1

, then

L′
βB ′

k ⊆ B ′
k, ∀k � k(β), where k(β) = M1(D/cN(0))

β−1

1 − (2/αβ)(D/cN(0))
β−1 . (12)

(b) For each 0 � β < 1,

L′
βB ′

k ⊆ B ′
k, ∀k � k(β), where k(β) = M2

1 − (2/α)
. (13)

(c) For each β < 0, if α1−β > 2(cN(0)/D)β ,

L′
βB ′

k ⊆ B ′
k, ∀k � k(β), where k(β) = M3

α1−β − 2(cN(0)/D)β
. (14)

Proof. Follows directly from (9)–(11). �

As T is covering we can choose N(0) > 1 such that T N(0)(Ia) = [0, 1], ∀Ia ∈ ℘ and
prove the existence of lower bounds for LN(0)

β f, f ∈ B ′
k .

Lemma 8. For all f ∈ B ′
k there exist M(k) > 0 such that LN(0)

β f > M(k).

Proof. See proofs section. �

This allows us to demonstrate positivity of the eigenfunction of Lβ in the main result of
this section, which we state below:

Theorem 9. For k > k(β), with k(β) defined as in (12)–(14), Lβ has a positive eigenfunction
h in Bk with a positive eigenvalue λβ .

Proof. For k > k(β), we apply the Schauder theorem to the continuous operator L′
β and the

compact, convex set B ′
k to conclude that there exists h ∈ B ′

k with L′
βh = h. This fixed point

equation yields: there exists h ∈ B ′
k such that Lβh = ||Lβh||1h. By lemma 5(i) we know

that λβ = ||Lβh||1 > 0. The fact that h is positive follows immediately from lemma 8 and
positivity of λβ . �

5. Topological pressure, equilibrium measure for (T, φβ)

So far we have demonstrated that for our class of interval maps, under the conditions
of theorem 9, the operator Lβ has a positive eigenvalue and a corresponding positive L1

eigenfunction. In this section, we verify that the logarithm of this eigenvalue is equal to the
topological pressure P(T , φβ), and obtain the equilibrium measure for (T , φβ). Moreover, we
show that the eigenfunction h corresponding to λβ is the only eigenfunction of Lβ in B ′

k . We
recall the following:

(i) The map T is covering. This has been dealt with in section 2.
(ii) The potential φβ = log(1/|T ′|β) is contracting (see Def. 3.4 in [14]).

Lemma 10. Under the conditions of theorem 9, the eigenvalue λβ of Lβ can be identified with
the exponential of the pressure, i.e. λβ = eP(T ,φβ). Moreover, h is the only eigenfunction of
Lβ in Bk and is a multiple of the density of the unique equilibrium state.
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Proof. Let the functional ν be defined as in [14] and let h∗ denote the density of the
(unique) equilibrium state µ = h∗ν; the existence of h∗ is guaranteed by lemma 4.8 in [14].
Then, a direct application of theorem 3.2 in [14] (in particular, of footnote 5) implies that
|| exp(n(log λβ − P(T , φβ)))h − ν(h)h∗||∞ → 0 as n → ∞. Thus log λβ − P(T , φβ) = 0
and h = ν(h)h∗. Therefore, h is the unique (up to scalar multiples) eigenfunction for Lβ in
Bk and hν is the unique equilibrium state for suitably scaled h. �

6. Approximating Lβ by Ulam’s method

We begin by briefly recalling Ulam’s method in its original setting, the approximation of
the Perron–Frobenius operator L := L1, obtained by setting β = 1. A problem in ergodic
theory that is still relevant today is the numerical approximation of absolutely continuous
invariant measures (acims). If f is a fixed point of L, then f is the density of an acim. The
approach suggested by Ulam [24] was to build a finite-dimensional approximation of L and
solve a linear system to obtain an approximation for f . Convergence of the approximate
acim to the true acim, including error bounds in some cases, has been proved in a variety of
settings [2, 5, 7, 12, 16].

We extend the Ulam construction to RPF operators Lβ and prove convergence of (i)
the leading numerical Ulam eigenvalues to eP(T ,φβ) and (ii) the corresponding numerical
Ulam eigenfunctions to the density of the equilibrium state. In contrast to the standard
Ulam approach, the leading eigenvalue of Lβ is unknown; moreover, the nature of the
action of Lβ varies with β. Our method of proof proceeds as follows: we implicitly
approximate the normalized operator L′

β introduced in section 4 and demonstrate the existence
of approximate fixed points of L′

β . We then extract a limit of these approximate fixed
points and using the results of section 5 show that this limit is unique. Finally, this limit
is identified with an eigenfunction of Lβ and the eigenvalue convergence is demonstrated. In
practical terms, all that is required is the relatively straightforward construction of a matrix
approximation of Lβ .

Let ξn = {A1, A2, . . . , An} be a finite partition of I = [0, 1] into intervals and define

	n =
{
f ∈ L1 : f = ∑n

i=1 aiχAi
, ai ∈ R

}
. We will shortly consider a sequence of

partitions {ξ}∞n=n0
, and will assume that as n → ∞, the maximal length of any interval in ξn

approaches zero.
Define 
nf = ∑n

i=1
1

m(Ai)

( ∫
Ai

f dm
)
χAi

as the canonical projection of L1 onto 	n, and
consider the projected operator Lβ,n := 
n ◦ Lβ : 	n �. The following lemma states that the
action of Lβ,n on 	n is described by a matrix Lβ,n,ij .

Lemma 11.

Lβ,n

(
n∑

i=1

aiχAi

)
=

n∑
j=1

(
n∑

i=1

aiLβ,n,ij

)
χAj

(15)

where Lβ,n,ij = 1
m(Aj )

∫
Ai∩T −1Aj

1
|T �(y)|β−1 dy.

Proof. Straightforward modification of lemma 2.3 in [12]. �

Let vLβ,n = λβ,nv, where λβ,n is the largest eigenvalue of Lβ,n. Our idea is that λβ,n

approximates eP(T ,φβ) and the corresponding eigenfunction hn = ∑n
i=1 viχAi

approximates a
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suitably normalized version of the density of the equilibrium state for (T , φβ). We now state
our main result, formalizing these ideas.

Theorem 12. Assume that the hypotheses of theorem 9 hold. Let λβ,n be the largest magnitude
positive eigenvalue of Lβ,n and hn the corresponding eigenfunction. Then

(i) as n → ∞ the sequence {hn} converges to h, a multiple of the density of the unique
equilibrium state for the pair (T , φβ) and

(ii) limn→∞ λβ,n = λβ = eP(T ,φβ).

Proof. See proofs section. �

The remainder of this section outlines the main steps required in the proof of the above
theorem. In order to employ a fixed point theorem, we need to consider an approximate version
of the normalized operator from section 4. Define L′

β,n : (	n ∩ {f : f � 0, ||f ||1 = 1}) � by

L′
β,nf = Lβ,nf

‖ Lβ,nf ‖1
.

Analogous to lemma 5 we have the following lemma.

Lemma 13. For all β ∈ R, L′
β,n : (	n ∩ {f : f � 0, ||f ||1 = 1}) � is

(i) well defined and
(ii) continuous.

Proof. Follows immediately from lemma 5, the definition of L′
β,n and the fact that for all

f ∈ L1, f � 0, β ∈ R, ||Lβ,nf ||1 = ||Lβf ||1. This latter result is a consequence of the fact
that for all f ∈ L1, f � 0, ||
nf ||1 = ||f ||1 (see [12]). �

The variation of functions under the action of our approximate normalized operator is no
greater than that of the original normalized operator.

Lemma 14. For all f ∈ L1, f �= 0, f � 0, and β ∈ R, VI (L′
β,nf ) � VI (L′

βf ).

Proof. We begin by noting that for all f ∈ L1, β ∈ R, VI (Lβ,nf ) � VI (Lβf ), which is a
consequence of the fact that for all f ∈ L1, VI (
nf ) � VI (f ) (see [12]). This, together with
the property that for all f ∈ L1, f � 0, β ∈ R, ||Lβ,nf ||1 = ||Lβf ||1 yields

VI (L′
β,nf ) = VI

(
Lβ,nf

||Ln,βf ||1

)
= VI (Lβ,nf )

||Lβ,nf ||1 = VI (Lβ,nf )

||Lβf ||1 � VI (Lβf )

||Lβf ||1 = VI (L′
βf ). �

We can now establish the existence of a fixed point for our approximate normalized
operator in analogy to theorem 9.

Lemma 15. For k > k(β), with k(β) defined in (12)–(14), each L′
β,n has a fixed point hn ∈ B ′

k .

Proof. Lemma 14 and ‖L′
β,n‖1 = 1 imply that if L′

β preserves B ′
k then L′

β,n also preserves B ′
k .

Thus, by lemma 7, L′
β,n preserves B ′

k for all k � k(β). From lemma 3 we know that B ′
k is

convex and compact. From lemma 13 we know that L′
β,n : (	n ∩ {f : f � 0, ||f ||1 = 1}) �

is continuous. The result follows by Schauder’s theorem. �
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Strong convergence of L′
β,n to L′

β , as an action on positive f ∈ L1, is straightforward to
establish.

Lemma 16. For all f ∈ L1, f �= 0, f � 0, and β ∈ R, ||L′
β,nf − L′

βf ||1 → 0 as n → ∞.

Proof. We first note that because ||f − 
nf ||1 → 0 as n → ∞ (see [12]) we have that for all
f ∈ L1, β ∈ R , ||Lβf − Lβ,nf ||1 → 0 as n → ∞. As ||Lβ,nf ||1 = ||Lβf ||1 for all f � 0,
β ∈ R, one has that for all f ∈ L1, f �= 0, f � 0 and β ∈ R

||L′
βf − L′

β,nf ||1 =
∣∣∣∣
∣∣∣∣ Lβf

||Lβf ||1 − Lβ,nf

||Lβ,nf ||1

∣∣∣∣
∣∣∣∣
1

= 1

||Lβf ||1 ||Lβf − Lβ,nf ||1

which goes to 0 as n → ∞. �

Lemma 16 together with relative compactness of the sequence of fixed points of L′
β,n

leads to the following lemma.

Lemma 17. Let hn be a fixed point of L′
β,n. Then hn → h in L1, as n → ∞, where h is the

unique fixed point of L′
β .

Proof. Since hn ∈ B ′
k and B ′

k is compact in L1, the sequence {hn} is relatively compact in L1.
Let h̃ be a limit point of this sequence and {hnj

} be the corresponding convergent subsequence:
||h̃ − hnj

||1 → 0 as nj → ∞. But

||h̃ − L′
βh̃||1 � ||h̃ − hnj

||1 + ||L′
β,nj

hnj
− L′

β,nj
h̃||1 + ||L′

β,nj
h̃ − L′

βh̃||1. (16)

Because ||L′
β,nj

hnj
− L′

β,nj
h̃||1 � ||L′

β,nj
|| · ||h̃−hnj

||1 = ||h̃−hnj
||1, the second term of

equation (16) goes to zero as nj goes to infinity. Moreover, by lemma 16, ||L′
β,nj

h̃−L′
βh̃||1 → 0

as nj → ∞. Thus, L′
βh̃ = h̃.

Since by lemma 10 we know that Lβ has a unique eigenfunction h ∈ B ′
k , L′

β has

a unique fixed point h ∈ B ′
k and thus h̃ must be a multiple of h. Thus, the sequence

{hn} has only one limit point, which is a multiple of h. We therefore must have that
limn→∞ hn = h̃. �

7. Discussion

The rigorous estimation of topological pressure for interval maps is a difficult problem
in ergodic theory and thermodynamics. For specific maps, specialized techniques have
been developed (e.g. [6, 11, 17, 18, 25]). However, to our knowledge, the results presented
here represent the first rigorous numerical approach to estimating pressure for a reasonably
broad class of interval maps. We close by remarking that numerical experiments reported
in [8] demonstrate that our method is simple to implement, extremely efficient in terms
of computing time and is a very practical way to detect phase transitions with respect
to the weight functions φβ = −β log |T ′| when they exist. Future work will include
the extension of the rigorous results presented here to transformations that exhibit phase
transitions.
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8. Proofs section

8.1. Proof of lemma 1

(i) is obvious from the Lβ definition—see equation (6). To prove (ii) we consider the following
cases:

When β � 1, for all f ∈ L1,

||Lβf ||1 �
∑

a

∫
I

∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β χT (Ia)

∣∣∣∣
=

∑
a

∫
T (Ia)

∣∣∣∣ 1

|T �

a ◦ T −1
a |β−1

f ◦ T −1
a

|T �

a ◦ T −1
a |

∣∣∣∣
�

(
1

α

)β−1 ∑
a

∫
Ia

|f | =
(

1

α

)β−1

||f ||1.

When β < 1 we recall that T is covering. Let cN(0) be given as in (5). The mean value theorem
together with equation (3) gives

1

|T N(0)� ◦ T
−N(0)
a (y)|

� m(Ia(N(0)) ))

D
� cN(0)

D
, ∀y ∈ Ia(N(0)) . (17)

Now for the class of transformation considered here 1
|T �(x)| > 1

|T N(0)�

(y)| , ∀x ∈ Ia, ∀y ∈ Ia(N(0)) ,

which together with (17) implies

1

|T �(x)| >
1

|T N(0)�(y)| � m(Ia(N(0)) ))

D
� cN(0)

D
, ∀x ∈ Ia, ∀y ∈ Ia(N(0)) . (18)

Raising (18) to β − 1 (which is negative, since β < 1) implies

1

|T �

a ◦ T −1
a (x)|β−1

<
1

|T N(0)� ◦ T
−N(n)
a (x)|β−1

�
( D

cN(0)

)1−β

, ∀x ∈ Ia, ∀y ∈ Ia(N(0)) . (19)

Therefore, when β < 1, for all f ∈ L1 we have (similarly to the β � 1 case)

||Lβf ||1 �
∑

a

∫
T (Ia)

∣∣∣∣ 1

|T �

a ◦ T −1
a |β−1

f ◦ T −1
a

|T �

a ◦ T −1
a |

∣∣∣∣
�

(
D

cN(0)

)1−β ∑
a

∫
Ia

|f | =
(

D

cN(0)

)1−β

||f ||1.

8.2. Proof of lemma 2

Because Lβf ∈ BV (I), ∀f ∈ Bk ⊂ BV (I), we may write

VI (Lβf ) =
∫

I

d(Lβf ) := sup

{∫
I

Lβf · g′ : g ∈ C1(I ), |g|∞ � 1

}
,

where d(Lβf ) is the generalized derivative (see e.g. [9]). Thus

VI (Lβf ) =
∫

I

d

(∑
a

f ◦ T −1
a

|T ′
a ◦ T −1

a |β

)
�

∫
I

∑
a

∣∣∣∣∣d f ◦ T −1
a

|T ′
a ◦ T −1

a |β
∣∣∣∣∣ =

∑
a

∫
I

∣∣∣∣∣d f ◦ T −1
a

|T ′
a ◦ T −1

a |β
∣∣∣∣∣ .

(20)
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Let T (Ia) = [ba, b
′
a] and recall from equation (4) that |ba − b′

a| = m(T (Ia)) � c′. A
straightforward modification of the proof of lemma 3.1.2 in [15] implies that for all β:∫

Ia

∣∣∣∣∣d f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣ � 2
∫

T (Ia)

∣∣∣∣∣d f ◦ T −1
a

|T ′
a ◦ T −1

a |β
∣∣∣∣∣ +

2

c′

∫
T (Ia)

∣∣∣∣∣ f ◦ T −1
a

|T ′
a ◦ T −1

a |β
∣∣∣∣∣ .

The above inequality together with (20) leads to

VI (Lβf ) � 2
∑

a

∫
T (Ia)

∣∣∣∣∣d f ◦ T −1
a

|T ′
a ◦ T −1

a |β
∣∣∣∣∣ +

2

c′
∑

a

∫
T (Ia)

∣∣∣∣∣ f ◦ T −1
a

|T ′
a ◦ T −1

a |β
∣∣∣∣∣ . (21)

(i) β � 1. Since (21) holds for every β, to prove case (i) of lemma 2, we only need to analyse
each term on the right-hand side of the inequality (21) for β � 1. With respect to the first term
we have

2
∑

a

∫
T (Ia)

∣∣∣∣∣d f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣ � 2
∑

a

∫
T (Ia)

∣∣∣∣∣ (df ) ◦ T −1
a

|T �

a ◦ T −1
a |β+1

∣∣∣∣∣ + 2sβ
∑

a

∫
T (Ia)

∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣
� 2

αβ

∑
a

∫
Ia

|df | + 2
sβ

αβ−1

∑
a

∫
Ia

|f |

= 2

αβ

∫
I

|df | + 2
sβ

αβ−1

∫
I

|f |.

With respect to the second term of the right-hand side of the inequality (21) we have
2
c′

∑
a

∫
T (Ia)

∣∣∣ f ◦T −1
a

|T ′
a◦T −1

a |β
∣∣∣ � 2

c′
1

αβ−1

∫
I
|f |. Then the result follows from (21) and the last two

inequalities.

(ii) 0 � β < 1. Proceeding as in the proof of (i), since (21) holds for every β, we analyse
each term on the right-hand side of the inequality (21), this time for 0 < β < 1. With respect
to the first term we write

2
∑

a

∫
T (Ia)

∣∣∣∣∣d f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣ � 2

αβ

∑
a

∫
Ia

|df | + 2sβ
∑

a

∫
T (Ia)

∣∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣
= 2

αβ

∫
I

|df | + 2sβ
∑

a

∫
T (Ia)

∣∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣ . (22)

Now we need to look at
∑

a

∫
T (Ia)

∣∣∣ f ◦T −1
a

|T �

a ◦T −1
a |β

∣∣∣. Using equation (19) we write

∑
a

∫
T (Ia)

∣∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣ �
(

D

cN(0)

)1−β ∑
a

∫
T (Ia)

∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |

∣∣∣∣
=

(
D

cN(0)

)1−β ∑
a

∫
Ia

|f |. (23)

From (21) to (23) we have

VI (Lβf ) � 2

αβ

∫
I

|df | + 2

(
D

cN(0)

)1−β (
sβ +

1

c′

) ∫
I

|f |

and we are done with the proof of (ii).
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(iii) β < 0. We first observe that by raising (18) to β (which is negative in this case) we
obtain an upper bound for 1/|T �

a ◦ T −1
a |β as

1

|T �

a ◦ T −1
a (x)|β <

1

|T N(0)� ◦ T
−N(0)
a (x)|β

�
(cN(0)

D

)β

, ∀x ∈ Ia, ∀y ∈ Ia(N(0)) .

Thus

2
∑

a

∫
T (Ia)

∣∣∣∣∣d f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣ � 2
(cN(0)

D

)β ∑
a

∫
Ia

|df | + 2s|β|
∑

a

∫
T (Ia)

∣∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣
= 2

(cN(0)

D

)β
∫

I

|df | + 2s|β|
∑

a

∫
T (Ia)

∣∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β

∣∣∣∣∣ .
Then the proof of (iii) goes exactly the same as the proof of (ii).

8.3. Proofs of lemma 4 and lemma 8

Proof of lemma 4. When β � 1, by raising equation (18) to β − 1 we have that ∀x ∈ Ia ,
∀y ∈ Ia(N(0))(

1

|T �(x)|
)β−1

�
(

1

|T N(0)�(y)|

)β−1

�
(

m(Ia(N(0)) ))

D

)β−1

�
(cN(0)

D

)β−1
. (24)

Thus, since f � 0,

||Lβf ||1 =
∑

a

∫
I

∣∣∣∣ f ◦ T −1
a

|T �

a ◦ T −1
a |β χT (Ia)

∣∣∣∣
=

∑
a

∫
T (Ia)

∣∣∣∣∣ 1

|T �

a ◦ T −1
a |β−1

f ◦ T −1
a

|T �

a ◦ T −1
a |

∣∣∣∣∣
�

(cN(0)

D

)β−1 ∑
a

∫
Ia

|f | =
(cN(0)

D

)β−1
||f ||1,

and (i) follows under the assumption that f �= 0.
When β < 1, we only need to observe 1

|T �|β−1 � 1
αβ−1 , which implies that

||Lβf ||1 =
∑

a

∫
Ia

∣∣∣∣∣ 1

|T �

a ◦ T −1
a |β−1

f ◦ T −1
a

|T �

a ◦ T −1
a |

∣∣∣∣∣ �
(

1

α

)β−1 ∑
a

∫
Ia

|f | =
(

1

α

)β−1

||f ||1.

Thus, (ii) follows under the same assumption f �= 0.

Proof of lemma 8. For f ∈ Bk let

f̃ =
∑
a(N(0))

(
ess inf

I
a(N(0))

f

)
χI

a(N(0))
.

By lemma 3.2.1 in [15], ||f̃ ||1 � ||f ||(1 − α−N(0)k) and thus for all f ∈ B ′
k ,

||f̃ ||1 � (1 − α−N(0)k). (25)



Approximation of Ruelle–Perron–Frobenius operators and topological pressure 1965

From equation (17) we know that 1
|T N(0)�◦T

−N(0)
a (x)| � m(I

a(N(0)) )

D
� cN(0)

D
, ∀x ∈ Ia(N(0)) . This

together with (25) gives

LN(0)
β f =

∑
a(N(0))

f ◦ T −1
a(N(0))

|(T N(0))� ◦ T −1
a(N(0)) |β

�
∑
a(N(0))

(
ess inf

I
a(N(0))

f

)
1

|(T N(0))� ◦ T −1
a(N(0)) |β−1

1

|(T N(0))� ◦ T −1
a(N(0)) |

� M
∑
a(N(0))

f̃a(N(0))m(Ia(N(0)) )/D = M||f̃ ||1/D,

where M = (cN(0)/D)β−1 · (cN(0)/D) = (cN(0)/D)β if β � 1 and M = (1/αβ−1) · (cN(0)/D)

if β < 1. This choice of M is motivated by equation (24) when β � 1 and by the fact that
1

|T �|β−1 � 1
αβ−1 when β < 1.

To complete choose M(k) = M(1 − α−N(0)k).

8.4. Proof of theorem 12

Proof. Let λβ,n be an eigenvalue of Lβ,n (as defined in lemma 11) and hn the corresponding
eigenfunction normalized so that ‖hn‖1 = 1. By lemma 11 we know that any eigenvalue,
eigenfunction pair of Lβ,n is an eigenvalue, eigenfunction pair of Lβ,n. Since we also know
that any normalized eigenfunction of Lβ,n is a fixed point of L′

β,n, lemma 17 implies that {hn}
converges to the unique fixed point of L′

β as n → ∞. Furthermore, lemma 10 implies that
this unique fixed point is a multiple of the density of the unique equilibrium state for the pair
(T , φβ).

We now prove (ii). Recall that λβ,n = ||Lβ,nhn||1 and λβ = ||Lβh||1 = ||Lβhn||1. Thus
using the reverse triangle inequality |λβ,n − λβ | = |‖Lβ,nhn||1 − ‖Lβh||1| = |‖Lβhn||1 −
||Lβh||1| � ||Lβ ||1 · ||hn −h||1. From lemma 1 we know that ||Lβ ||1 is bounded. By lemma 17
we know that ||hn − h||1 → 0 as n → ∞. Thus, |λβ,n − λ| → 0 as n → ∞. The desired
result now follows by lemma 10. �

Acknowledgments

The authors thank Rua Murray for very helpful discussions and suggestions and Christopher
Bose for very useful comments, in particular for suggesting the quick proof of lemma 10. They
also thank the referee for many useful suggestions.

DT wishes to thank UIPA, UNSW and the Australian Research Council Centre of
Excellence for Mathematics and Statistics of Complex Systems (MASCOS) for financial
support. GF is partially supported by a UNSW Faculty of Science Grant and the ARC Centre
of Excellence MASCOS.

References

[1] Baladi V 2000 Positive Transfer Operators and Decay of Correlations (Singapore: World Scientific)
[2] Blank M, Keller G and Liverani C 2002 Ruelle–Perron–Frobenius spectrum for Anosov maps Nonlinearity

15 1905–73
[3] Buzzi J, Paccaut F and Schmitt B 2001 Conformal measures for multidimensional piecewise invertible maps

Ergod. Theory Dyn. Syst. 21 1035–49

http://dx.doi.org/10.1088/0951-7715/15/6/309
http://dx.doi.org/10.1017/S0143385701001493


1966 D Terhesiu and G Froyland

[4] Denker M and Urbanski M 1991 On the existence of conformal measures Trans. Am. Math. Soc. 328 563–87
[5] Ding J and Zhou A 1996 Finite approximations of Frobenius–Perron operators: a solution of Ulam’s conjecture

to multi-dimensional transformations Physica D 92 61–8
[6] Feigenbaum J M, Proccaccia I and Tel T 1989 Scaling properties of multifractals as an eigenvalue problem Phys.

Rev. A 39 5359–72
[7] Froyland G 1995 Finite approximation of Sinai–Bowen–Ruelle measures for Anosov systems in two dimensions

Random Comput. Dyn. 3 251–64
[8] Froyland G, Murray R and Terhesiu D 2007 Efficient computation of topological entropy, pressure, conformal

measures, and equilibrium states in one dimension Phys. Rev. E 76 036702
[9] Giusti E 1984 Minimal Surfaces and Functions of Bounded Variation (Monographs in Mathematics vol 80)

(Boston, MA: Birkhäuser)
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