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Abstract

We state a number of important results which we owe to Tarlok
Shorey.

1 Shorey’s Contributions to Linear Form
Estimates and Some Applications

One of the first results of Shorey concerns a sharpening of a theorem of
Sylvester. Sylvester proved in 1892 that a product of k consecutive positive
integers greater than k is divisible by a prime exceeding k. By combining
a result of Jutila which depends on estimates for exponential sums and an
estimate on linear forms in logarithms, Shorey [45] proved in 1974 that it
suffices to take constant times k(loglogk)/logk consecutive integers in place
of k consecutive integers in the above result of Sylvester. This improved on
results of Erdds, Tijdeman, and Ramachandra and Shorey and is still the
best known.

The used estimate for the linear form itself is an important contribution
of Shorey to the theory on estimating linear forms in logarithms of alge-
braic numbers which had been developed by Baker in the preceding decade.
Since estimates on linear forms play an important role in Shorey’s work, we
state his result. If ¢ and b are coprime integers then the size of the rational
number a/b is defined as |b| + |a/b|. All the constants C1,Cs, ... appearing
in this article are effectively computable. This means that they can be de-
termined explicitly in terms of the various parameters under consideration.
Let n > 1 be an integer. Let
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2 R. Tijdeman

where pa, ..., Dn,Dh, ..., ph are pairwise distinct prime numbers and none
of them is a divisor of the positive integers m,m’. Suppose the sizes of
ai, ..., do not exceed S and A is a constant > 1 such that

1
|10gai|§exp(—zlog5’) for i=1,...,n. (1.1)
If B1,...,Bn—1 are rational numbers of size at most S, then

|Bilogar + -+ Bu_1loga, 1 —logay| > exp(—(nA)“ " logS) (1.2)

where Cy > 0 is independent of n, A and S.

The novelty of Shorey’s estimate was two-sided. On the one hand the
factor logS in the exponent of the lower bound of (1.2) is remarkably
sharp and in fact the best possible. This was made possible by imposing
condition (1.1) which implies that the numbers a; are quite close to 1. The
studies of linear forms in logarithms with «a;’s close to 1 were continued
by Waldschmidt in 1980 and they led to a remarkable estimate of Laurent,
Mignotte and Nesterenko [25] on linear forms in two logarithms in 1995.
It has several important applications. For example, it has been applied by
Bennett [3] in 2001 to establish the striking theorem that for any positive
integer a, the equation

(a+1)z2" —ay™ =1 in integers x> 1,y >1,n>3 (1.3)

has no non-trivial solution, i.e. has no solution other than x =y = 1. An-
other application of Shorey’s linear form estimate concerns the conjecture
of Grimm that if z,x + 1,...,2 + k — 1 are all composite integers, then
the number of distinct prime factors of x(z +1)---(x + k — 1) is at least
k. Ramachandra, Shorey and Tijdeman [30] confirmed Grimm’s conjecture
when (logz)/(logk)? exceeds some absolute constant. The assumption that
z,x+1,...,x+k — 1 are all composites is not required in this result.

The other novelty in Shorey’s estimate (1.2) was that the dependence
on n was much better than in previous estimates. Until then there had
been a factor n? in the exponent. In 1976 Shorey [48] published a linear
form estimate with the same dependence on n in the more general case that
the numbers «; and (; are algebraic numbers of bounded degree and size.
Apart from the constant C7, this estimate was best known with respect
to its dependence on n until 2000 when Matveev [26] replaced n“'" by
e“2". The dependence on n has several applications some of which will be
mentioned in the next section.
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2 Applications of Linear Form Estimates to
Values of Polynomials, Recurrence Sequen-
ces and Continued Fractions

For an integer v with |v| > 1, we denote by P(v) the greatest prime factor
of v and by w(v) the number of distinct prime divisors of v, respectively.
Further we put P(1) = P(—1) = 1 and w(l) = w(-1) = 0. Let f(X)
be a polynomial with integer coefficients and at least two distinct roots.
For a sufficiently large integer x, estimates for linear forms in logarithms
yield that w(f(z)) is at least constant times loglogz /logloglogx whenever
logP(f(x)) < (loglogz)?. This implies that P(f(z)) at integer z with |z| >
C3 exceeds Cyloglog|x| for some numbers C3 and Cy > 0 depending only
on f. In fact Shorey and Tijdeman [62] obtained lower bounds for

max P(f(z +1))

1<i<y

for log y < (loglog x)“> where Cj is any absolute constant. By applying a
p-adic analogue of the above result on linear forms in logarithms, Shorey,
van der Poorten, Tijdeman and Schinzel [61] extended the result on a lower
bound for P(f(z)) to all binary forms with at least three pairwise non-
proportional linear factors in their factorizations over C.

For given integers m > 1 and n > 1 with mn > 6, a result of Mahler
from 1956 states that P(az™ — by™) tends to infinity as max (|x|,|y|) — oo
with ged (x,y) = 1. The proof of Mahler is non-effective but an effective
version follows from the theory of linear forms in logarithms. In fact Shorey,
van der Poorten, Tijdeman and Schinzel applied this theory to prove that
P(azx™—by™) tends to infinity with m uniformly in integers x, y with |z| > 1
and ged (x,y) = 1. The proof depends on the above mentioned result on
the greatest prime factor of a binary form. In 1980 Shorey made the proof
independent of this result and it led him to give a quantitative version
P(ax™ — by") > Cs((logm)(loglogm))/? which has been improved by
Bugeaud [7] to P(az™ —by™) > Crlog m where Cs > 0 and C7 > 0 depend
only on a,b and n.

For relatively prime positive integers A and B with A > B, it has
been conjectured that P(A™ — B™)/n tends to infinity with n. The first
result, from 1904, is due to Birkhoff and Vandiver and states that P(A™ —
B™) > n for n > 6. In 1962 this was improved to P(A™ — B") > 2n — 1
by Schinzel if AB is a square or twice a square unless n # 4,6,12 when
(A,B) = (2,1). In 1975 Stewart confirmed the conjecture for all n with
w(n) < Kloglogn where 0 < K < 1/log2 which is satisfied for almost
all n. The year thereafter Erdés and Shorey [15] gave lower bounds for
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P(A™ — B™)/n by applying estimates for linear forms in logarithms. In
particular they proved for primes p that

P(2P —1) > Cgplogp

where Cs > 0 is an absolute constant. They also combined the theory of
linear forms in logarithms with Brun’s Sieve to show that

P(2" — 1) > p (logp)*/(loglog p)®

for almost all primes p.
The sequence {A™ — B™}2° | is a special case of a binary recursive

n=1
sequence. Let 7 and s # 0 be integers with 72 + 4s # 0. Let wug,u1,. ..
be integers such that u, = ru,_1 + sup,_o for n = 2,3,.... Hence there

exist numbers a, b, a,, B such that u, = aa™ 4+ b3" for n > 0. We assume
that ab # 0 and that «/( is not a root of unity. In 1934 Mahler proved,
ineffectively, that P(uy) tends to infinity with n and an effective version
is due to Schinzel in 1967. For n > m > 0 with w,u,, # 0, Shorey [50]
generalized a result of Stewart by proving that

Uy, n
Pl—— ) >
(gcd(un,um)) = Co <10gn

where d; = [Q(a, 8) : Q] and Cy > 0 depends only on « and . It follows
from (2.1) that w; | u,, with [ > m implies that [ is bounded by a number
depending only on the sequence {u,,}.

Let a be an irrational real number with [ag, a1, ...] as its simple con-
tinued fraction expansion. Let p, /¢, and o, = [an, @ni1,...] be the n-th
convergent and the n-th complete quotient in the simple continued frac-
tion expansion of «, respectively. If « is algebraic of degree > 3 and d,,,
denotes the denominator of a,,, then Gydry and Shorey [17] showed that
dy, > C1oCPy and P(d,,, ) > Cizlogn where n > 1 and Cig, C11,Ch2 > 1
are positive numbers depending only on «. As an application of the es-
timate on linear forms in logarithms mentioned in the beginning of this
article, Shorey [47] derived that P(p,gn) > Ci3loglogg, if « is algebraic.
Here C13 > 0 depends only on «. This is an improved and effective ver-
sion of a result of Mahler that P(pyqy) tends to infinity with n. In 1939
Erdds and Mahler conjectured that if P(pngy) is bounded for infinitely
many n, then « has to be a Liouville number. Shorey [49] showed that if
a is a non-Liouville number such that P(py, g, ) is bounded for k£ > 1 and
ny < ng < ---, then

1/(di+1)
) (2.1)

loglog ny
im ——— =
k—oo logk
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3 Some Irrationality Measures and Transcen-
dence Results

Shorey [44] proved a p-adic analogue of a result of Tijdeman on a bound for
the number of zeros of a general exponential polynomial in a disk and he
applied it to give p-adic analogues of the results of Tijdeman on algebraic
independence of certain numbers connected with the exponential function.
As an application of much more general theorems he proved that for a prime
p > 2 at least two of the numbers

eP P’ o’ ope’”
are algebraically independent. This implies that at least one of the last
three numbers is transcendental.

A result of Siegel and Schneider (re-discovered by Lang and Ramachan-
dra) states that

127 —ay |+ 27 —as |+ |27 —as | (3.1)

is positive where a1, @z and a3 are algebraic numbers. The question whether
at least one of the numbers 27 and 27 is transcendental remains open and
is a special case of the well-known four exponential conjecture. Shorey [46]
gave a positive lower bound for (3.1) in terms of the heights and degrees of
aq, a9 and as.

In 2001 the theorem of Baker that a linear form in logarithms of alge-
braic numbers with algebraic coefficients is either zero or transcendental
was applied by Adhikari, Saradha, Shorey and Tijdeman [1] to prove the
transcendence of certain infinite series. For example, they showed that

o0

F, .
L(1, x) with x a non-principal character as well as E om with (F},) the
n n

n=1
Fibonacci sequence are transcendental.

4 Results on the Ramanujan 7-function

Consider the Ramanujan 7-function

Dt =q
n=1

Let p be a prime such that 7(p) # 0. Shorey [54] applied the theory of
linear forms in logarithms to prove that 7(p™) # 7(p™) whenever m > n
and m > C14. In fact he gave an explicit lower bound for the difference of

(1—q™)>*.

)

m=1
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these numbers. Kumar Murty, Ram Murty and Shorey [28] showed that
for non-zero odd integer a, the equation

T(n) =a

implies that log n < (2]a|)“15 where Oy is an absolute constant. In partic-
ular, the above equation has only finitely many solutions in integers n > 1.

5 The Ramanujan-Nagell Equation

Ramanujan conjectured and Nagell proved that the equation, now known
as the Ramanujan-Nagell equation,

22 +7=2" in integers x> 1,n>1

has only solutions (z,n) = (1,3),(3,4),(5,5),(11,7),(181,15). Let y >
2, D1 and D5 be positive integers such that ged(Dy,D3) = 1,D = D1Ds
and A € {21/ 2 2}. We consider the generalized Ramanujan-Nagell equation

Dyx? + Dy = N2y" (5.1)

in integers x > 1 and n > 1. We denote by N()\, D1, D2,y) the number
of solutions (z,n) of (5.1) and we write p for a prime. Le proved in 1997
and 1999 that N(A\, D1, D2,p) < 2 except for an explicitly given finite
set of exceptions. There are three infinite families of triples (Dy, Da,y)
for which N(\, D1, D2,y) > 2. Bugeaud and Shorey [12] showed that if
(D1, Dy, p) does not belong to any of these three infinite families, then
N(X\, D1, Dy, p) < 1 except for an explicitly given finite set of possibilities
and that if (Dy, D2, p) belongs to one of these three infinite families, then
N (X, Dy, Do, p) = 2. This settled an old question. The proof depends on a
theorem of Bilu, Hanrot and Voutier. The more difficult equation z? 47 =
y"™ and many similar equations have been completely solved recently by
Bugeaud, Mignotte and Siksek, see [10] and [11]. Now all the equations
22 4+ Dy = y™ with 1 < Dy < 100 are completely solved, see [14] and [11].

6 Other Extensions of the Theorem of
Sylvester

For positive integers « and k > 2, we write

Ny =D (k) =x(xz+1) - (x+k—1)
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and give lower bounds for P(A;) and w(A1). As stated in the first section,
Sylvester proved that

P(Aqy(x, k) >k if x>k

The assumption x > k cannot be removed since P(Aq(1,%)) < k. Improv-
ing on results of Sylvester and Hanson, Laishram and Shorey [22] proved
that P(A1) > 1.95k if © > k except for an explicitly given finite set of pos-
sibilities. Here we observe that 1.95 cannot be replaced by 2, since there are
arbitrarily long chains of composite positive integers. There is no exception
when k& > 270 or x > k + 11.

We turn to lower bounds for w(A1). We see that k! divides A4 (x, k) and
therefore Sylvester’s theorem can be re-formulated as

w(Aq) > w(k) if z>k.

A well-known conjecture states that 2P — 1 is prime for infinitely many
primes p. Thus w(A;) = 2 for infinitely many primes p when = 2P -1,k =
2 according to the above conjecture. Therefore we assume that & > 3.
Saradha and Shorey [39] improved Sylvester’s theorem to

1
w(Ay) > m(k) + [gﬂ'(kz)] +2 if 2>k
except for an explicitly given finite set of possibilities. The above estimate
is best known for k£ < 18. For k > 19, Laishram and Shorey [21] sharpened
it to 3

w(Ay) > (k) + [Zw(k)] -1 if z>k

except for explicitly given finitely many possibilities. We refer to [39] and
[21] for the set of exceptions to the above estimates. These exceptions
satisfy w(Aq) > w(2k) — 1.

Now we consider Sylvester’s theorem and its sharpenings for a product
of terms in arithmetic progression. For relatively prime positive integers
x,d > 2 and k > 3, we put

A=Az, dk)=x(x+d)---(x+ (k—1)d)

and we give lower bounds for P(A) and w(A). We observe that P(A(z,d, 2))
2 if and only if x =1 and d + 1 is a power of 2. Therefore we assume that
k > 3. In 1892 Sylvester proved that P(A) > k if # > d + k. In 1976/77
Langevin replaced the assumption x > d+ k by x > k. Further Shorey and
Tijdeman [66] showed that

P(A) >k unless (z,d,k)=(2,7,3).
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Laishram and Shorey [23] proved that

P(A(z,d, k) > 2k for d>2

4,
(5,11),(18,7); k = 4, (z,d) = (1,3),(1,13),(3,11); k = 10, (z,d) = (1,
There is no loss of generality in assuming that d > 2, since the case d
is similar to that of d = 1 considered above. A conjecture states that

unless k = 3, (z,d) = (1,4), (1,7), (2,3), (2,7), (2,23), (2,79), (3,61), (4, 23),
3).

2

P(A) > ak for d>a

where a is a positive integer. Thus the conjecture has been confirmed for
a = 1,2 according to the above inequalities.

Next we consider lower bounds for w(A) in terms of 7 (k). Shorey and
Tijdeman [64] proved that w(A) > m(k) and Moree showed that w(A) >
w(k) for k > 4 and (x,d, k) # (1,2,5). Schinzel’s Hypothesis H implies
that there are infinitely many d such that 1 + d,1 4+ 2d,1 + 3d,1 + 4d
are all primes. Thus Hypothesis H implies that the estimate of Moree is
best possible for k = 4,5. For k > 6, Saradha, Shorey and Tijdeman [43]
sharpened and extended the preceding inequality. Their result was further
refined by Laishram and Shorey [23] as

w(A) > 7(2k) — 1 unless (x,d, k) =(1,3,10)

confirming a conjecture of Moree. This is best possible when d = 2 by
considering w(A(k+1,2,k)) = 7(2k) — 1. The proof of this result depends
on explicit estimates for the number of primes in arithmetic progression
due to Ramaré and Rumely.

7 Arithmetical Progressions and Perfect
Powers

Erdés and Selfridge proved in 1975 that a product of two or more consec-
utive positive integers is never a power. In 2001 Saradha and Shorey [37]
showed that there are no powers other than

6! , 10!

£ =027 =

5 =(720)%,1.24 =24 = 23

which are product of k—1 distinct integers out of k > 3 consecutive positive
integers x,x + 1,...,x + k — 1. This settled a conjecture of Erdés and
Selfridge. The proof depends on combining the elementary method of Erdds
and Selfridge with the method of Wiles on the Fermat equation.
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Let m > 2 be a prime, k£ > 3 and z > k™. Erdos and Selfridge showed
more generally that a product z(z+1)--- (z+k—1) is not of the form by™
with P(b) < k. The assumption P(b) < k has been relaxed to P(b) < k
by Saradha for & > 4 and by Gy6ry for k = 3. The particular case b = k!
of the result of Saradha and Gydry was already settled by Erdos for & > 4
and by Gyéry for k = 3. Hanrot, Saradha and Shorey [18] showed that the
product in the result of Saradha and Shorey in the preceding paragraph is
not of the form by™ with P(b) < k unless & = 4 and it is not of the form
by™ with P(b) < k unless k € {3, 4,5} which cases were covered by Bennett
[4]. The analogous result for m = 2 is given in Saradha and Shorey [39]
where it has been proved that a product of k — 1 distinct integers out of
z,2+1,...,2+k—1with z > k% and k > 4 is of the form by? with P(b) < k
only when (x,k) = (24,4),(47,4),(48,4). Here the assumption k > 4 is
necessary, since Pell’s equations have infinitely many integer solutions.

Some authors have shown that & is bounded if more than C), k numbers
from a block of k consecutive numbers have a product of the form by™ with
P(b) <k, y>1,m > 1 for suitable C,,. Shorey [51], [53] proved that this
is true with C3 = .84, Cy = .71,C5 = .65,Cs = .62. It follows from the
work of Nesternko and Shorey [29] that C,,, = 2 suffices for m > 7.

For relatively prime positive integers x,d and positive integer b with
P(b) < k, we consider the equation

z(x+d)---(x+ (k—1)d) =by™ in integers x > 0,y > 0,k > 3,m > 2.

(7.1)
We assume that d > 2 as the case d = 1 has already been considered. We
always suppose in (7.1) that (x,d, k) # (2,7,3) so that, as already stated,
the left-hand side of (7.1) is divisible by a prime exceeding k. There is no
loss of generality in assuming that m is prime in (7.1) which we suppose in
this section. We further assume in this paragraph that (7.1) holds and &
exceeds a sufficiently large absolute constant. Erdds conjectured that k is
bounded by an absolute constant. Marszalek confirmed the conjecture for
fixed d. Further Shorey and Tijdeman [65], [67] showed that

d> kcm loglog k

where Cig > 0 is an absolute constant and Shorey [59, p.490] applied
this inequality to derive the conjecture of Erdés from the abe-conjecture
if m > 3. Further Granville (unpublished) showed that the abe-conjecture
implies the conjecture of Erdos with m = 2,3. For a proof, see Laishram
[20]. Shorey [58], [56] applied linear forms in logarithms with a;’s close
to 1 and irrationality measures of Baker obtained by the hypergeometric
method to show that x > kc”loglogk for m > 7 where Ci7 > 0 is an
absolute constant. Thus k is bounded by a number depending only on z
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whenever m > 7. If m > 3, Shorey [55] applied the theory of linear forms
in logarithms for proving that & is bounded by a number depending only
on the greatest prime factor of d. Let d; be the maximal divisor of d such
that all the prime divisors of d; are congruent to 1 mod m. Then Shorey
[55] showed that d; > 1 which implies that we need to verify the preceding
assertion for only finitely many m. The proof depends on estimates for the
magnitude of solutions of Thue-Mahler equations. Moreover, for a given
m > 2, Shorey and Tijdeman [65] proved that k is bounded by a number
depending only on w(d).

A stronger version of the conjecture of Erdés, referred as ES, states
that if (7.1) holds, then (k,m) € (3,2),(4,2),(3,3). In each of the above
three cases, one can find b such that (7.1) has infinitely many solutions.
Let m > 2 and k > 4. Saradha and Shorey [37] showed that Shorey’s
inequality dy > 1 for sufficiently large k is valid for all k& whenever (7.1)
holds. Thus (7.1) implies that d is divisible by a prime congruent to 1 mod
m. Consequently (7.1) never holds for d of the form 293*5¢ > 1 where
a, b, c are integers. Thus conjecture ES is confirmed for infinitely many d.
Saradha and Shorey [40] confirmed conjecture ES for a large number of
other values of d. If w(d) = 1, i.e. d is a prime power, Saradha and Shorey
[38] showed that a product of four or more terms in arithmetic progression
is never a square. The case k = 3 of the preceding result remains open and
it is likely that (7.1) with b = 1,k = 3 and w(d) = 1 has infinitely many
solutions. Finally Laishram and Shorey [24] confirmed conjecture ES when
b=1and w(d) = 2,3,4.

Now we consider (7.1) with k fixed and without any restriction on d.
First we consider the case of squares i.e. m = 2. The earliest result is due
to Euler that there are no four squares in arithmetic progression. This is
also the case when k = 5 by Oblath and 6 < k < 110 by Hirata-Kohno,
Laishram, Shorey and Tijdeman [19]. The cases 6 < k < 11 had been
covered independently by Bennett, Bruin, Gy6ry and Hajdu [5]. Let m > 2
be prime. The result that n,n 4+ d,n + 2d are not all m-th powers is due to
Darmon and Merel. Gy6ry showed that (7.1) with £ = 3 and P(b) < k is
not possible. This is also the case when k& = 4,5,b = 1 according to Gydry,
Hajdu, Saradha [16] and when 6 < k < 11,b = 1 by Bennett, Bruin, Gydry,
Hajdu.

8 The Nagell-Ljunggren Equation
Consider the equation

1
ym =2 = i integers @ > Ly > Lom > 1n > 2. (8.1)
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The equation asks for powers with all the digits equal to 1 in their z-
adic expansions. It is called the Nagell-Ljunggren equation as Nagell and
Ljunggren made the initial contributions that (8.1) is not possible whenever
4 divides n or m = 2, respectively. The equation has solutions given by

(x7y’ n? m) = (3’ 117 57 2)7 (77 207 47 2)7 (187 77 37 3)'

It has been conjectured that (8.1) has only finitely many solutions. This is
a consequence of the abc-conjecture, see [59]. Shorey [51] showed that (8.1)
has only finitely many solutions when n is divisible by a prime congruent
to 1 mod m. The result of Bennett on (1.3) stated above implies that (8.1)
does not hold whenever n is congruent to 1 mod m.

Shorey and Tijdeman [63] showed that (8.1) has only finitely many
solutions whenever z is fixed. By using the p-adic analogue of linear forms in
logarithms with «;’s close to 1, Bugeaud solved (8.1) completely for several
values of z. In particular, Bugeaud and Mignotte [8] settled a problem, due
to Inkeri, that there is no m-th power > 1 with digits identically equal
to 1 in its decimal expansion. Saradha and Shorey [36] showed that (8.1)
is not possible if z = 22 such that z runs through all integers > 31 and
z € {2,3,4,8,9,16,27}. Further Bugeaud, Mignotte, Roy and Shorey [9]
covered the remaining cases. Hence (8.1) is not possible if z is a square.
This was also proved, independently, by Bennett [4] who derived it from
his general result on (1.3). Further Saradha and Shorey [36] showed that
(8.1) implies that x is divisible by a prime congruent to 1 mod m whenever
max (z,y, m,n) exceeds a sufficiently large absolute constant.

9 Goormaghtigh’s Equation

We turn to an equation of Goormaghtigh:

m_l n_l
Y = x 1 in integers x > 1,y > 1,m >2,n>2m>n. (9.1)
Y= T —

We observe that > y and (9.1) asks for positive integers with all their dig-
its equal to one with respect to two distinct bases. Goormaghtigh observed
in 1917 that

-1 _ 5 -1 00 291 90°-1

=57 =571 2-1  90—1

and it has been conjectured that these are the only solutions of (9.1). Tt
follows from the abe- conjecture that (9.1) has only finitely many solutions,
see [59, p.473]. In 1961 Davenport, Lewis and Schinzel showed that (8.1)
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has only finitely many solutions if m and n are fixed. They showed that
the underlying polynomial for (9.1)

X"—1 Y™m-1

X-1 Y -1

is irreducible over C and has positive genus. Then the assertion follows
from a well-known theorem of Siegel on integer solutions of polynomial
equations in two variables and therefore, is non-effective. On the other
hand, they showed that it is effective when ged(m — 1,n — 1) > 1. Shorey
[57] showed that 31 and 8191 are the only primes N with w(N —1) <5
such that all the digits of N are equal to one with respect to two distinct
bases. For positive integers A, B,z > 1 and y > 1 with = # y, Shorey [52]
showed that there are at most 24 integers with all the digits equal to A
in their z—adic expansions and all the digits equal to B in their y—adic
expansions. If AB = 1, Bugeaud and Shorey [13] replaced 24 by 2, and
even by 1 if x exceeds 10! or gcd(x,y) > 1. Balasubramanian and Shorey
[2] proved that (8.1) implies that max (z,y, m,n) is bounded by a number
depending only on the greatest prime factor of = and .

10 Arithmetical Progressions With Equal
Products

It has been conjectured by Erdos and Graham that the equation
XX+ (X+K-1)YY+1)---(Y+L~-1)= 2>

in integers K > 3,L > 3 and X > Y + L has only finitely many solutions
in all the integral variables X > 0,Y > 0,7 > 0, K and L. This conjecture
implies that

241 (z+k-1)=yly+1) - (y+k+1-1)

has only finitely many solutions in > 0,y > 0,k > 3 and [ > 0 satisfying
x > y+k + 1. More generally, for positive integers A and B, Erdés conjec-
tured that there are only finitely many integers z > 0,y > 0,k > 3,1 > 0
with z > y + k + [ satisfying

Az(x+1)---(z+k—-1)=Byly+1)---(y+k+1-1). (10.1)

The first result in this direction is due to Mordell that (10.1) with A =
B =1 and k£ = 2,1 = 1 has no solution in integers x > 0 and y > 0
and we refer to [6] for more early results. Beukers, Shorey and Tijdeman
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[6] applied a well-known theorem of Siegel on integral points on curves to
confirm the conjecture if k£ and [ are fixed. The work involves establishing
irreducibility and computing genus of the curve under consideration so that
the assumptions of the theorem of Siegel are satisfied. Because of the
ineffective nature of Siegel’s result, we do not know any explicit estimate
for the magnitude of the solutions. Saradha and Shorey [31] confirmed the
Erdés’ conjecture when x and y are composed of fixed primes. The proof
depends on several applications of linear forms in logarithms. Further they
showed that (10.1) implies that x —y > C132%/® where Cig > 0 depends
only on A and B.

We consider (10.1) with A = B =1 and k + [ an integral multiple of k.
In this case, for an integer m > 2,

zle+1l)-(z+k-1)=yly+1)--(y+mk—1) (10.2)

in integers z > 0,y > 0,k > 2.

We refer to [6] for an account of early results. Saradha and Shorey [33],
by extending an old effective method of Runge to exponential diophantine
equations, proved that (10.2) implies that max (z,y, k) is bounded by a
number depending only on m. Saradha and Shorey [32] and Mignotte and
Shorey [27] showed that (10.2) with 2 < m < 6 implies that z = 8,y =
1,k = 3,m = 2. Shorey has conjectured that (10.2) with m > 6 has no
solution.

For positive integers I, m,d; and dz with | < m and ged (I, m) = 1, we
consider a more general equation than (10.2), namely,

2@+ dy) o o+ (k= 1)di) = y(y + da) - (y + (mk — )ds)  (10.3)

in integers z > 0,y > 0,k > 2.

By using Runge’s method, Saradha and Shorey [34], [35] and Saradha,
Shorey and Tijdeman [41] showed that (10.3) implies that either max
(x,y, k) is bounded by a number depending only on m, d;,ds or m = 2,k =
2,dy = 2d3, ©* = y? + 3day. On the other hand, (10.3) with m = 2 is
satisfied whenever the latter possibilities hold.

Let [ =m =1 in (10.3). It is clear that (10.3) with k£ = 2 has infinitely
many solutions. Further Gabovich gave an infinite class of solutions of
(10.3) with k = 3,4. Some infinite classes of solutions of (10.3) with &k =5
were given by Szymiczek and Choudhry where the latter also provided
an infinite class of solutions of (10.3) with arbitrary k. Next we take d;
and dg fixed. There is no loss generality in assuming that = > y and ged
(z,y,d1,d2) = 1. Then d; < ds. Saradha, Shorey and Tijdeman [42] proved
that either max (z,y, k) is bounded by a number depending only on da, or
r=k+1,y=2,dy = 1,dy = 4. The latter possibilities cannot be excluded
in view of (k+1)---(2k) =2.-6---(4k — 2), an observation of Makowski.
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