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Abstract

In this thesis, we study a method for computing virtual classes of representation varieties of closed
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categories and the category of bordisms, which we use to define TQFTs. In dimension 1 and 2 a
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give expressions for the corresponding moduli spaces of representations.
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1 Introduction

Let X be a path-connected topological space with finitely generated fundamental group π1(X), and

G an algebraic group over a field k. The set of representations ρ : π1(X)→ G, denoted

XG(X) = Hom(π1(X), G),

has the structure of an algebraic variety, and is called the G-representation variety of X. The group

G acts on it by conjugation, and one can consider the moduli space of representations

MG(X) = XG(X) �G,

where the quotient denotes the GIT quotient. This space is known as the Betti moduli space of X,

and for reductive groups G it is also known as the G-character variety of X.

When X is the underlying space of a smooth complex variety, the Betti moduli space is one of the

moduli spaces studied in non-abelian Hodge theory. In the case of a smooth complex projective

curve C and the algebraic group G = GLn(C), the Betti moduli space parametrizes vector bundles

over C of rank n and degree zero equipped with a flat connection. With this identification, the

Riemann–Hilbert correspondence [28] provides a real analytic isomorphism between the character

varietyMG(C) and the moduli space of G-flat connections on the curve C. Moreover, the Hitchin–

Kobayashi correspondence [27] gives a real analytic isomorphism between MG(C) and the moduli

space of semistable G-Higgs bundles of rank n and degree zero on C. These correspondences were

used by Hitchin [16] to compute the Poincaré polynomial of character varieties for G = GL2(C).

These correspondences are far from being algebraic. As a result, the mixed Hodge structures of the

above-mentioned moduli spaces have been extensively studied via the Deligne–Hodge polynomial,

or E-polynomial. For a complex variety X it is given by

e(X) =
∑
k,p,q

(−1)khk;p,q
c (X)upvq

with hk;p,q
c (X) the mixed Hodge numbers of the compactly supported cohomology of X. Inspired

by the Weil conjectures, Hausel and Rodŕıguez-Villegas [15] developed an arithmetic approach to

compute the E-polynomial of the GLn(C)-character variety by counting its number of points over

finite fields using the character table of GLn(Fq). However, the expressions were not explicit, but

given in terms of generating functions. Mereb [21] did the same for G = SLn(C) and gave an

explicit expression when n = 2. Baraglia and Hekmati [2] gave explicit expressions for the cases

G = GL3(C),SL3(C). A disadvantage of this method is that it does not give much algebraic or

geometric insight.

A geometric approach was introduced by Logares, Muñoz and Newstead [18]. Their idea was to divide

the representation variety into pieces, and compute the E-polynomial piecewise. Then they studied

what identifications are made when passing to the GIT quotient. Based on this technique, Mart́ınez

and Muñoz [20] gave an explicit expression for the E-polynomial of the SL2(C)-representation variety.

The recursive patterns in these computations lead González-Prieto, Logares and Muñoz to a new

method [13], which uses Topological Quantum Field Theories (TQFTs) to compute the class of
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the representation variety in the Grothendieck ring of varieties K(VarC). TQFTs, coming from

physics, were first introduced by Witten [30] and axiomatized by Atiyah [1]: a TQFT is given by a

monoidal functor Z : Bdn → R-Mod from the category of bordisms to the category of R-modules.

In particular, a closed manifold X can be seen as a bordism X : ∅→ ∅, so we have Z(X) : R→ R,

since Z(∅) = R by monoidality, and thus X has an associated invariant Z(X)(1) ∈ R. This new

method uses a TQFT with R = K(VarC) and where the invariants are the classes of XG(X). Now,

a closed surface X = Σg of genus g can be considered as a composition of bordisms

◦ ◦ · · · ◦︸ ︷︷ ︸
g times

◦

so computing the TQFT for these smaller bordisms will yield the class of XG(Σg) for all g. This

method was used in [11] and [12] to compute expressions for the (parabolic) SL2(C)-character variety.

An advantage of this method is that it not only computes the E-polynomial, but it keeps track of

the virtual classes in the Grothendieck ring.

In this thesis, we lay out the theory needed to construct the TQFT used in this method. In Section

2 we define the Grothendieck ring of varieties, and discuss some basic constructions and properties.

We will give an algorithm that computes the virtual class of certain affine varieties over C in this

ring, in terms of the class of the affine line. Monoidal categories and TQFTs will be discussed in

Section 3, and in particular, following [17], we will look at the equivalence of categories that arises

in dimension 2 between TQFTs and Frobenius algebras. The actual TQFT used for this method,

which is only lax monoidal, will be constructed in Section 4. Also we describe a criterion for when a

TQFT can be modified or reduced to simplify the computations. Finally, in Section 5 we will apply

this theory to the groups of upper triangular matrices G = Un of rank n = 2, 3, 4, to compute the

virtual class of the G-representation variety. These computations have not been done before, and

the results can be summarized as follows.

Theorem 1.1. Let q = [A1
C] be the class of the affine line in the Grothendieck ring of varieties.

Then

� the virtual class of the U2-representation variety XU2
(Σg) is

[XU2
(Σg)] = q2g−1(q − 1)2g+1((q − 1)2g−1 + 1),

� the virtual class of the U3-representation variety XU3(Σg) is

[XU3
(Σg)] = q3g−3(q − 1)2g

(
q2(q − 1)2g+1 + q3g(q − 1)2 + q3g(q − 1)4g + 2q3g(q − 1)2g+1

)
,

� the virtual class of the U4-representation variety XU4
(Σg) is

[XU4
(Σg)] = q8g−2 (q − 1)

4g+2
+ q8g−2 (q − 1)

6g+1
+ q10g−4 (q − 1)

2g+3

+ q10g−4 (q − 1)
4g+1 (

2q2 − 6q + 5
)g

+ 3q10g−4 (q − 1)
4g+2

+ q10g−4 (q − 1)
6g+1

+ q12g−6 (q − 1)
8g

+ q12g−6 (q − 1)
2g+3

+ 3q12g−6 (q − 1)
4g+2

+ 3q12g−6 (q − 1)
6g+1

.
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The result for G = U2 can be compared to a result from a very recent paper [14] where the computa-

tions were done for G = AGL1(C), the group of affine transformations of the line. The resemblance

comes from the fact that U2 ' C∗ ×AGL1(C) as affine group varieties.

Finally, in Section 5.2 we describe the moduli space of Un-representations and discuss its relation

to the Un-character variety.

Acknowledgements

I would like to thank my supervisor Dr. Márton Hablicsek for his time and support during the

project, and his ideas on what directions to take for the thesis. Also I would like to thank Dr. David

Holmes for his help in understanding some of the more technical details. Finally I would like to
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2 The Grothendieck ring of varieties

Let k be a field.

Definition 2.1. Let S be a variety over k (i.e. a reduced separated scheme of finite type over k).

The Grothendieck ring of varieties over S, denoted K(Var/S), is defined as the quotient of the free

abelian group on the set of isomorphism classes of varieties over S, by relations of the form

[X] = [X\Z] + [Z]

where Z is a closed subvariety of X. Multiplication is distributively induced by

[X] · [Y ] = [(X ×S Y )red].

By Lemma 2.3 below, this operation is well-defined. From the definition we see it is associative and

commutative as well. It follows that [∅] = 0 and [S] = 1 in K(Var/S).

Remark 2.2. Note that we could include isomorphism classes of non-reduced X over S in the

definition above. However, since we always have a closed immersion Xred ⊂ X, it follows that we

would have [X] = [∅] + [Xred], and since [∅] = 0, we have [X] = [Xred]. Hence, these extra classes

would not contain any additional information.

Lemma 2.3. Let f : X → S and g : Y → S be morphisms of varieties over k. Let Z be a closed

subvariety of X, and U = X\Z its open complement. Then Z ×S Y is closed in X ×S Y , and its

open complement is U ×S Y . In particular, ([U ] + [Z]) · [Y ] = [U ] · [Y ] + [Z] · [Y ].

Proof. This follows from the fact that closed and open immersions are stable under pullback.

When S = Spec k, we write K(Vark) for the corresponding Grothendieck ring. To distinguish

between the classes of different rings, we will write [X]S for the class of X in K(Var/S) and for the

class of X in K(Vark) we will simply write [X]. We will also write ×k or × instead of ×Spec k.

In this section we will consider some of the basic properties and constructions related to the

Grothendieck ring, that will be needed in later sections. For more information on this topic, see

[4, 5, 23].

Example 2.4. Writing q for the class [A1
k], we find that [Ank ] = qn. Also it follows that [Pnk ] =

qn + qn−1 + . . .+ 1, using inductively that Pnk\P
n−1
k = Ank .

Example 2.5. Consider the special linear group SL2(C) = SpecC[a, b, c, d]/(ad−bc−1) over k = C.

This is an affine algebraic group, i.e. an affine variety with a group structure given by morphisms

of varieties: the multiplication map SL2(C)× SL2(C)→ SL2(C) is given by the ring morphism

A→ A⊗C A : a 7→ a⊗ a+ b⊗ c, b 7→ a⊗ b+ b⊗ d,

c 7→ c⊗ a+ d⊗ c, d 7→ c⊗ b+ d⊗ d,
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and the inversion map by

A→ A : a 7→ d, b 7→ −b,

c 7→ −c, d 7→ a,

where A = C[a, b, c, d]/(ad − bc − 1). (Indeed this simply describes multiplication and inversion of

matrices). We compute the class [SL2(C)] ∈ K(VarC) as follows:

[SL2(C) ∩ {a = 0}] = [{(b, c, d) ∈ C3 : bc− 1}] = q(q − 1)

using that SpecC[b, c]/(bc− 1) ' C∗ ' A1
C\{0} has class q − 1. Furthermore,

[SL2(C) ∩ {a 6= 0}] = [{(a, b, c, d) ∈ C∗ × C3 : d = (bc+ 1)/a}] = (q − 1)q2.

Hence [SL2(C)] = q(q − 1) + (q − 1)q2 = q(q − 1)(q + 1).

Example 2.6. Consider the general linear group GL2(C) = SpecC[a, b, c, d, (ad−bc)−1] over k = C,

an affine algebraic group as well. We find that

[GL2(C)] = [C4]− [{(a, b, c, d) ∈ C4 : ad− bc = 0}]

with

[{(a, b, c, d) ∈ C4 : ad− bc = 0} ∩ {a = 0}] = [{(b, c, d) ∈ C3 : bc = 0}] = q(2q − 1)

and

[{(a, b, c, d) ∈ C4 : ad− bc = 0} ∩ {a 6= 0}] = [{(a, b, c, d) ∈ C∗ × C3 : d = bc/a}] = (q − 1)q2.

Hence, [GL2(C)] = q4−q(2q−1)− (q−1)q2 = q(q−1)2(q+1). Comparing to the previous example,

it is no coincidence that [GL2(C)] = (q − 1)[SL2(C)], since in general we have an isomorphism of

varieties

C∗ × SLn(C)
∼−→ GLn(C),

sending (x,A) to the matrix A with its first column multiplied by x. An inverse map is given by

A 7→ (det(A), A′), where A′ is A with its first column divided by det(A). Note that this is not an

isomorphism of algebraic groups.

Example 2.7. The main point of the thesis is to compute the class of representation varieties

w.r.t. groups of upper triangular matrices Un ⊂ GLn(C). As a variety, Un can be identified with

(C∗)n × Cn(n−1)/2 since it consists of all upper triangular matrices with non-zero elements on the

diagonal. Therefore, its class is [Un] = qn(n−1)/2(q − 1)n.

The Grothendieck ring of varieties is of particular interest when studying additive invariants of

varieties. An additive invariant is a map λ : Ob(Vark)→ R with R a ring, such that (i) λ(X) = λ(Y )

for isomorphic varieties X and Y , (ii) λ(X) = λ(X\Y ) + λ(Y ) when Y ⊂ X is a closed subscheme,

and (iii) λ(X ×k Y ) = λ(X) · λ(Y ). From the definition of the Grothendieck ring we see that such

maps will factor as

Ob(Vark)→ K(Vark)→ R.
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For example, when k = Fq is a finite field, the map N : Ob(Vark) → Z : X 7→ #X(k) which

yields the number of k-points is an additive invariant. For k = C, an important example is the E-

polynomial, also known as the Deligne-Hodge polynomial [15, 18, 23]. When X is a smooth projective

variety, its E-polynomial is given by its Hodge polynomial

e(X) =

dim(X)∑
p,q=0

(−1)p+qhp,q(X)upvq ∈ Z[u, v],

where hp,q(X) = dimCH
q(X,ΩpX) are the hodge numbers of X. It can be shown that the classes of

smooth projective varieties generate the Grothendieck ring [4], and that e extends uniquely in this

way to an additive invariant defined for all complex varieties [23]. Alternatively, one can define the

E-polynomial of a complex variety X to be

e(X) =
∑
k,p,q

(−1)khk;p,q
c (X)upvq,

where the coefficients hk;p,q
c (X) are the mixed Hodge numbers of the compactly supported cohomol-

ogy of X. When X is a smooth projective variety, its Euler characteristic

χ(X) =

dim(X)∑
p,q=0

(−1)p+qhp,q(X)

can be obtained by evaluating e(X) in u = v = 1. The virtual Euler characteristic of any complex

variety X is obtained by evaluating e(X) in u = v = 1.

Remark 2.8. Although the classes in the examples treated so far can all be expressed in terms of

q = [A1
k], this is not true for every class in K(Vark), and we can show this using E-polynomials.

From the cohomologies of P1
C and the point ? one can compute e(P1

C) = 1 + uv and e(?) = 1, hence

e(A1
C) = e(P1

C) − e(?) = uv. But from the cohomology of an elliptic curve E over C, one can show

e(E) = 1− u− v+ uv, which is not generated by e(A1
C) = uv, so it follows that [E] is not generated

by [A1
C].

Definition 2.9. A stratification for a variety X is a collection of disjoint locally closed subsets

Xi ⊂ X covering X.

Lemma 2.10. Let X be a variety stratified by subvarieties Xi ⊂ X. Then only finitely many of the

Xi are non-empty, and [X] =
∑n
i=1[Xi].

Proof. We will prove this by induction on the dimension of X. If this dimension is zero, then X is a

finite set of points, and the result is clear. Now we can assume that the result holds for all varieties

of dimension less than dimX.

First we consider the case where X is irreducible. Note that some U = Xi contains the generic

point of X and is therefore open. The complement Z = X\U must be of smaller dimension than X,

and is stratified by the other Xi. We have [X] = [U ] + [Z], so the result follows from the induction

hypothesis.

Now consider the case where X is reducible. Take an irreducible component and remove the in-

tersections with the other irreducible components, which gives an irreducible open subset U ⊂ X.
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The complement Z = X\U is a closed subvariety with fewer irreducible components than X. Since

{Z ∩ Xi} is a stratification of Z and {U ∩ Xi} is one for U , apply induction on the number of

irreducible components of X to find that only finitely many are non-empty, and we have

[U ] =
∑
i

[U ∩Xi], and [Z] =
∑
i

[Z ∩Xi].

Since [Xi] = [U ∩Xi] + [Z ∩Xi], it now follows that [X] = [U ] + [Z] =
∑
i[Xi].

Lemma 2.11. Let f : X → Y be an algebraic bundle with fiber F , i.e. there exists a Zariski-open

cover Y = ∪i∈IUi and isomorphisms gi : f−1(Ui)→ U × F such that each

f−1(Ui) Ui × F

Ui

gi

f πi

commutes. Then [X] = [Y ] · [F ] in K(Vark).

Proof. From the given open cover, one can construct a stratification for Y . Let Z0 = Y and

inductively define Zj+1 for j ≥ 0 as follows: if Zj 6= ∅, then there exists some i ∈ I such that

Zj ∩ Ui 6= ∅, and we set Zj+1 = Zj\(Zj ∩ Ui). Since Y is noetherian, this results in a finite

descending chain of closed sets

Y = Z0 ) Z1 ) . . . ) Zn ) Zn+1 = ∅.

Now the locally closed sets Yj = Zj\Zj+1 for j = 0, 1, . . . , n form a stratification for Y . Moreover,

as Yj ⊂ Ui for some i by construction, we have that f is a trivial fibration over each Yi, i.e.

f−1(Yi) ' Yi × F . Using Lemma 2.10 we conclude

[X] =

n∑
j=0

[
f−1(Yj)

]
=

n∑
i=0

[Yj ] · [F ] = [Y ] · [F ].

Example 2.12. An alternative way to compute class of SL2(C) would be to note that the map

SL2(C)→ C2−{(0, 0)} which sends a matrix A =
(
a b
c d

)
to A ( 1

0 ) = ( ac ) is an algebraic bundle with

fiber C. Indeed, U1 = {(a, c) ∈ C2 : a 6= 0} and U2 = {(a, c) ∈ C2 : c 6= 0} define an open cover on

which the map is a trivial fibration. By the above lemma we find [SL2(C)] = [C2 − {(0, 0)}] · [C] =

(q2 − 1)q = q3 − q.

2.1 Modules over the Grothendieck ring

Let X be a variety over k. We can give K(Var/X) a K(Vark)-module structure induced by

[V ] · [Y ]X = [V ×k Y ]X

for V a variety over k and Y a variety over X. Again using Lemma 2.3 we see that this gives a

well-defined module-structure.
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Let f : X → Y be a morphism of varieties over k. Composition with f yields a functor

f! : Var/X → Var/Y

(V
g−→ X) 7→ (V

fg−→ Y ).

As f! sends isomorphisms to isomorphisms, and also S ×k f!V = f!(S ×k V ) for any variety S, we

have that f! induces a K(Vark)-module morphism

f! : K(Var/X)→ K(Var/Y ).

Note that this map will in general not be a ring morphism. E.g. the unit [X]X ∈ K(Var/X) need

not be sent to the unit [Y ]Y ∈ K(Var/Y ).

Similarly, pulling back along f yields a functor

f∗ : Var/Y → Var/X

sending W
h−→ Y to W ×Y X

f∗h−→ X. Again, f∗ sends isomorphisms to isomorphisms, and in

combination with Lemma 2.3, we obtain the induced map

f∗ : K(Var/Y )→ K(Var/X)

which is also a K(Vark)-module morphism as S×kf∗(V ) = S×k(V×YX) = (S×kV )×YX = f∗(S×k
V ). In contrast to f!, the map f∗ is a ring morphism as (V ×Y W )×Y X = (V ×Y X)×X (W ×Y X)

for any V,W over Y .

Remark 2.13. The functors f∗ and f! are adjoint, as for any varieties V
v−→ X and W

w−→ Y

there is a bijection

HomVar/Y (f!V,W ) ' HomVar/X(V,W ×Y X)

natural in V and W . Namely, by the universal property of the fiber product, to give a morphism

ϕ : V →W ×Y X is to give morphisms V
r−→W and V

s−→ X such that w ◦ r = f ◦s, and requiring

ϕ to be over X means to have s = v. Hence, to give ϕ over X is to give V
r−→W such that w◦r = v,

i.e. a morphism V
r−→W over Y . The naturality of this bijection is easily seen.

Finally, we note that there is also the K(Vark)-module morphism

K(Var/X)⊗K(Vark) K(Var/Y ) → K(Var/(X ×k Y ))

[V ]⊗ [W ] 7→ [V ×k W ].
(2.1)

This map need not be an isomorphism.

When studying varieties over X, it can happen to be more convenient to look at their restrictions

to open or closed subsets of X. The following lemma shows how one can decompose the module

K(Var/X).

Lemma 2.14. Let X be a variety over k, Z ⊂ X a closed subvariety, and denote U = X\Z.

Write j : Z → X and i : U → X for the corresponding closed/open immersions. Then there is a
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K(Vark)-module isomorphism induced by

K(Var/X) ' K(Var/Z)⊕K(Var/U)

x 7→ (j∗(x), i∗(x))

j!(z) + i!(u)← [ (z, u).

Proof. Indeed both maps are K(Vark)-module morphisms. For any variety V
f→ X, we have [V ] =

[f−1(U)] + [f−1(Z)], so x = j!(j
∗(x)) + i!(i

∗(x)) for all x ∈ K(Var/X). On the other hand,

j∗(j!(z)+ i!(u)) = z and i∗(j!(z)+ i!(u)) = u for all (z, u) ∈ K(Var/Z)⊕K(Var/U) since Z ∩U = ∅
and both j∗j! and i∗i! are identity maps.

Corollary 2.15. Let X be a variety over k, and {X1, . . . , Xn} a stratification for X. Then we have

a K(Vark)-module isomorphism

K(Var/X) ' K(Var/X1)⊕ · · · ⊕K(Var/Xn)

x 7→ (j∗1 (x), . . . , j∗n(x))

(j1)!(x1) + · · ·+ (jn)!(xn)←[ (x1, . . . , xn).

2.2 Algorithmically computing classes

In later sections, a lot of classes in K(VarC) will need to be computed of affine varieties over C in

terms of q = [A1
C]. These computations can partly be automated. For this section, we will use the

following notation. Let S = {x1, . . . , xn} be a finite set (of variables), and F,G be finite subsets of

C[S]. Then we write X(S, F,G) for the (reduced) subvariety of Cn given by f = 0 for all f ∈ F and

g 6= 0 for all g ∈ G. For example,

Cn = X({x1, . . . , xn},∅,∅) and GL2(C) = X({a, b, c, d},∅, {ad− bc}).

For convenience we will write evx(f, u) with f ∈ C[S] for the polynomial where x ∈ S in f is

substituted for u ∈ C[S]. Then we write

evx(F, u) = {evx(f, u) : f ∈ F}

and

evx(F, u, v) = {vdegx(f) · evx(f, u/v) : f ∈ F}

for a set of polynomials F and x ∈ S and u, v ∈ C[S]. Note that for evx(F, u, v) the substituted

polynomials are multiplied by a suitable number of factors v, in order to clear denominators. Now

consider the following recursive algorithm.

Algorithm 2.16. Let X = X(S, F,G) for some S, F and G as above.

1. If F contains a non-zero constant or if 0 ∈ G, then X = ∅, so [X] = 0.
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2. If F = ∅ and G = ∅, then X = C#S , so [X] = q#S .

3. If some x ∈ S ‘does not appear’ in any f ∈ F and any g ∈ G, then we can factor X ' C×X ′

with X ′ = X(S − {x}, F,G). We have [X] = q[X ′].

4. If f = un (with n > 1) for some f ∈ F and u ∈ C[S], then we can replace f with u, not

changing X. That is, X = X(S, F − {f}+ {u}, G). Similarly, if g = un (with n > 1) for some

g ∈ G and u ∈ C[S], then X = X(S, F,G− {g}+ {u}).

5. If some f ∈ F is univariate in x ∈ S, we write f = (x − α1) · · · (x − αm), and we have

[X] =
∑m
i=1[Xi] with Xi = X(S − {x}, evx(F − {f}, αi), evx(G,αi)).

6. If f = uv for some f ∈ F and u, v ∈ C[S] (both not constant), then X1 = X(S, F − {f} +

{u}, G) = X ∩ {u = 0} and X2 = X(S, F − {f}+ {v}, G+ {u}) = X ∩ {u 6= 0, v = 0} define a

stratification for X, and thus [X] = [X1] + [X2].

7. If f = xu + v for some f ∈ F , x ∈ S and u, v ∈ C[S] with x not appearing in u and

v, then we consider the following cases. For any point p of X, either u(p) = 0, implying

v(p) = 0 as well, or u(p) 6= 0, implying x(p) = −v(p)/u(p). Therefore [X] = [X1] + [X2] with

X1 = X(S, F − {f}+ {u, v}, G) and X2 = X(S, evx(F − {f},−v, u)), evx(G,−v, u) + {u}).

8. Suppose f = x2u+ xv + w for some f ∈ F , x ∈ S and u, v, w ∈ C[S] with x not appearing in

u, v and w. Moreover, suppose that the discriminant D = v2 − 4uw is a square, i.e. we can

write D = h2 for some h ∈ C[S]. Then for any point p of X, we consider the following cases.

Either u(p) = 0, in which case (xv + w)(p) = 0. If u(p) 6= 0, we distinguish between D(p) = 0

and D(p) 6= 0. In the first case we find that x(p) =
(−v

2u

)
(p), and in the latter case we have

the two possibilities x(p) =
(−v±h

2u

)
(p). Hence [X] = [X1] + [X2] + [X3] + [X4], with

X1 = X(S, F − {f}+ {u, xv + w}, G),

X2 = X(S, evx(F − {f},−v, 2u) + {D}, evx(G,−v, 2u) + {u}),

X3 = X(S, evx(F − {f},−v − h, 2u), evx(G,−v − h, 2u) + {u,D}),

X4 = X(S, evx(F − {f},−v + h, 2u), evx(G,−v + h, 2u) + {u,D}).

9. If G 6= ∅, pick any g ∈ G. We have [X] = [X1] − [X2] where X1 = X(S, F,G − {g}) and

X2 = X(S, F + {g}, G).

An implementation of this algorithm in Python can be found at [29], together with the code for the

computations done in the later sections. Note that this algorithm may not be optimally efficient,

and as pointed out in Remark 2.8 not every variety’s class is generated by q. However, the varieties

we will deal with do have a class generated by q, so this algorithm is sufficient for our purposes.

Example 2.17. The computations in examples 2.5 and 2.6 for SL2(C) and GL2(C) were instances

of this algorithm done by hand.

We have SL3(C) = X({a, b, c, d, e, f, g, h, i}, {aei− afh− bdi+ bfg + cdh− ceg − 1},∅).

[SL3(C)] = q3(q − 1)2(q + 1)(q2 + q + 1)

12



We have GL3(C) = X({a, b, c, d, e, f, g, h, i},∅, {aei− afh− bdi+ bfg + cdh− ceg}).

[GL3(C)] = q3(q − 1)3(q + 1)(q2 + q + 1)

The last of these can be checked against [5, Lemma 2.6] for d = 3. As pointed out before, we indeed

have [GLn(C)] = (q − 1)[SLn(C)].
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3 Topological Quantum Field Theories

As mentioned, the first axiomatic description of TQFTs was given by Atiyah [1]. Roughly speak-

ing, an n-dimensional TQFT over a commutative ring R, assigns an R-module to every (n − 1)-

dimensional closed manifold, and R-linear maps between them for every n-dimensional manifold

that connects two boundaries. This assignment should satisfy certain functorial and multiplicative

properties, which are best described in terms of monoidal categories and monoidal functors.

3.1 Monoidal categories

Definition 3.1. A monoidal category is a category C with a functor ⊗ : C × C → C (the tensor

product), an object 1 in C (the unital object) and natural isomorphisms

α : −⊗ (−⊗−)⇒ (−⊗−)⊗−, λ : 1⊗− ⇒ idC , ρ : −⊗ 1⇒ idC

(associator) (left unitor) (right unitor)

such that the triangle

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

αA,1,B

ρA⊗idB idA⊗λB

and the pentagon

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗idD

αA,B⊗C,D

idA⊗αB,C,D

commute for all objects A,B,C and D in C. In case the natural isomorphisms α, λ and ρ are all

equalities, we say that such a category is strict. The above triangle and pentagon then commute

automatically.

Definition 3.2. A symmetric monoidal category is a monoidal category C equipped with natural

isomorphisms

τA,B : A⊗B → B ⊗A

such that

τB,A ◦ τA,B = idA⊗B

and the diagrams

(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗A

(B ⊗A)⊗ C B ⊗ (A⊗ C)B B ⊗ (C ⊗A)

αA,B,C

τA,B⊗idC

τA,B⊗C

αB,C,A

αB,A,C idB⊗τA,C
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and

A⊗ (B ⊗ C) (A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (A⊗ C)⊗B (C ⊗A)⊗B

α−1
A,B,C

idA⊗τB,C

τA⊗B,C

α−1
C,A,B

α−1
A,C,B τA,C⊗idB

commute for all A,B and C in C.

Example 3.3. � The category Set with the disjoint union operator t as tensor product, and the

empty set ∅ as unital object is a symmetric monoidal category. Also Set with the Cartesian

product × as tensor product and a singleton set as unital object is a symmetric monoidal

category.

� Equivalent to Set is the category of cardinal numbers, which is monoidal with addition as

tensor product and 0 as unital object, and also with multiplication and 1. Moreover, in both

cases this is a strict monoidal category.

� Let R be a commutative ring, then the category R-Mod (or R-Alg) with the tensor product

⊗R and R as unital object is a symmetric monoidal category. Also R-Mod with ⊕ as tensor

product and 0 as unital object is a symmetric monoidal category.

� The category R-Bimod of R-bimodules is monoidal as well (with ⊗R and R), but not neces-

sarily symmetric. For example, take R = k a field with two non-commuting automorphisms

σ, τ . Let M = 1kσ be the abelian group k with k-bimodule structure given by a ·x ·b = axσ(b),

and let N = 1kτ similarly. Then we have a k-bimodule isomorphism ϕ : M ⊗k N
∼−→ 1kστ

given by x ⊗ y 7→ xσ(y), and similarly N ⊗k M = 1kτσ. If there were to exist some k-

bimodule isomorphism ψ : 1kστ
∼−→ 1kτσ it would be given by ψ(x) = xψ(1) (since ψ is a left

k-module isomorphism). However, as ψ is a right k-module isomorphism as well, we must have

ψ(x) = ψ(1)τστ−1σ−1(x), which implies that x = τστ−1σ−1(x) for all x ∈ k, but we assumed

τ and σ did not commute. Hence such ψ does not exist, and k-Bimod cannot be symmetric.

� Geometrically, the category Sch/S of schemes over S, with the fiber product ×S as tensor

product, and S as unital object is also a symmetric monoidal category.

� Let GrVectk be the category whose objects are graded linear vector spaces V = ⊕n∈ZVn over

k, and whose morphisms are linear maps that respect the grading. The tensor product of two

graded vector spaces V and W is again graded, with grading (V ⊗W )n = ⊕p+q=n(Vp ⊗Wq),

making GrVectk into a monoidal category, where the unital object is the ground field k

concentrated in degree zero.

There is more than one way to make GrVectk symmetric. As the map V ⊗W →W ⊗ V we

could take the usual τ : v ⊗ w → w ⊗ v. However, we could also take the map κ : v ⊗ w 7→
(−1)pqw ⊗ v with p = deg(v) and q = deg(w). One can check that κ indeed satisfies the

axioms.

Definition 3.4. A lax monoidal functor is a functor F : C → D between monoidal categories

together with a natural transformation

µ : F (−)⊗D F (−)⇒ F (−⊗C −)
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between C × C → D functors, and a morphism ε : 1D → F (1C), such that the diagrams

(F (A)⊗D F (B))⊗D F (C) F (A)⊗D (F (B)⊗D F (C))

F (A⊗C B)⊗D F (C) F (A)⊗D F (B ⊗C C)

F ((A⊗C B)⊗C C) F (A⊗C (B ⊗C C))

αDF (A),F (B),F (C)

µA,B⊗idF (C) idF (A)⊗µB,C

µA⊗CB,C µA,B⊗CC

F (αCA,B,C)

(associativity)

and

1D ⊗D F (A) F (1C)⊗D F (A)

F (A) F (1C ⊗C A)

ε⊗idF (A)

λDF (A) µ1C ,A

F(λCA)

and

F (A)⊗D 1D F (A)⊗D F (1C)

F (A) F (A⊗C 1C)

idF (A)⊗ε

ρDF (A) µA,1C

F(ρCA)

(unitality)

commute for all objects A,B and C in C. Such a functor is said to be a strong monoidal functor or

simply a monoidal functor if all µA,B and ε are isomorphisms.

A monoidal functor between symmetric monoidal categories is said to be symmetric if it respects

the symmetric structure, i.e. the diagram

F (A)⊗D F (B) F (B)⊗D F (A)

F (A⊗C B) F (B ⊗C A)

τDF (A),F (B)

µA,B µB,A

F (τCA,B)

commutes for all A and B in C.

Example 3.5. � Let R → R′ be a morphism of commutative rings. Changing base M 7→
M ⊗R R′ yields a monoidal functor R-Mod→ R′-Mod which is symmetric.

� Analogously, geometrically the base change X 7→ X×S S′ yields a monoidal functor Sch/S →
Sch/S′. For a morphism S′ → S.

� Not every monoidal functor between symmetric monoidal categories is automatically symmetric

as well. The identity functor idGrVectk is clearly monoidal, but it is not symmetric when seen

as a functor (GrVectk, τ)⇒ (GrVectk, κ) as it does not respect the symmetry.

For more information on monoidal categories, see [19].

3.2 The category of bordisms

Let i : M → ∂W be an inclusion, where W is an n-dimensional oriented manifold with boundary,

and M an (n − 1)-dimensional closed oriented manifold. (All manifolds we consider are assumed

to be smooth.) Take a point x ∈ i(M), let {v1, . . . , vn−1} be a positively oriented basis for Txi(M)

w.r.t. the orientation induced by M , and pick some w ∈ Txi(M) that points inwards compared to
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W . Then if {v1, . . . , vn−1, w} is a positively oriented basis for TxW , we say x is an in-boundary

point, and an out-boundary point otherwise. Note that this is independent of the chosen vectors vi

and w. If all x ∈ i(M) are in-boundary (resp. out-boundary) points, we say i is an in-boundary

(resp. out-boundary).

Definition 3.6. Given two (n − 1)-dimensional closed oriented manifolds M and M ′, a bordism

from M to M ′ is an n-dimensional oriented manifold W (with boundary) with maps

M ′ W Mi′ i

where i is an in-boundary, i′ an out-boundary and ∂W = i(M) t i′(M ′). (In the literature people

also use the notation ∂W = M tM ′.) Two such bordisms W,W ′ are said to be equivalent if there

exists an orientation-preserving diffeomorphism W
∼−→W ′ such that

W

M ′ M

W ′

o

commutes.

For a more precise definition of bordisms, see [22] or [17].

Example 3.7. We provide some pictorial examples for n = 2 (without explicitly choosing orienta-

tions).

S1 S1 × [0, 1] S1
S1 D tD† S1

∅

S1 t S1 U
S1 L S1

Remark 3.8. For simplicity, we will use a notation where we do not write down the source and target

of the bordisms, but implicitly the bordisms goes from the ‘boundary on the right’ to the ‘boundary

on the left’. E.g. although and are diffeomorphic as manifolds, we use the first to denote

the bordism → , while the latter denotes the bordism ∅→ t . We choose this convention so

that compositions of bordisms can be written down nicely, e.g. ◦ = .

Suppose we have bordisms W : M → M ′ and W ′ : M ′ → M ′′. One can glue W and W ′ as

topological spaces by identifying the images of M ′, which we denote by W tM ′W ′. By [22, Theorem

1.4], there exists a smooth manifold structure on W tM ′W ′ such that the inclusions W →W tM ′W ′

and W ′ → W tM ′ W ′ are diffeomorphisms onto their images, which is unique up to (non-unique)

diffeomorphism. Hence W tM ′ W ′ belongs to a well-defined equivalence class, and moreover this

class only depends on the classes of W and W ′. Namely, if W̃ : M → M ′ and W̃ ′ : M ′ → M ′′
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are equivalent to W and W ′, respectively, then any such manifold structure on W tM ′ W ′ induces

such a manifold structure on W̃ tM ′ W̃ ′ via the homeomorphism W tM ′W ′ → W̃ tM ′ W̃ ′, showing

W tM ′ W ′ and W̃ tM ′ W̃ ′ are equivalent. This implies that equivalence classes of bordisms can be

composed to obtain an equivalence class of bordisms M →M ′′.

Definition 3.9. The category of n-bordisms, denoted Bdn, is defined as follows. Its objects are

(n − 1)-dimensional closed oriented manifolds, and morphisms M → M ′ are equivalence classes of

bordisms from M to M ′. Composition is given by gluing along the common boundary: if W : M →
M ′ and W ′ : M ′ →M ′′, then W ′ ◦W = W tM ′ W ′ : M →M ′′.

It is easy to see that for any object M , the identity bordism is given by (the class of) the cylinder

M×[0, 1], with orientation such that the inclusionM →M×{0} is an in-boundary andM →M×{1}
is an out-boundary.

Note that Bdn is a symmetric monoidal category, the tensor product being given by taking disjoint

unions, and ∅ being the unital object.

Lemma 3.10. For an (n−1)-dimensional closed oriented manifold M , let F (M) be M as an object

in Bdn. For a diffeomorphism ϕ : M → M ′ between such manifolds, let F (ϕ) be the bordism

M →M ′ given by

M ′ −→ M ′ × [0, 1] ←− M

x′ 7→ (x′, 1), (ϕ(x), 0) ←[ x.

Then F defines a functor from the category of (n − 1)-dimensional closed oriented manifolds with

diffeomorphisms to Bdn.

Proof. Indeed F (idM ) is the identity bordism M → M . Given diffeomorphisms ϕ : M → M ′ and

ϕ′ : M ′ →M ′′, note that F (ϕ) can be seen as the bordism given by

M ′ −→ M ′′ × [0, 1] ←− M

x′ 7→ (ϕ′(x′), 1), (ϕ′ ◦ ϕ(x), 0) ← [ x,

as ϕ′ induces a diffeomorphism M ′ × [0, 1]→ M ′′ × [0, 1]. Now it is clear that F (ϕ′ ◦ ϕ) = F (ϕ′) ◦
F (ϕ).

We can now give the definition of a TQFT.

Definition 3.11. Let R be a commutative ring with unit. A Topological Quantum Field Theory

(TQFT) in dimension n, or n-TQFT, is a monoidal functor Z : Bdn → R-Mod, where the monoidal

structure on R-Mod is given by the tensor product ⊗R and the unital object R. We say the TQFT

is lax monoidal or symmetric if it is so as a monoidal functor.

It is possible to change the definition of bordisms in many ways to obtain different categories of

bordisms, and hence different types of TQFTs. For example, one may omit the conditions on

orientability. A common addition is to equip the manifolds M and W with some extra structure,

such as a metric or physical fields.
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Remark 3.12. In physics one most commonly takes R = C, and the interpretation of a TQFT is

as follows. The objects in Bdn can be interpreted as physical space and the bordisms as spacetime.

The vector space Z(M) resembles the quantum mechanical state space/Hilbert space associated to

M , and the k-linear maps Z(W ) : Z(M)→ Z(M ′) are interpreted as time-evolution operators. The

monoidality condition Z(M tM ′) = Z(M)⊗Z(M ′) makes sense from a quantum mechanical point

of view: the Hilbert space associated to two disjoint systems is the tensor product of the individual

Hilbert spaces. If one were to take ⊕ as the monoidal tensor product on R-Mod, one would obtain

a classical theory. Lastly, the diffeomorphism invariance reflects the relativistic aspect of the theory.

For more information on the physical side of TQFTs, see [9].

3.3 Some properties of TQFTs

One of the main properties of TQFTs that we will make use of in the later sections, is that they

associate invariants to closed oriented manifolds. Namely, if X is a closed oriented manifold of

dimension n, it can be seen as a bordism X : ∅ → ∅. If Z : Bdn → R-Mod is a TQFT, then

Z(X) : R→ R is completely specified by the value Z(X)(1) ∈ R, which we refer to as the invariant

associated to X by Z. Indeed Z(X)(1) only depends on the isomorphism class of X. Moreover we

have Z(X t Y )(1) = Z(X)(1) · Z(Y )(1) for any two such closed oriented manifolds by monoidality

of Z.

Consider the case where R = k is a field, and let Z : Bdn → Vectk be a TQFT. Let M be an

object in Bdn, i.e. an (n− 1)-dimensional closed oriented manifold. Denote by M the manifold M

with opposite orientation. Let UM : ∅→M tM and U†M : M tM → ∅ be the bordisms given by

M × [0, 1], with inclusions to the endpoints. Picturing both M and M by circles, we denote these

bordisms as

UM =
M

M
and U†M =

M

M
.

The map Z(UM ) : k → Z(M)⊗ Z(M) is uniquely determined by the element Z(UM )(1) ∈ Z(M)⊗
Z(M). Note that Z(UM )(1) =

∑m
i=1 vi ⊗ vi for some vi ∈ Z(M) and vi ∈ Z(M), and moreover we

can pick such vi linearly independent and vi linearly independent. Namely, if vm =
∑m−1
i=1 αivi for

some αi ∈ k, then Z(UM )(1) =
∑m−1
i=1 vi ⊗ (vi + αivm), and one can make a similar substitution if

vm =
∑m−1
i=1 αivi for some αi ∈ k, so the claim follows by induction on m. Now, since

M

M

M M

= M M,

it follows that

v =

m∑
i=1

Z(U†M )(v ⊗ vi)vi for all v ∈ Z(M).

In particular this implies Z(M) is finite-dimensional and that {v1, . . . , vm} is a basis for Z(M).
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Completely analogous, switching the roles of M and M we find

M

M

M M

= M M,

implying

v =

m∑
i=1

Z(U†M )(vi ⊗ v)vi for all v ∈ Z(M),

so Z(M) is finite-dimensional as well, and {v1, . . . , vm} is a basis for Z(M). Moreover, this shows

that the vector space Z(M) can be identified as the dual space of Z(M), with {v1, . . . , vm} as the dual

basis of {v1, . . . , vm} w.r.t. the non-degenerate pairing Z(M)⊗Z(M)→ k : v⊗ v 7→ Z(U†M )(v⊗ v).

Consider a bordism W : M → N , giving the linear map Z(W ) : Z(M)→ Z(N).

N W M

Note that the manifold of W can also be considered as a bordism W̃ : N → M by swapping the

source and target, yielding a map Z(W̃ ) : Z(N) → Z(M). Indeed this is the dual map of Z(W ),

which can be seen from the expression

W̃ =

N N N

N W M

M M M

where Z(UN )(1) =
∑n
i=1 wi ⊗ wi. This expression shows that Z(W̃ ) is given by

w 7→
n∑
i=1

Z(U†N )(Z(W )(vi)⊗ w)vi.

Hence, this is the dual map to Z(W ).

Now consider a bordism W : M →M , which gives the endomorphism Z(W ) : Z(M)→ Z(M).

M W M

One can glue the copies of M at the boundary together to obtain a closed manifold. One way to do

this is to consider the composition U†M ◦ (W t idM ) ◦ UM . Pictorially,

M W M

M M

We find that

Z(U†M ◦ (W t idM ) ◦ UM )(1) = Z(UM )

(
n∑
i=1

Z(W )(vi)⊗ vi

)
= tr(Z(W )).

Hence we can obtain the trace of W by gluing its ends. Note that this construction nicely reflects

the cyclic property of the trace. If k is of characteristic zero, we obtain in particular for W = idM

the identity

dimk(Z(M)) = tr(idZ(M)) = Z(M × S1)(1).

We encounter the simplest types of TQFT in dimension 1.
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Proposition 3.13. Let k be a field. There is an equivalence of categories

1TQFTk ' FinVectk,

between the category of TQFTs over k in dimension 1 (its arrows are natural transformations) and

the category of finite dimensional k-vector spaces.

Proof. The objects of Bd1 are finite sets of disjoint points, each with some orientation ±1. Write

? and ? for points with orientation +1 and −1, respectively. As seen above, Z(?) is the dual

vector space of Z(?), so using monoidality, specifying Z(?) determines Z for all objects. The only

(connected) bordisms are given by S1 : ∅→ ∅ or [0, 1], which depending on orientation can be seen

as a bordism

id? : ?→ ?, U? : ∅→ ? t ?, U†? : ? t ?→ ∅, or id? : ?→ ?,

all of whose associated k-linear maps are canonical. Write ZV for the TQFT specified by Z(?) = V

in this way for a k-vector space V . A k-linear map A : V → V ′ naturally induces a natural

transformation ZA : ZV ⇒ ZV ′ with ZA(?) = A. This yields a functor Z(−) : FinVectk →
1TQFTk.

Conversely, a TQFT Z yields a vector space Z(?), which was already shown to be finite-dimensional,

and a natural transformation Z ⇒ Z ′ between TQFTs yields the linear map Z(?) → Z ′(?). This

way we obtain a functor 1TQFTk → FinVectk, which is clearly a pseudo-inverse of Z(−). This

shows the equivalence of categories.

3.4 TQFTs in dimension 2 and Frobenius algebras

For dimension n = 2, every object in Bd2, that is every oriented closed 1-dimensional manifold, is

diffeomorphic to a finite number of disjoint circles. So using Lemma 3.10, in order to specify a 2-

TQFT Z it is sufficient to give Z(S1) (which by monoidality determines Z
(
tmi=1S

1
)

=
⊗m

i=1 Z(S1))

and Z(W ) for all bordisms W between disjoint unions of circles. As shown in [17], these bordisms

of Bd2 are generated, that is under taking disjoint unions and composition, by the six bordisms

and . (3.1)

Since 2-dimensional oriented surfaces are (topologically) well understood, we can try to understand

all TQFTs in dimension 2. It turns out there is a relation in the spirit of Proposition 3.13 between

these TQFTs and so-called Frobenius algebras, first observed by Dijkgraaf [8]. Following the notes

of [17], we will discuss this relation.

Let R = k be a field, so that R-Mod = Vectk, the category of vector spaces over k.

Definition 3.14. A Frobenius algebra over a field k is a k-algebra A equipped with an associative

nondegenerate bilinear form β : A⊗ A→ k, called the Frobenius pairing. Associativity of β means

that β(ab⊗ c) = β(a⊗ bc) for all a, b, c ∈ A. Nondegeneracy of β means that there exists a k-linear
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map γ : k → A⊗A such that (β ⊗ idA)(a⊗ γ(1)) = a = (idA ⊗ β)(γ(1)⊗ a) for all a ∈ A. We say a

Frobenius algebra is commutative if it is commutative as k-algebra.

We write η : k → A for the unit and µ : A ⊗ A → A for the multiplication on A, i.e. η(1) = 1 ∈ A
and ab = µ(a⊗ b).

There are multiple equivalent definitions for a Frobenius algebra, see [17] for a more elaborate

discussion on this.

Lemma 3.15. Any Frobenius algebra is of finite dimension.

Proof. Write γ(1) =
∑n
i=1 ai ⊗ bi for some ai, bi ∈ A, and note for any a ∈ A we have

a = (idA ⊗ β) ◦ (γ ⊗ idA)(1⊗ a) = (idA ⊗ β)

(
n∑
i=1

ai ⊗ bi ⊗ a

)
=

n∑
i=1

ai · β(bi ⊗ a), (3.2)

so in particular a ∈ 〈a1, . . . , an〉, implying that A is finite-dimensional.

Remark 3.16. This definition of non-degeneracy of β implies the usual notion of non-degeneracy.

Namely, if a ∈ A is such that β(b ⊗ a) = 0 for all b ∈ A, then (3.2) implies a = 0. To show non-

degeneracy in the other argument, a completely similar argument shows that (β⊗idA)◦(idA⊗γ(1)) =

idA, which can be used to show it.

Note that the map γ is unique (if it exists). Namely, suppose γ and γ′ both satisfy the conditions,

and write γ(1)−γ′(1) =
∑n
i=1 ai⊗bi with ai, bi ∈ A such that the ai are linearly independent. Then

by linearity, 0 = (idA ⊗ β)(
∑n
i=1 ai ⊗ bi ⊗ a) =

∑n
i=1 ai · β(bi ⊗ a) for all a ∈ A. In particular, all

bi = 0, so γ(1) = γ′(1).

A Frobenius algebra A also naturally carries a k-coalgebra structure. As counit, we take the map

ε : A → k

a 7→ β(1⊗ a) = β(a⊗ 1),
(3.3)

which is well-defined by associativity of β. As comultiplication, we take

δ : A → A⊗A
a 7→ (µ⊗ idA)(a⊗ γ(1)) = (idA ⊗ µ)(γ(1)⊗ a).

(3.4)

To see why this is well-defined, write γ(1) =
∑
ai ⊗ bi as before, then the associativity and non-

degeneracy of β imply that

(µ⊗ idA)(a⊗ γ(1)) =

n∑
i=1

aai ⊗ bi =

n∑
i,j=1

β(bj ⊗ aai)aj ⊗ bi

=

n∑
i,j=1

β(bia⊗ aj)ai ⊗ bj =

n∑
i=1

ai ⊗ bia = (idA ⊗ µ)(γ(1)⊗ a)

for all a ∈ A.
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Lemma 3.17. The k-linear maps δ : A→ A⊗A and ε : A→ k make A into a coalgebra. That is,

(idA ⊗ δ) ◦ δ = (δ ⊗ idA) ◦ δ (i.e. δ is coassociative), and (idA ⊗ ε) ◦ δ = idA = (ε⊗ idA) ◦ δ (i.e. ε

is a counit for the comultiplication).

Proof. Write γ(1) =
∑n
i=1 ai ⊗ bi as before. For any a ∈ A, we have

(idA⊗δ)◦δ(a) =

n∑
i,j=1

aai⊗biaj⊗bj =

n∑
i,j=1

aai⊗biaj⊗bj =

n∑
i,j=1

aajai⊗bi⊗bj = (δ⊗idA)◦δ(a).

Furthermore,

(idA ⊗ ε)(δ(a)) =

n∑
i=1

aai · β(bi ⊗ 1)
(3.2)
= a · 1 = a

and similarly we have (ε⊗ idA)(δ(a)) = a.

Definition 3.18. A Frobenius algebra morphism A→ B is an k-algebra morphism which is also a

coalgebra morphism.

Remark 3.19. By associativity of β, we have β(a ⊗ b) = β(ab ⊗ 1) in particular, so β = ε ◦ µ.

Hence, Frobenius algebra morphisms preserve the Frobenius pairing. Conversely, a map of k-algebras

preserving the pairing, also preserves ε and δ by their definitions. (Although, as a step in between

one must show that γ is preserved as well, but this is clear from the uniqueness of γ). Hence, one

could equivalently define a Frobenius algebra morphism to be a k-algebra morphism preserving the

Frobenius pairing.

Definition 3.20. The category of Frobenius algebras over k, denoted FAk, has Frobenius alge-

bras over k as objects, and Frobenius algebra morphisms as arrows. We write CFAk for the full

subcategory of FAk of commutative Frobenius algebras.

Example 3.21. Some examples of Frobenius algebras include the following.

� Let A be a finite field extension of k, and ε : A→ k any non-zero k-linear map. Then A with

the pairing β : a⊗ b 7→ ε(ab) is a Frobenius algebra.

� The ring Matn(k) of n× n matrices over k, with pairing β : A⊗B 7→ tr(AB).

We will now see how a (commutative) Frobenius algebra arises from a symmetric 2-TQFT Z. Let A =

Z
(
S1
)
, whose k-algebra structure is given by the unit η = Z

( )
: k → A and the multiplication

map µ = Z

( )
: A ⊗ A → A. Furthermore, we take the bilinear map β = Z

( )
:

A ⊗ A → k. First let us check that A with η and µ define an k-algebra. Indeed η is a unit for the

multiplication µ as µ ◦ (η ⊗ idA) = idA = µ ◦ (idA ⊗ η) because

= = .

Note that the multiplication given by µ is associative, i.e. µ ◦ (µ⊗ idA) = µ ◦ (idA ⊗ µ), since

◦

  = ◦

  .
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Let γ = Z

( )
: k → A⊗A. Then

(β ⊗ idA) ◦ (idA ⊗ γ) = Z


 ◦ Z


 = Z

( )
= idA

and similarly (idA ⊗ β) ◦ (γ ⊗ idA) = idA, which shows that β is non-degenerate. Note here the

similarity with the arguments used in Section 3.3 and (3.2). To see why β is associative, note that

β ◦ (idA ⊗ µ) = Z

 ◦

  = Z

 ◦

  = β ◦ (µ⊗ idA).

This shows that A is a Frobenius algebra.

That Z is symmetric implies that Z

( )
= τ : A⊗A→ A⊗A is the twist map a⊗b 7→ b⊗a.

Hence we find that

µ ◦ τ = Z

( )
◦ Z

( )
= Z

( )
= µ,

i.e. µ(a⊗ b) = µ(b⊗ a). Hence multiplication in A is commutative and we conclude that A with β

is a commutative Frobenius algebra.

Note that δ = Z

( )
: A→ A⊗ A and ε = Z

( )
: A→ k give the coalgebra structure on

A. Indeed this agrees with (3.3) and (3.4) by the relations

= and = .

Now we would like to do the converse. Given a commutative Frobenius algebra A with maps η, µ, β,

we define a symmetric 2-TQFT Z over k by putting

Z
(
S1
)

= A, Z
( )

= idA, Z
( )

= η, Z
( )

= ε,

Z

( )
= µ, Z

( )
= δ, Z

( )
= τ,

which determines Z completely using functoriality and monoidality. However, in order to check

compatibility with relations between these bordisms in Bd2, one must check that a finite number of

relations are satisfied, which can be found in 1.4.24 – 1.4.28 of [17]. We will not go into detail, but

all of these relations will follow directly from the axioms of a commutative Frobenius algebra.

These constructions are (up to isomorphism) inverse to each other, which leads to the following

theorem.

Theorem 3.22. There is an equivalence of categories

2SymTQFTk ' CFAk
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between the category of symmetric 2-TQFTs over k (its arrows are natural transformations) and the

category of commutative Frobenius algebras over k.

Proof. Assign to any commutative Frobenius algebra A the symmetric 2-TQFT as described above.

A Frobenius algebra morphism f : A → A′ induces maps A⊗n → A′
⊗n

for any n ≥ 1. To see that

this defines a natural transformation ZA ⇒ ZA′ , it suffices to check the naturality condition for

generators (3.1) only. That is, for and we must have commuting diagrams

A A′

A A′

f

idA idA′

f

and

A⊗A A′

A⊗A A′ ⊗A′

f⊗f

τ τ ′

f⊗f

which is trivially the case. For and we must have commuting diagrams

k k

A A′

id

η η′

f

and

A⊗A A′ ⊗A′

A A′

f⊗f

µ µ′

f

which is the case since f is a k-algebra morphism. For and we must have commuting

diagrams

A A′

k k

f

ε ε′

id

and

A A′

A⊗A A′ ⊗A′

f

δ δ′

f⊗f

which is the case since f is a k-coalgebra morphism as well.

Conversely, to any symmetric 2-TQFT Z, assign the commutative Frobenius algebra AZ = Z(S1)

as described above. Given a natural transformation of TQFTs F : Z ⇒ Z ′, we find using the same

six diagrams that f = F
(
S1
)

: AZ → AZ′ is a Frobenius morphism.

Finally, the constructions are clearly pseudo-inverse to each other, showing the equivalence of cate-

gories.

3.5 Bordism category variations

As remarked before, one can put extra structure on the manifolds to obtain different types bordisms.

We will consider the following two variations, which will be used in the later sections.

Definition 3.23. The category of n-bordisms of pairs, denoted Bdpn, is the 2-category consisting

of:

� Objects: pairs (M,A) with M an (n− 1)-dimensional closed oriented manifold, and A ⊂M a

finite set of points intersecting each connected component of M .
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� 1-morphisms: a map (M1, A1)→ (M2, A2) is given by a class of pairs (W,A) with W : M1 →
M2 a bordism, and A ⊂W a finite set intersecting each connected component of W such that

A ∩M1 = A1 and A ∩M2 = A2. Two such pairs (W,A) and (W ′, A′) are in the same class if

there is a diffeomorphism F : W →W ′ such that F (A) = A′ and such that the diagram

W

M2 M1

W ′

o (3.5)

commutes.

The composition of (W,A) : (M1, A1) → (M2, A2) and (W ′, A′) : (M2, A2) → (M3, A3) is

(W tM2 W
′, A ∪A′) : (M1, A1)→ (M3, A3).

� 2-morphisms: a map (W,A)→ (W ′, A′) is given by a diffeomorphism F : W → W ′ such that

F (A) ⊂ A′ and (3.5) commutes.

Note that so far, no identity morphism exists for (M,A), unless M = A = ∅. For this reason, we

loosen the definition of a bordism a bit, and allow M itself to be seen as a bordism M →M , so that

(M,A) will be the identity morphism for (M,A).

The last type of bordism category we consider is one in which the manifolds carry a so-called parabolic

structure. Fix a set Λ and call it the parabolic data. We say a parabolic structure on a manifold

M is a finite set Q = {(S1, E1), . . . , (Ss, Es)} with Ei ∈ Λ and the Si are pairwise disjoint compact

submanifolds of M of codimension 2 with a co-orientation (i.e. an orientation of its normal bundle)

such that Si ∩ ∂M = ∂Si transversally.

Definition 3.24. Let Λ be a set. The category of n-bordisms of pairs with parabolic structures over

Λ, denoted Bdpn(Λ), is the 2-category consisting of:

� Objects: triples (M,A,Q) with M an (n − 1)-dimensional closed oriented manifold, Q a

parabolic structure on M , and A ⊂ M a finite set of points not intersecting any of the Si

of Q.

� 1-morphisms: a map (M1, A1, Q1) → (M2, A2, Q2) is given by a class of triples (W,A,Q)

where W : M1 → M2 is a bordism, Q a parabolic structure on W , and A ⊂ W a finite set

intersecting each connected component of W but not intersecting any of the Si of Q, such

that A ∩M1 = A1, A ∩M2 = A2, Q|M1
= Q1 and Q|M2

= Q2. Here we use the notation

Q|Mi
= {(Sj ∩Mi, Ej) : (Sj , Ej) ∈ Λ}. Two such triples (W,A,Q) and (W ′, A′, Q′) are in the

same class if there is a diffeomorphism F : W → W ′ such that F (A) = A′ and (S, E) ∈ Q if

and only if (F (S), E) ∈ Q′ and such that the diagram

W

M2 M1

W ′

o (3.6)
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commutes.

The composition of bordisms (W,A,Q) : (M1, A1, Q1) → (M2, A2, Q2) and (W ′, A′, Q′) :

(M2, A2, Q2)→ (M3, A3, Q3) is given by (W,A,Q) ◦ (W ′, A′, Q′) = (W tM2 W
′, A∪A′, QtM2

Q′), where Q tM2 Q
′ denotes the union of Q and Q′ but where we glue pairs (S, E) ∈ Q and

(S′, E) ∈ Q′ that have a common boundary (in M2).

� 2-morphisms: a map (W,A,Q)→ (W ′, A′, Q′) is given by a diffeomorphism F : W →W ′ such

that F (A) ⊂ A′ and (F (S), E) ∈ Q′ for each (S, E) ∈ Q and such that (3.6) commutes.

Actually, Bdpn can be seen as a particular case of Bdpn(Λ) for Λ = ∅. The category Bdpn(Λ)

(and thus Bdpn as well) is a monoidal category. The tensor product is given by taking disjoint

unions:

(M,A,Q) t (M ′, A′, Q′) = (M tM ′, A ∪A′, Q ∪Q′)

for objects, and similarly for bordisms. The unital object is (∅,∅,∅), which we also denote simpy

by ∅.

Note that (non-empty) parabolic structures can only exist on manifolds of dimension ≥ 2. In

particular for Bdp2(Λ), its 1-dimensional objects have Q = ∅ and the parabolic structures of its

2-dimensional bordisms are of the form {(p1, E1), . . . , (ps, Es)} with pi points on the interior of the

bordism that have a preferred orientation of small loops around them.
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4 Field theory and quantization functor

Let X be a closed path-connected manifold X with finitely generated fundamental group π1(X), and

G an algebraic group over a field k. One can consider the set of group representations ρ : π1(X)→ G:

XG(X) = Hom(π1(X), G),

which we will call the G-representation variety of X. Indeed this set naturally carries the structure

of a variety: let γ1, . . . , γn be a set of generators for π1(X), then the morphism

XG(X) → Gn

ρ 7→ (ρ(γ1), . . . , ρ(γn))

identifies XG(X) with a subvariety of Gn (the relations between the generators define an algebraic

set) giving it a k-variety structure. This structure can be shown to be independent of the chosen

generators. In particular, when X = Σg is a closed surface of genus g, its fundamental group is

given by

π1(Σg) =

〈
a1, b1, . . . , ag, bg

∣∣∣∣∣
g∏
i=1

[ai, bi] = id

〉
,

where
∏g
i=1[ai, bi] denotes the product [a1, b1] · · · [ag, bg]. This gives

XG(Σg) =

{
(A1, B1, . . . , Ag, Bg) ∈ G2g

∣∣∣∣∣
g∏
i=1

[Ai, Bi] = id

}
, (4.1)

a closed subvariety of G2g.

Our goal is to compute the class of XG(Σg) in K(Vark), which we will do using a technique involving

TQFTs based on [13, 10]. We will construct a lax monoidal TQFT Z over the ring K(Vark) such that

the invariant associated to a closed manifold X is precisely Z(X)(1) = [XG(X)]. This construction

will allow to solve a more general problem: if Λ is the set of conjugacy-closed subsets of G, one can

put a parabolic structure Q = {(?, E1), . . . , (?, Es)} with data in Λ on Σg, such that the invariant

associated to (Σg, Q) will be the class of the variety

XG(Σg, Q) =

{
(A1, B1, . . . , Ag, Bg, C1, . . . , Cs) ∈ G2g+s

∣∣∣∣∣
g∏
i=1

[Ai, Bi]

s∏
i=1

Ci = id and Ci ∈ Ei

}
.

4.1 Span categories

Definition 4.1. Given a category C with pullbacks, we define the 2-category Span(C) as follows:

� Its objects are the objects of C.

� An arrow from C to C ′ is given by a diagram C ← D → C ′ in C, called a span. Composition

of the spans C ← D → C ′ and C ′ ← D′ → C ′′ is given by the span C ← E → C ′′ such that

the square in

E

D D′

C C ′ C ′′
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is a pullback square.

� A 2-morphism from C ← D → C ′ to C ← D′ → C ′ is given by an arrow D → D′ such that

the following diagram commutes:

D

C C ′

D′

The category Spanop(C) is defined analogously on categories with pushouts, where we reverse all

arrows.

If C is a monoidal category, then Span(C) naturally has the structure of a monoidal category as well.

The tensor product and unital object naturally carry over, the associator will be given by the span

A⊗ (B ⊗ C) A⊗ (B ⊗ C) (A⊗B)⊗ Cid αA,B,C

and the left and right unitor by

I ⊗A I ⊗A Aid λA and A⊗ I A⊗ I Aid ρA
.

4.2 Constructing the TQFT

Definition 4.2. Let (X,A) be a pair of topological spaces. The fundamental groupoid of X w.r.t.

A denoted Π(X,A) is the groupoid category whose objects are elements of A, and an arrow a → b

for each homotopy class of paths from a to b. Composition of morphisms is given by concatenation

of paths. Indeed this construction only depends on the homotopy type of (X,A). In particular, if

A = {x0} is a single point, we obtain the fundamental group π1(X,x0).

Note that if f : (X,A)→ (X ′, A′) is a map of pairs, there is an induced functor Π(X,A)→ Π(X ′, A′)

between groupoids, mapping an object a ∈ A to f(a) ∈ A′ and an arrow γ : a → b to f ◦ γ. This

allows us to construct the following functor.

Definition 4.3. The geometrization functor is a 2-functor Π : Bdpn → Spanop(Grpd), with Grpd

the category of groupoids, defined as follows:

� To each object (X,A) we assign the fundamental groupoid Π(X,A).

� For each 1-morphism (W,A) : (X1, A1)→ (X2, A2) we assign the cospan

Π(X1, A1)
i1−→ Π(W,A)

i2←− Π(X2, A2)

with i1 and i2 induced by inclusions.

� For each 2-morphism (W,A)→ (W,A′) given by diffeomorphism F : W →W ′ with F (A) ⊂ A′,
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we obtain a groupoid morphism ΠF yielding the commutative diagram

Π(W,A)

Π(X1, A1) Π(X2, A2)

Π(W ′, A′)

ΠF

i1

i′1

i2

i′2

which is a 2-morphism in Spanop(Grpd).

� To show functoriality, consider two bordisms (W,A) : (X1, A1) → (X2, A2) and (W ′, A′) :

(X2, A2)→ (X3, A3), and write (W ′′, A′′) = (WtX2
W ′, A∪A′) for their composition. Let U ⊂

W ′′ be a sufficiently small open neighborhood of X2 such that U∩A′′ = A2, and set V = W ∪U
and V ′ = W ′ ∪ U . Now {V, V ′} is an open cover of W ′′ such that (V,A′′ ∩ V ), (V ′,W ′′ ∩ V ′)
and (V ∩ V ′, A′′ ∩ V ∩ V ′) are homotopically equivalent to (W,A), (W ′, A′) and (X2, A2),

respectively. Therefore, by the Seifert-van Kampen theorem for fundamental groupoids [6], we

obtain a pushout diagram for Π(W ′′, A′′) induced by inclusions, making

Π(W ′′, A′′)

Π(W,A) Π(W ′, A′)

Π(X1, A1) Π(X2, A2) Π(X3, A3)

precisely Π(W ′, A′) ◦Π(W,A).

Suppose X is a compact connected manifold (possibly with boundary), A ⊂ X a finite set of points,

and denote G = Π(X,A). We write Ga = HomG(a, a) for a in G. Since a compact connected manifold

has the homotopy type of a finite CW-complex, every Ga = π1(X, a) is a finitely generated group.

The groupoid G has finitely many connected components, where we say objects a, b ∈ G are connected

if HomG(a, b) is non-empty. Pick a subset S = {a1, . . . , as} ⊂ A such that each connected component

of G contains exactly one of the ai. Also pick an arrow fa : ai → a for each a ∈ A (with ai ∈ S in

the connected component of a) such that fai = idGai for each ai ∈ S. Now if G is a group, then

a morphism of groupoids ρ : G → G is uniquely determined by the group morphisms ρi : Gai → G

and a choice of ρ(fa) ∈ G. Namely, any γ : a → b in G can be written as γ = fb ◦ γ′ ◦ (fa)−1 for

some γ′ ∈ Gai (with ai ∈ S in the connected component of a and b). The elements ρ(fa) can take

any value for a 6∈ A\S (and ρ(fai) = id ∈ G for ai ∈ S), so if G has n objects and s connected

components, we have

HomGrpd(G, G) ' Hom(Ga1 , G)× · · · ×Hom(Gas , G)×Gn−s. (4.2)

If G is an algebraic group, each of these factors naturally carries the structure of an algebraic variety.

Namely, each Gai is finitely generated, so Hom(Gai , G) can be identified with a subvariety of Gm for

some m > 0 as in the beginning of Section 4. This gives Hom(G, G) the structure of an algebraic

variety, and this structure can be shown not to depend on the choices [10].

Definition 4.4. Let X be a compact connected manifold (possibly with boundary) and A ⊂ X a

finite set. Then we define the G-representation variety of (X,A) to be

XG(X,A) = HomGrpd(Π(X,A), G).
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Note that the functor HomGrpd(−, G) sends pushouts to pullbacks, so we obtain an induced functor

F : Bdpn → Span(Vark)

which we refer to as the field theory. This functor sends an object (M,A) to XG(M,A) and a bordism

(W,A) : (M1, A1)→ (M2, A2) to the span

XG(M1, A1)←− XG(W,A) −→ XG(M2, A2).

Recall that Vark is a monoidal category, the tensor product being ×k and the unital object Spec k,

so the category Span(Vark) is monoidal as well. Following the above construction, one can see that

F is a monoidal functor. Indeed, XG(∅) = HomGrpd(∅, G) is a point, and XG(X tX ′, A ∪ A′) =

XG(X,A)×k XG(X ′, A′) as can be easily shown from (4.2). Also F is seen to be symmetric.

The last step in constructing the TQFT is the quantization functor

Q : Span(Vark)→ K(Vark)-Mod

which assigns to an object X the module K(Var/X), and to a span X1
f←− Y

g−→ X2 the module

morphism g! ◦ f∗ : K(Var/X1)→ K(Var/X2).

Lemma 4.5. Q is a functor.

Proof. It is clear that Q(idX) = idX for any object X. Consider a composition of spans

Z

Y1 Y2

X1 X2 X3,

h j

f1 g1 f2 g2

so the square is a pullback square. For Q to be a functor, we want to prove that Q(X1 ← Z →
X3) = (g2 ◦ j)! ◦ (f1 ◦ h)∗ equals Q(X1 ← Y1 → X2) ◦ Q(X2 ← Y2 → X3) = g2! ◦ f∗2 ◦ g1! ◦ f∗1 . It

suffices to prove that j! ◦h∗ = f∗2 ◦ g1! as maps Var/Y1 → Var/Y2. Indeed this holds, for if W → Y1

then

W ×Y1
Z Z Y2

W Y1 X2

h

j

f2

g1

is a pullback rectangle as both squares are pullback squares. Hence f∗2 (g1!(W )) = W ×Y1
Z =

j!(h
∗(W )).

Note thatQ is a lax (symmetric) monoidal functor. Indeed there is a mapK(Var/X)⊗K(Var/Y )→
K(Var/(X × Y )), see (2.1), which is functorial in X and Y : given spans

X ← Z → X ′ and Y ←W → Y ′

and varieties U → X and V → Y , we have an isomorphism

(U ×X Z)× (V ×Y W ) ' (U × V )×(X×Y ) (Z ×W )
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over X ′ × Y ′, so the square

K(Var/X)⊗K(Var/Y ) K(Var/(X × Y ))

K(Var/X ′)⊗K(Var/Y ′) K(Var/(X ′ × Y ′))

Q(X←Z→X′)⊗Q(Y←W→Y ′) Q(X×Y←Z×W→X′×Y ′)

commutes. However, since the map K(Var/X) ⊗K(Var/Y ) → K(Var/(X × Y )) need not be an

isomorphism, Q is only lax monoidal. It is clear to see that Q is symmetric as well.

At last, we define the symmetric lax monoidal TQFT as the composition of the field theory and the

quantization functor

Z = Q ◦ F : Bdpn → K(Vark)-Mod.

Now, when X is a closed connected oriented manifold of dimension n, we can choose a point ? on

X, and view it as a bordism (X, ?) : ∅→ ∅. Then,

F(X, ?) : ?
t←− XG(X, ?) = XG(X)

t−→ ?

and hence Z(X, ?)(1) = t!t
∗(?) = t!

(
[XG(X)]XG(X)

)
= [XG(X)] as desired.

4.3 Parabolic structures

Let Λ be a set of conjugacy-closed subsets of G. We will slightly modify the construction above to

obtain a (lax symmetric) TQFT ZΛ : Bdpn(Λ)→ K(Vark)-Mod. This will be an extension of Z in

the sense that it yields the same modules and morphisms as Z in the absence of parabolic structures,

i.e. ZΛ(X,A,∅) = Z(X,A).

Let X be a compact manifold (possibly with boundary) with a parabolic structure Q given by

Q = {(S1, E1), . . . , (Ss, Es)},

and A ⊂ X a finite set intersecting each connected component of X, but not intersecting S = ∪Si.
Then the representation variety of (X,A,Q) is defined as

XG(X,A,Q) =

{
ρ : Π(X − S,A)→ G

∣∣∣∣ ρ(γ)∈Ei for all loops γ around Si
positive w.r.t. the co-orientation,

for all (Si,Ei)∈Q

}
, (4.3)

where ‘γ around Si’ means a non-zero loop γ in Π(X − S,A) which is zero in Π(X − (S − Si), A).

Since the Ei are conjugacy-closed, the condition on the loops γ around Si is independent on the

chosen base point. Indeed this definition of XG(X,A,Q) agrees with Definition 4.4 for Q = ∅.

When X is connected, we write

XG(X,Q) = XG(X, ?,Q).

In the particular case of X = Σg with parabolic structure Q = {(?, E1), . . . , (?, Es)} (co-orientation

induced from orientation on Σg), we find

XG(Σg, Q) =

{
(A1, B1, . . . , Ag, Bg, C1, . . . , Cs) ∈ G2g+s

∣∣∣∣∣
g∏
i=1

[Ai, Bi]

s∏
i=1

Ci = id and Ci ∈ Ei

}
.

(4.4)
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Consider the modified field theory FΛ : Bdpn(Λ)→ Span(Vark) that maps an object (M,A,Q) to

XG(M,A,Q) and a bordism (W,A,Q) : (M1, A1, Q1)→ (M2, A2, Q2) to the span

XG(M1, A1, Q1)←− XG(W,A,Q) −→ XG(M2, A2, Q2)

induced by the inclusions. By a similar argument as in Definition 4.3, one can show [10] that for

bordisms (W,A,Q) : (M1, A1, Q1) → (M2, A2, Q2) and (W ′, A′, Q′) : (M2, A2, Q3) → (M3, A3, Q3)

the diagram induced by the inclusions

XG(W ′′, A′′, Q′′)

XG(W,A,Q) XG(W ′, A′, Q′)

XG(M2, A2, Q2)

where (W ′′, A′′, Q′′) = (W tM2
W ′, A∪A′, QtM2

Q′) denotes the composition, is a pullback diagram,

making FΛ indeed a functor. Also it is easy to see that this functor is still monoidal. We obtain the

resulting (lax symmetric) TQFT

ZΛ = Q ◦ FΛ : Bdpn(Λ)→ K(Vark)-Mod.

To a closed connected oriented manifold X with parabolic structure Q is now associated the invariant

ZΛ(X,A,Q)(1) = [XG(X,A,Q)].

Since ZΛ is understood to be an extension of the earlier TQFT Z : Bdn → K(Vark)-Mod, and

since it is clear what set Λ we consider, we will just write Z for ZΛ.

4.4 Field theory in dimension 2

We focus on the case of dimension n = 2. Let X = Σg be a closed oriented 2-dimensional surface

of genus g, possibly with a parabolic structure Q. Now Σg can be considered as a bordism ∅→ ∅,

and after taking a suitable finite set A ⊂ Σg, be written as a composition of the following bordisms:

D† : (S1, ?)→ ∅ L : (S1, ?)→ (S1, ?) LE : (S1, ?)→ (S1, ?) D : ∅→ (S1, ?)

(4.5)

Here LE denotes the cylinder with parabolic structure {(?, E)}. Now indeed, if we write Q =

{(?, E1), . . . , (?, Es)} for the parabolic structure on Σg, we have

(Σg, A,Q) = D† ◦ Lg ◦ LE1 ◦ · · · ◦ LEs ◦D. (4.6)

Of course, the category Bdp2(Λ) consists of more objects and morphisms than just the ones men-

tioned in (4.5). However, as we are only interested in closed connected surfaces (possibly with a

parabolic structure), we will restrict our attention to subcategory of Bdp2(Λ): we say a strict tube
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is any composition of the bordisms in (4.5), and let Tb2(Λ) be the subcategory of Bdp2(Λ) whose

objects are disjoint copies of (S1, ?) and bordisms are disjoint unions of strict tubes. Note that

Tb2(Λ) is still monoidal (with the same monoidal structure as Bdp2(Λ)). We refer to Tb2(Λ) as

the category of tubes.

We restrict Z to a functor Tb2(Λ)→ K(Vark)-Mod, and explicitly describe what the TQFT does

to our objects and bordisms in (4.5).

The fundamental groups π1(D) and π1(D†) are trivial, implying XG(D) = XG(D†) = ?. Since

π1(S1, ?) = Z, we have XG(S1, ?) = Hom(Z, G) = G and since Π(∅) is the empty groupoid, we have

XG(∅) = ?. Hence the field theory for D and D† is given by

F(D) : ? ←− ? −→ G

? ← [ ? 7→ id
and

F(D†) : G ←− ? −→ ?

id ←[ ? 7→ ?.

For the bordism L, call its two basepoints a and b. The surface of L is homotopic to a torus with

two punctures, so its fundamental group (w.r.t. a) is the free group F3. We pick generators γ, γ1, γ2

as depicted in the following image, and a path α connecting a and b.

γ

γ1

γ2

α

a b

According to (4.2) we can now identify

XG(L) ' Hom(F3, G)×G ' G4

ρ 7→ (ρ(γ), ρ(γ1), ρ(γ2), ρ(α)).

A generator for π1(S1, b) is given by αγ[γ1, γ2]α−1, and so the field theory for L is found to be

F(L) : G ←− G4 −→ G

g ← [ (g, g1, g2, h) 7→ hg[g1, g2]h−1.
(4.7)

Finally for the bordism LE , call its two basepoints a and b. The fundamental group (w.r.t. a) of the

cylinder with a puncture is the free group F2. We pick generators γ, γ′ as depicted in the following

image, and a path α connecting a and b.

γ

γ′

α

a b
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Using (4.3) we can now identify

XG(LE) ' G2 × E

ρ 7→ (ρ(γ), ρ(α), ρ(γ′)).

A generator for π1(S1, b) is given by αγγ′α−1, and so the field theory for LE is found to be

F(Lλ) : G ←− G2 × E −→ G

g ←[ (g, h, ξ) 7→ hgξh−1.

Finally, using (4.2) and (4.6) we can express the class of the character variety XG(Σg, Q) in terms

of the TQFT:

[XG(Σg, Q)] =
1

[G]g+s
[XG(Σg, {g + s+ 1 points}, Q)]

=
1

[G]g+s
Z(D† ◦ Lg ◦ LE1 ◦ . . . ◦ LEs ◦D)(1) (4.8)

Note that [G] might not be invertible, but one can consider a suitable localization of K(Vark) in

which this is the case. As a consequence, the class [XG(Σg, Q)] is only defined in this localization.

4.5 Case G abelian

In this section, suppose that G is an abelian group. We write + for the group operation and 0 for

the unit of G. Quite some simplifications occur for the field theory that is described above. First of

all, note that the conjugacy classes of G are all singletons E = {ξ}. The field theory for L and L{ξ}

as described in the previous section now simplify to

F(L) : G
p←− G4 q−→ G

g ←[ (g, g1, g2, h) 7→ g

and
F(L{ξ}) : G

r←− G2 × {ξ} s−→ G

g ← [ (g, h, ξ) 7→ g + ξ.

Suppose that X is a variety over G that factors as X → {g} → G for some g ∈ G. Then we find

that Z(L)([X]G) = q!p
∗[X]G = [G]3 · [X]G. Also we see that Z(L{ξ})([X]G) = s!r

∗[X]G = [G] · [X ′]G
with X ′ being isomorphic to X, lying over g + ξ ∈ G.

With these observations the computations become very easy. Let X = (Σg, A,Q), with Q =

{(?, {ξ1}), . . . , (?, {ξs})} some parabolic structure and A ⊂ X a finite set of g+ s+ 1 points, viewed
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as a bordism ∅→ ∅. We have

Z(X)(1) = Z(D† ◦ Lg ◦ L{ξ1} ◦ · · · ◦ L{ξs} ◦D)(1)

= Z(D† ◦ Lg ◦ L{ξ1} ◦ · · · ◦ L{ξs})([{0}]G)

= Z(D† ◦ Lg)([G]s · [{
∑
i ξi}]G)

= Z(D†)([G]3g+s · [{
∑
i ξi}]G)

=

{
[G]3g+s if

∑
i ξi = 0,

0 otherwise.

By (4.8) we conclude that

[XG(Σg, Q)] =

{
[G]2g if

∑
i ξi = 0,

0 otherwise.

When looking back at expression (4.4), this result makes sense. Namely, in an abelian group all

elements commute so we have(A1, B1, . . . , Ag, Bg) ∈ G2g

∣∣∣∣∣∣
g∑
i=1

[Ai, Bi]

s∑
j=1

ξj = 0

 =

{
G2g if

∑
i ξi = 0,

∅ otherwise,

from which the same result could also be derived.

4.6 Reduction of the TQFT

Let Z : B → R-Mod be a (lax monoidal) TQFT, with B some kind of bordism category (e.g. Bdn,

Bdpn or Bdpn(Λ)). In some cases there is a symmetry, like a group acting on the R-modules, which

can be used to ‘reduce’ the TQFT. We represent this as follows.

For each object M ∈ B let

Z(M) NM
αM

βM

be R-module morphisms, with NM some R-module. Assume N∅ = Z(∅) with α∅ and β∅ the

identity maps. Let VM ⊂ NM be R-submodules such that (αM ′ ◦ Z(W ) ◦ βM )(VM ) ⊂ VM ′ for all

bordisms W : M →M ′ in B. In particular (αM ◦ βM )(VM ) ⊂ VM for any M .

Lemma 4.6. Suppose that αM ◦ βM : VM → VM is invertible for all M ∈ B. Then for every

W : M → M ′ there exists a unique morphism Z̃(W ) : VM → VM ′ such that the following diagram

commutes.

βM (VM ) Z(W )(βM (VM ))

VM VM ′

Z(W )

αM αM′

Z̃(W )
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Proof. Indeed the above diagram is well-defined by the assumption that (αM ′ ◦Z(W ) ◦ βM )(VM ) ⊂
VM ′ . We are looking for a map Z̃(W ) : VM → VM ′ such that Z̃(W ) ◦ αM = αM ′ ◦ Z(W ). Precom-

posing this equality with βM ◦ (αM ◦ βM )−1 gives

Z̃(W ) = αM ′ ◦ Z(W ) ◦ βM ◦ (αM ◦ βM )−1.

This shows there is a unique choice of Z̃(W ), and it is easy to see that this choice makes the diagram

commute: any x ∈ βM (VM ) can be written as x = βM (y) for some y ∈ VM , so

Z̃(W ) ◦ αM (x) = Z̃(W ) ◦ (αM ◦ βM )(y) = αM ′ ◦ Z(W ) ◦ βM (y) = αM ′ ◦ Z(W )(x).

Our goal is to construct a functor Z̃ : B → R-Mod that assigns Z̃(M) = VM and Z̃(W ) : VM → VM ′

for any W : M →M ′ as above. Note that functoriality follows from the additional assumption that

Z(W )(βM (VM )) ⊂ βM ′(VM ′) for any bordism W : M →M ′.

Namely if so, let W : M →M ′ and W ′ : M ′ →M ′′ be bordisms. Then

βM (VM ) Z(W )(βM (VM )) Z(W ′ ◦W )(βM (VM ))

VM VM ′ VM ′′

Z(W )

αM

Z(W ′)

αM′ αM′′

Z̃(W ) Z̃(W ′)

is a commutative diagram by the previous lemma. We have Z̃(W ′) ◦ Z̃(W ) ◦ αM = αM ′′ ◦ Z(W ′) ◦
Z(W ) = αM ′′ ◦Z(W ′ ◦W ) so uniqueness implies that Z̃(W ′ ◦W ) = Z̃(W ′) ◦ Z̃(W ), and hence Z̃ is

a functor. Summarizing, we obtain the following definition.

Definition 4.7. For each object M in B, let Z(M) NM
αM

βM
be R-module morphisms with NM

an R-module, and VM ⊂ NM a submodule. If

(i) N∅ = Z(∅) and α∅, β∅ are identity maps,

(ii) (αM ′ ◦ Z(W ) ◦ βM )(VM ) ⊂ VM ′ for all bordisms W : M →M ′,

(iii) the restriction αM ◦ βM : VM → VM is invertible for all M ,

(iv) Z(W )(βM (VM )) ⊂ βM ′(VM ′) for all bordisms W : M →M ′,

then we speak of a reduction of the TQFT and call Z̃ the reduced TQFT.

The useful fact about the reduced TQFT Z̃ is that it computes the same invariants as Z for closed

manifolds. Namely, if W : ∅→ ∅ is a bordism, then

Z̃(W )(1) = Z̃(W ) ◦ α∅(1) = α∅ ◦ Z(W )(1) = Z(W )(1).
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We will apply this in Section 5 to the category B = Tb2(Λ) as follows. We have Z(S1, ?) =

K(Var/G), and there is an action of G on itself by conjugation. Suppose there are conjugacy-closed

strata C1, . . . , Cn for G, with maps πi : Ci → Ci whose fibers are precisely the orbits of G. Then by

Lemma 2.14 we have K(Var/G) = K(Var/C1) ⊕ · · · ⊕ K(Var/Cn), and the maps (πi)! and (πi)
∗

induce maps

K(Var/C1)⊕ · · · ⊕K(Var/Cn) K(Var/C1)⊕ · · · ⊕K(Var/Cn)
π!

π∗
, (4.9)

which by slight abuse of notation we have denoted π∗ and π!. For bordisms W : (S1, ?) → (S1, ?),

we write Zπ(W ) = π! ◦Z(W ) ◦ π∗ as a shorthand. Let V ⊂ ⊕iK(Var/Ci) be a submodule on which

η = π!π
∗ is invertible. Now, not any such stratification will satisfy the assumptions for a reduction.

To make this precise, consider ∆ = {(g1, g2) ∈ G2 : g1 ∼ g2}, where ‘∼’ means ‘is conjugate to’, and

p1, p2 : ∆→ G the projections of the components. There is the conjugation map

c : G2 → ∆ : (g, h) 7→ (g, hgh−1).

Note that the stratification of G naturally induces a stratification of ∆, whose pieces we denote

by ∆i = {(g1, g2) ∈ C2
i : g1 ∼ g2}. Now the map c!c

∗ can be restricted to a map K(Var/∆i) →
K(Var/∆i) for each i.

Lemma 4.8. Let G be an algebraic group, stratified by conjugacy-closed strata Ci, with maps πi :

Ci → Ci whose fibers are precisely the orbits of G, and let V ⊂ ⊕iK(Var/Ci) be a submodule.

Assume that

(i) Zπ(W )(V ) ⊂ V for all bordisms W : (S1, ?)→ (S1, ?),

(ii) the map η = π!π
∗ : V → V is invertible,

(iii) [{id}] ∈ π∗V and whenever X ∈ V then Xi = X|Ci ∈ V as well,

(iv) the restrictions c!c
∗ : K(Var/∆i)→ K(Var/∆i) are given by multiplication by a constant αi.

Then the maps in (4.9) and the submodule V yield a reduction of the TQFT.

Proof. The only remaining condition to show is (iv) of Definition 4.7, and it suffices to show this

holds for the bordisms D,D†, L and LE . This holds for D by assumption (iii), and for D† trivially

because V∅ = K(Vark). To L is associated the span

G
p←− G4 q−→ G

g ← [ (g, g1, g2, h) 7→ hg[g1, g2]h−1

and we also consider the modified span

G
p̃←− G3 q̃−→ G

g ← [ (g, g1, g2) 7→ g[g1, g2].

It is not hard to see that

q!p
∗ = (p2)!c!c

∗(p1)∗q̃!p̃
∗ (4.10)
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as both sides of the equality map X
f−→ G to

{(x, g, g1, g2, h) ∈ X ×G4 : g = f(x)} −→ G

(x, g, g1, g2, h) 7→ hg[g1, g2]h−1.

Now take any X ∈ V , write Y = q̃!p̃
∗π∗X ∈ K(Var/G), and decompose Y =

∑
i Yi with each

Yi ∈ K(Var/Ci) according to the stratification of G. We have π!Y = π!q̃!p̃
∗π∗X = 1

[G]Zπ(L)(X),

which lies in V by (i). Hence π!Yi = (π!Y )i ∈ V by (iii), and using (iv) we see that

(p2)!c!c
∗(p1)∗Yi = αi(p2)!(p1)∗Yi = αiπ

∗π!Yi ∈ π∗V,

so it follows using (4.10) that

Z(L)(π∗X) =
∑
i

π∗π!Yi ∈ π∗V.

A completely similar argument shows that Z(LE)(π
∗V ) ⊂ π∗V as well.

Remark 4.9. For the groups G and strata Ci we consider in the next sections, it might be that

the map η = π!π
∗ is not invertible as a K(Vark)-module morphism. However, one can replace the

ring K(Vark) by a suitable localization (often it suffices to invert [G]), to make η is invertible. As

a consequence, the resulting classes [XG(X,Q)] will only be defined in that localization. This is not

unreasonable, since [G] needs to be invertible anyway in order to apply (4.8). Also in many cases we

can still extract algebraic data from the localized class: given a multiplicative system S ⊂ K(Vark)

and an element x ∈ S−1K(Vark) that admits a lift x ∈ K(Vark), this lift is defined up to a sum of

annihilators of elements of S. If ϕ : K(Vark) → R is a ring morphism with R a domain such that

ϕ(s) 6= 0 for all s ∈ S, then ϕ(a) = 0 for any annihilator a of any s ∈ S. Hence ϕ(x) is independent

on the choice of lift.

The example to have in mind here is the E-polynomial e : K(Vark)→ Z[u, v]. Since e(q) = uv 6= 0,

to compute the E-polynomial of some variety X over k it is sufficient to know its class in the localized

ring S−1K(Vark) for S = {1, q, q2, . . .}. (Similarly we could invert q − 1 or q + 1.)
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5 Applications

In this section we apply the technique developed in Section 4 to compute the class of the G-

representation varieties XG(Σg) in the Grothendieck ring K(VarC) with G the groups of upper

triangular n×n matrices, for n = 2, 3, 4. This section consists of original work and the main results

are given by theorems 5.2, 5.8 and 5.10.

5.1 Upper triangular 2× 2 matrices

Let U2 be the group of 2× 2 upper triangular matrices over C, i.e.

U2 =

{(
a b

0 c

)
: a, c 6= 0

}
.

We are going to apply the theory from the previous sections to compute the class of the U2-

representation variety of Σg. First we discuss some generalities about this group. Its class is seen

to be [U2] = q(q− 1)2. The group contains the following three types of conjugacy classes. All scalar

matrices
(
λ 0
0 λ

)
have a singleton orbit. All matrices of the form

(
λ b
0 λ

)
with b 6= 0 are conjugate to

the Jordan block
(
λ 1
0 λ

)
, and thus have an orbit isomorphic to C∗. All remaining matrices in U2 are

of the form
(
λ b
0 µ

)
, with λ, µ 6= 0, which are conjugate if and only if they have the same diagonal.

Hence, these matrices have an orbit isomorphic to C. Let

S =

{(
λ 0

0 λ

)
: λ 6= 0

}
, J =

{(
λ b

0 λ

)
: λ, b 6= 0

}
, M =

{(
λ b

0 µ

)
: λ, µ 6= 0, λ 6= µ, b ∈ C

}
.

The orbits we denote by

Sλ =

{(
λ 0

0 λ

)}
, Jλ =

{(
λ b

0 λ

)
: b 6= 0

}
, Mλ,µ =

{(
λ b

0 µ

)
: b ∈ C

}
for any λ, µ 6= 0 with λ 6= µ. It is easy to see that

[S] = q − 1, [J ] = (q − 1)2, [M] = q(q − 1)(q − 2),

[Sλ] = 1, [Jλ] = q − 1, [Mλ,µ] = q.

We denote the orbit spaces by S = C∗, J = C∗ and M = {(λ, µ) ∈ C∗ × C∗ : λ 6= µ}. The quotient

maps that identify the orbits are

πS : S → S :

(
λ 0

0 λ

)
7→ λ, πJ : J → J :

(
λ b

0 λ

)
7→ λ, πM :M→M :

(
λ b

0 µ

)
7→ (λ, µ).

These maps induce the morphisms

K(Var/S)⊕K(Var/J )⊕K(Var/M) K(Var/S)⊕K(Var/J)⊕K(Var/M)
π!

π∗
.

In order to show condition (iv) of Lemma 4.8 is satisfied for this stratification, it is convenient to

consider representatives of the conjugacy classes

ξSλ =
(
λ 0
0 λ

)
, ξJλ =

(
λ 1
0 λ

)
, ξMλ,µ =

(
λ 0
0 µ

)
.
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The stabilizers

Stab(ξSλ ) = U2, Stab(ξJλ ) =
{(

α β
0 α

)
: α 6= 0

}
, Stab(ξMλ,µ) =

{(
α 0
0 β

)
: α, β 6= 0

}
are independent of λ, µ so denote them by StabS ,StabJ and StabM. For all E = S,J ,M it is

straightforward to come up with a map σ : E → G such that g = σ(g)ξEπE(g)σ(g)−1 for any g ∈ E .

E.g. for E = J we can take σ
(
λ b
0 λ

)
=
(

1 0
0 1/b

)
as(

1 0

0 b−1

)(
λ 1

0 λ

)(
1 0

0 b

)
=

(
λ b

0 λ

)
,

and for E =M one can take σ
(
λ b
0 µ

)
=
(

1 b/(µ−λ)
0 1

)
as(

1 b/(µ− λ)
0 1

)(
λ 0

0 µ

)(
1 −b/(µ− λ)
0 1

)
=

(
λ b

0 µ

)
.

Now for any variety X
(f1,f2)−→ ∆E we have an isomorphism

X × StabE
∼−→ c!c

∗X = {(x, h) ∈ X ×G : f2(x) = hf1(x)h−1}
(x, s) 7→ (x, σ(f2(x))sσ(f1(x))−1)

which shows that c!c
∗ restricted to ∆E is just multiplication by StabE .

Write TSλ ∈ K(Var/S), TJλ ∈ K(Var/J) and TMλ,µ
∈ K(Var/M) for the classes of the points

{λ} → S, {λ} → J and {(λ, µ)} →M . We consider the submodule V = 〈TSλ , TJλ , TMλ,µ
〉. From the

computations that follow, it will be clear that V is invariant under η = π! ◦ π∗ and Zπ. Hence all

conditions from Lemma 4.8 are satisfied, so we have a reduction of the TQFT.

Since all fibrations S → S,J → J and M→M are trivial, we immediately find that

η(TSλ) = [Sλ]TSλ = TSλ , η(TJλ) = [Jλ]TJλ = (q − 1)TJλ , η(TMλ,µ
) = [Mλ,µ]TMλ,µ

= qTMλ,µ
,

that is,

η =


TSλ TJλ TMλ,µ

TSλ 1 0 0

TJλ 0 q − 1 0

TMλ,µ
0 0 q

 .

For computing Zπ(L), recall that F(L) is given by

U2 U4
2 U2

g (g, g1, g2, h) hg[g1, g2]h−1.

p q

� First we compute Zπ(L)(TSλ). We have π∗(TSλ) = [Sλ]U2 . Note that for any g1, g2 ∈ U2, the

commutator [g1, g2] = ( 1 x
0 1 ) with x = (a1b2 − a2b1 + b1c2 − b2c1)/(c1c2), writing gi =

(
ai bi
0 ci

)
.

Hence q(p∗(Sλ)) ⊂ Sλ ∪Jλ, and thus Zπ(L)(TSλ) is generated by TSλ and TJλ . Then we have

that

Zπ(L)(TSλ)|TSλ = [Sλ × U3
2 ∩ q−1(Sλ)]

= [{g1, g2 ∈ U2 : [g1, g2] = id}] · [U2]

= [{a1, b1, c1, a2, b2, c2 ∈ C : a1b2 − a2b1 + b1c2 − b2c1 = 0 and a1c1, a2c2 6= 0}] · [U2],
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which is q2(q − 1)3 · [U2] = q3(q − 1)5. Now it follows that Zπ(L)(TSλ)|TJλ is simply [Sλ ×
U3

2]− q3(q − 1)5 = q3(q − 1)5(q − 2).

� Next we compute Zπ(L)(TJλ). We have π∗(TJλ) = [Jλ]U2 . By the same observation as above

about the commutator, we see that Zπ(L)(TJλ) is also generated by TSλ and TJλ . Note that(
λ b
0 λ

)
[g1, g2] =

(
λ 0
0 λ

)
⇐⇒ [g1, g2] =

(
1 −b/λ
0 1

)
,

which implies that Zπ(L)(TJλ)|TSλ = Zπ(L)(TSλ)|TJλ = q3(q− 1)5(q− 2). Now it follows that

Zπ(L)(TJλ)|TJλ = [Jλ × U3
2]− q3(q − 1)5(q − 2) = q3(q − 1)5(q2 − 3q + 3).

� Lastly we compute Zπ(L)(TMλ,µ
). We have π∗(TMλ,µ

) = [Mλ,µ]U2
. By the observation about

the commutator, we immediately see that Zπ(L)(TMλ,µ
) must be generated by TMλ,µ

. There-

fore, Zπ(L)(TMλ,µ
) = [Mλ,µ × U3

2]TMλ,µ
= q4(q − 1)6TMλ,µ

.

In summary,

Zπ(L) = q3(q − 1)5


TSλ TJλ TMλ,µ

TSλ 1 q − 2 0

TJλ q − 2 q2 − 3q + 3 0

TMλ,µ
0 0 q(q − 1)

 .

Finally, we can also compute Zπ(LSλ), Zπ(LJλ) and Zπ(LMλ,µ
). Recall that F(LE) is given by

U2 U2
2 × E U2

g (g, h, ξ) hgξh−1.

r s

� Let g ∈ Sλ, and note that if ξ ∈ Sσ then gξ ∈ Sλσ, if ξ ∈ Jσ then gξ ∈ Jλσ, and if ξ ∈ Mσ,ρ

then gξ ∈Mλσ,λρ. Hence we have

Zπ(LSλ) =


TSσ TJσ TMσ,ρ

TSλσ [Sσ × U2] 0 0

TJλσ 0 [Jσ × U2] 0

TMλσ,λρ 0 0 [Mσ,ρ × U2]

 = q(q − 1)2


TSσ TJσ TMσ,ρ

TSλσ 1 0 0

TJλσ 0 q − 1 0

TMλσ,λρ 0 0 q

.
� Now let g ∈ Jλ. We see that if ξ ∈ Sσ then gξ ∈ Jλσ, and if ξ ∈ Mσ,ρ then gξ ∈ Mλσ,λρ. If

ξ ∈ Jσ, then gξ ∈ Sλσ precisely if g = λσξ−1 and otherwise gξ ∈ Jλσ. Hence we have

Zπ(LJλ) =


TSσ TJσ TMσ,ρ

TSλσ 0 [Jσ × U2] 0

TJλσ [Sσ × U2][Jλ] [Jσ × U2]([Jλ]− 1) 0

TMλσ,λρ 0 0 [Mσ,ρ × U2][Jλ]



= q(q − 1)2


TSσ TJσ TMσ,ρ

TSλσ 0 q − 1 0

TJλσ q − 1 (q − 1)(q − 2) 0

TMλσ,λρ 0 0 q(q − 1)

.
� Lastly, let g ∈Mλ,µ. If ξ ∈ Sσ then gξ ∈Mλσ,µσ, and if ξ ∈ Jσ then gξ ∈Mλσ,µσ as well. If

ξ ∈ Mσ,ρ, then gξ ∈ Mλσ,µρ if λσ 6= µρ and otherwise gξ ∈ Sλσ precisely for g = λσξ−1 and
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else gξ ∈ Jλσ. Hence we see that

Zπ(LMλ,µ
) =


TSσ TJσ TMσ,ρ TMσ′,ρ′

TSλσ 0 0 0 [Mσ′,ρ′ × U2]

TJλσ 0 0 0 [Mσ′,ρ′ × U2]([Mλ,µ]− 1)

TMλσ,λρ [Sσ × U2][Mλ,µ] [Jσ × U2][Mλ,µ] [Mσ,ρ × U2][Mλ,µ] 0



= q(q − 1)2


TSσ TJσ TMσ,ρ TMσ′,ρ′

TSλσ 0 0 0 q

TJλσ 0 0 0 q(q − 1)

TMλσ,λρ q q(q − 1) q2 0

,
with λσ 6= µρ and λσ′ = µρ′.

Now for the reduced TQFT, Z̃(L) = Zπ(L) ◦ η−1 looks like

Z̃(L) = q3(q − 1)4A

1 0 0

0 (q − 1)2 0

0 0 (q − 1)2

A−1, with A =

 1 1 0

−1 q − 1 0

0 0 1

 ,

which yields

Z̃(Lg) = q3g−1(q − 1)4g


TSλ TJλ TMλ,µ

TSλ (q − 1)((q − 1)2g−1 + 1) (q − 1)2g − 1 0

TJλ (q − 1)((q − 1)2g − 1) (q − 1)2g+1 + 1 0

TMλ,µ 0 0 q(q − 1)2g

. (5.1)

In particular,

[XU2
(Σg)] =

1

[U2]g
Z̃(Lg)(TS1

)|TS1 = q2g−1(q − 1)2g+1((q − 1)2g−1 + 1). (5.2)

Remark 5.1. For small values of g, we find

[XU2
(Σ1)] = q2(q − 1)3,

[XU2
(Σ2)] = q4(q − 1)5(q2 − 3q + 3),

[XU2
(Σ3)] = q6(q − 1)7(q4 − 5q3 + 10q2 − 10q + 5),

[XU2(Σ4)] = q8 (q − 1)
9 (
q6 − 7q5 + 21q4 − 35q3 + 35q2 − 21q + 7

)
.

Note the factor (q − 1)2g+1, which can be explained as follows. There is a free action of (C∗)2g

on XU2(Σg) given by scaling the Ai, Bi (notation as in (4.1)), yielding a factor (q − 1)2g. For

the remaining factor, let D ⊂ XU2(Σg) be the subvariety where all Ai, Bi are diagonal. Then

[D] = (q−1)4g and there is a free action of C∗ on XU2(Σg)\D given by conjugation with ( 1 0
0 x ) , x ∈ C∗.

Furthermore, we have

Z̃(LSλ) = q(q − 1)2


TSσ TJσ TMσ,ρ

TSλσ 1 0 0

TJλσ 0 1 0

TMλσ,µσ
0 0 1

 , (5.3)
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Z̃(LJλ) = q(q − 1)2


TSσ TJσ Mσ,ρ

TSλσ 0 1 0

TJλσ q − 1 q − 2 0

TMλσ,µσ
0 0 q − 1

 , (5.4)

Z̃(LMλ,µ
) = q(q − 1)2


TSσ TJσ TMσ,ρ

TMσ′,ρ′

TSλσ 0 0 0 1

TJλσ 0 0 0 q − 1

TMλσ,µρ
q q q 0

 , (5.5)

with λσ 6= µρ but λσ′ = µρ′.

Theorem 5.2. Let Σg be surface of genus g, with parabolic data Q = {(?,Jλ1
), . . . , (?,Jλk),

(?,Mµ1,σ1
), . . . , (?,Mµ`,σ`)}.

(i) If
∏k
i=1 λi

∏`
j=1 µj 6= 1 or

∏k
i=1 λi

∏`
j=1 σj 6= 1, then

[XU2
(X,Q)] = 0.

(ii) Otherwise, and if ` = 0, then

[XU2
(X,Q)] = q2g−1(q − 1)2g((−1)k(q − 1) + (q − 1)2g+k),

(iii) and if ` > 0, then

[XU2(X,Q)] = q2g+`−1(q − 1)4g+k.

Proof. First note that (Σg, Q) can be seen as the composition

D† ◦ Lg ◦ LJλ1 ◦ · · · ◦ LJλk ◦ LMµ1,σ1
◦ · · ·LMµ`,σ`

◦D.

(i) From expressions (5.1), (5.4) and (5.5) we can see that Z(Lg ◦ LJλ1 ◦ · · · ◦ LJλk ◦ LMµ1,σ1
◦

· · · ◦ LMµ`,σ`
)(TS1)|TS1 = 0, and hence [XU2(X,Q)] = 0.

(ii) Using (5.4) and the diagonalization 0 1 0

q − 1 q − 2 0

0 0 q − 1

 = A

−1 0 0

0 q − 1 0

0 0 q − 1

A−1 with A =

−1 1
q−1

0

1 1 0

0 0 1


we find that

Z̃(LJλ1 ◦ · · · ◦ LJλk )(TS1)

= qk−1(q − 1)2k
(
(−1)k(q − 1) + (q − 1)k

)
TSλ +

(
(−1)k+1(q − 1) + (q − 1)k+1

)
TJλ ,

where λ =
∏k
i=0 λi. Then, using (5.1) and that λ = 1 we have

Z̃(Lg ◦ LJλ1 ◦ · · · ◦ LJλk )(TS1
)|TS1 = q3g+k−1(q − 1)4g+2k

(
(−1)k(q − 1) + (q − 1)2g+k

)
.
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So finally

[XU2
(X,Q)] =

1

[U2]g+k
Z̃(Lg ◦ LJλ1 ◦ · · · ◦ LJλk )(TS1

)|TS1

= q2g−1(q − 1)2g
(
(−1)k(q − 1) + (q − 1)2g+k

)
.

Note that this is in accordance with (5.2) for k = 0.

(iii) Note that
∏`
i=0 µi =

∏`
i=0 σi. In combination with (5.5) it follows that

Z̃(LMµ1,σ1
◦ · · · ◦ LMµ`,σ`

)(TS1) = q2`−1(q − 1)2`(TSµ + (q − 1)TJµ),

where µ =
∏`
i=0 µi. Similar as before, we use (5.4) to obtain

[XU2
(X,Q)]

=
1

[U2]g+k+`
Z̃(Lg ◦ LJλ1 ◦ · · · ◦ LJλk ◦ LMµ1,σ1

◦ · · · ◦ LMµ`,σ`
)(TS1

)|TS1

= q2g+`−1(q − 1)4g+k.

5.2 Character varieties and moduli spaces

Let X be a path-connected topological space with finitely generated fundamental group and G an

algebraic group over a field k. There is an action of G on the representation variety XG(X) given

by conjugation, and one can look at the geometric invariant theory (GIT) quotient

MG(X) = XG(X) �G,

which is known as the moduli space of G-representations.

Definition 5.3. Let X be an affine variety over k with an action of a group G. There is an induced

action of G on the algebra of regular functions OX(X), and we write OX(X)G for the subring of

G-invariant elements of OX(X). The GIT quotient of X by G is defined as the map

X → X �G = SpecOX(X)G

given by the inclusion of rings.

Although the quotient X � G is defined as an affine scheme, we see that it is reduced since X is

reduced. Moreover, a theorem by Nagata [24] shows that if G is reductive, then the ring OX(X)G is

a finitely generated k-algebra, so X �G will be a variety. For non-reductive groups, such as U2, this

may not always be the case. The key point of the GIT quotient is that it is a categorical quotient

[26]:

Definition 5.4. Let X be a variety with a group action of G. A categorical quotient of X by G is

a G-invariant morphism π : X → Y with the universal property that for any G-invariant morphism
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f : X → Z there exists a unique morphism g : Y → Z such that the following diagram commutes.

X Z

Y

π

f

g
(5.6)

For k = C, a closely related concept is the G-character variety of X. Write Γ = π1(X), which was

assumed to be finitely generated. The character of a representation ρ ∈ XG(X) is defined as the

map

χρ : Γ→ C : γ 7→ tr(ρ(γ)),

and the character map as

χ : XG(X)→ CΓ : ρ 7→ χρ.

The image of χ is called the G-character variety, denoted χG(X). By results from [7], there ex-

ists a finite set of elements γ1, . . . , γa ∈ π1(X) such that χρ is determined by (χρ(γ1), . . . χρ(γa))

for any ρ. This way χG(X) can be identified with the image of the map XG(X) → Ca : ρ 7→
(χρ(γ1), . . . , χρ(γa)), which gives it the structure of a variety. This structure is independent of the

chosen γi.

Note that the character map χ is a G-invariant morphism: indeed the trace map is invariant under

conjugation. By the universal property of the categorical quotient, there is an induced map

χ :MU2
(X)→ χG(X).

When G is a linear reductive group, this map is actually an isomorphism [7]. However, this may fail

when G is not reductive. For example, in Remark 5.6 we will see this is not the case for G = U2.

In the remaining part of this section we will take k = C and describe how the group U2 acts

by conjugation on XU2
(Σg), and then describe the categorical quotient of XU2

(Σg) by U2. First,

conjugation in U2 is given by(
x y

0 z

)(
a b

0 c

)(
x y

0 z

)−1

=

(
a

bx+y(c−a)
z

0 c

)
.

We see that ( x y0 z ) stabilizes ( a b0 c ) precisely if y(a − c) = b(x − z). Hence, every element in U2 is

stabilized by scalar matrices (indeed they form the center of U2). Furthermore, an element ( a b0 c ) is

stabilized by some ( x y0 x ) with y 6= 0 precisely if a = c, and it is stabilized by some ( x y0 z ) with x 6= z

precisely if b = y
x−z (a − c). This leads us to look at the following stratification of XU2

(Σg). Using

the notation of (4.4), let

Xs
U2

(Σg) =
{
A ∈ XU2

(Σg) : all Ai, Bi are scalar matrices
}
,

whose points have stabilizer equal to U2, i.e. the group action is trivial on this stratum. Let

Xj
U2

(Σg) =
{
A ∈ XU2

(Σg) : all Ai, Bi of the form ( a b0 a ), and A 6∈ Xs
U2

(Σg)
}
,
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whose points have stabilizer equal to {( x y0 x )}. Hence on this stratum the action of U2 is actually

equivalent to an action of {( x 0
0 1 )} ⊂ U2, in the sense that it leads to the same quotient. Let

Xm
U2

(Σg) = {A ∈ XU2
(Σg) : for some α ∈ C, all Ai, Bi of the form

(
a α(a−c)
0 c

)
, and A 6∈ Xs

U2
(Σg) }

= {(A,α) ∈ XU2
(Σg)× C : all Ai, Bi of the form

(
a α(a−c)
0 c

)
and A 6∈ Xs

U2
(Σg)},

whose points have stabilizer equal to
{ (

x α(x−z)
0 z

) }
, so on this stratum the action of U2 is equivalent

to an action of
{ (

1 y
0 1

) }
⊂ U2. Finally, let

Xf
U2

(Σg) = XU2(Σg)− Xs
U2

(Σg)− Xj
U2

(Σg)− Xm
U2

(Σg).

By construction, the stabilizer of any A ∈ Xf
U2

(Σg) are the scalar matrices, i.e. the center of U2.

Hence on this stratum, the action of U2 is equivalent to an action of
{

( x y0 1 )
}
⊂ U2.

In particular, if we take a point

A =

((
a1 b1

0 a1

)
, . . . ,

(
a2g b2g

0 a2g

))
∈ Xj

U2
(Σg),

then all the conjugate points(
x 0

0 1

)
A

(
x 0

0 1

)−1

=

((
a1 xb1

0 a1

)
, . . . ,

(
a2g xb2g

0 a2g

))
should be identified under the quotient. But note that taking the limit x→ 0 gives us the point((

a1 0

0 a1

)
, . . . ,

(
a2g 0

0 a2g

))
∈ Xs

U2
(Σg)

which is in the closure of the orbit of A. As is typical for the GIT quotient, this point will be

identified with A as well. A similar thing holds for the other strata, and this observation lead us to

the following construction.

Lemma 5.5. Let π : X → Y be a G-invariant morphism of varieties over C, and σ : Y → X a

morphism such that π ◦ σ = idY . If for any x ∈ X the Zariski-closure of the orbit of x contains

σ(π(x)), then π is a categorical quotient.

Proof. Let f : X → Z be a G-invariant morphism. We need to show there exists a unique G-

invariant morphism g : Y → Z such that f = g ◦ π. If such a morphism exists, it must be given by

g = f ◦ σ since g(y) = g(π(σ(y))) = f(σ(y)) for all y ∈ Y , which already shows uniqueness. Take

x ∈ X and note that as f is G-invariant, f(x̃) = f(x) for any x̃ in the orbit of x. By continuity we

find that f(σ(π(x))) = f(x) as well, so indeed f = g ◦ π for this choice of g.

We can apply this lemma as follows. Let

Xd
U2

(Σg) =
{

(A1, B1, . . . , Ag, Bg) ∈ XU2 : all Ai, Bi are diagonal
}
,

and consider the morphism π : XU2
(Σg) → Xd

U2
(Σg) that sends every component

(
ai bi
0 ci

)
to the

component
(
ai 0
0 ci

)
. As σ : Xd

U2
(Σg)→ XU2

(Σg) we take the inclusion. Now indeed π is U2-invariant,

and for any

A =

((
a1 b1

0 c1

)
, . . . ,

(
a2g b2g

0 c2g

))
∈ XU2(Σg)
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we find that

lim
x→0

(
x 0

0 1

)
A

(
x 0

0 1

)−1

=

((
a1 0

0 c1

)
, . . . ,

(
a2g 0

0 c2g

))
= σ(π(A)),

hence σ(π(A)) lies in the analytic-closure (so also Zariski-closure) of the orbit of A. By the lemma

we conclude that π : XU2
(Σg) → Xd

U2
(Σg) is the categorical quotient of XU2

(Σg) by the action of

U2, and hence we will write MU2
(Σg) for the moduli space Xd

U2
(Σg). Note that MU2

(Σg) ' (C∗)4g

since every A =

((
a1 0

0 c1

)
, . . . ,

(
a2g 0

0 c2g

))
lies in XU2

(Σg).

Remark 5.6. As mentioned before, the character map χ : XU2(Σg) → χU2(Σg) is G-invariant, so

there is an induced map

χ :MU2(Σg)→ χU2(Σg).

Arguing as in Lemma 5.5, the map χ must be given by χ(A) = χA. But this cannot be an isomor-

phism: for general A ∈ MU2(Σg) one can consider B = ( 0 1
1 0 )A ( 0 1

1 0 )
−1

(where the diagonal entries

of A are interchanged), and we have χA = χB , even though in general A 6= B. Therefore, the moduli

space MU2(Σg) is not isomorphic to the character variety χU2(Σg) through the natural map.

Finally, we remark that this argument can easily be generalized to the case G = Un for any n.

Namely, similar to before take

Xd
Un(Σg) =

{
(A1, B1, . . . , A2g, B2g) ∈ U2g

n : all Ai, Bi are diagonal
}

and π : XUn(Σg) → Xd
Un(Σg) the map that sets all off-diagonal entries to zero, and σ : Xd

Un(Σg) →
XUn(Σg) the inclusion. Indeed σ ◦ π = id and one easily checks that σ(π(A)) lies in the closure

of the orbit of A for any A ∈ XUn(Σg) (e.g. conjugate A with


xn−1

xn−2

. . .

1

 and take

the limit x → 0). This way we find that MUn(Σg) ' (C∗)2ng. Again note that the natural map

MUn(Σg) → χUn(Σg) cannot be an isomorphism since there are symmetries (permuting diagonal

entries) that are invariant under the character map.

5.3 Upper triangular 3× 3 matrices

Now consider the case where G = U3, the group of upper triangular 3× 3 matrices, i.e.

U3 =


a b c

0 d e

0 0 f

 : a, d, f 6= 0

 .

For simplicity we will just consider the representation varieties without parabolic data. As any

commutator [g1, g2] in U3 has ones on the diagonal, we only need to consider the conjugacy classes

of such elements. There are fives such conjugacy classes, and representatives are given by1 0 0

0 1 0

0 0 1

 ,

1 1 0

0 1 1

0 0 1

 ,

1 1 0

0 1 0

0 0 1

 ,

1 0 0

0 1 1

0 0 1

 ,

1 0 1

0 1 0

0 0 1

 . (5.7)
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Explicitly, the five conjugacy classes are given by

C1 =


1 0 0

0 1 0

0 0 1


 , C2 =


1 α β

0 1 γ

0 0 1

 : α, γ 6= 0

 , C3 =


1 α β

0 1 0

0 0 1

 : α 6= 0

 ,

C4 =


1 0 β

0 1 α

0 0 1

 : α 6= 0

 , C5 =


1 0 α

0 1 0

0 0 1

 : α 6= 0

 .

We have maps πi : Ci → Ci, where all Ci are points. Technically one should stratify G\∪i Ci as well,

but as everything happens over ∪iCi we omit this. We write Ti = [Ci]Ci ∈ K(Var/Ci), and consider

V = 〈T1, . . . , T5〉. In what follows, all matrices and vectors will be written with respect to the basis

{T1, . . . , T5}. Similar to the case of U2, we can satisfy (iv) of Lemma 4.8 by picking σ : Ci → G such

that g = σ(g)ξiσ(g)−1 for all g ∈ Ci.

The map η = π!π
∗ is simply given by

η =


[C1]

[C2]
[C3]

[C4]
[C5]

 =


1

q(q − 1)2

q(q − 1)

q(q − 1)

q − 1

.

Now we will compute Zπ(L) = π! ◦ Z(L) ◦ π∗, starting with Zπ(L)(T1). Since the commutator

[g1, g2] has ones on the diagonal for all g1, g2 ∈ U3, indeed Zπ(L)(T1) ∈ 〈T1, . . . , T5〉. We write

gi =

(
ai bi ci
0 di ei
0 0 fi

)
.

� We have that Zπ(L)(T1)|T1
is the class of {(g1, g2, h) ∈ U3

3 : g1g2 = g2g1}, which is given by

the equations 
a1b2 − a2b1 + b1d2 − b2d1 = 0

a1c2 − a2c1 + b1e2 − b2e1 + c1f2 − c2f1 = 0

d1e2 − d2e1 + e1f2 − e2f1 = 0

 .

We will not solve these equations by hand, but using Algorithm 2.16, this evaluates to q3(q −
1)4(q2 + q − 1)[U3].

� We have that Zπ(L)(T1)|T2
is the class of {(g1, g2, h) ∈ U3

3 : [g1, g2] ∈ C2}, which is given by

the equations {
a1b2 − a2b1 + b1d2 − b2d1 6= 0

d1e2 − d2e1 + e1f2 − e2f1 6= 0

}
.

This evaluates to q6(q − 2)2(q − 1)4[U3].

� We have that Zπ(L)(T1)|T3
is the class of {(g1, g2, h) ∈ U3

3 : [g1, g2] ∈ C3}, which is given by

the equations {
a1b2 − a2b1 + b1d2 − b2d1 6= 0

d1e2 − d2e1 + e1f2 − e2f1 = 0

}
.

This evaluates to q6(q − 2)(q − 1)4[U3].
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� We have that Zπ(L)(T1)|T4 is the class of {(g1, g2, h) ∈ U3
3 : [g1, g2] ∈ C4}, which is given by

the equations {
a1b2 − a2b1 + b1d2 − b2d1 = 0

d1e2 − d2e1 + e1f2 − e2f1 6= 0

}
.

This is symmetric to the previous case, so it also evaluates to q6(q − 2)(q − 1)4[U3].

� We have that Zπ(L)(T1)|T5 is the class of {(g1, g2, h) ∈ U3
3 : [g1, g2] ∈ C5}, which is given by

the equations
a1b2 − a2b1 + b1d2 − b2d1 = 0

d1e2 − d2e1 + e1f2 − e2f1 = 0

−a1b2d2e1 − a1b2e2f1 + a1c2d1d2 + a2b1d2e1 + a2b1e2f1 − a2c1d1d2

+b1d1d2e2 − b1d2
2e1 − b1d2e2f1 + b2d1e2f1 + c1d1d2f2 − c2d1d2f1 6= 0

 .

This evaluates to q3(q − 1)6(q + 1)[U3].

So far we have computed the first column of the matrix of Zπ(L). As a check, indeed we have that

the sum of the entries of this column equals [U3]:

q3(q − 1)4(q2 + q − 1)[U3] + q6(q − 2)2(q − 1)4[U3] + q6(q − 2)(q − 1)4[U3]

+ q6(q − 2)(q − 1)4[U3] + q3(q − 1)6(q + 1)[U3] = [U3]3.

We will use a similar strategy as in the previous section to determine Zπ(L)(Ti) for i = 2, 3, 4, 5 from

the case i = 1. Write ξi for the representative of Ci as in (5.7). One can check that, as mentioned

before, for each i there is a (non-unique) morphism σi : Ci → U3 such that σi(g)ξiσi(g)−1 = g. We

have

Zπ(L)(Tj)|Ti = [Xij ] · [U3] with Xij = {(g, g1, g2) ∈ Cj × U2
3 : g[g1, g2] ∈ Ci}.

We can stratify Xij by

Xijk = {(g, g1, g2) ∈ Cj × U2
3 : g[g1, g2] ∈ Ci and [g1, g2] ∈ Ck} for k = 1, . . . , 5.

Note that for each i, j, k we have an isomorphism

Xijk
∼−→ {g ∈ Cj : gξk ∈ Ci} × {(g1, g2) ∈ G2 : [g1, g2] ∈ Ck}

(g, g1, g2) 7→ (σk([g1, g2])−1gσk([g1, g2]), g1, g2)

so we find that

Zπ(L)(Tj)|Ti =

5∑
k=1

Fijk · Zπ(L)(T1)|Tk with Fijk = [{g ∈ Cj : gξk ∈ Ci}]. (5.8)

Although there are about 53 = 125 computations to be done to determine the coefficients Fijk, all

of them are quite simple. E.g. it is clear that Fi,1,k = δik, the Kronecker delta. For j = 2, take
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any g =
(

1 α β
0 1 γ
0 0 1

)
∈ C2. Then gξ1, gξ5 ∈ C2. We have gξ3 ∈ C4 if α = −1 and gξ3 ∈ C2 otherwise.

Similarly, gξ4 ∈ C3 if γ = −1 and gξ4 ∈ C2 otherwise. Finally,

gξ2 ∈



C1 if α, γ = −1 and β = 0,

C2 if α, γ 6= −1,

C3 if α 6= −1 and γ = −1,

C4 if α = −1 and γ 6= −1,

C5 if α, γ = −1 and β 6= 0.

This gives

Fi,2,k =


0 1 0 0 0

q (q − 1)2 q (q − 2)2 q (q − 2) (q − 1) q (q − 2) (q − 1) q (q − 1)2

0 q (q − 2) 0 q (q − 1) 0

0 q (q − 2) q (q − 1) 0 0

0 q − 1 0 0 0

,
with i the row index and k the column index. By completely similar arguments, one can show that

Fi,3,k =

 0 0 1 0 0

0 q (q − 2) 0 q (q − 1) 0

q (q − 1) 0 q (q − 2) 0 q (q − 1)

0 q 0 0 0

0 0 q − 1 0 0

, Fi,4,k =

 0 0 0 1 0

0 q (q − 2) q (q − 1) 0 0

0 q 0 0 0

q (q − 1) 0 0 q (q − 2) q (q − 1)

0 0 0 q − 1 0



and Fi,5,k =

 0 0 0 0 1

0 q − 1 0 0 0

0 0 q − 1 0 0

0 0 0 q − 1 0

q − 1 0 0 0 q − 2

.
Applying (5.8) now yields

Zπ(L) = q6(q−1)7


q2 + q − 1 q3 (q − 2)2 q3 (q − 2) q3 (q − 2) (q − 1)2 (q + 1)

q3 (q − 2)2 q4
(
q2 − 3q + 3

)2
q4 (q − 2)

(
q2 − 3q + 3

)
q4 (q − 2)

(
q2 − 3q + 3

)
q3 (q − 2)2 (q − 1)

q3 (q − 2) q4 (q − 2)
(
q2 − 3q + 3

)
q4

(
q2 − 3q + 3

)
q4 (q − 2)2 q3 (q − 2) (q − 1)

q3 (q − 2) q4 (q − 2)
(
q2 − 3q + 3

)
q4 (q − 2)2 q4

(
q2 − 3q + 3

)
q3 (q − 2) (q − 1)

(q − 1)2 (q + 1) q3 (q − 2)2 (q − 1) q3 (q − 2) (q − 1) q3 (q − 2) (q − 1) (q − 1)
(
q3 − q2 + 1

)


and precomposing with η−1 gives

Z̃(L) = q6(q − 1)5
(q − 1)2

(
q2 + q − 1

)
q2 (q − 2)2 q2 (q − 2) (q − 1) q2 (q − 2) (q − 1) (q − 1)3 (q + 1)

q3 (q − 2)2 (q − 1)2 q3
(
q2 − 3q + 3

)2
q3 (q − 2) (q − 1)

(
q2 − 3q + 3

)
q3 (q − 2) (q − 1)

(
q2 − 3q + 3

)
q3 (q − 2)2 (q − 1)2

q3 (q − 2) (q − 1)2 q3 (q − 2)
(
q2 − 3q + 3

)
q3 (q − 1)

(
q2 − 3q + 3

)
q3 (q − 2)2 (q − 1) q3 (q − 2) (q − 1)2

q3 (q − 2) (q − 1)2 q3 (q − 2)
(
q2 − 3q + 3

)
q3 (q − 2)2 (q − 1) q3 (q − 1)

(
q2 − 3q + 3

)
q3 (q − 2) (q − 1)2

(q − 1)4 (q + 1) q2 (q − 2)2 (q − 1) q2 (q − 2) (q − 1)2 q2 (q − 2) (q − 1)2 (q − 1)2
(
q3 − q2 + 1

)

.
This matrix can be diagonalized as follows:

Z̃(L) = q6(q − 1)5A


q3

q(q − 1)2

q3(q − 1)2

q3(q − 1)2

q3(q − 1)4

A−1

with A =


1 1 0 1 1

q 0 0 −q(q − 1) q(q − 1)2

−q 0 1 0 q(q − 1)

−q 0 −1 q(q − 2) q(q − 1)

q − 1 −1 0 q − 1 q − 1

.
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Remark 5.7. We see that Zπ(L) is symmetric. This can be explained by the fact that for each i

and j we have an isomorphism:

{(g, g1, g2) ∈ Ci ×G2 : g[g1, g2] ∈ Cj}
∼←→ {(g, g1, g2) ∈ Cj ×G2 : g[g1, g2] ∈ Ci}

(g, g1, g2) 7→ (g[g1, g2], g2, g1)

(g[g1, g2], g2, g1) ← [ (g, g1, g2)

Hence the classes of both sides are equal in K(VarC), and so Zπ(L)(Ti)|Tj = Zπ(L)(Tj)|Ti . This

does not hold for any TQFT, but it relies on the fact that the Ci are points.

Theorem 5.8. The virtual class of the U3-representation variety XU3
(Σg) is

[XU3
(Σg)] = q3g−3(q − 1)2g

(
q2(q − 1)2g+1 + q3g(q − 1)2 + q3g(q − 1)4g + 2q3g(q − 1)2g+1

)
.

Proof. One can check that

A−1 =
1

q3


(q − 1)2 1 1− q 1− q (q − 1)2

q2(q − 1) 0 0 0 −q2

q(q − 2)(q − 1) −q(q − 2) q3 − 2q2 + 2q −2q(q − 1) q3 − 3q2 + 2q

2q − 2 −2 q − 2 q − 2 2q − 2

1 1 1 1 1

.
By matrix multiplication, we find that

XU3(Σg) =
1

[U3]g
Z̃(L)g(T1)|T1

= q3g−3(q − 1)2g
(
q2(q − 1)2g+1 + q3g(q − 1)2 + q3g(q − 1)4g + 2q3g(q − 1)2g+1

)
.

Remark 5.9. In particular, for small values of g, we find

[XU3
(Σ1)] = q3(q − 1)4(q2 + q − 1),

[XU3
(Σ2)] = q7 (q − 1)

6 (
q8 − 6q7 + 15q6 − 18q5 + 9q4 + q3 − 3q2 + 3q − 1

)
,

[XU3
(Σ3)] = q11 (q − 1)

8 (
q14 − 10q13 + 45q12 − 120q11 + 210q10 − 250q9 + 200q8

−100q7 + 25q6 + q5 − 5q4 + 10q3 − 10q2 + 5q − 1
)
.

As in Remark 5.1, the factor (q − 1)2g+2 can be explained from the actions of (C∗)2g (given by

scaling the Ai, Bi) and (C∗)2 (given by conjugating with
(

1
x
y

)
, x, y ∈ C∗).

5.4 Upper triangular 4× 4 matrices

The last case we will treat is the group U4 of upper triangular 4× 4 matrices. We can use the same

strategies as in the previous case of U3, but all computations are done using Algorithm 2.16. Source

code for these computations is given in [29]. The group U4 contains sixteen unipotent conjugacy
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classes [3]. We consider the following representatives of these classes(
1

1

1

1

)
,

(
1 1

1

1

1

)
,

(
1 1

1

1

1

)
,

(
1 1

1

1

1

)
,

(
1

1 1

1

1

)
,

(
1

1 1

1

1

)
,(

1

1

1 1

1

)
,

(
1 1

1 1

1

1

)
,

(
1 1

1 1

1

1

)
,

(
1 1

1

1 1

1

)
,

(
1 1

1 1

1

1

)
,

(
1 1

1

1 1

1

)
,(

1

1 1

1 1

1

)
,

(
1 1

1 1

1

1

)
,

(
1 1

1 1

1 1

1

)
,

(
1 1 1

1

1 1

1

)
,

which we denote in order by ξ1, . . . , ξ16. Explicitly, the conjugacy classes are given by

C1 = {a0,1 = a0,2 = a0,3 = a1,2 = a1,3 = a2,3 = 0},

C2 = {a1,2 = a1,3 = a2,3 = 0, a0,1 6= 0},

C3 = {a0,1 = a1,2 = a1,3 = a2,3 = 0, a0,2 6= 0},

C4 = {a0,1 = a0,2 = a1,2 = a1,3 = a2,3 = 0, a0,3 6= 0},

C5 = {a0,1 = a2,3 = a0,3a1,2 − a0,2a1,3 = 0, a1,2 6= 0},

C6 = {a0,1 = a0,2 = a1,2 = a2,3 = 0, a1,3 6= 0},

C7 = {a0,1 = a0,2 = a1,2 = 0, a2,3 6= 0},

C8 = {a2,3 = 0, a0,1 6= 0, a1,2 6= 0},

C9 = {a1,2 = a2,3 = 0, a0,1 6= 0, a1,3 6= 0},

C10 = {a1,2 = a0,2a2,3 + a0,1a1,3 = 0, a0,1 6= 0, a2,3 6= 0},

C11 = {a0,1 = a1,2 = a2,3 = 0, a0,2 6= 0, a1,3 6= 0},

C12 = {a0,1 = a1,2 = 0, a0,2 6= 0, a2,3 6= 0},

C13 = {a0,1 = 0, a1,2 6= 0, a2,3 6= 0},

C14 = {a0,1 = a2,3 = 0, a1,2 6= 0, a0,3a1,2 − a0,2a1,3 6= 0},

C15 = {a0,1 6= 0, a1,2 6= 0, a2,3 6= 0},

C16 = {a1,2 = 0, a0,1 6= 0, a2,3 6= 0, a0,2a2,3 + a0,1a1,3 6= 0}.

As before, we write Ti = [Ci]Ci ∈ K(Var/Ci) and consider V = 〈T1, . . . , T16〉. We wish to compute

Zπ(L)(T1) first and deduce the other columns from this column as we did before. We have

Zπ(L)(T1)|Ti = [{(g1, g2) ∈ U4 : [g1, g2] ∈ Ci}]
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In terms of coordinates, this will yield systems of equations in 20 variables. One can make some

clever stratifications to simplify these computations, but we will not elaborate on this. We obtain

Zπ(L)(T1) = q12(q − 1)9



q3 + 4q2 − 6q + 4

q3 (q − 2)
(
q2 + q − 1

)
q
(
q2 − q + 1

) (
q2 + q − 4

)
(q − 1)

(
q3 + 3q2 − 6q + 4

)
q2 (q − 2)

(
q3 + q − 1

)
q
(
q4 + q3 − 8q2 + 9q − 4

)
q2 (q − 2)

(
q3 + 2q2 − 4q + 2

)
q6 (q − 2)2

q3 (q − 2) (q − 1)2 (q + 1)

q3 (q − 2) (q − 1)
(
q2 − q − 1

)
q
(
q5 − 2q4 − 2q3 + 9q2 − 9q + 4

)
q2 (q − 2) (q − 1)

(
q3 − 2q + 2

)
q6 (q − 2)2

q2 (q − 2) (q − 1)2
(
q2 + q + 1

)
q6 (q − 2)3

q3 (q − 2)
(
q4 − 3q3 + 2q2 − 1

)



.

Completely analogous to the previous section, the other columns can be computed from this result

via

Zπ(L)(Tj)|Ti =

16∑
k=1

Fijk · Zπ(L)(T1|Tk).

where

Fijk = [{g ∈ Cj : gξk ∈ Ci}].

Again, see [29] for the actual computations. As usual, the map η = π!π
∗ is diagonal, with η(Ti) =

[Ci]Ti. After diagonalizing the reduced TQFT Z̃(L) = Zπ(L) ◦ η−1, we obtain the following result.

Theorem 5.10. The virtual class of the U4-representation variety XU4
(Σg) is

[XU4
(Σg)] = q8g−2 (q − 1)

4g+2
+ q8g−2 (q − 1)

6g+1
+ q10g−4 (q − 1)

2g+3

+ q10g−4 (q − 1)
4g+1 (

2q2 − 6q + 5
)g

+ 3q10g−4 (q − 1)
4g+2

+ q10g−4 (q − 1)
6g+1

+ q12g−6 (q − 1)
8g

+ q12g−6 (q − 1)
2g+3

+ 3q12g−6 (q − 1)
4g+2

+ 3q12g−6 (q − 1)
6g+1

.

Remark 5.11. For small values of g, we have

[XU4
(Σ1)] = q6 (q − 1)

5 (
q3 + 4q2 − 6q + 4

)
,

[XU4(Σ2)] = q15 (q − 1)
7 (
q12 − 9q11 + 36q10 − 81q9 + 108q8 − 76q7 − 11q6 + 124q5 − 219q4

+222q3 − 126q2 + 36q − 3
)
,

[XU4
(Σ3)] = q23 (q − 1)

9 (
q22 − 15q21 + 105q20 − 455q19 + 1365q18 − 3000q17 + 4975q16

−6300q15 + 6075q14 − 4366q13 + 2136q12 − 93q11 − 2139q10 + 5157q9

−8101q8 + 8885q7 − 6746q6 + 3465q5 − 1196q4 + 329q3 − 110q2 + 35q − 5
)
.
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6 Conclusion

In this thesis we looked at the construction of a TQFT that computes virtual classes of character

varieties. Along the way we studied the Grothendieck ring, techniques for computing classes of

varieties and general properties of TQFTs. We computed the class of XUn(Σg) for n = 2, 3, 4 and

any genus g. Also we found expressions for the family of moduli spaces MUn(Σg) ' (C∗)2ng for

all n and g, as categorical quotients, and showed that these are not isomorphic to the G-character

varieties for n ≥ 2 (through the canonically induced morphism). To our knowledge, such results

have not been shown before for groups of such high dimension, and this reflects in some sense the

power of the TQFT method.

In future work, we will explore whether this method is applicable to different groups G. In principle,

the strategy used in sections 5.3 and 5.4 can be applied to compute the class of the U5-representation

variety as well. However, as the group U5 contains 120 unipotent conjugacy classes [3] this would

require quite some computational power. We will also look into the unitary groups U(n) or SU(n),

which are interesting in light of the Narasimhan–Seshadri theorem [25] that relates stable holomor-

phic vector bundles over a Riemann surface to irreducible unitary representations of its fundamental

group.

Furthermore, we note that the representation varieties are not proper over C, and one can search

for natural compactifications of these varieties.

Finally, in Section 5.2 we saw that a lot of information on how U2 acts on different parts of the

U2-character variety is lost when passing to the moduli spaceMU2
(Σg). For this reason it might be

interesting to look at the moduli space of representations as a quotient stack instead.
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[12] Á. Gonzalez-Prieto. Virtual classes of parabolic SL2(C)-character varieties. Adv. Math.,

368:107–148, 2020.
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