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Chapter 1

Introduction

The motivation for the subjects of this thesis begins with string theory, a physical theory of elemen-

tary particles. In contrast to usual theories, e.g. the Standard Model, that treat elementary particles

as point-like objects, string theory instead describes them as being strings: one-dimensional objects.

There are a number of reasons why string theory can be considered interesting. It can be argued

that it is mathematically very elegant: all particles can be described by the same type of string, and

particle properties, such as mass, charge and spin, are all determined by the vibrational state of the

string. Also, string theory has only one adjustable parameter, which makes it quite a unique theory.

This parameter, the string length `s, can be imagined as the typical length of a string. Furthermore,

string theory is a quantum theory including gravity, so potentially being a unified theory of physics.

However, there is also some controversy regarding string theory, mainly coming from the fact that

there has still not been any experimental verification of string theory. Nevertheless, string theory is

a very interesting theory, and a better understanding of it might yield predictions that can be tested

in experiment.

Surprisingly, a Lorentz invariant quantum string theory requires that spacetime is 26-dimensionsal.

In order to make this compatible with the 4-dimensional spacetime we observe, string theory allows

for backgrounds, i.e. shapes of spacetime, different from the usual Euclidean space RD, where D

denotes the amount of spacetime dimensions. In particular, in this thesis we will consider toroidal

backgrounds, in which a number of dimensions are ’curled up’. This is done by the identification

of points x ∼ x + L, where L denotes the length of the dimension. Spacetime may then e.g. look

like R4 × Td, where R4 is the usual Minkowski spacetime and Td a d = D − 4 dimensional torus. It

turns out that a string in the presence of such compact dimensions can be equivalently described as

a string living on compact dimensions of some different length. This is a non-trivial duality of string

theory that appears on toroidal backgrounds and is referred to as T-duality, where the T stands for

toroidal.

Double field theory (DFT) is a framework that was proposed [1] in order to reformulate the string
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theory that we consider such that T-duality becomes a manifest symmetry of the theory. Besides

this original motivation, it turns out that in DFT a number of different concepts can be seen as

the same. The unification of different concepts is a recurring theme in DFT, which is interesting

to study, as it may point to some deeper connection between such concepts. However, DFT is still

relatively new and being developed. In this thesis, we will discuss a number of results and proposals

from various papers. This will be done in Chapter 4.

DFT shows great similarities with generalized geometry, a mathematical subject in differential ge-

ometry. Generalized geometry was first introduced by Hitchin [7] and developed further by his

students, among which Gualtieri [6]. In this geometry, the tangent bundle T of a manifold is re-

placed by T ⊕T ∗, a sum of the tangent and cotangent bundle, allowing for new interesting structures

to be defined. One of the main themes in generalized geometry is that certain classical geometrical

structures can be seen as special cases of these new structures, e.g. complex and symplectic struc-

tures that can be seen as particular cases of generalized complex structures. We will later see what

exactly these are, and what is meant by this.

Besides its relation to DFT, generalized geometry is also quite interesting on its own. So, before

going into the physics, we will first discuss the mathematics of generalized geometry in Chapter 2.

We will introduce a number of concepts, some of which will reappear when discussing DFT, be it

in a slightly different form. We will work towards the definition of the aforementioned generalized

complex structures. We finish the chapter by showing how Riemannian geometry is incorporated

into generalized geometry.

In Chapter 3 we will give an introduction to string theory. Starting from scratch, we will develop

the physics of strings, in particular of closed strings. In analogue to the physics of point particles,

we will construct the physics of classical relativistic strings which will then be quantized. We will

discuss the implications of compact dimensions, and how T-duality is found in the theory.

This thesis is mostly based on the works of [6, 14, 1, 11] and it aims to give an understanding of

the different subjects and to show how they are connected to each other, on the level an advanced

undergraduate.
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Chapter 2

Generalized geometry

The main difference between generalized geometry and usual geometry is that we replace the tangent

bundle T of a manifold M by

T ⊕ T ∗ =
{

(p,X, ξ) : p ∈M, X ∈ Tp, ξ ∈ T ∗p
}
,

where T ∗ denotes the cotangent bundle of M . In generalized geometry, instead of considering

sections of T , i.e. vector fields, we consider sections of T ⊕T ∗: elements of the form X+ ξ, where X

is a vector field and ξ is a one-form. The set of smooth sections of a bundle E we denote by Γ(E),

e.g. the set of smooth vector fields is denoted by Γ(T ) and the set of smooth one-forms by Γ(T ∗).

We start in the first section by looking at the linear algebra on fibers of T ⊕T ∗, those can be thought

of as a generalization of the tangent spaces. An inner product is defined on these spaces and we look

at the orthogonal group and its corresponding Lie algebra. Then, some particular transformations

are discussed that will appear and be useful throughout the chapter, and also later in Chapter 4.

In the following sections, some more definitions are made, and the linear theory is transported onto

the manifold. The Courant bracket will be defined, which can be seen as an analogue of the Lie

bracket for sections of T ⊕ T ∗.

Throughout this chapter, we will work towards the definition of generalized complex structures,

which are discussed in Section 2.5. In this section, we first introduce complex structures and

symplectic structures, and then we will see how generalized complex structures turn out to be a

generalization of them both.

We end the chapter by showing how Riemannian geometry is incorporated into generalized geometry.

Here, we will see how the Courant bracket can also be used to compute covariant derivatives.
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2.1 Inner product on V ⊕ V ∗

Let V be a n-dimensional vector space. We consider the vector space V ⊕V ∗, where V ∗ denotes the

dual space of V , with indefinite inner product given by

〈X + ξ, Y + η〉 = 1
2 (ξ(X) + η(Y )) ,

which has signature (n, n). This can quickly be verified by taking a basis {ei : i = 1, . . . , n} for V

with corresponding dual basis {ei : i = 1, . . . , n} for V ∗. Then {ei ± ei : i = 1, . . . , n} is a basis for

V ⊕ V ∗ for which the inner product admits a diagonal form with ±1 corresponding to ei ± ei.

We consider the orthogonal group of transformations, consisting of the linear transformations leaving

the inner product invariant,

O(V ⊕ V ∗) =
{
A ∈ GL(V ⊕ V ∗) : 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ V ⊕ V ∗

}
.

The corresponding Lie algebra, which is the algebra of infinitesimal transformations, is denoted by

so(V ⊕ V ∗). Elements R ∈ so(V ⊕ V ∗) are those that satisfy 〈Rv,w〉 + 〈v,Rw〉 = 0. Using the

splitting V ⊕ V ∗, we write R in block form

R =

(
A β

B D

)
,

with A : V → V, β : V ∗ → V,B : V → V ∗ and D : V ∗ → V ∗, all linear maps. Then explicitly, the

condition on R is

〈(AX + βξ) + (BX +Dξ), Y + η〉+ 〈X + ξ, (AY + βη) + (BY +Dη)〉 = 0. (2.1)

In particular, for X = Y = 0 this reduces to η(βξ) + ξ(βη) = η(βξ) + η(β∗ξ) = 0, which must

hold for all η, ξ, hence β∗ = −β. Note here that β∗ denotes the adjoint of β, also known as the

transpose or pullback. Similarly, by setting ξ = η = 0 we find B∗ = −B and for Y = 0, ξ = 0 we

find D = −A∗. Also, these three resulting conditions are sufficient to satisfy the above condition.

Therefore, all elements R ∈ so(V ⊕ V ∗) are of the form

R =

(
A β

B −A∗

)
,

where A ∈ End(V ), B : V → V ∗ and β : V ∗ → V , with B∗ = −B and β∗ = −β. We say B and β

are skew. We may view B as a 2-form in ∧2V ∗ and β as an element of ∧2V via

B(X,Y ) = (B(X))(Y ), β(ξ, η) = η(β(ξ)), X, Y ∈ V, ξ, η ∈ V ∗,

where the skewness implies the alternativity. We conclude

so(V ⊕ V ∗) = End(V )⊕ ∧2V ∗ ⊕ ∧2V.
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We will discuss the following three types of orthogonal transformations in particular.

� A B-transform is a transformations that is generated by an element of the form R =

(
0 0

B 0

)
.

Note that we usually just write R = B. The corresponding orthogonal transformation is

obtained by exponentiation:

exp(B) =

(
1 0

B 1

)
,

This transformation acts on an element X + ξ as X + ξ 7→ X + ξ + iXB, and can be called a

shear transformation as it shifts V ∗ but keeps V invariant. This type of transformation will

be of more interest to us later.

� A β-transform is a transformation that is generated by an element of the form R =

(
0 β

0 0

)
.

The corresponding orthogonal transformation is

exp(β) =

(
1 β

0 1

)
,

which acts on an element X + ξ as X + ξ 7→ X + ξ + iξβ. This type of transformation shifts

V and leaves V ∗ invariant.

� Exponentiation of elements of the form R =

(
A 0

0 −A∗

)
results in the transformation

exp(A) =

(
expA 0

0 (expA∗)−1

)
,

yielding an embedding of GL+(V ) into SO(V ⊕ V ∗). The obvious extension

S 7→

(
S 0

0 (S∗)
−1

)

embeds the full GL(V ) into O(V ⊕ V ∗).

2.2 Maximal isotropic subspaces

Definition 2.1. A subspace L ⊂ V ⊕ V ∗ is called isotropic if 〈v, w〉 = 0 for all v, w ∈ V ⊕ V ∗. As

the inner product has signature (n, n), the maximal dimension such a subspace can have is n. If

this is the case, it is called a maximal isotropic subspace. These subspaces are also known as linear

Dirac structures.

To see exactly why the dimension of these isotropic subspaces cannot exceed n, we first show that

V ⊂ V ⊕ V ∗, which is easily seen to be an isotropic subspace of dimension n, cannot be extended
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to a higher dimensional isotropic subspace. Suppose L ⊃ V is such an extension, then it should

contain some X + ξ ∈ L with ξ 6= 0. However, this means 〈Y, ξ〉 = 1
2ξ(Y ) 6= 0 for some Y ∈ V ⊂ L,

contradicting that L is isotropic. Now, let N ⊂ V ⊕ V ∗ be any isotropic subspace of dimension n

and ϕ : N → V be any linear bijection. By Witt’s theorem [5], ϕ can be extended to an orthogonal

endomorphism of V ⊕V ∗. This endomorphism will map any isotropic extension of N to an isotropic

extension of V , which was just shown to be impossible. Hence, the maximal dimension for isotropic

subspaces is n.

We are interested in maximal isotropic subspaces as we will need them later on. Right now, we

want to describe all maximal isotropic subspaces. For this, we start with a simple family of maximal

isotropic subspaces. Let E be a subspace of V , and define the annihilator of E as Ann(E) = {ξ ∈
V ∗ : ξ(E) = 0}. The subspace E⊕Ann(E) ⊂ V ⊕V ∗ is then trivially a maximal isotropic subspace.

Note that if we apply any orthogonal transformation to some maximal isotropic subspace L, we

obtain a new maximal isotropic subspace, as orthogonal transformation respect the inner product.

In particular this is true for B-transforms. Our claim is that any maximal isotropic subspace can

be obtained as a B-transform of a maximal isotropic subspace of the form E ⊕ Ann(E). Consider

the following proposition.

Proposition 2.1. All maximal isotropic subspaces L ⊂ V ⊕V ∗ are of the form L(E, ε) = {X + ξ ∈
E ⊕ V ∗ : ξ|E = ε(X)}, where E ⊂ V and ε ∈ ∧2E∗.

Proof. Let L be a maximal isotropic subspace and define E = πV L, where πV is the canonical

projection to V . Take X ∈ E, and ξ ∈ V ∗ such that X + ξ ∈ L. Note that X + η ∈ L exactly when

(X + η) − (X + ξ) = η − ξ ∈ L, which is the case if and only if 〈η − ξ, X̃ + ξ̃〉 = (η − ξ)(X̃) = 0

for all X̃ + ξ̃ ∈ L, i.e. η − ξ|E = 0. As L is maximal, also all elements X + η ∈ L whenever

η− ξ|E = 0. Define ε : E → E∗ by ε(X) = ξ|E , which is well-defined by this argument. Now clearly

L = L(E, ε).

In the particular case that ε = 0, we obtain L(E, 0) = E ⊕ Ann(E). As mentioned, B-transforms

leave V invariant and we see that

exp(B) L(E, ε) = {X + ξ + iXB ∈ E ⊕ V ∗ : ξ|E = ε(X)}

= {X + ξ + iXB ∈ E ⊕ V ∗ : (ξ + iXB)|E = (ε+ i∗B)(X)}

= L(E, ε+ i∗B),

with i : E → V the inclusion map. This means we can obtain any maximal isotropic as a B-transform

of some L(E, 0), i.e. any maximal isotropic subspace is the B-transform of some E ⊕Ann(E).

Definition 2.2. The type of a maximal isotropic subspace L is defined by k := n− dimπV (L).

Note that since B-transforms are shear transformations, they leave projections to V invariant, and

thus the type of a maximal isotropic subspace is also invariant under B-transforms.
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The last thing we want to discuss regarding maximal isotropic subspaces is complexification. The

inner product 〈·, ·〉 extends by complexification to (V ⊕ V ∗)⊗ C:

〈u⊗ z, v ⊗ w〉 = 〈u, v〉 zw, u, v ∈ V ⊕ V ∗, z, w ∈ C.

So we can talk about maximal isotropic subspaces of (V ⊕ V ∗) ⊗ C. A maximal isotropic complex

subspace L ⊂ (V ⊕ V ∗)⊗ C is an isotropic subspace of complex dimension n. By replacing V with

V ⊗C, the above theory yields similar results for maximal isotropic complex subspaces. All maximal

isotropic complex subspace are of the form L(E, ε) with a subspace E ⊂ V ⊗C and a complex 2-form

ε ∈ ∧2E∗. Similar to the above, we define the type of such spaces is k := n− dimC πV⊗C(L).

We denote complex conjugation by a bar, e.g. the complex conjugate of L is denoted by L̄. The real

index of a maximal isotropic complex subspace L is defined as r = dimC L ∩ L̄.

2.3 The Courant bracket

We want to transport the concepts we introduced onto the manifold, that is to make the step from

V ⊕ V ∗ to T ⊕ T ∗. Before we do so, in analogue to the Lie bracket which is defined on sections of

the tangent bundle T , we will define a bracket on sections of T ⊕ T ∗.

Definition 2.3. The Courant bracket is a skew-symmetric bracket defined for smooth sections

X + ξ, Y + η of T ⊕ T ∗:

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ − 1
2d(iXη − iY ξ),

where [X,Y ] is the usual Lie bracket. Note that we use the same notation for the Courant bracket

as for the Lie bracket, but there should be no confusion as the Courant bracket for vector fields

reduces to the Lie bracket.

From its definition, it is easy to see that the Courant bracket satisfies bilinearity and skewness.

However it does not define a Lie bracket on T ⊕ T ∗ as it does not satisfy the Jacobi identity. We

define the Jacobiator

Jac(A,B,C) = [[A,B], C] + [[B,C], A] + [[C,A], B],

for A,B,C ∈ Γ(T ⊕ T ∗). This operator tells us in what way the Courant bracket fails to satisfy the

Jacobi identity. The following proposition will show the Jacobiator is the differential of the so-called

Nijenhuis operator. This will imply the Courant bracket satisfies the Jacobi identity up to an exact

term.

Proposition 2.2.

Jac(A,B,C) = d(Nij(A,B,C)),

where Nij is the Nijenhuis operator

Nij(A,B,C) = 1
3 (〈[A,B], C〉+ 〈[B,C], A〉+ 〈[C,A], B〉).
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Proof. For convenience, we introduce the Dorfman bracket (X+ ξ)◦ (Y +η) = [X,Y ] +LXη− iY dξ,
whose skew-symmetrization is the Courant bracket, i.e.

[A,B] = 1
2 (A ◦B −B ◦A).

This follows directly from the skewness of the Lie bracket, and Cartan’s formula [8] LXη = d(iXη)+

iY dη. This formula also shows that the difference between the brackets is given by

[A,B] = A ◦B − d〈A,B〉.

The advantage to using the Dorfman bracket is that it satisfies the following rule:

A ◦ (B ◦ C) = (A ◦B) ◦ C +B ◦ (A ◦ C).

This is proven as follows. Set A = X + ξ,B = Y + η and C = Z + ζ. Then,

(A ◦B) ◦ C +B ◦ (A ◦ C)

= [[X,Y ], Z] + [Y, [Z,X]] + L[X,Y ]ζ − iZd(LXη − iY dξ) + LY (LXζ − iZdξ)− i[X,Z]dη

= [X, [Y,Z]] + LXLY ζ − LX iZdη − LY iZdξ + iZdiY dξ

= [X, [Y,Z]] + LX(LY ζ − iZdη)− i[Y,Z]dξ

= A ◦ (B ◦ C),

using that i[X,Y ] = [LX , iY ] and L[X,Y ] = [LX ,LY ]. Now,

[[A,B], C] = [A,B] ◦ C − d〈[A,B], C〉

= (A ◦B − d〈A,B〉) ◦ C − d〈[A,B], C〉

= (A ◦B) ◦ C − d〈[A,B], C〉.

Hence,

4 [[A,B], C] = (A ◦B) ◦ C − C ◦ (A ◦B)− (B ◦A) ◦ C + C ◦ (B ◦A)

= A ◦ (B ◦ C)−B ◦ (A ◦ C)− C ◦ (A ◦B)−B ◦ (A ◦ C) +A ◦ (B ◦ C) + C ◦ (B ◦A)

= A ◦ (B ◦ C)−B ◦ (A ◦ C)

= (A ◦B) ◦ C

= [[A,B], C] + d〈[A,B], C〉.

Adding all cyclic permutations of the above equality results in

4 Jac(A,B,C) = Jac(A,B,C) + 3 d(Nij(A,B,C)).

Therefore Jac(A,B,C) = d(Nij(A,B,C)).

Before continuing, we first prove a property of the Courant bracket that we will need later on.

Proposition 2.3. Let A,B ∈ Γ(T ⊕ T ∗) and f ∈ C∞(M). Then the Courant bracket satisfies

[A, fB] = f [A,B] + (π(A)f)B − 〈A,B〉 df,

where π : T ⊕ T ∗ → T is the natural projection.
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Proof. Let A = X + ξ,B = Y + η. Then,

[X + ξ, f(Y + η)] = [X, fY ] + LX(fη)− LfY ξ − 1
2d(iX(fη)− ifY ξ)

= f [X + ξ, Y + η] + (Xf)Y + (Xf)η − (iY ξ)df − 1
2 (iXη − iY ξ) df

= f [X + ξ, Y + η] + (Xf)(Y + η)− 〈X + ξ, Y + η〉 df,

using that the Lie bracket and derivative satisfy [X, fY ] = f [X,Y ]+(Xf)Y and LX(fη) = (Xf)η+

fLXη and LfY ξ = fLY ξ + iY ξ df [8], and Cartan’s formula.

Next, we are interested in symmetries of the Courant bracket. The Courant bracket is clearly

invariant under diffeomorphisms, as it is defined by a coordinate-free expression, i.e. it is generally

covariant. The Lie bracket has no more symmetries [6], but the Courant bracket has additional

symmetry. Namely, it is also preserved under B-field transformations, which are B-transforms with

B closed. This is proven by the following proposition.

Proposition 2.4. The transformation exp(B) is an automorphism of the Courant bracket if and

only if B is closed, i.e. dB = 0.

Proof. Let X + ξ, Y + η be smooth sections of T ⊕ T ∗, then[
eB(X + ξ), eB(Y + η)

]
= [X + ξ + iXB, Y + η + iYB]

= [X + ξ, Y + η] + [X, iYB] + [iXB, Y ]

= [X + ξ, Y + η] + LX iYB − 1
2diX iYB − LY iXB + 1

2diY iXB

= [X + ξ, Y + η] + LX iYB − iY LXB + iY iXdB

= [X + ξ, Y + η] + i[X,Y ]B + iY iXdB

= eB [X + ξ, Y + η] + iY iXdB.

Hence, eB is an automorphism of the Courant bracket if and only if iY iXdB is zero for all X,Y , i.e.

dB = 0.

An orthogonal Courant automorphism is a pair (f, F ) consisting of diffeomorphisms f of M and F

of T ⊕ T ∗ such that F is an orthogonal linear map on each fiber of T ⊕ T ∗, satisfying F ([A,B]) =

[F (A), F (B)] for all A,B ∈ Γ(T ⊕ T ∗). Together with the operation of composition this defines the

group of orthogonal Courant automorphisms of T ⊕ T ∗.

As mentioned, the Courant bracket is generally covariant, so invariant under diffeomorphisms. Under

a diffeomorphism f of M , smooth sections of T ⊕ T ∗ transform according to

Ff =

(
f∗ 0

0 (f∗)−1

)
,

where f∗ and f∗ denote the pushforward and pullback of f , respectively. Hence the pair (f, Ff ) is an

orthogonal Courant automorphism. We obtain a subgroup of orthogonal Courant automorphisms

Diff(M) =
{

(f, Ff ) : f is a diffeomorphism of M
}
.
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From Proposition 2.4 we also obtain the subgroup

Ω2
closed(M) =

{
(id, eB) : B is a closed 2-form

}
.

We finish this section by showing that every orthogonal Courant automorphism can be made from

a diffeomorphism and a B-field transformation.

Proposition 2.5. Every orthogonal Courant automorphism of T ⊕ T ∗ can be uniquely written as

the composition of an element of Diff(M) with one from Ω2
closed(M).

Proof. Let (f, F ) be an orthogonal Courant automorphism. Set G = F−1
f ◦F , then the pair (id,G) is

also an orthogonal Courant automorphism. In particular, for any A,B ∈ Γ(T⊕T ∗) and h ∈ C∞(M),

we have G([hA,B]) = [G(hA), G(B)]. On the one hand, by Proposition 2.3

G([hA,B]) = G
(
h[A,B]− (π(B)h)A− 〈A,B〉 dh

)
= hG([A,B])− (π(B)h)G(A)− 〈A,B〉G(dh),

where π : T ⊕ T ∗ → T is the natural projection. By the same proposition

[G(hA), G(B)] = h[G(A), G(B)]− (π(G(B))h) G(A)− 〈G(A), G(B)〉 dh

= hG([A,B])− (π(G(B))h) G(A)− 〈A,B〉 dh.

Equality between the two yields

(π(B)h) G(A) + 〈A,B〉 G(dh) = (π(G(B))h) G(A) + 〈A,B〉 dh.

Choose A = X,B = Y to be smooth sections of T . Then 〈A,B〉 = 0, so we obtain (Y h)G(X) =

(π(G(Y ))h) G(X) for all X,Y, h. This can only hold when π(G(Y )) = Y for all Y , so G admits the

form

(
1 ∗
∗ ∗

)
. The previous equation now reduces to

〈A,B〉 G(dh) = 〈A,B〉 dh,

hence G =

(
1 0

∗ 1

)
. As G is orthogonal, it must be that G =

(
1 0

B 1

)
= eB with B skew.

Proposition 2.4 says B must be closed. Now F = Ff ◦ eB , which proves the claim.

2.4 Dirac structures

Definition 2.4. A Lie algebroid is a vector bundle L on a smooth manifold M equipped with a

Lie bracket [·, ·] on its smooth sections, and a smooth bundle map a : L → T called the anchor,

satisfying

a([X,Y ]) = [a(X), a(Y )],

[X, fY ] = f [X,Y ] + (a(X)f)Y,
(2.2)

for X,Y ∈ Γ(L), f ∈ C∞(M).
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Intuitively, a Lie algebroid can be seen as a generalization of the tangent bundle T , satisfying the

properties of a Lie algebra when projected (or anchored) to the tangent bundle. As a candidate Lie

algebroid, the bundle T ⊕ T ∗ equipped with the Courant bracket has a natural choice for anchor,

namely the projection π : T ⊕ T ∗ → T . This makes it automatically satisfy the first condition of

(2.2) as the Courant bracket is equal to the Lie bracket when restricted to sections of T . However,

the second condition is not automatically satisfied, and we still have that the Courant bracket is

not even a Lie bracket as the Jacobiator is non-zero. This makes that (T ⊕ T ∗, [·, ·]) is not a Lie

algebroid. Both of these problems are solved if we instead restrict to a subbundle L ⊂ T ⊕T ∗ that is

both involutive, i.e. closed under the Courant bracket, and isotropic. Then the inner products in the

Nijenhuis operator vanish, so that (L, [·, ·], π) would be a Lie algebroid. Also the second condition

is satisfied by Proposition 2.3. This motivates the following definition.

Definition 2.5. A maximal isotropic subbundle L ⊂ T ⊕ T ∗ is called an almost Dirac structure. If

L is involutive, i.e. closed under the Courant bracket, then it is said to be integrable, or simply a

Dirac structure. Similarly, a maximal isotropic and involutive complex subbundle L ⊂ (T ⊕T ∗)⊗C
is called a complex Dirac structure, and is an instance of a complex Lie algebroid.

All Lie algebroids we consider are Dirac structures. Note that we can use B-field transformations

to map Dirac structures to new Dirac structures. This is because B-field transformations preserve

the Courant bracket, ensuring the involutivity, and also are orthogonal transformations, ensuring

the isotropicness. This property will be used in the next section.

2.5 Generalized complex structures

Generalized complex structures are one of the main subjects of Gualtieri and Hitchin [6, 7]. Roughly

speaking, generalized complex structures are structures on T⊕T ∗ that are generalizations of complex

structures and symplectic structures. We start by first discussing what complex and symplectic

structures are, and discussing some of their properties.

A complex structure on V is a linear map J : V → V such that J2 = −1. If we extend J to the

complexification V ⊗ C, then we see J has complex eigenvalues ±i, leading to the decomposition

V ⊗C = V1,0⊕V0,1, where V1,0 and V0,1 denote the ±i-eigenspaces of J , respectively. It can easily be

seen that these are related by complex conjugation, i.e. V̄1,0 = V0,1, which shows the dimensions of

V1,0 and V0,1 are the same. Since det(J)2 = (−1)n, we find that complex structures can only exist on

even-dimensional spaces n = 2m. Conversely, also every even-dimensional space V admits a complex

structure J . Namely, let {ei : i = 1, . . . , 2m} be a basis for V , then J defined by e2k 7→ e2k+1 and

e2k+1 7→ −e2k for k = 1, . . . ,m, is a complex structure. If J : T → T is a complex structure on

each fiber of T of a manifold, we say J is an almost complex structure. We say J is integrable to a

complex structure if in addition it satisfies the following integrability condition: that the manifold

14



everywhere admits local coordinates x1, y1, . . . , xm, ym, such that

J
∂

∂xk
=

∂

∂yk
and J

∂

∂yk
= − ∂

∂xk
, k = 1, . . . ,m,

with holomorphic transition maps between the charts. Frobenius theorem [8] states that this in-

tegrability condition is equivalent to saying that T1,0 is involutive, i.e. the space of its sections is

closed under the Lie bracket [·, ·].

A symplectic structure on V is a non-degenerate 2-form ω ∈ ∧2V ∗. As before, we can view ω as

a map V → V ∗ that is skew, i.e. ω∗ = −ω. Since det(ω) = det(−ω∗) = (−1)n det(ω), it follows

that symplectic structures can only exist on even-dimensional subspaces as well. Also every even-

dimensional space V admits a symplectic structure, e.g. ω = e1∧e2 + · · ·+e2m−1∧e2m. If ω ∈ ∧2T

is a symplectic structure on each fiber of T , we call it an almost symplectic structure. We say ω is

integrable to a symplectic structure if in addition it satsifies the following integrability condition:

that the manifold admits everywhere local coordinates x1, y1, . . . , xm, ym, such that

ω = dx1 ∧ dy1 + · · ·+ dxm ∧ dym,

with symplectic transition maps between the charts. By Darboux theorem [2] this is the case exactly

when dω = 0, i.e. ω is closed. Hence, we refer to dω = 0 as the integrability condition for symplectic

structures.

In analogue to the complex and symplectic structures, we will now define a generalized complex

structure on V . This definition will be extended to generalized complex structures on T , and we

will specify the integrability condition for these structures.

Definition 2.6. A generalized complex structure on V is an endomorphism J of V ⊕ V ∗ which is

is both complex, i.e. J 2 = −1, and symplectic, i.e. J ∗ = −J .

Note that in this definition, technically the adjoint J ∗ is an endomorphism of the dual space (V ⊕
V ∗)∗. However, we identify V ⊕ V ∗ with its dual space using the inner product 〈·, ·〉. Furthermore,

note that the latter condition in this definition could also be replaced by requiring that J is an

orthogonal transformation. Namely, as J is invertible, J ∗ = −J ⇐⇒ J ∗J = −J 2 = 1. We now

wish to understand the space of all generalized complex structures.

Proposition 2.6. A generalized complex structure on V is equivalent to the specification of a max-

imal isotropic complex subspace L ⊂ (V ⊕ V ∗)⊗ C of real index zero, i.e. such that L ∩ L̄ = {0}.

Proof. Let J be a generalized complex structure, and let L ⊂ (V ⊕V ∗)⊗C be its +i-eigenspace. For

x, y ∈ L, we have using the orthogonality of J that 〈x, y〉 = 〈J x,J y〉 = 〈ix, iy〉 = −〈x, y〉, implying

〈x, y〉 = 0. Together with the fact that L has complex dimension n as it is the +i-eigenspace of J ,

it follows that it is maximal isotropic. As L̄ is the −i-eigenspace of J , we also have L ∩ L̄ = {0}.

Conversely, let L be maximal isotropic complex subspace of real index zero. Then (V ⊕ V ∗)⊗ C =

L⊕L̄, and we can define J to be multiplication by i on L and multiplication by −i on L̄. Restricting

this map to V ⊕ V ∗ and taking the real part gives us a generalized complex structure on V .
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As done for the complex and symplectic structures, we will now define generalized (almost) complex

structures on the manifold.

Definition 2.7. If an endomorphism J of T ⊕T ∗ defines a generalized almost complex structure J
on each tangent space, it is called a generalized almost complex structure. It is said to be integrable to

a generalized complex structure when its +i eigenbundle T1,0 ⊂ (T ⊕ T ∗)⊗C is Courant involutive.

Hence, looking at Definition 2.5 and Proposition 2.6, we see that an integrable generalized complex

structure is equivalent to the specification of a complex Dirac structure of real index zero.

Now we will show how symplectic and complex structures are particular cases of generalized complex

structures, and how their integrability conditions are equivalent to the integrability condition for

generalized complex structures.

Consider a symplectic structure ω on V . It can be described by the generalized complex structure

Jω =

(
0 −ω−1

ω 0

)
.

The corresponding maximal isotropic subspace, i.e. the +i-eigenspace of Jω, is given by

Lω =
{
X − iω(X) : X ∈ V ⊗ C

}
.

As πV⊗C(Lω) = V ⊗C, it follows that this structure has type k = 0. Actually, it can be proven that

any type k = 0 generalized complex structure is a B-field transformation of a symplectic structure

[6]. Now suppose ω is an almost symplectic structure on T . It can be described by the generalized

almost complex structure

Jω =

(
0 −ω−1

ω 0

)
,

which has corresponding maximal isotropic subbundle

Lω =
{
X − iω(X) : X ∈ Γ(T ⊗ C)

}
.

Note that Lω = e−iωT , i.e. it can be viewed as a B-transform of T . Since T is Courant involutive,

Proposition 2.4 implies that L is Courant involutive if and only if dω = 0, which is precisely the

integrability condition for symplectic structures. In this case, Lω is indeed a Dirac structure of real

index zero, as the non-degeneracy of ω implies Lω has real index zero.

Consider a complex structure J on V . It can be described by the generalized complex structure

JJ =

(
−J 0

0 J∗

)
.

The corresponding maximal isotropic subspace, i.e. the +i-eigenspace of JJ , is given by

LJ = V0,1 ⊕ V ∗1,0.
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We see πV⊗C(LJ) = V0,1 and hence the type is k = n/2. In fact, in [6] it is proven that any

generalized complex structure of type k = n/2 is the B-field transformation of a complex structure.

Now suppose J is an almost complex structure on T . It can be described by the generalized almost

complex structure

JJ =

(
−J 0

0 J∗

)
,

with corresponding maximal isotropic subbundle

LJ = T0,1 ⊕ T ∗1,0.

Suppose that JJ is integrable, i.e. LJ is Courant involutive. Since the Courant bracket reduces to

the Lie bracket on T , it follows that T0,1 is Lie involutive, so J is integrable. Conversely, suppose

that J is integrable. Let X + ξ, Y + η be sections of LJ . Then,

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ + 1
2d(iXη − iY ξ)

= [X,Y ] + LXη − LY ξ.

As J is integrable, [X,Y ] is a section of T0,1. Using Cartan’s formula, LXη = iX(dη) + d(iXη) =

iX(dη) ∈ Γ(T ∗1,0) and similarly for LY ξ, it follows that LXη−LY ξ ∈ Γ(T ∗1,0) and thus is LJ Courant

involutive. This shows that the integrability conditions for JJ and J are the same. And indeed, in

this case LJ becomes a Dirac structure of real index zero.

We finish this section by mentioning the generalized Darboux theorem. As said, all generalized

complex structures of type k = 0 are B-field transforms of symplectic structures, and those of type

k = n/2 are B-field transforms of complex structures. In fact, the type k of a generalized complex

structure turns out to be a measure for the degree to which it is symplectic or complex. This is

described by the following theorem. Its proof of goes beyond the theory discussed here, so for a

proof we refer the reader to [6].

Theorem 2.1 (Generalized Darboux Theorem). Consider a generalized complex structure J on a

manifold. Any regular point, i.e. a point where the type k of J is locally constant, has a neighborhood

that admits coordinates x1, y1, . . . xm, ym such that J is a B-field transformation of

J0 =

(
−J0 −ω−1

0

ω0 J∗0

)
,

with J0 defined by

J0
∂

∂xj
=

∂

∂yj
, J0

∂

∂yj
= − ∂

∂xj
, for j = 1, . . . , k,

and

ω0 = dxk+1 ∧ dyk+1 + · · ·+ dxm ∧ dym.
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2.6 Riemannian geometry

We want to finish this chapter by a short description of how Riemannian geometry is incorpo-

rated into the framework of generalized geometry. Riemannian geometry is given by a manifold

M equipped with a symmetric positive definite (0, 2)-tensor called the metric g. Using the interior

product, we can consider the metric as a map g : T → T ∗:

g : X 7→ iXg.

The non-degeneracy of g makes this map an isomorphism between T and T ∗.

For any tangent vector X, we use the notation X+ = X + gX and X− = X − gX. Consider the

following subbundles of T ⊕ T ∗:

C+ =
{
X+ = X + gX : X ∈ T

}
,

C− =
{
X− = X − gX : X ∈ T

}
.

These subbundles can also be seen as the graphs of ±g : T → T ∗. On C+, the inner product reduces

to

〈X + gX, Y + gY 〉 = 1
2 (g(X,Y ) + g(Y,X)) = g(X,Y ),

i.e. a positive definite inner product. Similarly, on C− the inner product 〈X − gX, Y − gY 〉 =

−g(X,Y ) becomes negative definite. Also we see that C+ and C− are orthogonal. Since g is an

isomorphism, we have C+ ∩ C− = {0}. Both have half the rank of T ⊕ T ∗, hence

T ⊕ T ∗ = C+ ⊕ C−.

Denote the projections to C+ and C− by πC+
and πC− , respectively. We see that

πC+(X) = πC+

(
1
2 (X + gX +X − gX)

)
= 1

2X
+,

and similarly πC−(X) = 1
2X
−.

Now we want to focus on the covariant derivative. As usual in Riemannian geometry, the covariant

derivative allows us to take derivatives of vector fields along other vector fields. In coordinates, this

covariant derivative is given by

∇∂i∂j = Γkij∂k,

where we use the notation ∂i ≡ ∂
∂xi , and

Γkij = 1
2g
kl (∂igjk + ∂jgik − ∂kgij)

denote the Christoffel symbols. More generally, we can define a covariant derivative along a vector

field on any vector bundle E.

Definition 2.8. If X is a vector field on M , a covariant derivative along X on a vector bundle E

is a map

∇X : Γ(E)→ Γ(E),
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satisfying

∇X(v + w) = ∇Xv +∇Xw,

∇fX+hY v = f∇Xv + h∇Y v,

∇X(fv) = f∇Xv + (Xf)v,

for all v, w ∈ Γ(E) and f ∈ C∞(M).

One can easily check that the usual covariant derivative in Riemannian geometry satisfies this

definition. The following proposition gives us a covariant derivative on C+.

Proposition 2.7. A covariant derivative on C+ is given by

∇XY + = πC+
[X−, Y +], X ∈ Γ(T ), Y ∈ Γ(C+).

Proof. From the definition, additivity in both X and Y + are clear. Now see that, by Proposition

2.3

∇fXY + = πC+
[fX−, Y +]

= πC+

(
f [X−, Y +]− (Y f)X− + 〈X−, Y +〉 df

)
= fπC+[X−, Y +]

= f∇XY +,

using the orthogonality of C+ and C−. This shows linearity in X. Similarly,

∇X(fY +) = πC+
[X−, fY +]

= πC+

(
f [X−, Y +] + (Xf)Y + − 〈X−, Y +〉df

)
= fπC+ [X−, Y +] + (Xf)Y +

= f∇XY + + (Xf)Y +,

which shows the product rule. This proves that ∇ is a covariant derivative on C+.

In terms of local coordinates xi on M , the vector fields ∂+
i form a basis for C+. Now,

∇∂i∂+
j = πV

[
∂i − gikdxk, ∂j + gjldx

l
]

= πV
(
[∂i, ∂j ] + L∂igjldxl + L∂jgikdxk − 1

2d
(
gjlδ

l
i + gikδ

k
j

))
= πV

(
∂igjkdxk + ∂jgikdxk − 1

2 (gji + gij)
)

= πV
(
∂igjkdxk + ∂jgikdxk − ∂kgijdxk

)
= 1

2

(
dxk + gkl∂l

)
(∂igjk + ∂jgik − ∂kgij)

= 1
2g
kl (∂igjk + ∂jgik − ∂kgij) ∂+

l

= Γkij∂
+
k ,
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with usual formula for the Christoffel symbols Γkij . By the identification of C+ with T using the

isomorphism g, this results in the usual covariant derivative on T . The interesting conclusion we can

make here is that the Courant bracket in generalized geometry can be used to compute covariant

derivatives in ordinary Riemannian geometry, an surprising other application of the Courant bracket.
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Chapter 3

String theory

As mentioned in the introduction, in string theory we replace the concept of point particles by string-

like particles. Strings are one-dimensional objects, so they can be parametrized by a coordinate σ.

Strings have finite length, and we usually let σ run from 0 to σ1. There are two types of strings:

open strings, which have two endpoints at σ = 0 and σ = σ1, and closed strings, for which the

endpoints coincide.

Similar to point particles, strings have position and momentum. However, they can also vibrate in

certain ways. The way in which a string vibrates, we refer to as the vibrational state of the string.

Roughly speaking, in string theory all particles are of the same type of string, either open or closed,

but properties of the particle, such as mass, charge or spin, are determined by their vibrational state.

The contents of this chapter is as follows. We start by making a description for a free classical

relativistic string. We construct an action for strings, leading to the equations of motion. We will

then restrict ourselves to closed strings, as these will be the subject of the later sections. Choosing

a suitable parametrization for the string we are able to solve these. Using canonical quantization,

we will obtain a quantum mechanical closed string. While doing the quantization, we assume the

reader is familiar with the basics of quantum field theory for point particles. If not, we refer to

[13]. In the last two sections, we will see what the implications of compact dimensions are to closed

strings, show how T-duality emerges as a duality of the theory.

3.1 String action

As is familiar, point particles trace out a world-line through spacetime. Usually, to determine the

trajectory of a particle, we come up with an action, and choose the world-line that minimizes the

action. This is known as the principle of least action. The simplest Lorentz invariant action for a
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point particle is given by its proper time, i.e.

S = −mc
∫

ds. (3.1)

This action can be interpreted as the length of the world-line, so then the principle of least action

implies the particle always takes shortest path through spacetime.

For strings, we start completely analogously. The only difference is that instead of particles as

points, we consider particles as strings. Therefore, particles no longer trace out a one-dimensional

world-line in spacetime, but rather a two-dimensional world-sheet. We parametrize this world-sheet

by Xµ(τ, σ). We call Xµ the string coordinates, and τ and σ are the coordinates of the world-sheet.

Roughly speaking, τ will have the interpretation of a time-like coordinate, and σ that of a space-like

coordinate or that of the length along the string.

We induce the Minkowski metric ηµν = diag(−1, 1, 1, 1) of spacetime onto the world-sheet,

γαβ ≡ ηµν
∂Xµ

∂ξα
∂Xν

∂ξβ
,

where (ξ0, ξ1) = (τ, σ), and α and β are world-sheet indices, running from 0 to 1. For notational

convenience, we also introduce the notation

Ẋ ≡ ∂X

∂τ
, X ′ ≡ ∂X

∂σ
,

also stressing the time- and space-like interpretation of τ and σ, respectively. It follows that

γαβ = ηµνẊ
µX ′ν =

(
(Ẋ)2 Ẋ ·X ′

Ẋ ·X ′ (X ′)2

)
.

As mentioned, we want to come up with an action analogously to (3.1), but instead of minimizing

the length of a world-line through spacetime, we want to minimize the area of the world-sheet. An

area element of the world-sheet is expressed as

dA = dτ dσ
√
|γ|.

From this, we construct the Nambu–Goto action,

S =
−1

2πα′~c2

∫ τf

τi

dτ

∫ σ1

0

dσ
√
|γ|, (3.2)

where the constant in front is to make the units match. The constant α′ is called the slope parameter

and has units of inverse energy squared. It is related to the string length by `s = ~c
√
α′. Alter-

natively, some express the action in terms of the string tension T0 = (2πα~c)−1. For notational

convenience however, we will use natural units, i.e. ~ = c = 1. Plugging in the expression for
√
|γ|,

S =
−1

2πα′

∫ τf

τi

dτ

∫ σ1

0

dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2.

The corresponding Lagrangian density is

L(Ẋµ, X ′µ) =
−1

2πα′

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2. (3.3)
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We introduce the canonical momenta

Pτµ ≡
∂L
∂Ẋµ

, Pσµ ≡
∂L
∂X ′µ

.

Explicitly, we find

Pτµ =
−1

2πα′
(Ẋ ·X ′)X ′µ − (X ′)2Ẋµ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

,

Pσµ =
−1

2πα′
(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′µ√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

.

(3.4)

In terms of the canonical momenta, the Euler–Lagrange equations become

∂Pτµ
∂τ

+
∂Pσµ
∂σ

= 0. (3.5)

Despite the simple form, looking at (3.4), this equation is rather difficult to solve for Xµ. Our

strategy will be to use the freedom in parametrization to simplify the equation of motion in terms

of Xµ enormously.

In addition, in the case of open strings, we need boundary conditions. For each endpoint σ∗ and

dimension µ, we could consider boundary conditions of two types. Either Dirichlet boundary condi-

tions
∂Xµ

∂τ
(τ, σ∗) = 0,

or free endpoint boundary conditions

Pσµ (τ, σ∗) = 0.

We will give a remark on the interpretation of these boundary conditions. Each endpoint σ∗ satisfies

the Dirichlet boundary condition in some dimensions µ, implying the endpoints are fixed in those

dimensions. For all other µ it satisfies the free endpoint boundary condition, so that it is free to

move along those dimensions. More specifically, some endpoint σ∗ has p values of µ for which it has

free endpoint boundary conditions, and the other (D − p) are Dirichlet boundary conditions. Then

the string endpoint moves freely on a p-dimensional object. These objects are called D-branes, in

particular Dp-branes, where the D stands for Dirichlet.

For closed strings, we do not have boundary conditions, they do not have endpoints connected to a

D-brane. However, they do have a periodicity condition.

Xµ(τ, σ + σ1) = Xµ(τ, σ).

Note that this periodicity also gives rise to an ambiguity on the specification of the σ = 0 point: as

there are no endpoints, we can start anywhere. This ambiguity will be taken into account later.

3.2 String momentum and parametrization freedom

As mentioned, the equation of motion (3.5) is rather difficult to solve for Xµ, so we want to use the

freedom in parametrization of the world-sheet to simplify it. Before we do so, we first need to define
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some property of the string.

Consider the transformation

Xµ(τ, σ)→ Xµ(τ, σ) + εµ,

for some constant εµ, i.e. a spacetime translation. As the Lagrangian (3.3) only depends on deriva-

tives of Xµ, this transformation is a symmetry of the Lagrangian. By Noether’s theorem [14], this

leads to the conserved current

jαµ =
∂L

∂(∂αXµ)
,

where the world-sheet index α runs from 0 to 1. We have

(j0
µ, j

1
µ) = (Pτµ ,Pσµ ).

Note that the conservation equation ∂αj
α
µ = 0 is the same as the equation of motion (3.5). The

corresponding conserved charges are normally obtained by integrating j0
µ over the spatial coordinates.

In this case, this gives

pµ(τ) =

∫ σ1

0

Pτµdσ.

Note that this charge gets the name and interpretation of momentum, as is the usual conserved

charge when Noether’s theorem is applied to spacetime translations. We see that

dpµ
dτ

=

∫ σ1

0

∂Pτµ
∂τ

dσ = −
∫ σ1

0

∂Pσµ
∂σ

dσ = − Pσµ
∣∣σ1

0
. (3.6)

For closed strings, the points σ = 0 and σ = σ1 are identified, so that the above expression evaluates

to zero, i.e. pµ is conserved. For open string, pµ will be constant for all µ where the endpoints

satisfy the free endpoint boundary conditions. However, in the case of endpoints satisfying Dirichlet

boundary conditions instead, pµ may fail to be conserved. In fact, this corresponds to current flowing

from the string in and out of the D-branes that they are connected to [14]. From the definition of

pµ, we can interpret Pτµ as the σ-density of spacetime momentum carried by the string.

It can be proven [14] that we can express

pµ =

∫
γ

Pτµdσ − Pσµdτ,

where for open strings, γ is any curve across the world-sheet, and for closed strings, γ is any curve

around the world-sheet tube. In fact, this shows pµ is independent of the chosen parametrization

for the world-sheet.

Now we are at the point that we introduce a restriction on the parametrization of the world-

sheet that will simplify the equation of motion. For this, we first restrict ourselves to the types

of parametrizations given by

n ·X(τ, σ) = λτ.

This type of parametrization depends on some vector nµ and scalar λ, and fixes the τ -parametrization.

The string with value of τ is the intersection of the world-sheet with the plane given by the above

equation. We rewrite the condition as

n ·X(τ, σ) = (n · p)λ̃τ,
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with λ = (n · p)λ̃. Here we require n · p to be constant. This naturally holds for closed strings and

open strings with free endpoint boundary conditions, as pµ is constant for those. For open strings

with Dirichlet boundary conditions in some dimensions, we will assume n · Pσ = 0, so that (3.6)

dotted with n implies n · p = 0. Furthermore,

λ̃ = βα′,

where we use β = 1 for closed strings and β = 2 for open strings.

Next, we will choose our σ-parametrization by demanding that n · Pτ increases constantly as σ

increases. This is done as follows. Suppose, we are given some parametrizations σ and σ̃, then

∂Xµ

∂σ
=

dσ̃

dσ

∂Xµ

∂σ̃
.

From (3.4) we see that Pτµ scales linearly with X ′µ, hence

Pτµ(τ, σ) =
dσ̃

dσ
Pτµ(τ, σ̃),

and thus

n · Pτ (τ, σ) =
dσ̃

dσ
n · Pτ (τ, σ̃).

This implies we can choose a σ-parametrization where n · Pτ is independent of σ. Note that this

property is invariant under a rescaling of the parameter σ, which allows us to choose the range of σ.

For open strings we will choose σ ∈ [0, π] and for closed strings σ ∈ [0, 2π], as this we be convenient

later on. Independence of σ means n · Pτ = a(τ) for some function a(τ). We see

a(τ) =
1

π

∫ π

0

a(τ)dσ =
1

π

∫ π

0

n · Pτdσ =
n · p
π

,

which is constant. The same for closed strings, with π replaced by 2π. Hence, the σ value assigned

to a point is proportional to the amount of n ·p momentum carried by the portion of the string from

the endpoint σ = 0 to that point.

Dotting the equation of motion (3.5) with n, and using that n · Pτ is constant results in

∂σ (n · Pσ) = 0,

i.e. n · Pτ is independent of σ. For open strings we assumed n · Pσ = 0 at the string endpoints, so

it follows that n · Pσ = 0 everywhere on the world-sheet. We would like to have the same result for

closed strings. Here we recall that the σ = 0 point for closed strings can be arbitrarily defined. We

deal with these two matters simultaneously. We select the σ = 0 point arbitrarily on some string.

Then we select the σ = 0 point on all other strings by requiring that n · Pσ = 0. We compute

n · Pσ = − 1

2πα′
(Ẋ ·X ′)∂τ (n ·X)− (Ẋ)2∂σ(n ·X)√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

.

Since ∂σ(n ·X) = ∂σ((n · p)βα′τ) = 0, this reduces to

n · Pσ = − 1

2πα′
(Ẋ ·X ′)∂τ (n ·X)√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

. (3.7)
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Since ∂τ (n · X) = α′(n · p) is non-zero constant, we must have Ẋ · X ′ = 0 at some point on each

string. We choose the σ-parametrization such that X(τ, σ) becomes an orthogonal parametrization.

This fixes the σ = 0 point everywhere else on the world-sheet, and this implies that n · Pσ = 0

everywhere. Summarizing, for both open and closed strings we can restrict ourselves to a family of

parametrizations such that

n ·X(τ, σ) = βα′(n · p)τ,

n · p =
2π

β
n · Pτ ,

n · Pσ = 0,

(3.8)

where β = 1 for open strings, and β = 2 for closed strings.

By restricting ourselves to this type of parametrization, constraints are put on the solutions Xµ.

The vanishing of n · Pσ together with (3.7) yields

Ẋ ·X ′ = 0. (3.9)

Now by (3.8) and (3.4),

n · p =
2π

β
n · Pτ =

1

βα′
(X ′)2(n · Ẋ)√
−(Ẋ)2(X ′)2

= n · p (X ′)2√
−(Ẋ)2(X ′)2

,

as n · Ẋ = ∂τ (n ·X) = βα′(n · p). Hence, (Ẋ)2 + (X ′)2 = 0. Together with (3.9), we can compactly

write these constraints as

(Ẋ ±X ′)2 = 0. (3.10)

These constraints hold for open strings as well as closed strings. We can simplify the expression

(3.4) for Pτµ now considerably using these constraints. In particular note that
√
−(Ẋ)2(X ′)2 =√

(X ′)2(X ′)2 = (X ′)2. We find

Pτµ =
1

2πα′
Ẋµ. (3.11)

Similarly, the expression for Pσµ simplifies to

Pσµ = − 1

2πα′
X ′µ. (3.12)

And the equation of motion (3.5) now takes the form

Ẍµ −X ′′µ = 0, (3.13)

which is simply a wave equation in all components Xµ.

We have arrived at the equation of motion for both open and closed strings, having some restrictions

set on the parametrization. From now on, we will restrict ourselves to closed strings, as the symmetry

of T-duality will apply to them. The physics of open strings can be done for a large part very similar

to what we will do in the next sections. For more in-depth derivations, we refer the reader to [14].
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3.3 Relativistic closed strings

The most general solution to the wave equation (3.13) is

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ),

for some functions Xµ
L and Xµ

R denoting the left- and right-moving waves, respectively. For closed

strings, the periodicity in σ, i.e. σ ∼ σ + 2π, gives

Xµ(τ, σ + 2π) = Xµ(τ, σ). (3.14)

In terms of a change of variables u ≡ τ + σ, v ≡ τ − σ, this yields

Xµ
L(u+ 2π) +Xµ

R(v − 2π) = Xµ
L(u) +Xµ

R(v). (3.15)

Differentiating w.r.t. u and v yields that X ′µL and X ′µR are 2π-periodic, respectively. Hence, we

expand XL and XR in Fourier series

X ′µL (u) =

√
α′

2

∑
n∈Z

ᾱµne
−inu,

X ′µR (v) =

√
α′

2

∑
n∈Z

αµne
−inv,

(3.16)

where we put the constants of
√

α′

2 in front to make the coefficients αµn and ᾱµn dimensionless.

Note that the bar should not be confused with complex conjugation, αµn and ᾱµn are really different

variables. Integration leads to

Xµ
L(u) =

1

2
xµL0 +

√
α′

2
ᾱµ0u+ i

√
α′

2

∑
n 6=0

ᾱµn
n
e−inu,

Xµ
R(v) =

1

2
xµR0 +

√
α′

2
αµ0v + i

√
α′

2

∑
n 6=0

αµn
n
e−inv,

(3.17)

with constants of integration xµL0 and xµR0. From (3.15) now follows that

αµ0 = ᾱµ0 .

Putting together these expressions, we obtain the full solution

Xµ(τ, σ) = xµ0 +
√

2α′αµ0 τ + i

√
α′

2

∑
n 6=0

e−inτ

n

(
αµne

inσ + ᾱµne
−inσ) ,

with xµ0 ≡ 1
2 (xµL0 + xµR0). From (3.11) we now find

Pτµ =
1

2πα′
Ẋµ =

1

2πα′

√
2α′αµ0 + · · · ,

where the dots denote oscillating terms in σ. Hence,

pµ =

∫ 2π

0

Pτµdσ = 2π
1

2πα′

√
2α′αµ0 =

√
2

α′
αµ0 =⇒ αµ0 =

√
α′

2
pµ. (3.18)
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Plugging this expression for αµ0 into the expression we have for Xµ, we obtain

Xµ(τ, σ) = xµ0 + α′pµτ + i

√
α′

2

∑
n6=0

e−inτ

n

(
αµne

inσ + ᾱµne
−inσ) .

Here we can clearly identify the components that make up Xµ. We have a zero-mode xµ0 , a term

corresponding to the momentum, and the oscillators of the string. Note that if all oscillators were

to vanish, i.e. if we drop the σ-dependence, we are left with the motion of a point particle. The

oscillators determine the vibrational state of the string, which in turn determine the properties of

particle.

It is convenient to record the τ and σ derivatives,

Ẋµ = X ′µL (τ + σ) +X ′µR (τ − σ),

X ′µ = X ′µL (τ + σ)−X ′µR (τ − σ).
(3.19)

These lead to the following linear combinations:

Ẋµ +X ′µ = 2X ′µL (τ + σ) =
√

2α′
∑
n∈Z

ᾱµne
−in(τ+σ),

Ẋµ −X ′µ = 2X ′µR (τ − σ) =
√

2α′
∑
n∈Z

αµne
−in(τ−σ).

(3.20)

Note however that not all αµn will give valid solutions. Namely, they must satisfy the parametrization

constraints (3.10). In order to handle these constraints well, we introduce a change of coordinates,

called light-cone coordinates:

x+ =
x0 + x1

√
2

, x− =
x0 − x1

√
2

, xI = (x2, . . . , xD−1).

Here I denotes a transverse index, running over the transverse dimensions, from 2 to D − 1. These

coordinates are merely introduced so that it is easier to solve the equations together with the

constraints. They are called light-cone coordinates because the x+ and x− axes are world-lines of

beams of light in the ±x+ directions. Using these coordinates, the inner product looks like

v · w = −v0w0 + v1w1 + · · ·+ vD−1wD−1

= −v−w+ − v+w− + v2w2 + · · ·+ vD−1wD−1.

In addition to this change of coordinates, we also impose the light-cone gauge, by which we mean

that we take the particular choice of parametrization corresponding to nµ =
(

1√
2
, 1√

2
, 0, . . . , 0

)
, so

that n ·X = X+ and n · p = p+. By (3.8), this yields

X+(τ, σ) = α′p+τ, p+ = 2π Pτ+.

The strategy behind this is to show that there is no dynamics in X−, up to a zero mode, and that

all the dynamics is in the transverse string coordinates X2, . . . , XD−1.

In terms of light-cone coordinates, the constraints (3.10) can be expressed as

−2(Ẋ+ ±X ′+)(Ẋ− ±X ′−) + (ẊI ±X ′I)2 = 0.
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By the light-cone gauge condition, we have X ′+ = 0 and Ẋ+ = βα′p+, so we find

Ẋ− ±X ′− =
1

βα′
1

2p+
(ẊI ±X ′I)2. (3.21)

Note that this step relies on the assumption that p+ 6= 0. We will assume this and say that our

analysis fails to hold otherwise. Now, from this and the fact that

dX− = Ẋ− dτ +X ′− dσ,

by integration X− can be completely determined from XI up to a constant of integration. However,

we also require that dX− integrated around the string gives zero, in order for X− to be well-defined.

Choosing loops of constant τ , this reduces to the constraint that
∫ 2π

0
∂σX

−dσ = 0.

Now, the full solution is determined by the objects

XI(τ, σ), p+, x−0 . (3.22)

Using (3.20) and (3.21), we can solve for X−. For the plus sign we obtain

√
2α′

∑
n∈Z

ᾱ−n e
−in(τ+σ) =

1

α′
1

2p+

(
ẊI +X ′I

)2

=
1

p+

∑
p,q∈Z

ᾱIpᾱ
I
qe
−i(p+q)(τ+σ)

=
1

p+

∑
n,p∈Z

ᾱIpᾱ
I
n−pe

−in(τ+σ)

=
1

p+

∑
n∈Z

∑
p∈Z

ᾱIpᾱ
I
n−p

 e−in(τ+σ).

So we can identify
√

2α′ᾱ−n =
1

p+

∑
p∈Z

ᾱIpᾱ
I
n−p.

A similar expression follows when taking the minus sign, then with unbarred α’s. We introduce the

transverse Virasoro modes, as they will be very useful in our later analysis:

L̄⊥n ≡
1

2

∑
p∈Z

ᾱIpᾱ
I
n−p, L⊥n ≡

1

2

∑
p∈Z

αIpα
I
n−p, (3.23)

so that √
2α′ᾱ−n =

2

p+
L̄⊥n ,

√
2α′α−n =

2

p+
L⊥n .

As mentioned earlier, for n = 0 we have the constraint that ᾱ−0 = α−0 , from which follows that

L̄⊥0 = L⊥0 .

We refer to this constraint as the level-matching constraint. Note that we can write

X−(τ, σ) = x−0 +
1

p+
L⊥0 τ +

i

p+

∑
n 6=0

e−inτ

n

(
L⊥n e

inσ + L̄⊥n e
−inσ) ,

which shows the transverse Virasoro modes are the expansion modes of X−(τ, σ).
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3.4 Quantization of closed strings

Now we want to quantize the closed string. By means of canonical quantization, we impose the

following commutation relations on our set of independent objects (3.22):[
XI(τ, σ),PτJ(τ, σ′)

]
= iηIJδ(σ − σ′),[

x−0 , p
+
]

= −i,
(3.24)

and all other commutators zero. This declares (XI ,PτI) and (x−0 , p
+) to be conjugate position and

momentum pairs. Now we will derive all other commutation relations from these.

Differentiating the first of (3.24) w.r.t. σ, and using (3.11), we obtain[
X ′I(τ, σ), ẊJ(τ, σ′)

]
= 2πα′iηIJ d

dσ δ(σ − σ
′).

Take the derivative of [XI , XJ ] = 0 w.r.t. both σ and σ′ to obtain [X ′I , X ′J ] = 0. From [PτI ,PτJ ] =

0 follows that [ẊI , ẊJ ] = 0. Together, these relations imply[
(ẊI ±X ′I)(τ, σ), (ẊJ ±X ′J)(τ, σ′)

]
= ±

[
ẊI(τ, σ), X ′J(τ, σ′)

]
±
[
X ′I(τ, σ), ẊJ(τ, σ′)

]
= ±2πα′iηIJ d

dσ δ(σ − σ
′)∓ 2πα′iηIJ d

dσ′ δ(σ
′ − σ)

= ±4πα′iηIJ d
dσ δ(σ − σ

′),

where we have used that d
dσ′ δ(σ

′ − σ) = − d
dσ δ(σ − σ

′). Similarly, we find that[
(ẊI ±X ′I)(τ, σ), (ẊJ ∓X ′J)(τ, σ′)

]
= ∓

[
ẊI(τ, σ), X ′J(τ, σ′)

]
±
[
X ′I(τ, σ), ẊJ(τ, σ′)

]
= 0.

Applying this to the expressions (3.20), for the plus-signs we find

2α′
∑
n,m∈Z

e−in(τ+σ)e−im(τ+σ′)
[
ᾱIm, ᾱ

J
n

]
= 4πα′iηIJ

d

dσ
δ(σ − σ′).

An inverse Fourier transform yields

e−i(m+n)τ
[
ᾱIm′ , ᾱ

J
n′
]

= iηIJ
1

2π

∫ 2π

0

dσeimσ
d

dσ

∫ 2π

0

dσ′einσ
′
δ(σ − σ′)

= iηIJ
1

2π

∫ 2π

0

dσeimσ
d

dσ
einσ

= −nηIJ 1

2π

∫ 2π

0

dσei(m+n)σ

= −nηIJδm+n,0

= mηIJδm+n,0,

from which we can conclude that [
ᾱIm, ᾱ

J
n

]
= mηIJδm+n,0.
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A very similar computation which follows from taking the minus-sign gives
[
αIm, α

J
n

]
= mηIJδm+n,0

and by taking opposite signs, we find
[
αIm, ᾱ

J
n

]
= 0. Therefore, the commutation relations among

the oscillators are [
ᾱIm, ᾱ

J
n

]
=
[
αIm, α

J
n

]
= mηIJδm+n,0,

[
αIm, ᾱ

J
n

]
= 0. (3.25)

Now, we define canonical creation and annihilation operators

αIn = aIn
√
n, αI−n = aI†n

√
n, n ≥ 1,

ᾱIn = āIn
√
n, ᾱI−n = āI†n

√
n, n ≥ 1,

As expected for such operators, we obtain the following commutation relations:[
āIm, ā

J†
n

]
= δm,nη

IJ ,
[
aIm, a

J†
n

]
= δm,nη

IJ .

Usually in quantum field theory, we would encounter creation and annihilation operators when

quantizing a field. The creation and annihilation operators applied to the state of the field would

then correspond to the creation and annihilation of particles. However, now we are not quantizing

a field, but a string. The interpretation of these operators is as follows: when a creation operator

is applied to the state of the string, it adds a vibrational mode to the string. When annihilation

operators are applied, these vibrational modes are removed again. We will discuss this in more detail

in Section 3.5.

Lastly, we want to find the commutation relations involving xI0. We start by integrating the first of

(3.24) over σ ∈ [0, 2π], then together with (3.11) this gives

[xI0 +
√

2α′αI0τ, Ẋ
J ] = α′iηIJ .

As can be seen from (3.20), ẊJ is a sum of αn and ᾱn operators, all of which commute with αI0 by

(3.25). This leaves us, after expanding by (3.20), with∑
n∈Z

[xI0, ᾱ
I
n]e−in(τ+σ) + [xI0, α

I
n]e−in(τ−σ) =

√
2α′iηIJ .

An inverse Fourier transform yields[
xI0, ᾱ

I
0

]
+
[
xI0, α

I
0

]
=
√

2α′iηIJ and
[
xI0, ᾱ

I
n

]
e−inτ +

[
xI0, α

I
n

]
einτ = 0, for n 6= 0.

Since the latter of these holds for all τ , we find [xI0, ᾱ
J
n] = [xI0, α

J
n] = 0 for n 6= 0. The first, together

with the fact that ᾱI0 = αI0 implies [xI0, α
J
0 ] =

√
α′

2 iη
IJ . In particular, using (3.18), we see that

[xI0, p
J ] = iηIJ .

Therefore, pI is the momentum conjugate to xI0, as expected.

In analogue to the classical case (3.23), we define the transverse Virasoro operators

L̄⊥n ≡
1

2

∑
p∈Z

ᾱIn−pᾱ
I
p, L⊥n ≡

1

2

∑
p∈Z

αIn−pα
I
p.
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Note that we did not pay attention to the ordering of the α’s. In the classical case this was fine, but

now that the α’s are operators, they may fail to commute, so that the ordering might matter. As

seen from (3.25), this is only the case for n = 0. We want to make the operators normal ordered,

meaning the all creation operators are left of the annihilation operators. We will not go through the

trouble, but it turns out [14] that when trying to make L⊥0 normal ordered, it introduces a constant

diverging term. The way we deal with this is to redefine the transverse Virasoro operators for n = 0

to be the normal ordered term without this diverging term:

L⊥0 ≡
1

2
αI0α

I
0 +N⊥, L̄⊥0 ≡

1

2
ᾱI0ᾱ

I
0 + N̄⊥,

with the usual number operators associated with the barred and unbarred creation and annihilation

operators

N⊥ ≡
∞∑
n=1

naI†n a
I
n, N̄⊥ ≡

∞∑
n=1

nāI†n ā
I
n.

To add to the discussion above, these operators do not count the number of particles, but they count

in some sense the amount of vibrations of the string.

It is shown in [14] that in order for the quantum theory to be Lorentz invariant, we need the

requirement that D = 26, and that we then have

√
2α′α−0 =

2

p+
(L⊥0 − 1),

√
2α′ᾱ−0 =

2

p+
(L̄⊥0 − 1).

The level-matching constraint that emerged from ᾱ0 = α0 remains. In terms of the number opera-

tors, we can also write this constraint as

N⊥ − N̄⊥ = 0.

Finally, we want to find expressions for the mass of the string and the Hamiltonian. Using the above,

write

α′p− =
√

2α′α−0 =
1

p+
(L⊥0 + L̄⊥0 − 2).

The mass of the string, defined as M ≡ −p2, can then be written as

M2 = 2p+p− − pIpI

=
2

α′
(L⊥0 + L̄⊥0 − 2)− pIpI

=
2

α′
(N⊥ + N̄⊥ − 2).

(3.26)

Regarding the Hamiltonian, we know that p− generates translation in X+ since p− is the momentum

conjugate to X+ as postulated by (3.24). Also, from the light-cone gauge condition, we have

X+ = α′p+τ , which results in ∂τ = α′p+∂X+ . Combining these with the fact that the Hamiltonian

is the generator for time evolution, it must be that

H = α′p+p−.
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Similarly as for the expression for the mass, we can write the Hamiltonian as

H = L⊥0 + L̄⊥0 − 2

=
α′

2
pIpI +N⊥ + N̄⊥ − 2.

(3.27)

This completes our analysis of the quantum operators of the closed string.

3.5 State space for closed strings

The quantum states can be labelled by the eigenvalues of a maximal commuting set of operators.

We have the canonical pairs (x−0 , p
+) and (xI0, p

I). As usual, it is convenient to work in momentum

space, so we take p+, pI as our maximally commuting subset. We denote the eigenvalues by p+ and

~pT , respectively. We introduce states,

|p+, ~pT 〉,

which are called ground states for all values of p+, ~pT . Also they are declared to be vacuum states

for all oscillators, i.e. they annihilate by all the aIn,

aIn|p+, ~pT 〉 = 0, n ≥ 1, I = 2, . . . , D − 1.

States are build from these ground states by acting on them with creation operators. The states we

obtain in this fashion have the form[ ∞∏
n=1

D−1∏
I=2

(
aI†n
)λn,I

][ ∞∏
m=1

D−1∏
J=2

(
āJ†m
)λ̄m,J

]
|p+, ~pT 〉,

where λn,I and λ̄m,J are non-negative integers. As mentioned in the previous section, each of these

states corresponds to a one-particle state of a certain vibrational state, depending on the λ-values.

The vibrational state of the string then determines what type the particle is. The eigenvalues of N⊥

and N̄⊥ for these states are

N⊥ =

∞∑
n=1

D−1∑
I=2

nλn,I , N̄⊥ =

∞∑
m=1

D−1∑
J=2

nλ̄m,J .

However, note that not all such states are valid states. Only states satisfying the level-matching

condition N⊥ = N̄⊥ are valid. The space spanned by these states then form the Hilbert space of

the string. This is not an equation that we can solve for, we must check the states on a case by

case basis. We give the first few basis states which have the lowest mass and energy, as these are

physically most relevant.

The first type of states are the ground states, corresponding to all λn,I = λ̄m,J = 0, and has

N⊥ = N̄⊥ = 0. It follows from (3.26) that M2 = − 4
α′ < 0. These closed string states are called

tachyons: their mass-squared is negative, and they have no association with any known particle. A

lot can be said about tachyons, but we will not discuss them any further.
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The next case is for N⊥ = N̄⊥ = 1. These states must be built out of two oscillators, one barred

and one unbarred, both n = 1. They are of the form

aI†1 ā
J†
1 |p+, ~pT 〉,

of which there are (D− 2)2, due to possibilities of I and J . By (3.26) these states are massless, and

thus of great interest to us. The general superposition of such states is written as∑
I,J

RIJ a
I†
1 ā

J†
1 |p+, ~pT 〉.

We decompose the matrix RIJ into a symmetric traceless part, an asymmetric part, and a trace

part, i.e.

RIJ = SIJ +AIJ + S′δIJ ,

We can split the states into three groups, one for each part. Our claim is that these correspond to

one-particle graviton states, one-particle states of the so-called Kalb–Ramond field (an antisymmetric

field with two indices), and one-particle states of the dilaton field (a scalar field). These fields are

denoted by gµν , bµν and φ, respectively.

The motivation for the interpretation of these types of particles goes together with together with

the step from one-particle states to multi-particle states. We will first explain the concepts of first

and second quantization. Usually, when trying to describe a system of particles, we start with a

classical one-particle system. When quantizing this system, this is referred to as first quantization.

The one-particle states that arise satisfy a certain Schrödinger equation. Then, we can reinterpret

this equation as a classical field equation. Second quantization refers to the quantization of this

classical field. From there emerge multi-particle states, together forming the Fock space. This is

exactly what we will do now. In Section 3.3 we derived the physics of a classical closed string, and

in Section 3.4 we quantized this system, so that we arrived at one-particle states. What we will do

now, is determine the Schrödinger equation that these states satisfy and reinterpret this equation as

a classical field equation.

Wavefunctions ψIJ(τ, p+, ~pT ) describe the time-dependent states at the massless level:

|ψ, τ〉 =

∫
dp+ d~pT ψIJ(τ, p+, ~pT ) aI†1 ā

J†
1 |p+, ~pT 〉.

They satisfy the following Schrödinger equation

i∂τ |ψ, τ〉 = H|ψ, τ〉.

Using the expression for the Hamiltonian (3.27), and noting that these states satisfy N⊥ = N̄⊥ = 1,

we obtain

i
∂ψIJ
∂τ

=
α′

2
pKpKψIJ .

The wavefunctions become the classical fields, and the Schrödinger equation becomes the classical

field equation.
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It was shown in [14] that, in light-cone coordinates, the graviton field, the Kalb–Ramond field and

the dilaton field all satisfy the equation(
i
∂

∂x+
− 1

2p+
pKpK

)
φ•(x+, p+, ~pT ) = 0,

where • refers to any relevant light-cone indices for these fields. Substituting x+ = α′p+τ , we find(
i
∂

∂τ
− α′

2
pKpK

)
φ•(τ, p+, ~pT ) = 0,

corresponding to the Schrödinger equation above. Therefore, these groups of states can correctly

be identified with the different types of particles as claimed. The next step would be to quantize

these fields, i.e. do second quantization, to obtain the Fock space consisting of multi-particle states.

However, besides the interpretation of these particles, we are not interested in the multi-particle

systems living on these fields.

3.6 Closed strings in the presence of compact dimensions

As mentioned in the introduction, in string theory we allow for different backgrounds, i.e. shapes

or topologies of spacetime different from the usual Euclidean one. In particular, we will consider

backgrounds consisting of compact dimensions. These are dimensions on which points with coor-

dinate x are identified by the relation x ∼ x + 2πR. Here R is called the radius of the compact

dimension, stressing on the intuition that such a dimension can be seen as a circular dimension.

When multiple dimensions are simultaneously compactified in this way, topologically we obtain a

higher dimensional torus.

In this section, we consider closed strings in the presence of d compact dimensions. We use string

coordinates

X+, X−, Xi, Xa, with i = 2, . . . , D − d− 1, a = D − d, . . . ,D − 1.

Here i is an index for the non-compact dimensions, and a is an index for the compact dimensions.

The periodicity condition of the string (3.14) is adjusted to incorporate for the periodicity of the

dimension:

Xa(τ, σ + 2π) = Xa(τ, σ) +ma 2πRa, ma ∈ Z, (3.28)

where Ra is the radius of the compact dimension a, and the numbers ma are called the winding

numbers. We define the winding as

wa ≡ maRa

α′
. (3.29)

The expansions (3.16) of Xa
L(u) and Xa

R(v) still hold, except for that now ᾱa0 is not necessarily equal

to αa0 . Instead (3.28) implies,

ᾱa0 − αa0 =
√

2α′wa.
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Note that the momentum is given by

pa =
1

2πα′

∫ 2π

0

(Ẋa
L + Ẋa

R)dσ =
1√
2α′

(ᾱa0 + αa0),

yielding the symmetric expressions

pa =
1√
2α′

(ᾱa0 + αa0), wa =
1√
2α′

(ᾱa0 − αa0). (3.30)

In total, we have

Xa(τ, σ) = xa0 + α′paτ + α′waσ + i

√
α′

2

∑
n6=0

e−inτ

n
(ᾱane

−inσ + αane
inσ). (3.31)

Again, we quantize this system. We impose the same commutation relations as (3.25). Actually,

the derivation as described in Section 3.4 can be applied here as well, and we obtain[
ᾱam, ᾱ

b
n

]
=
[
αam, α

b
n

]
= mηabδm+n,0,

[
ᾱam, α

b
n

]
= 0. (3.32)

Because of (3.30) and the fact that αa0 and ᾱa0 commute with all oscillators, it follows that pa and

wa also commute with all oscillators. Also, similarly as in Section 3.4 we can derive

[
xa0 , ᾱ

b
0

]
=
[
xa0 , α

b
0

]
= i

√
α′

2
ηab.

In combination with (3.30) this yields

[xa0 , p
b] = iδab, [xa0 , w

b] = 0.

Hence, and as expected, pa is conjugate to xa, therefore pa generates xa translation, i.e. exp (−ipas)ψ(xa) =

ψ(xa + s). Because of the identification xa ∼ xa + 2πRa for compact dimensions, it must be that

exp (−i2πRapa) behaves like the unit operator, so

pa =
na

Ra
, na ∈ Z.

Also looking at (3.29), we see that both pa and wa have discrete spectra. Note that the spectra also

make intuitive sense: for large R it is hard for the string to wind around the dimension, corresponding

to a very largely spaced winding spectrum. Also, for large R the compact dimension looks more

like a normal dimension, corresponding to the momentum spectra becoming almost continuous. For

small R it is exactly the other way around.

The level-matching constraint L⊥0 = L̄⊥0 remains, as the x− dimension is not curled up. However,

we now have

L̄⊥0 =
1

2
ᾱI0ᾱ

I
0 + N̄⊥ =

α′

4
pipi +

1

2
ᾱa0ᾱ

a
0 + N̄⊥,

L⊥0 =
1

2
αI0α

I
0 +N⊥ =

α′

4
pipi +

1

2
αa0α

a
0 +N⊥.

(3.33)

Hence, we find by means of (3.30) that

L⊥0 − L̄⊥0 =
1

2
(αa0α

a
0 − ᾱa0ᾱa0) +N⊥ − N̄⊥

= −α′pawa +N⊥ − N̄⊥.
(3.34)
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So the level-matching constraint can be written as

N⊥ − N̄⊥ = α′pawa = nama.

Now the ground states are labelled like |p+, ~pT ;~n, ~m〉, even though not all of them are allowed by

our theory due to the above level-matching constraint. The general basis candidate states are of the

form[ ∞∏
r=1

D−d−1∏
i=2

(
ai†r
)λi,r

] ∞∏
s=1

D−d−1∏
j=2

(
āj†s
)λ̄j,s

[ ∞∏
k=1

D−1∏
a=D−d

(
aa†k

)λa,k

][ ∞∏
l=1

D−1∏
b=D−d

(
āb†l

)λ̄b,l

]
|p+, ~pT ;~n, ~m〉,

The operators N⊥ and N̄⊥ give eigenvalues

N⊥ =

∞∑
r=1

D−d−1∑
i=2

rλi,r +

∞∑
k=1

D−1∑
a=D−d

kλa,k, N̄⊥ =

∞∑
s=1

D−d−1∑
j=2

sλ̄j,s +

∞∑
l=1

D−1∑
b=D−d

lλ̄b,l.

To give an expression for the mass-squared, we consider an observer in the (D − d)-dimensional

Minkowski spacetime that does not take the compact dimensions into account.

M2 = 2p+p− − pipi

=
2

α′
(
L̄⊥0 + L⊥0 − 2

)
− pipi

=
1

α′
(ᾱa0ᾱ

a
0 + αa0α

a
0) +

2

α′
(
N⊥ + N̄⊥ − 2

)
= papa + wawa +

2

α′
(
N⊥ + N̄⊥ − 2

)
(3.35)

Alternatively, using the expressions for pa and wa, we could write

M2 =

(
na

Ra

)2

+

(
maRa

α′

)2

+
2

α′
(
N⊥ + N̄⊥ − 2

)
. (3.36)

Using (3.33), the Hamiltonian is given by

H = L⊥0 + L̄⊥0 − 2

=
α′

2
pipi +

α′

2
(papa + wawa) +N⊥ + N̄⊥ − 2.

(3.37)

We will finish this section by discussing some of the low-energy states particles. Starting with the

case ~n = ~m = 0, corresponding to a state with no momentum nor winding, the level-matching

constraint becomes N⊥− N̄⊥ = 0. Similarly as before, when N̄⊥ = N⊥ = 0, we obtain closed string

tachyons with M2 = − 4
α′ . When N⊥ − N̄⊥ = 1, we obtain the four types of massless states

ai†1 ā
j†
1 |p+, ~pT ; 0, 0〉,

ai†1 ā
a†
1 |p+, ~pT ; 0, 0〉,

aa†1 ā
i†
1 |p+, ~pT ; 0, 0〉,

aa†1 ā
b†
1 |p+, ~pT ; 0, 0〉.
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Basically, what happened is that the massless states were reorganized upon compactification. The

first line corresponds to states that will form a gravity field, Kalb–Ramond field and dilaton field

on the (D − d) non-compact dimensions.

Looking at the mass spectrum (3.36), it is possible to obtain tachyonic, massless and massive if

N⊥ − N̄⊥ = 0 but with ~n or ~m non-zero, depending on Ra. However, we will leave the discussion

of states here.

3.7 T-duality for closed strings

In this section, we will prove a duality that appears in the theory of closed strings on compact

dimensions. A duality of a theory is a bit different than a symmetry. Whereas symmetries often

refer to the system being invariant under certain (coordinate) transformations, duality rather refers

to a system being equivalently described by a theory that uses different parameters. In particular,

and as we shall see, closed strings on a compact dimension of radius R are equivalently described

by closed strings on a compact dimension of α′/R.

Take a look at the mass spectrum (3.35). We see that it treats the momentum pa and the winding

wa on the same footing, i.e. it is invariant under an interchange of them. Alternatively, in terms of

(3.36), we can describe this invariance as the interchange of na and ma together with the replacement

of Ra by α′/Ra. This invariance holds for each compact dimension a separately. Our claim is that

this not merely a symmetry of the mass spectrum, but rather gives us a symmetry of the whole

closed string theory. This is what we call T-duality.

For compact dimensions a, we introduce dual coordinate operators,

X̃a(τ, σ) ≡ Xa
L(τ + σ)−Xa

R(τ − σ).

Expanding using (3.17) gives

X̃a(τ, σ) = qa0 + α′waτ + α′paσ + i

√
α′

2

∑
n 6=0

e−inτ

n

(
ᾱane

−inσ − αaneinσ
)
,

with qa0 ≡ 1
2 (xaL0 − xaR0). The momentum associated with the coordinate x̃a0 is therefore wa, as it

appears with τ , and the winding associated with x̃a0 is pa, as it appears with σ. This motivates us

to write

x̃a0 = qa0 , p̃a = wa, w̃a = pa, ˜̄αan = ᾱan, α̃an = −αan,

so that

X̃a(τ, σ) = x̃a0 + α′p̃aτ + α′w̃aσ + i

√
α′

2

∑
n 6=0

e−inτ

n

(
˜̄αane
−inσ + α̃ane

inσ
)
,

having the exact same form as the string coordinates (3.31). Likewise, we introduce dual momenta

P̃τ operators,

P̃τa ≡ 1

2πα′
∂τ X̃

a =
1

2πα′
(Ẋa

L − Ẋa
R).
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We postulate the commutator

[X̃a(τ, σ), P̃τb(τ, σ′)] = iηabδ(σ − σ′),

and demand that commutators between two coordinates or two momenta vanish.

Since the dual oscillators are the same as the oscillators (up to a minus sign for the unbarred

oscillators), we see that the commutation relations (3.32) also hold for the dual oscillator operators.

The pair (x̃a0 , p̃
a) = (qa0 , w

a) appears in X̃a just as (xa0 , p
a) appears in Xa. Therefore, the derivation

in Section 3.4 can be done analogously to conclude that [x̃a0 , p̃
a] = [q0, w] = i, meaning p̃a = wa

is the momentum associated to the coordinate x̃a0 = qa0 . From the quantized spectra of this dual

momentum p̃a = wa = maRa/α′, we infer that the coordinate x̃0 = qa0 must live on a compact

dimension of radius R̃a ≡ α′/Ra. Hence, the dual string coordinate X̃a lives on a dimension of

radius R̃a as well.

Looking at the expressions (3.33), we can see the Hamiltonian H = L⊥0 + L̄⊥0 − 2 can equivalently

be written as

H = L̃⊥0 + ˜̄L⊥0 − 2.

Hence, this yields an interpretive ambiguity. The closed string can be described in two equivalent

ways, either by the string coordinate Xµ or the dual string coordinate X̃µ, both giving the same

Hamiltonian. T-duality corresponds to the replacement of every operator by its dual operator. The

physical system is equally well described by this new or dual theory, even though it describes a string

on a compact dimension of radius R̃a = α′/Ra instead of Ra.

For the record, T-duality corresponds to the map sending all objects to their dual:

xa0 −→ q̃a0 ,

qa0 −→ x̃a0 ,

pa −→ w̃a,

wa −→ p̃a,

αan −→ −α̃an,

ᾱan −→ ˜̄αan.
(3.38)

Note that T-duality is actually very non-trivial. At no point in the derivation of the theory did we

assume any relation between the momentum and winding of the closed strings. Still, they seem to

be somehow related to each other. This is the motivation towards the next chapter on double field

theory, where the momentum and winding of the string will be unified into a single object, as well

as any other object with its dual.
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Chapter 4

Double field theory

As mentioned in the introduction, DFT is still a relatively new subject. Hence, it is not built from a

set of rigorous axioms, but rather it consists of a collection of ideas and proposals that is still being

developed. The idea to keep in mind through this chapter is that DFT is all about symmetry and

that it tries to unify different concepts by geometrical means. As originally proposed, DFT allows

for a reformulation of closed string theory on compact dimensions (see Section 3.6) such that T-

duality, a non-trivial duality of the theory, becomes a manifest symmetry, in particular a coordinate

transformation. This idea we will discuss in Section 4.1. Later on, we will see how the metric g and

Kalb–Ramond field b can be combined into a single generalized metric, and how diffeomorphisms

and b-field gauge transformations can be unified into generalized coordinate transformations.

DFT is not so much a physical theory by itself, but rather a framework in which physical theories

can be described. In this framework we double the manifold M that describes our spacetime. The

copy is denoted by M̃ and the new space is given by

M̂ = M × M̃.

We have coordinates xi on M , and dual coordinates x̃i on M̃ , i = 1, . . . , D. In terms of Section

3.7, this dual space M̃ is where the dual string coordinates X̃µ live. Note that we denote the dual

coordinates as being contravariant. In fact, this agrees with the idea that if a coordinate xi lives

on a dimension with radius R, then the dual coordinate x̃i lives on a dimension with radius α′/R.

Together, they form the generalized coordinate

XI = (xi, x̃i),

where I =
(
i, i

)
denotes a doubled index ranging over all (both normal and dual) coordinates. We

remark that some papers reverse the order of the coordinates and dual coordinates, but we choose

this convention to make any connection with generalized geometry more clear. Doubled indices are
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raised and lowered with the constant metric

ηIJ =

(
0 δi

j

δij 0

)
.

Note that whenever we represent a rank-2 tensor with doubled indices by a matrix, the first and

second index are associated with the row and column index, respectively. Also, the entries are

sometimes denoted by ηij , ηi
j , etc.

This setup might remind one of generalized geometry as discussed in Chapter 2. Indeed, if we com-

pare ηIJ and the inner product 〈·, ·〉 defined in Section 2.1, by identifying tangent vectors along the

dual coordinates with cotangent vectors in generalized geometry (note: both are contravariant), the

inner products on the tangent spaces agree (up to a factor 1
2 ). In particular, both have signature

(D,D) and the same group of orthogonal transformations. The difference between DFT and gener-

alized geometry lies in the underlying space. In generalized geometry, merely the tangent bundle is

doubled, whereas in DFT the manifold M is doubled. Hence, DFT can be seen as a generalization

of generalized geometry.

In DFT, although the amount of coordinates is doubled, we do impose constraints on the fields that

live on the doubled space: they cannot depend on all coordinates. In DFT, the weak constraint refers

to the condition that ∂M∂MA = 0 for all fields A. Here derivatives are denoted by ∂M = (∂i, ∂̃
i).

The strong constraint, also known as the section condition, requires in addition that ∂MA∂MB = 0

for all fields A and B. By the product rule, this is equivalent to the condition that ∂M∂M (AB) = 0

for all products of fields A and B. In Section 4.3 we will see how the weak constraint follows from

the level-matching condition in string theory, and we will see how, when the strong constraint is

imposed, DFT becomes equivalent to generalized geometry.

At last a small remark. As said, in DFT the coordinates of spacetime are doubled. However, it is

also possible to double only a subset of the coordinates, e.g. only the coordinates of the compact

dimensions. This can be seen as doubling all coordinates and setting ∂̃i = 0 for all coordinates i

that you do not intend to double, rendering them inactive while solving the strong constraint for

the coordinates I =
(
i, i

)
. In particular, throughout this chapter we will not double the time

coordinate, which is the reason that we will sometimes say that δij denotes a flat spacetime metric,

instead of the Minkowski metric.

4.1 T-duality as DFT symmetry

In this section we will formulate the physics of sections 3.6 and 3.7 in a DFT-fashion. We aim to

make T-duality manifest symmetry. Looking at (3.38), we see certain pairs of objects that are dual

to each other. This motivates to define

PM = (pm, w
m), xM0 = (xm0 , q0,m), ᾱMn = (ᾱmn , ᾱn,m), αMn = (αmn ,−αn,m),
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i.e. generalized momenta, coordinates and oscillators, respectively. Here we have ᾱn,i ≡ Eij ᾱjn
and αn,i ≡ Eji αjn, with for now Eij = δij so that oscillators with indices downstairs have the same

value as with indices upstairs. This is because the original Nambu–Goto action (3.2) assumes a flat

background, i.e. gij = δij and bij = 0. Later, in Section 4.2, we will see how E is changed when

non-flat backgrounds are incorporated.

Now, we can write the generalized string coordinates XM = (Xm, X̃m) as

XM (τ, σ) = xM0 + α′HMNPNτ + α′PMσ + i

√
α′

2

∑
n 6=0

e−inτ

n

(
ᾱMn e

−inσ + αMn e
inσ
)
, (4.1)

where for now

HMN =

(
δmn 0

0 δmn

)
,

which denotes a flat metric on the doubled space. It is flat for the same reasons as described earlier,

and in Section 4.2 we will see how it changes for non-flat backgrounds.

In these terms, T-duality can now simply be described by the coordinate transformation

XI → X ′I = T IJX
J ,

where

T IJ =

(
δij − tij tij

tij δi
j − tij

)
,

with t being a diagonal matrix containing a 1 for each coordinate i over which we want to perform T-

duality, and 0 otherwise. From the form of this matrix, a rotation or permutation matrix, it is clear

that this transformation swaps the coordinates Xi and X̃i for which tii = 1. This transformation is

easily checked to be an orthogonal transformation, i.e. preserving the metric

ηIJ = T IKT
J
Lη

KL,

hence in the framework of DFT, T-duality has simply become an orthogonal coordinate transforma-

tion!

As mentioned before, the metric ηIJ is very similar to the inner product 〈·, ·〉 from Section 2.1. The

linear algebra on tangent space of M̂ and fibers of T ⊕ T ∗ in generalized geometry is therefore the

same. In particular, we can copy the analysis of the group of orthogonal transformations. Also in

DFT, we have B-transforms

hIJ =

(
δij 0

Bij δi
j

)
,

with Bij = −Bji. Also, we have GL(D) transformations

hIJ =

(
Aij 0

0 (A−1)i
j

)
.

We refer to these transformations as O(D,D)-transformations. Any O(D,D)-transformation can be

written as a composition of T-duality transforms, B-transforms and GL(D)-transforms [3].
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4.2 The generalized metric

As seen in Section 3.5, the low-energy sector of closed strings gives rise to three massless fields: a

gravitational field, a Kalb–Ramond field and a dilaton field, denoted by g, b and φ, respectively. In

DFT, we combine the first two of these into a single object, receiving the name and interpretation

of a generalized metric

HIJ =

(
gij − bikgklblj bikg

kj

−gikbkj gij

)
. (4.2)

The dilaton is replaced by e−2d =
√
|g|e−2φ. The reason we do this is because these objects turn

out to be O(D,D)-covariant, and the field theory action for these massless fields can be lifted to an

O(D,D)-covariant form [11]:

SDFT =

∫
d2DX e−2d R(H, d), (4.3)

where R is a scalar depending O(D,D)-covariantly on H and d, and such that when we set ∂̃i = 0,

it reduces to the original field theory action. The generalized metric also allows for more O(D,D)-

covariant expressions for, e.g. the mass and Hamiltonian of the closed string [3, 15].

We will give a short derivation for how H can be constructed. We define

Eij ≡ gij + bij ,

in particular a flat spacetime corresponds to Eij = δij . The action of an O(D,D)-transformation

hI
J =

(
a b

c d

)
on E is given by [15]

E ′ = (aE + b)(cE + d)−1. (4.4)

We are looking for a transformation that takes δij to any Eij . Since g is symmetric, we can write

gij = ei
kej

k for some invertible ei
j . Then consider the transformation

(hE)I
J

=

(
ei
j bik(e−1)j

k

0 (e−1)j
i

)
,

which is orthogonal as it is the composition of a GL(D)-transform (by e) and a B-transform (by b).

This transformation transforms to any Eij from the flat δij . Namely,

hE δ = (e δ + b(et)−1)(0 δ + (et)−1)−1

= eδet + b

= g + b

= E .

Note that from (4.4) it follows that hE is unique up to an element of O(D)×O(D). Now define,

HIJ = (hE)I
K

(hE)J
K
,
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for which this ambiguity cancels out. Note that under a transformation h : E 7→ E ′ we have

hE′ = h ◦ hE , so that H transforms as H′IJ = hIKh
J
LHKL, implying it is O(D,D)-covariant.

Explicitly, we find

H =

(
e b(et)−1

0 (et)−1

)(
et 0

−e−1b e−1

)
=

(
g − bg−1b bg−1

−g−1b g−1

)
,

agreeing with (4.2).

Coming back to the remarks made in Section 4.1, as shown in [12], when adjusting the string action

to incorporate for non-flat fields g and b, the string coordinates and the dual string coordinates take

the form as in (4.1), but now with E and H as introduced in this section.

4.3 The weak and strong constraint

As mentioned, in DFT we have a constraint on the fields that we allow for on our enlarged space

M̂ . The weak version of the constraint says that ∂M∂MA = 0 for all fields A, and the strong version

additionally requires ∂MA∂
MB = 0 for all fields A and B. Equivalently, the strong constraint says

that ∂M∂M (AB) = 0 for all products of fields A and B. We will show how the weak version of the

constraint is implied in low-energy closed string theory.

Consider a field A in terms of its Fourier modes, labelled by generalized momenta PM = (pm, w
m):

A =

∫
AP e

iPMXM

dP,

where we integrate over the momentum space RD+D. Now note that

∂M∂MA = −
∫
APPNP

NeiPMXM

dP,

which implies that ∂M∂MA = 0 if and only if PMP
M = 0 whenever AP 6= 0. Hence, the weak

constraint on fields is equivalent to the condition that all fields only have null momentum modes. In

terms of the components PM = (pm, w
m), this condition becomes PMP

M = 2pmw
m = 0, which is

equivalent to the level-matching condition (3.34) as obtained in string theory, for the massless states

N = N̄ = 1,

L0 − L̄0 = −α′piwi = 0.

Now we consider the strong constraint. Use the same expansion as above for fields A and B. Then

∂MA∂
MB =

(∫
AP iP

NeiPMXM

dP

)(∫
BP ′ iP

′
Ne

iP ′KX
K

dP ′
)

= −
∫ ∫

APBP ′ P
NP ′N eiPMXM

eiP
′
KX

K

dP dP ′.

Therefore, ∂MA∂
MB = 0 if and only if PNP

′N = 0 whenever AP 6= 0 and BP ′ 6= 0. Hence, the

strong constraint on fields is equivalent to the condition that all fields have momentum modes that

lie in an isotropic subspace of the momentum space.
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We will show that the strong constraint reduces DFT equivalent to generalized geometry. Assuming

the strong constraint, all fields have momentum modes that lie in a totally isotropic subspace, denote

it by Lk ⊂ RD+D, where k denotes its dimension. As shown in Chapter 2, isotropic subspaces must

have k ≤ D. Let {fi : i = 1, . . . , k} be a basis for Lk and {ei : i = 1, . . . , D} be the standard basis

for RD. We construct a linear map by

ϕ : Lk → RD+D : fi 7→

(
ei

0

)
,

which is clearly an isometry. Witt’s theorem [5] says that this map can be extended to an isom-

etry of RD+D, i.e. an O(D,D)-transformation of RD+D. This implies we can make a coordinate

transformation such that all fields have no dependence anymore on any winding mode. This implies

∂̃i = 0, i.e. the fields have no dependence on their dual coordinates. Then the components of a

generalized vector field VM = (V i, Vi) can be interpreted as vector fields and 1-forms on M , and

hence DFT has been reduced to generalized geometry.

The immediate question arises: if the strong constraint removes dependence on any dual coordinate,

what is the value of introducing them? Note that beyond the massless sector of strings we can have

L⊥0 − L̄⊥0 = N⊥ − N̄⊥ − piwi = 0 with N⊥ − N̄⊥ 6= 0, so that ∂M∂M takes on integer values when

acting on fields. Therefore, for the full string theory, the dual coordinates are definitely real.

4.4 Generalized coordinate transformations

Lastly, we want to look at at how gauge transformations of the g- and b-fields can be considered in

the setting of DFT. The b-field is an antisymmetric field, it transforms as a two-form, and appears

in the action only via its field strength H = db [11]. Therefore, adding exact terms to b, i.e.

δξ̃bij = ∂iξ̃j − ∂j ξ̃i, does not change the physics. These transformations are gauge transformations

of b, parametrized by a one-form ξ̃i. Also we have diffeomorphism invariance, meaning that the

physics does not change under a change of coordinates. Under a diffeomorphism x→ x′, the g- and

b-field transform according to

g′ij = Λi
kΛj

lgkl, b′ij = (Λ−1)k
i
(Λ−1)l

j
bkl,

where Λij ≡ ∂x′i
∂xj

. Diffeomorphisms can be parametrized by vector fields ξi as the flow of a vector

field yields a diffeomorphism. We consider these as gauge transformations as well. It can be shown

[10] that these two types of gauge transformations can be combined and lifted into a single O(D,D)-

gauge transformation parametrized by ξM = (ξm, ξ̃m):

δξHIJ = ξK∂KHIJ + (∂Iξ
K − ∂KξI)HKJ + (∂Jξ

K − ∂KξJ)HIK ,

δξ
(
e−2d

)
= ∂M

(
ξMe−2d

)
.

(4.5)

Using the definition of H (4.2) it can be shown this transformation will reduce to the usual gauge

transformations for ∂̃i = 0. The way in which generalized rank-2 tensors and scalars transform in

this way is referred to as the generalized Lie derivative.
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In this section, we will discuss a proposal from [9], that finds that these gauge transformations can

be described as generalized coordinate transformations XI → X ′I . As proposed in this paper, a

generalized vector VI transforms under such transformation XI → X ′I as

V ′I = FIJVJ ,

where

FIJ =
1

2

(
∂XK

∂X ′I
∂X ′K
∂XJ

+
∂X ′I
∂XK

∂XJ

∂X ′K

)
. (4.6)

Here we use the notation

∂XI

∂X ′J
=

 ∂xi

∂x′j
∂xi

∂x̃′j
∂x̃i

∂x′j
∂x̃i

∂x̃′j

 ,
∂X ′I
∂XJ

=

(
∂x̃′i
∂x̃j

∂x̃′i
∂xj

∂x′i

∂x̃j

∂x′i

∂xj

)
.

On tensors of higher rank, each doubled index transforms by a factor of FIJ , e.g. the generalized

metric will transform as

H′IJ = FIKFJLHKL. (4.7)

First we will see how the gauge transformations of diffeomorphisms are obtained. Consider the

following transformation that leaves the coordinates x̃i invariant,

xi → x′i = x′i(x), x̃i → x̃′i = x̃i. (4.8)

We compute

∂XI

∂X ′J
=

(
(Λ−1)ij 0

0 δi
j

)
,

∂X ′I
∂XJ

=

(
δi
j 0

0 Λij

)
,

where as before we use the notation Λij ≡ ∂x′i
∂xj

. Using (4.6) we obtain

FIJ =
1

2

[(
(Λ−1)ji 0

0 Λij

)
+

(
(Λ−1)ji 0

0 Λij

)]
=

(
(Λ−1)ji 0

0 Λij

)
.

Note that FIJ here corresponds to a GL(D)-transform, which is what one might have expected from

a diffeomorphism transformation. We consider the transformation of HIJ (4.7). In particular the

Hij-component yields

g′ij = ΛikΛj lg
kl,

i.e. g transforms as usual under diffeomorphisms. The Hij-component of this transformation yields

b′ikg
′kj = (Λ−1)kiΛ

j
lbkmg

ml,

which, using the transformation rule for g we just obtained, reduces to

b′ij = (Λ−1)ki(Λ
−1)ljbkl,

i.e. the usual transformation rule for the b-field under diffeomorphisms. This shows that the trans-

formation (4.8) correctly reproduces the usual gauge transformations associated to diffeomorphisms.

Furthermore, we want to note that regarding the transformation of ηIJ , we have

η′IJ =

(
0 (Λ−1)kiΛ

j
lδk

l

Λik(Λ−1)ljδ
k
l 0

)
=

(
0 δi

j

δij 0

)
= ηIJ .
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This is as expected, since FIJ was just noted to be an orthogonal transformation: a GL(D)-

transform. This shows that these general coordinate transformation leave ηIJ invariant.

Next we will consider a type of generalized coordinate transformation that will reproduce the b-field

gauge transformations,

xi → x′i = xi, x̃i → x̃′i = x̃i − ξ̃i(x).

For this coordinate transformation we compute

∂XI

∂X ′J
=

(
δij 0

∂jζi δi
j

)
,

∂X ′I
∂XJ

=

(
δi
j −∂jζi

0 δij

)
,

so that

FIJ =

(
δi
j ∂iξ̃j − ∂j ξ̃i

0 δij

)
.

Here we note that FIJ corresponds to a B-transform, even a B-field transform, which is again what

one might have expected from these type of transformations. Therefore also this FIJ is orthogonal,

leaving ηIJ invariant. Looking at the Hij- and Hij-component of the transformation of HIJ (4.7),

we see that

g′ij = gij , b′ikg
′kj = (bik + ∂iξ̃k − ∂k ξ̃i)g′kj ,

implying that gij stays invariant and b′ij = bij + ∂iξ̃j − ∂j ξ̃i under this transformation. So indeed,

this type of coordinate transformation corresponds to a b-field gauge transformation.

Lastly, we want to consider simultaneous diffeomorphisms and b-field gauge transformations, given

by

xi → x′i = x′i(x), x̃i → x̃′i = x̃i − ζi(x).

We compute

∂XI

∂X ′J
=

(
(Λ−1)ij 0

(Λ−1)kj∂kζi δi
j

)
,

∂X ′I
∂XJ

=

(
δi
j −∂jζi

0 Λij

)
.

and, using (4.6), we obtain

FIJ =

(
(Λ−1)ji Fij

0 Λij

)
,

with

Fij = 1
2

(
(Λ−1)li∂lζj − ∂jζi − (Λ−1)ki∂jζk + (Λ−1)liΛ

k
j∂lζk

)
= 1

2

(
(Λ−1)liΛ

k
j∂lζk − ∂jζi + (Λ−1)li(∂lζj − ∂jζl)

)
.

Note that previous two types of generalized coordinate transformations are special cases of this one.

They can be obtained by either setting ζ = 0 or Λ = δ. Looking at Hij-component, we still find

g′ij = ΛikΛj lg
kl,

i.e. g still transforms as usual under diffeomorphisms. Inspecting the Hij-component, we can obtain

that the b-field transforms as

b′ij = (Λ−1)ki(Λ
−1)lj(bkl + 1

2 (∂kζl − ∂lζk)) + 1
2

(
∂′iζj − ∂′jζi

)
,

47



where ∂′i ≡ (Λ−1)ji∂j . This transformation can be seen as a b-field gauge transformation, followed

by a diffeomorphism, followed by another b-field gauge transformation. From this interpretation

we see that the metric ηIJ is also invariant under such transformations. What this means, is that

in DFT we can allow for a constant metric ηIJ without having many restrictions on the allowed

transformations.

Here we shall leave the discussion on generalized coordinate transformations. However, we do want

to mention an interesting topic following up on this discussion: the composition of generalized

coordinate transformations. It turns out the commutator between the gauge parameters ξM =

(ξm, ξ̃m) is the C-bracket, an O(D,D)-covariant version of the Courant bracket as known from

Chapter 2, that reduces to the Courant bracket for ∂̃i = 0. As for the Courant bracket, the

Jacobiator of the C-bracket is the differential of the O(D,D)-covariant version of the Nijenhuis

operator. As a consequence, generalized coordinate transformations are not associative, except

when applied to fields. Namely, the transformation by some exact ξ̃ yields a special case of the

b-field gauge transformations discussed above, where FIJ reduces to the identity, i.e. all fields are

left invariant. For the interested reader, we will refer to [9, 11] where more can be read about this.
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Chapter 5

Conclusion

In this thesis, we have given introductions to generalized geometry, string theory and double field

theory, and for each subject a number of interesting concepts and results were discussed. Regarding

string theory, we have developed the physics of closed strings and in particular we have seen how

one-particle states of the gravitational, Kalb–Ramond and dilaton field arise from certain vibrational

states of closed strings. When imposed on toroidal backgrounds, we found T-duality as a non-trivial

symmetry of the theory. DFT was applied to this theory, and we have seen how it turned T-duality

into an orthogonal coordinate transformation.

Although they are not equivalent, we have seen great similarities between generalized geometry and

DFT. Not only did the mathematical structures turn out to be very similar, e.g. we were we able

to use some results from generalized geometry in DFT, but also did we see that both subjects aim

at the unification of different concepts. In Chapter 2 we have seen generalized geometry allows for

a description of complex and symplectic structures where they become special cases of the same

type of structure: generalized complex structures. In Chapter 4 we have seen DFT is able to

combine the g- and b-field into a single object, the generalized metric H, as well as their respective

gauge transformations: diffeomorphisms and b-field gauge transformations were unified in generalized

coordinate transformations. It might be interesting to see what more concepts can be unified in both

subjects.

There is still a lot to be investigated in DFT. One can go into more depth regarding the constraints

put on the fields, e.g. look for ways in which the strong constraint can be relaxed. Also, it might be

interesting to see if and how DFT can be formulated with more mathematical rigor, possibly built

as an extension upon generalized geometry. Also we recommend looking into generalized Kähler

geometry, which is also described by Gualtieri [6], in which the generalized metric H as seen in DFT

appears as a metric on T ⊕ T ∗. This might give more insight into how the generalized metric in

DFT arises from the g- and b-field.
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