Motivic invariants of character stacks

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op donderdag 13 juni 2024
klokke 12.30 uur
door

Jesse Tijs Vogel

geboren te Loppersum, Nederland
in 1996

Promotores:

Prof. dr. R. M. van Luijk
Prof. dr. S. J. Edixhoven \dagger

Copromotor:

Dr. M. Hablicsek

Promotiecommissie:

Prof. dr. ir. G. L. A. Derks
Prof. dr. D. S. T. Holmes
Prof. dr. C. A. A. Florentino (Universidade de Lisboa)
Prof. dr. V. Muñoz Velázquez (Universidad Compultense de Madrid)
Dr. J. Á. Gonzalez Prieto (Universidad Compultense de Madrid)

Contents

Introduction V
1 Stacks 1
1.1 Groupoids 1
1.2 Categories fibered in groupoids 3
1.3 Descent data and stacks 5
1.4 Algebraic stacks 7
1.5 Quotient stacks 9
1.6 Stabilizers 12
2 Character stacks 15
2.1 Representation varieties 15
2.2 Character groupoids 18
2.3 Character stacks 20
3 Motivic invariants 23
3.1 Mixed Hodge structures 24
3.2 Grothendieck ring of varieties 25
3.3 Stratifications and fibrations 29
3.4 Algorithmic computations 34
3.5 Grothendieck ring of stacks 36
3.6 Equivariant motivic invariants 39
4 Topological Quantum Field Theories 51
4.1 Monoidal categories 52
4.2 Bordisms 54
4.3 Physical interpretation 56
4.4 Low-dimensional TQFTs 58
4.5 Representation ring as TQFT 62
4.6 Arithmetic method 65
4.7 Character stack TQFT 66
4.8 Field theory of surfaces 69
4.9 Arithmetic TQFT 72
4.10 Comparison of TQFTs 78
$4.11 \mathbb{G}_{m} \rtimes \mathbb{Z} / 2 \mathbb{Z}$-character stacks 81
4.12 Representation variety TQFT 86
$5 \quad \mathrm{SL}_{2}$-character stacks 89
5.1 Generators, relations and \mathbb{P}^{1}-fibrations 90
5.2 Orientable surfaces 93
5.3 Non-orientable surfaces 98
5.4 Multiplication in SL_{2} 98
5.5 Results 111
6 Upper triangular matrices 115
6.1 Algebraic representatives 116
6.2 Geometric method 119
6.3 Arithmetic method 126
6.4 Arithmetic-geometric correspondence 138
7 Motivic stability 141
7.1 Motivic stability 142
7.2 Equivariant stability 147
7.3 Motivic representation stability 150
7.4 GL_{r}-character stacks 152
Bibliography 159
A TQFT for upper triangular matrices 167
Summary 177
Samenvatting 179
Acknowledgments 181
Curriculum Vitae 183

Introduction

The theory of representations of groups is a rich and fascinating subject in mathematics. For certain classes of groups, the representation theory is fairly well understood. For example, for finite groups, the representation theory is largely described by their character table, and for connected compact Lie groups, the representation theory is given by the theorem of the highest weight. However, the representation theory of finitely generated groups, lying somewhere in between, is not so easily described. For a finitely generated group Γ, the set of n-dimensional representations $\rho: \Gamma \rightarrow \mathrm{GL}_{n}(\mathbb{C})$, denoted

$$
\operatorname{Hom}\left(\Gamma, \operatorname{GL}_{n}(\mathbb{C})\right),
$$

defines a complex variety, called the representation variety of Γ. Recall that two representations $\rho, \rho^{\prime}: \Gamma \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ are isomorphic if $\rho^{\prime}(\gamma)=g \rho(\gamma) g^{-1}$ for some $g \in \operatorname{GL}_{n}(\mathbb{C})$ and all $\gamma \in \Gamma$. In other words, the group $\mathrm{GL}_{n}(\mathbb{C})$ acts by conjugation on the representation variety $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(\mathbb{C})\right)$, and the quotient $\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(\mathbb{C})\right) / \mathrm{GL}_{n}(\mathbb{C})$, known as the character variety of Γ, can be thought of as a geometric analogue of the character table. A subtle point is that it is not completely clear how to take this quotient. Using geometric invariant theory [Mum65], one arrives at the classical definition of the character variety. Another possibility is to enter the realm of algebraic stacks, to arrive at the quotient stack

$$
\left[\operatorname{Hom}\left(\Gamma, \mathrm{GL}_{n}(\mathbb{C})\right) / \mathrm{GL}_{n}(\mathbb{C})\right],
$$

known as the character stack of Γ, for which the character variety is a coarse moduli space. More generally, one may replace \mathbb{C} by any field k, and GL_{n} by any algebraic group G over k. As an example, when $\Gamma=\mathbb{Z}$, a representation from Γ into G is simply the choice of an element of G, so the representation variety is isomorphic to G, and the character variety, or character stack, is the appropriate quotient of G by the action of G by conjugation on itself. In general, the geometry of these spaces can be quite complicated and is a wide field of study. The goal of this thesis is to provide a better understanding of the geometry of these spaces.

Many finitely generated groups arise as the fundamental group $\Gamma=\pi_{1}(M, *)$ of a connected compact manifold M with a basepoint $*$. In this case, representations of Γ into G correspond to G-local systems on M, and isomorphic representations correspond to isomorphic local systems [Sza09, Corollary 2.6.2]. In this sense, the character variety (or stack) of Γ can be seen as the moduli space of G-local systems on M, and is in the literature also known as the Betti moduli space of M. In the particular case that M is the underlying manifold of a complex smooth projective curve C, this space appears in the geometric Langlands program [BD96, BN18] and plays a major role in non-abelian Hodge theory [Cor88, Don87, Sim91, Sim94], where it is strongly related to a moduli space of Higgs bundles on C and a moduli space of flat connections on C. The study of these moduli spaces motivated the $P=W$ conjecture [CHM12], which was recently proved [MS22, Hau+22]. The main focus of this thesis will be the case where M has dimension 2 . Such manifolds M are either orientable and classified by their genus, or non-orientable and classified by their demigenus.

The geometry of the representation variety (and of its quotients) can be studied in many ways, for instance by computing their invariants. When k is a finite field, one could count the number of k-rational points, and when $k=\mathbb{C}$, one could compute the singular cohomology of the analytification. In this thesis, we focus on invariants χ that are additive and multiplicative in the sense that $\chi(X)=\chi(Z)+\chi(X \backslash Z)$ and $\chi(X \times Y)=\chi(X) \chi(Y)$ whenever X and Y are varieties over k and $Z \subseteq X$ a closed subvariety. We call these motivic invariants, and they include the point count when k is finite, and the Euler characteristic of the analytification when $k=\mathbb{C}$. Another such invariant for $k=\mathbb{C}$, which is central in this thesis, is the E-polynomial, a refinement of the Euler characteristic. The E-polynomial of a complex variety is a polynomial in two variables whose coefficients reflect the mixed Hodge structure on its cohomology. In this thesis we discuss various such invariants, and develop tools for computing them. In particular, we focus on the universal such invariant, called the virtual class, which takes values in the Grothendieck ring of varieties.

The computation of motivic invariants for representation varieties of orientable surfaces started with Hausel and Rodriguez-Villegas [HR08], who studied the representation variety by counting the number of points over finite fields \mathbb{F}_{q}. They could express these counts in terms of the representation theory of the finite groups $G\left(\mathbb{F}_{q}\right)$, and moreover, infer from these counts the E-polynomial of the representation variety. This approach, which we will call the arithmetic method, has led many to study the E-polynomials of character varieties for various Γ and G [HLR11, Mer15, Let15, MR15, Cam17, BH17, LR22, BK22].

A few years later, Logares, Muñoz and Newstead [LMN13] initiated the geometric
method: a geometric approach to compute the E-polynomial of the representation variety, making use of its additive and multiplicative property and clever stratifications. González-Prieto, Logares and Muñoz [GLM20] showed that the geometric method can be phrased in terms of a Topological Quantum Field Theory (TQFT), a concept originating from physics. In particular, an orientable surface of genus g can be considered as a composite of manifolds with boundaries, known as bordisms, as follows:

In short, a TQFT (over some commutative ring R) assigns to every boundary (possibly empty) an R-module, and to every bordism between boundaries a linear map between the corresponding modules, such that composition of bordisms corresponds to composition of the linear maps. In other words, a TQFT is a certain functor from the category of bordisms to the category of R-modules. Now, the idea of the geometric method is that the E-polynomial of the representation variety corresponds to the image of Σ_{g} under the TQFT, and so the computation of this E-polynomial can be broken down into a simpler computation for each bordism. It was shown later [Gon20] that the same construction can be used to compute the virtual class of the representation variety in the Grothendieck ring of varieties.

Both the arithmetic and geometric method are discussed in detail in Chapter 4. One of the main results of this chapter, which is based on [GHV23], is that the two methods can be unified into a single framework. In particular, we show how the arithmetic method can be translated into the language of TQFTs, and moreover, we show that the TQFTs, for the geometric and arithmetic method, are related through natural transformations. As a consequence, we describe how parts of the character tables of the finite groups $G\left(\mathbb{F}_{q}\right)$, specifically the dimensions of the irreducible representations of $G\left(\mathbb{F}_{q}\right)$, are related to the eigenvalues of the image of the bordism $\sigma 0$ under the TQFT corresponding to the geometric method. Another aim of this thesis, besides giving theoretical descriptions, is to apply the above methods to explicitly compute invariants of the representation varieties and character stacks of surfaces, for certain algebraic groups G. In Chapter 5 we focus on the group $G=\mathrm{SL}_{2}$, generalizing the results of [LMN13, MM16, LR22] where the E-polynomials of the representation varieties were computed. Lifting these computations from E-polynomials to the Grothendieck ring of varieties introduces many subtle problems that have to be dealt with. In Chapter 6, based on [HV22, Vog24], we concentrate on the groups of $n \times n$ upper triangular matrices and unipotent upper triangular matrices. By means of computer-assisted calcu-
lations, we compute the virtual classes of the character stacks of Σ_{g} for $n \leq 5$ through the geometric method, and their E-polynomials for $n \leq 10$ through the arithmetic method.

Finally, in Chapter 7, we turn our attention to the representation varieties and character stacks of the free groups F_{n} and free abelian groups \mathbb{Z}^{n}. These spaces, parametrizing tuples (resp. commuting tuples) of elements of G, have also been widely studied [Bai07, AC07, FL11, PS13, FL14, RS19, FS21]. When considering the homology of these spaces, an interesting phenomenon emerges: as shown in [RS21], the homology groups of these spaces (and many variations thereof) stabilize as n tends to infinity, in a well-defined sense due to [CF13] known as representation stability. In Chapter 7, we will combine the notion of representation stability with that of motivic stability [VW15] to define an analogous notion of motivic representation stability for stability in the Grothendieck ring of varieties. As an application, we will show that the character stacks of F_{n} and \mathbb{Z}^{n} stabilize in this sense for the linear groups $G=\mathrm{GL}_{r}$.

These explicit applications and computations have led to a number of new computational techniques. For instance, the study of equivariant motivic invariants, in Section 3.6, describes how motivic invariants, in particular the virtual class, behave with respect to finite group actions. The results in this section are crucial to the computations for the SL_{2}-character stacks, and to the definition of motivic representation stability. Other new computational techniques include the introduction of algebraic representatives, in Section 6.1, and the development of an algorithm for computing virtual classes, in Section 3.4. Without these techniques, the computations for the character stacks for upper triangular matrices of high rank would not have been possible.

Chapter 1

Stacks

Algebraic stacks were first introduced by Deligne and Mumford to study the moduli space of curves [DM69], and later their definition was generalized by Artin [Art74]. Roughly speaking, an algebraic stack can be thought of as a generalization of a scheme. If we view a scheme as a functor of points, its points form a set, whereas for an algebraic stack they form a groupoid. In other words, the points of a stack are allowed to have automorphisms. The notion of a stack is not specific to algebraic geometry, that is, stacks can also be defined in the context of manifolds, analytic spaces, topological spaces, or, in general, for any site, that is, category with a Grothendieck topology.

The goal of this chapter is to give a concise overview of (algebraic) stacks, with a focus on quotient stacks, which should be sufficient to understand the later chapters. For the curious reader who wishes to read more in-depth expositions of (algebraic) stacks, we refer to [Fan01, Beh14, Ols16, LM00, Stacks], in order from introductory and intuitive to detailed and rigorous.

1.1 Groupoids

Crucial to the subject of stacks is the concept of a groupoid, that is, a category in which every morphism is an isomorphism.

Definition 1.1.1. A groupoid is finite if it has finitely many morphisms. A groupoid is finitely generated if there exists a finite collection of morphisms, called generators, such that every morphism of the groupoid can be written as a composite of generators and inverses of generators. In particular, any finite or finitely generated groupoid has finitely many objects, because every object has at least an identity morphism. A groupoid is essentially finite if it is equivalent
to a finite groupoid, and similarly, a groupoid is essentially finitely generated if it is equivalent to a finitely generated groupoid.
Denote by Grpd the 2-category of groupoids, whose objects are groupoids, 1morphisms are functors, and 2-morphisms are natural transformations. Similarly, denote by FinGrpd and FGGrpd the full sub-2-categories of essentially finite groupoids and essentially finitely generated groupoids, respectively.

Definition 1.1.2. Let G be a group acting on a set X. The action groupoid, denoted $[X / G]$, is the groupoid whose objects are elements of X, morphisms $x \rightarrow y$ are given by elements $g \in G$ such that $y=g \cdot x$. Composition of $g: x \rightarrow y$ and $h: y \rightarrow z$ is given by $h g: x \rightarrow z$.

Definition 1.1.3. Let Γ be an essentially finite groupoid. The groupoid cardinality of Γ is defined as

$$
|\Gamma|=\sum_{[x] \in \Gamma / \sim} \frac{1}{|\operatorname{Aut}(x)|} \in \mathbb{Q}
$$

where Γ / \sim denotes the set of isomorphism classes of Γ.
Example 1.1.4. Let G be a finite group acting on a finite set X. Then the groupoid cardinality of the action groupoid $\Gamma=[X / G]$ is $|X| /|G|$. Indeed, from the orbit-stabilizer theorem it follows that

$$
|\Gamma|=\sum_{[x] \in[X / G] / \sim} \frac{1}{|\operatorname{Aut}(x)|}=\sum_{x \in X} \frac{1}{|G x|} \frac{1}{|\operatorname{Aut}(x)|}=\sum_{x \in X} \frac{1}{|G|}=\frac{|X|}{|G|}
$$

Definition 1.1.5. Let $f: B \rightarrow A$ and $g: C \rightarrow A$ be morphisms of groupoids. The fiber product of B and C over A, denoted $B \times{ }_{A} C$, is the groupoid whose objects are triples (x, y, α) with x an object of B, y an object of C and $\alpha: f(x) \rightarrow g(y)$ a morphism in A. A morphism from $\left(x^{\prime}, y^{\prime}, \alpha^{\prime}\right)$ to (x, y, α) is given by a pair of morphisms $\left(\beta: x^{\prime} \rightarrow x, \gamma: y^{\prime} \rightarrow y\right)$ such that $g(\gamma) \circ \alpha^{\prime}=\alpha \circ f(\beta)$.

Note that the diagram

with π_{B} and π_{C} the obvious projections, does not strictly commute whenever there are non-trivial morphisms $\alpha: f(x) \rightarrow g(y)$. However, there is a natural isomorphism $f \circ \pi_{B} \Rightarrow g \circ \pi_{C}$, whose component at (x, y, α) is given by α. This is the correct notion of commutativity for 2-categories, and we say this diagram 2-commutes.

This also shows what the correct universal property of the fiber product is. For every groupoid D with morphisms $i: D \rightarrow B$ and $j: D \rightarrow C$ such that $f \circ i$ is naturally isomorphic to $g \circ j$, there exists, up to a unique natural isomorphism, a unique morphism $h: D \rightarrow B \times{ }_{A} C$ and natural isomorphisms $\pi_{B} \circ h \cong i$ and $\pi_{C} \circ h \cong j$. One can easily verify that the above definition of the fiber product for groupoids satisfies this universal property.

Definition 1.1.6. Let $f: A \rightarrow B$ be a functor between groupoids, and let b be an object of B. The fiber of f over b is the groupoid

$$
f^{-1}(b)=A \times_{B}\{b\}
$$

where $\{b\}$ is the groupoid with a single object b and one (identity) morphism, and $\{b\} \rightarrow B$ the natural map.

1.2 Categories fibered in groupoids

Throughout the following sections, let \mathfrak{S} be a site, that is, a category equipped with a Grothendieck topology.

Definition 1.2.1. A category over \mathfrak{S} is a category \mathfrak{X} with a functor $p: \mathfrak{X} \rightarrow \mathfrak{S}$. An object x of \mathfrak{X} is said to lie over an object S of \mathfrak{S}, or x is said to be a lift of S, if $p(x)=S$, and similarly for morphisms. If S is an object of \mathfrak{S}, the fiber of \mathfrak{X} over S, denoted \mathfrak{X}_{S}, is the subcategory of \mathfrak{X} of objects over S and morphisms over id_{S}. A morphism of categories over \mathfrak{S} is a functor that respects the functor to \mathfrak{S}. If $p: \mathfrak{X} \rightarrow \mathfrak{S}$ and $q: \mathfrak{Y} \rightarrow \mathfrak{S}$ are categories over \mathfrak{S}, and f and g morphisms from \mathfrak{X} to \mathfrak{Y}, then a 2-morphism $f \rightarrow g$ is a natural transformation $\mu: f \Rightarrow g$ such that all components $\mu_{x}: f(x) \rightarrow g(x)$ lie over $\operatorname{id}_{p(x)}$. The categories over \mathfrak{S} form a 2-category. An isomorphism of categories over \mathfrak{S} is a morphism which is an equivalence of categories.

Definition 1.2.2. A category \mathfrak{X} over \mathfrak{S} is called a category fibered in groupoids over \mathfrak{S} if for any morphism $f: T \rightarrow S$ in \mathfrak{S} and object x lying over S, there exists a lift $\bar{f}: y \rightarrow x$ of f which is unique up to unique isomorphism. That is, for any other lift $\bar{f}^{\prime}: y^{\prime} \rightarrow x$ of f, there exists a unique isomorphism $\alpha: y^{\prime} \rightarrow y$ such that $\bar{f}^{\prime}=\bar{f} \circ \alpha$.

As a motivation for the terminology, consider the following lemma.

Lemma 1.2.3. Let \mathfrak{X} be a category fibered in groupoids over \mathfrak{S}. Then every morphism $\varphi: y \rightarrow x$ of \mathfrak{X} that lies over an isomorphism $f: T \rightarrow S$ of \mathfrak{S}, is an isomorphism as well. In particular, for every object S of \mathfrak{S} the fiber \mathfrak{X}_{S} is groupoid.

Proof. Write g for the inverse of f, and choose a lift $\bar{g}: z \rightarrow y$ of g. As $\varphi \circ \bar{g}: z \rightarrow x$ lies over $f \circ g=\operatorname{id}_{S}$, it is a lift of id_{S} with target x. Since id_{x} is so as well, there exists a (unique) isomorphism $\alpha: z \rightarrow x$ such that $\varphi \circ \bar{g}=\alpha$. Now $\psi=\bar{g} \circ \alpha^{-1}$ is a right inverse of φ which lies over g. Repeating the argument, replacing φ by ψ, one shows ψ also has a right inverse, which must be φ.

In particular, every 2 -morphism between morphisms of categories over \mathfrak{S} is automatically an isomorphism.

Example 1.2.4. Any object X of \mathfrak{S} can be regarded as a category fibered in groupoids $p: \mathfrak{X} \rightarrow \mathfrak{S}$ where \mathfrak{X} is the slice category \mathfrak{S} / X and p simply forgets the morphism to X. Indeed, for any $f: T \rightarrow S$ in \mathfrak{S} and $x: S \rightarrow X$ in \mathfrak{X}, there is a unique lift of f, given by $T \xrightarrow{x \circ f} X$. Hence, we can think of a category fibered in groupoids (and as we shall see later, a stack) \mathfrak{X} over \mathfrak{S} as a generalization of an object of \mathfrak{S}, and the fibers \mathfrak{X}_{S} can be interpreted as the groupoid of S-points of \mathfrak{X}.

For convenience, we usually assume that for every morphism $f: T \rightarrow S$ in \mathfrak{S} and object x over S, we have chosen a lift $f^{*} x \rightarrow x$ of f with target x. Depending on the context, this can be done either by direct construction, or by using a suitable version of the axiom of choice. Note that it is not required that $g^{*}\left(f^{*} x\right)$ equals $(f \circ g)^{*} x$, but the two are naturally isomorphic. While such a choice of lifts is not necessary, it makes it easier to write down the definition of a stack. We refer to the object $f^{*} x$ as the pullback of x along f. When the morphism $f: T \rightarrow S$ is clear from context, we will also write $\left.x\right|_{T}$ for $f^{*} x$.

Remark 1.2.5. Let $\alpha: x^{\prime} \rightarrow x$ be a morphism in the fiber over some object S of \mathfrak{S} (in particular, α is an isomorphism). Given a morphism $f: T \rightarrow S$, there exists a unique isomorphism $f^{*} \alpha: f^{*} x^{\prime} \rightarrow f^{*} x$ such that the diagram

commutes. Namely, $f^{*} x^{\prime} \rightarrow x^{\prime} \rightarrow x$ is also a lift of f with target x. When the morphism f is clear from context, we will also write $\left.\alpha\right|_{T}$ for $f^{*} \alpha$.

Notation 1.2.6. Let \mathfrak{X} and \mathfrak{Y} be two categories fibered in groupoids over \mathfrak{S}. Note that the morphisms from \mathfrak{X} to \mathfrak{Y} form a category, which we denote by $\mathfrak{Y}(\mathfrak{X})$, where morphisms between morphisms are given by 2 -morphisms. Moreover, since every 2-morphism is an isomorphism, this category is a groupoid. When $\mathfrak{X}=$ \mathfrak{S} / X for an object X of \mathfrak{S}, as in Example 1.2.4, this groupoid is in fact equivalent to the fiber \mathfrak{Y}_{X}.

Definition 1.2.7. Let $f: \mathfrak{X} \rightarrow \mathfrak{Z}$ and $g: \mathfrak{Y} \rightarrow \mathfrak{Z}$ be morphisms of categories fibered in groupoids over \mathfrak{S}. The fiber product of \mathfrak{X} and \mathfrak{Y} over \mathfrak{Z} is the following category fibered in groupoids. Its objects over S are triples (x, y, α) with x an object of \mathfrak{X}_{S}, y an object of \mathfrak{Y}_{S} and $\alpha: f(x) \rightarrow g(y)$ an isomorphism in the fiber \mathfrak{Z}_{S}. Given a morphism $f: S^{\prime} \rightarrow S$, a morphism from $\left(x^{\prime}, y^{\prime}, \alpha^{\prime}\right)$ to (x, y, α) over f is given by a pair of morphisms $\left(\beta: x^{\prime} \rightarrow x, \gamma: y^{\prime} \rightarrow y\right)$ over f such that $g(\gamma) \circ \alpha^{\prime}=\alpha \circ f(\beta)$. The induced diagram

with $\pi_{\mathfrak{X}}$ and $\pi_{\mathfrak{Y}}$ the projections, need not strictly commute, but it 2-commutes. That is, the two composites $\mathfrak{X} \times_{\mathfrak{Z}} \mathfrak{Y} \rightarrow \mathfrak{Z}$ are related by a natural 2-morphism. Observe the similarity with Definition 1.1.5, the fiber product for groupoids.

1.3 Descent data and stacks

Informally speaking, a stack is a category fibered in groupoids where objects can be glued uniquely from local data. Let $\left\{S_{i} \rightarrow S\right\}$ be a covering of an object S of \mathfrak{S}, and let x be an object over S. Denote by x_{i} the pullback of x to S_{i}, and by $S_{i j}$ the intersection $S_{i} \times{ }_{S} S_{j}$, and similarly for $S_{i j k}$. The object x cannot be reconstructed solely from the x_{i}, also the induced isomorphisms $\alpha_{i j}:\left.\left.x_{i}\right|_{S_{i j}} \rightarrow x_{j}\right|_{S_{i j}}$, which satisfy the cocycle condition on $S_{i j k}$, are needed. In a stack, we want to be able to glue the x_{i} on the intersections via the $\alpha_{i j}$. This motivates the following definition.

Definition 1.3.1. Let \mathfrak{X} be a category fibered in groupoids over \mathfrak{S}. A descent datum for \mathfrak{X} over an object S of \mathfrak{S} is given by
(i) a covering $\left\{S_{i} \rightarrow S\right\}$,
(ii) for every i a lift x_{i} of S_{i} in \mathfrak{X},
(iii) for every i and j an isomorphism $\alpha_{i j}:\left.\left.x_{i}\right|_{S_{i j}} \rightarrow x_{j}\right|_{S_{i j}}$ in $\mathfrak{X}_{S_{i j}}$, satisfying the cocycle condition $\left.\alpha_{i k}\right|_{S_{i j k}}=\left.\left.\alpha_{j k}\right|_{S_{i j k}} \circ \alpha_{i j}\right|_{S_{i j k}}$ in $\mathfrak{X}_{S_{i j k}}$.

Such a descent datum is called effective if there exists a lift x of S in \mathfrak{X} together with isomorphisms $\alpha_{i}:\left.x\right|_{S_{i}} \rightarrow x_{i}$ in $\mathfrak{X}_{S_{i}}$ such that $\alpha_{i j}=\left.\left.\alpha_{j}\right|_{S_{i j}} \circ \alpha_{i}\right|_{S_{i j}} ^{-1}$ in $\mathfrak{X}_{S_{i j}}$. In this case, one says that the x_{i} over S_{i} descend to x over S.

Furthermore, in a stack, we want such a gluing to be unique (up to unique isomorphism). That is, for any other gluing $\left(x^{\prime}, \alpha_{i}^{\prime}\right)$ there should be a unique isomorphism $\beta: x^{\prime} \rightarrow x$ such that $\alpha_{i}^{\prime}=\left.\alpha_{i} \circ \beta\right|_{S_{i}}$ over S_{i}. To have this property, we will require that isomorphisms in fibers can be reconstructed uniquely from local data. This idea is expressed in the following definition.

Definition 1.3.2. Let \mathfrak{X} be a category fibered in groupoids over \mathfrak{S}. We say that isomorphisms are a sheaf for \mathfrak{X} if, for any object S of \mathfrak{S}, any objects x and y in \mathfrak{X}_{S}, every covering $\left\{S_{i} \rightarrow S\right\}$ of S, and every collection of isomorphisms $\alpha_{i}:\left.\left.x\right|_{S_{i}} \rightarrow y\right|_{S_{i}}$ in $\mathfrak{X}_{S_{i}}$ such that $\left.\alpha_{i}\right|_{S_{i j}}=\left.\alpha_{j}\right|_{S_{i j}}$, there exists a unique isomorphism $\alpha: x \rightarrow y$ such that $\alpha_{i}=\left.\alpha\right|_{S_{i}}$.

Remark 1.3.3. Alternatively, the above definition can be expressed as follows. For any two objects x and y in \mathfrak{X} lying over an object S in \mathfrak{S}, one can define a presheaf

$$
\operatorname{Isom}(x, y):(\mathfrak{S} / S)^{\mathrm{op}} \rightarrow \text { Set }
$$

on the slice category \mathfrak{S} / S, by assigning to $f: T \rightarrow S$ the set $\operatorname{Hom}_{\mathfrak{X}_{T}}\left(f^{*} x, f^{*} y\right)$ of isomorphisms from $f^{*} x$ to $f^{*} y$ in \mathfrak{X}_{T}, and to a morphism $g: T^{\prime} \rightarrow T$ from $f^{\prime}: T^{\prime} \rightarrow S$ to $f: T \rightarrow S$ the map that is given by pullback along g, that is,

$$
\operatorname{Hom}_{\mathfrak{X}_{T}}\left(f^{*} x, f^{*} y\right) \rightarrow \operatorname{Hom}_{\mathfrak{X}_{T^{\prime}}}\left(g^{*} f^{*} x, g^{*} f^{*} y\right) \cong \operatorname{Hom}_{\mathfrak{X}_{T^{\prime}}}\left(\left(f^{\prime}\right)^{*} x,\left(f^{\prime}\right)^{*} y\right)
$$

where the latter isomorphism is induced by the natural isomorphisms $g^{*} f^{*} x \cong$ $\left(f^{\prime}\right)^{*} x$ and $g^{*} f^{*} y \cong\left(f^{\prime}\right)^{*} y$. Now, saying that isomorphisms are a sheaf for \mathfrak{X} is equivalent to saying that $\operatorname{Isom}(x, y)$ is a sheaf for all x, y and S. Note that, while it looks as if $\operatorname{Isom}(x, y)$ depends on the choice of $f^{*} x$ and $f^{*} y$, any other choice would yield a presheaf that is naturally isomorphic.

Definition 1.3.4. A stack over \mathfrak{S} is a category fibered in groupoids \mathfrak{X} over \mathfrak{S} such that every descent datum for \mathfrak{X} is effective and isomorphisms are a sheaf for \mathfrak{X}. A morphism of stacks over \mathfrak{S} is simply a morphism of categories over \mathfrak{S}, and similarly for 2 -morphisms and isomorphisms. Fiber products of stacks can be computed as fiber products of categories over groupoids.

Remark 1.3.5. As in Example 1.2.4, any object X of \mathfrak{S} can be considered a category fibered in groupoids over \mathfrak{S} as the slice category \mathfrak{S} / X, where $\mathfrak{S} / X \rightarrow \mathfrak{S}$ forgets the morphism to X. Unfortunately, this does not always give a stack, it depends on the topology on \mathfrak{S}. However, for most of the examples of interest it
will give a stack and will be easy to prove, e.g. for schemes, manifolds, analytic spaces, topological spaces, etc. with the usual topologies [Fan01].

Definition 1.3.6. A stack \mathfrak{X} over \mathfrak{S} is representable if it is isomorphic to the stack \mathfrak{S} / X for some object X of \mathfrak{S}. A morphism of stacks $\mathfrak{X} \rightarrow \mathfrak{Y}$ is representable if, for every morphism $S \rightarrow \mathfrak{X}$ with S in \mathfrak{S}, the fiber product $S \times_{\mathfrak{Y}} \mathfrak{X}$ is representable.

Intuitively, this says that a morphism of stacks is representable if all of its fibers are representable.

From now on, we will simply write X for the category \mathfrak{S} / X as well.

1.4 Algebraic stacks

An algebraic stack, over a fixed base scheme S, is a special type of stack over the site $\mathfrak{S}=\mathbf{S c h}_{S}$, where \mathfrak{S} is usually equipped with the étale or fppf topology. To give a precise definition, one needs the notion of an algebraic space. Informally speaking, whereas a scheme is locally an affine scheme in the Zariski topology, an algebraic space is locally an affine scheme in the étale topology. For an in-depth treatment on algebraic spaces, see [LM00, Ols16, Stacks]. For our purposes, it suffices to think of an algebraic space as a geometric object slightly more general than a scheme, and to know that, just as for schemes, any algebraic space over S can naturally be considered as a category fibered in groupoids over \mathfrak{S} (recall from Remark 1.3.5 that any scheme X over S can be identified with the slice category $\mathfrak{S} / X)$. A morphism $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ is said to be representable by algebraic spaces if for every scheme T and morphism $T \rightarrow \mathfrak{Y}$, the fiber product $T \times_{\mathfrak{Y}} \mathfrak{X}$ is representable by an algebraic space.

Before giving the definition of an algebraic stack, we first need to introduce some properties of representable morphisms.

Definition 1.4.1. Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a morphism of categories fibered in groupoids over \mathfrak{S} which is representable by algebraic spaces. Let P be a property of morphisms of algebraic spaces which is stable under base change and fppf-local on the base, such as being smooth, étale, unramified, flat, surjective, (quasi-)separated, affine, proper, (locally) of finite type, (locally) of finite presentation, or an (open or closed) immersion. Then f is said to have the property P if for every scheme T over S and $T \rightarrow \mathfrak{Y}$ the base change $T \times_{\mathfrak{Y}} \mathfrak{X} \rightarrow T$ has the property P.

Definition 1.4.2. A stack \mathfrak{X} over \mathfrak{S} is an Artin stack (resp. Deligne-Mumford stack) if the diagonal $\Delta_{\mathfrak{X} / S}: \mathfrak{X} \rightarrow \mathfrak{X} \times_{S} \mathfrak{X}$ is representable by algebraic spaces and there exists a smooth (resp. étale) and surjective morphism $X \rightarrow \mathfrak{X}$ for some scheme X. Such a morphism $X \rightarrow \mathfrak{X}$ is called a presentation of \mathfrak{X}.

An algebraic stack over \mathfrak{S} will simply be an Artin stack over \mathfrak{S}.
Remark 1.4.3. Note that, in Definition 1.4.2, $\Delta_{\mathfrak{X} / S}$ being representable automatically implies the morphism $X \rightarrow \mathfrak{X}$ is representable, so that it makes sense to talk about this morphism being surjective, smooth or étale. Indeed, for every scheme T and morphism $T \rightarrow \mathfrak{X}$, we have that $T \times_{\mathfrak{X}} X \cong \mathfrak{X} \times_{\mathfrak{X} \times{ }_{S} \mathfrak{X}}\left(X \times_{S} T\right)$ is representable by an algebraic space.

What follows now is a list of definitions of properties for algebraic stacks and for morphisms thereof. The general philosophy is that the common properties for schemes or algebraic spaces (and morphisms thereof) translate directly to the setting of algebraic stacks by making use of some kind of representability and the way these properties behave (e.g. often they are local on the source or target in some topology). We adopt the definitions as used by [Stacks], as indicated in the definitions. This list is by far not complete, but should cover all properties that are needed in the later chapters. For a more elaborate discussion on these properties, we refer to [Beh14, LM00, Ols16, Stacks].

Definition 1.4.4 ([Stacks, Tag 04YF]). Let P be a property of schemes which is local in the smooth topology, such as being reduced, locally noetherian, normal or regular. An algebraic stack \mathfrak{X} is said to have P if there exists a smooth surjective morphism $X \rightarrow \mathfrak{X}$ with X a scheme having property P.

Definition 1.4.5 ([Stacks, Tag 04 YC , Tag 050U]). An algebraic stack \mathfrak{X} is quasi-compact if there exists a smooth and surjective morphism $X \rightarrow \mathfrak{X}$ with X a quasi-compact scheme.

A morphism of algebraic stacks $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ is quasi-compact if for every quasicompact algebraic stack \mathfrak{Z} and morphism $\mathfrak{Z} \rightarrow \mathfrak{Y}$, the fiber product $\mathfrak{Z} \times_{\mathfrak{Y}} \mathfrak{X}$ is quasi-compact.

Definition 1.4.6 ([Stacks, Tag 0CHQ, Tag 0CHU, Tag 04YL]). Let P be any of the properties of being affine, finite, or an (open or closed) immersion. Then a morphism of algebraic stacks $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ is said to have the property P if it is representable and has property P in the sense of Definition 1.4.1.

Definition 1.4.7 ([Stacks, Tag 06FM, Tag 0CIF]). Let P be a property of morphisms of algebraic spaces which is local on the source and target in the smooth (resp. étale) topology, such as being locally of finite type, locally of finite presentation, flat, or smooth (resp. or unramified or étale). Then a morphism $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ of algebraic stacks is said to have the property P if there exists a
commutative diagram

with U and V algebraic spaces such that the vertical morphisms are smooth, $U \rightarrow \mathfrak{X} \times_{\mathfrak{Y}} V$ is smooth (resp. étale) and f^{\prime} has the property P.

Definition 1.4.8 ([Stacks, Tag 04YW, Tag 06FS, Tag 06Q2]). A morphism of algebraic stacks $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ is

- separated if the diagonal is proper in the sense of Definition 1.4.1,
- quasi-separated if the diagonal is quasi-compact and quasi-separated in the sense of Definition 1.4.1,
- of finite type if it is locally of finite type and quasi-compact,
- of finite presentation if it is locally of finite presentation, quasi-compact and quasi-separated.

1.5 Quotient stacks

A rich source of examples of algebraic stacks is given by quotients of schemes by group actions. For example, many moduli spaces are constructed in this way: one first describes a scheme X overparametrizing the objects of interest, and then describes an equivalence relation on the objects via the action of a group G on X. The moduli space should then be the quotient of X by G.
To get an intuition for what this quotient should look like, imagine a group G acting on some kind of geometric object X (e.g. a manifold or topological space). If the group action is sufficiently nice (i.e., free), the quotient $X \rightarrow X / G$ is expected to be a G-torsor, also known as a principal G-bundle. In particular, the pullback of X along any map $T \rightarrow X$ will be a G-torsor over T, and the projection $X \times{ }_{X / G} T \rightarrow X$ will be G-equivariant. Moreover, any G-torsor $P \rightarrow T$ with an equivariant map to X conversely induces a map from T to the quotient X / G. This motivates the following definition.

Definition 1.5.1. Let G be a smooth group scheme acting on a scheme X over S. The quotient stack of X by G, denoted $[X / G]$, is the category over \mathfrak{S} whose objects over T are diagrams

where $P \xrightarrow{p} T$ is a G-torsor and $P \xrightarrow{\phi} X$ is a G-equivariant morphism. The morphisms from $T^{\prime} \stackrel{p^{\prime}}{\leftarrow} P^{\prime} \xrightarrow{\phi^{\prime}} X$ to $T \stackrel{p}{\leftarrow} P \xrightarrow{\phi} X$ over $f: T^{\prime} \rightarrow T$ are G equivariant morphisms $\alpha: P^{\prime} \rightarrow P$ such that $p \circ \alpha=f \circ p^{\prime}$ and $\phi \circ \alpha=\phi^{\prime}$. Since G-torsors can be glued from local data, it is easy to verify that $[X / G]$ is indeed a stack over \mathfrak{G}. There is a natural quotient map $\pi: X \rightarrow[X / G]$ corresponding to the diagram

More generally, one can replace the scheme X by an algebraic stack \mathfrak{X} to define the quotient stack $[\mathfrak{X} / G]$.

Example 1.5.2. The quotient stack $[S / G]$ corresponding to the trivial action of G on S is also known as the classifying stack of G and is denoted $\mathrm{B} G$.

Remark 1.5.3. For any morphism $T \xrightarrow{f}[X / G]$, the corresponding G-torsor over T with G-equivariant map to X can be recovered via pullback along π, as depicted in the following diagram.

Indeed, by definition of the fiber product, the objects of $T \times_{[X / G]} X$ over T^{\prime} are triples of morphisms $\left(f: T^{\prime} \rightarrow T, h: T^{\prime} \rightarrow X, \alpha: G \times T^{\prime} \rightarrow P \times_{T} T^{\prime}\right)$ with α being G-equivariant such that

commutes. Since α is G-equivariant, it must be of the form $\alpha\left(g, t^{\prime}\right)=\left(g \cdot \beta\left(t^{\prime}\right), t^{\prime}\right)$ for $\beta: T^{\prime} \rightarrow P$ given by $\beta\left(t^{\prime}\right)=\pi_{P}\left(\alpha\left(1, t^{\prime}\right)\right)$. But then $f=p \circ \beta, h=\phi \circ \beta$ and α can all be expressed in terms of β. Hence, $\left(T \times_{[X / G]} X\right)\left(T^{\prime}\right)=P\left(T^{\prime}\right)$ and this provides a canonical isomorphism $T \times{ }_{[X / G]} X \cong P$.

Remark 1.5.4. The above remark shows that the quotient stack $[X / G]$ is an Artin stack with presentation $\pi: X \rightarrow[X / G]$. Indeed, the morphism π is smooth and surjective since $P \xrightarrow{p} T$ is smooth and surjective, as G was assumed to be smooth. Similarly, if G is a finite group, one shows that the quotient stack $[X / G]$
is a Deligne-Mumford stack. For representability of the diagonal, see [Ols16, Example 8.1.12].

Remark 1.5.5. The quotient stack $[X / G]$ indeed satisfies the quotient property, that is, for any G-invariant morphism $f: X \rightarrow Y$ there is an induced morphism $\bar{f}:[X / G] \rightarrow Y$. Indeed, for any diagram $T \leftarrow P \xrightarrow{\phi} X$, the composite $f \circ \phi$ is G-invariant, so there is an induced morphism $T \rightarrow Y$, which defines a T-point of Y.

Remark 1.5.6. The quotient stack construction is functorial in the following sense. Let G and H be smooth group schemes acting on schemes X and Y, respectively, over S. Suppose $f: X \rightarrow Y$ is a morphism of schemes over S, and $\varphi: G \rightarrow H$ a morphism of group schemes over S, such that $f(g \cdot x)=\varphi(g) \cdot f(x)$. Then there is an induced morphism of quotient stacks $\bar{f}:[X / G] \rightarrow[Y / H]$ such that the diagram

2-commutes. The morphism \bar{f} is given by sending a diagram $T \stackrel{p}{\leftarrow} P \xrightarrow{\phi} X$ to the diagram $T \stackrel{p \circ \pi_{P}}{\rightleftarrows} H \times_{G} P \xrightarrow{\psi} Y$ where $\psi(h, p)=h \cdot f(\phi(p))$. The commutativity of the diagram follows from the natural isomorphism $H \times_{G}(G \times T) \cong H \times T$ of H-torsors over T.

Lemma 1.5.7. Let G and H be smooth group schemes acting on schemes X and Y, respectively, over S. Then there is a natural isomorphism $[X / G] \times[Y / H] \cong$ $[X \times Y / G \times H]$ given by sending a pair of diagrams $T \leftarrow P \xrightarrow{\phi} X$ and $T \leftarrow Q \xrightarrow{\psi} Y$ to the diagram $T \leftarrow P \times Q \xrightarrow{\phi \times \psi} X \times Y$.

Proof. The described map is clearly functorial. Conversely, for any $(G \times H)$ torsor R over T, the natural isomorphism $R \cong R / H \times_{T} R / G$ of $(G \times H)$-torsors over T yields an inverse.

Lemma 1.5.8. If G acts freely on X, then $[X / G]$ is representable by an algebraic space.

Proof. To prove this, we will use the characterization of an algebraic space as an algebraic stack whose objects all have trivial automorphism groups [Stacks, Tag 03YR]. Any point of $[X / G]$ over any T corresponds to a G-torsor over T with an equivariant morphism $\phi: P \rightarrow X$. An automorphism of this point is an automorphism $\alpha: P \rightarrow P$ over T such that $\phi \circ \alpha=\phi$. Étale-locally, $P \cong G \times T$,
and ϕ is determined by its restriction $\phi^{\prime}: S \times T \rightarrow X$ along the unit $e: S \rightarrow G$. Furthermore, $\alpha: G \times T \rightarrow G \times T$ is given by multiplication by some element $g \in G$. Now $g \cdot \phi^{\prime}(t)=\phi^{\prime}(t)$ for all $t \in T$, and since G acts freely on X we have $g=1$, that is, $\alpha=\operatorname{id}_{P}$. Since this holds étale-locally, we also have $\alpha=\operatorname{id}_{P}$ globally, and thus this automorphism is trivial.

Remark 1.5.9. As is reflected in the notation, the quotient stack can be thought of as a geometric analogue of the action groupoid. However, in general we have

$$
[X / G](T) \nsucceq[X(T) / G(T)] .
$$

For example, the classifying stack $\mathrm{B} G$ of $G=\mathbb{Z} / 2 \mathbb{Z}$ has up to isomorphism precisely two \mathbb{F}_{q}-points: the trivial G-torsor $\mathbb{F}_{q} \rightarrow\left(\mathbb{F}_{q}\right)^{2}$ and the non-trivial G torsor $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q^{2}}$ whose G-action is given by the Frobenius automorphism, both having an automorphism group of $\mathbb{Z} / 2 \mathbb{Z}$. On the other side, the action groupoid has only one object with automorphism group $\mathbb{Z} / 2 \mathbb{Z}$.

In special cases, this discrepancy can be resolved.
Proposition 1.5.10. Let G be an algebraic group acting on a scheme X over a field k. If (i) k is separably closed, or (ii) k is finite and G is connected, then there is an equivalence of groupoids

$$
[X / G](k) \simeq[X(k) / G(k)] .
$$

Proof. In both cases, any G-torsor over Spec k is trivial. For (i) because Spec k does not have a non-trivial étale cover, and for (ii) by Lang's theorem [Lan56]. Hence, the objects of the groupoid $[X / G](k)$ are G-equivariant morphisms $G \xrightarrow{\phi}$ X, which are completely determined by the value $\phi(1) \in X(k)$, and morphisms $\phi \rightarrow \phi^{\prime}$ are given by an element $g \in G(k)$ such that $\phi(1)=\phi^{\prime}(g)=g \cdot \phi^{\prime}(1)$. But this is precisely (equivalent to) $[X(k) / G(k)]$.

1.6 Stabilizers

Definition 1.6.1. Let \mathfrak{X} be an algebraic stack over \mathfrak{S}, and x : Spec $K \rightarrow \mathfrak{X}$ a K-point of \mathfrak{X} for some field K. The stabilizer of x is the fiber product

$$
\operatorname{Stab}_{\mathfrak{X}}(x)=\operatorname{Spec} K \times_{\mathfrak{X}} \operatorname{Spec} K
$$

as a group scheme (or more precisely, group algebraic space) over K. Indeed, for any $T \rightarrow \operatorname{Spec} K$, the T-points of $\operatorname{Stab}_{\mathfrak{X}}(x)$ can be identified with the automorphism group in \mathfrak{X} of the T-point $T \rightarrow \operatorname{Spec} K \xrightarrow{x} \mathfrak{X}$. We say \mathfrak{X} has affine stabilizers if $\operatorname{Stab}_{\mathfrak{X}}(x)$ is an affine group scheme for every x. We say \mathfrak{X} has finite stabilizers if $\operatorname{Stab}_{\mathfrak{X}}(x)$ is a finite group scheme for every x.

Lemma 1.6.2. Let G be a smooth group scheme acting on a scheme X. The quotient stack $\mathfrak{X}=[X / G]$ has affine stabilizers (resp. finite stabilizers) if G is affine (resp. finite).

Proof. A point $x: \operatorname{Spec} K \rightarrow \mathfrak{X}$ corresponds to a G-torsor $P \xrightarrow{p} \operatorname{Spec} K$ with a G-equivariant map $P \xrightarrow{\phi} X$. As P is étale-locally trivial, we have $P \times_{\text {Spec } K}$ $\operatorname{Spec} L \cong G \times \operatorname{Spec} L$ for some finite separable field extension L / K. The G equivariant morphism $G \times \operatorname{Spec} L \xrightarrow{\psi} X$ induced by ϕ corresponds to a point $x^{\prime}=\psi(1) \in X(L)$. Now consider the base change $\operatorname{Stab}_{\mathfrak{X}}(x) \times_{\operatorname{Spec} K} \operatorname{Spec} L$. Its T-points are given by G-equivariant isomorphisms $\alpha: G \times T \rightarrow G \times T$ over T such that $\psi \circ \alpha=\psi$. Hence, we obtain a fiber product:

This shows that $\operatorname{Stab}_{\mathfrak{X}}(x) \times_{\operatorname{Spec} K} \operatorname{Spec} L$ is a subgroup of $G \times \operatorname{Spec} L$, which is, just like $G \times \operatorname{Spec} L$, affine (resp. finite). Since being affine (resp. finite) is local in the étale topology [Stacks, Tag 02L5, Tag 02LA], it follows that $\operatorname{Stab}_{\mathfrak{X}}(x)$ is also affine (resp. finite).

Lemma 1.6.3. Let $f: \mathfrak{X} \rightarrow \mathfrak{Z}$ and $g: \mathfrak{Y} \rightarrow \mathfrak{Z}$ be morphisms between algebraic stacks with affine (resp. finite) stabilizers. Then the fiber product $\mathfrak{X} \times_{\mathfrak{3}} \mathfrak{Y}$ also has affine (resp. finite) stabilizers.

Proof. Pick any point $(x, y, \alpha) \in\left(\mathfrak{X} \times_{\mathfrak{Z}} \mathfrak{Y}\right)(K)$. An automorphism of (x, y, α) consists of morphisms $\beta: x \rightarrow x$ and $\gamma: y \rightarrow y$ such that $\alpha \circ f(\beta)=g(\gamma) \circ \alpha$. That is, the automorphism group of (x, y, α) is precisely the stabilizer of α for the action of $\operatorname{Aut}_{\mathfrak{X}}(x) \times \operatorname{Aut}_{\mathfrak{Y}}(y)$ on $\operatorname{Hom}_{\mathfrak{Z}}(f(x), g(y))$, given by $(\beta, \gamma) \cdot \alpha=$ $g(\gamma) \circ \alpha \circ f(\beta)$. Also note that $\operatorname{Hom}_{\mathcal{Z}}(f(x), g(y)) \cong \operatorname{Aut}_{\mathcal{Z}}(z)$ for any object z of \mathfrak{Z} isomorphic to $f(x) \cong g(y)$. This reasoning shows that the stabilizer of (x, y, α) can be identified as the fiber product in the following cartesian square

where z is again any object of \mathfrak{Z} isomorphic to $f(x) \cong g(y)$. By assumption, all of $\operatorname{Stab}_{\mathfrak{X}}(x), \operatorname{Stab}_{\mathfrak{Y}}(y)$ and $\operatorname{Stab}_{\mathcal{Z}}(z)$ are affine (resp. finite), and therefore, the

Definition 1.6.4. Let \mathfrak{S} be an algebraic stack with affine stabilizers. Let $\mathbf{S t c k}_{\mathfrak{G}}$ be the full subcategory of algebraic stacks of finite type over \mathfrak{S} with affine stabilizers. By Lemma 1.6.3, this category is closed under pullbacks.

The algebraic stacks that appear in this thesis all have affine stabilizers. The following proposition shows that we can think of such algebraic stacks, at least locally, as quotient stacks of quasi-projective schemes by linear groups.

Proposition 1.6.5 ([Kre99, Proposition 3.5.9]). Let \mathfrak{X} be a reduced Artin stack of finite type over a field with affine stabilizers. Then \mathfrak{X} admits a stratification by quotient stacks $\left[X_{i} / \mathrm{GL}_{n_{i}}\right]$ where X_{i} is a quasi-projective scheme.

Chapter 2

Character stacks

In this chapter we will define, and describe various properties of, character stacks, which are the main objects of study in this thesis. Roughly speaking, they are the moduli space of representations of a finitely generated group Γ into a linear algebraic group G. While Γ can be any finitely generated group, it most commonly arises as the fundamental group $\pi_{1}(M, *)$ of a compact manifold M. In fact, every finitely presented group arises in this way. In this case, it is well known that representations $\pi_{1}(M, *) \rightarrow G$ correspond to G-local systems on M [Sza09, Corollary 2.6.2]. Moreover, isomorphic local systems correspond to conjugate representations. Therefore, one is interested in the quotient of the space parametrizing all representations $\Gamma \rightarrow G$ (this space will be called the 'representation variety'), by the action of conjugation by G. This quotient will be the G-character stack of Γ.

2.1 Representation varieties

Fix a base scheme S. Typically, S will be Spec k where k is a field or a finitely generated \mathbb{Z}-algebra. Let G be a linear algebraic group over S, by which we understand a closed subgroup of the group scheme GL_{r} over S for some $r \geq 0$.

Definition 2.1.1. Let Γ be a finitely generated group. The G-representation variety of Γ is the scheme $R_{G}(\Gamma)$ over S whose functor of points is given by

$$
R_{G}(\Gamma)(T)=\operatorname{Hom}(\Gamma, G(T))
$$

Let us explain why $R_{G}(\Gamma)$ is indeed representable. After choosing a presentation

$$
\left.\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{n}\right| r_{i}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=1 \text { for } i \in I\right\rangle
$$

any representation $\rho: \Gamma \rightarrow G(T)$ can be identified with the image of its generators, that is, the tuple $\left(\rho\left(\gamma_{1}\right), \ldots, \rho\left(\gamma_{n}\right)\right) \in G(T)^{n}$. However, not all tuples
in $G(T)^{n}$ define such a representation because of the relations r_{i} between the generators. Every such relation r_{i}, which is a word in the symbols γ_{i}, defines a morphism $r_{i}: G^{n} \rightarrow G$ given on points by $\left(g_{1}, \ldots, g_{n}\right) \mapsto r_{i}\left(g_{1}, \ldots, g_{n}\right)$, and hence a closed subscheme $X_{i} \subseteq G^{n}$ as in the pullback diagram

where e is the unit of G, a closed immersion [Stacks, Tag 047G]. Now, the intersection of all X_{i} over G^{n} realizes $R_{G}(\Gamma)$ as a closed subscheme of G^{n}. This closed subscheme corresponds to the sheaf of ideals in $\mathcal{O}_{G^{n}}$ that is generated by the sheaves of ideals $\mathcal{I}_{i} \subseteq \mathcal{O}_{G^{n}}$ corresponding to the X_{i}. Indeed, we have

$$
R_{G}(\Gamma)(T)=\bigcap_{i \in I}\left\{t \in G(T)^{n} \mid r_{i}(t)=1\right\}=\bigcap_{i \in I} X_{i}(T)=\left(\bigcap_{i \in I} X_{i}\right)(T)
$$

Remark 2.1.2. The G-representation variety $R_{G}(\Gamma)$ will always be separated and of finite type over S, as it is a closed subscheme of G^{n}, which itself is separated and of finite type over S. Moreover, $R_{G}(\Gamma)$ is affine over S, as G^{n} is affine over S. However, the G-representation variety may be non-reduced. For example, it was shown in [LM85, (2.10.4)] that for the von Dyck group $\Gamma=\left\langle a, b, c \mid a^{3}=b^{3}=c^{3}=a b c=1\right\rangle \cong \mathbb{Z}^{2} \rtimes S_{3}$ and $G=\mathrm{GL}_{2}$ over $S=\operatorname{Spec} \mathbb{C}$, the G-representation variety $R_{G}(\Gamma)$ is non-reduced.

For us, the main example of a finitely generated group Γ is the fundamental group of a compact manifold.

Proposition 2.1.3. Let M be a connected compact manifold with a basepoint x. Then $\pi_{1}(M, x)$ is finitely presented.

Proof. Every compact manifold M is homotopy equivalent to a finite CW-complex [Whi40]. Since M is connected, this finite CW-complex can be chosen to consist of a single 0 -cell corresponding to x. It follows that the fundamental group of M has a presentation with a generator for every 1-cell and a relation for every 2-cell, and is therefore finitely presented.

When M is a connected compact manifold, we will simply write $R_{G}(M)$ instead of $R_{G}\left(\pi_{1}(M, x)\right)$ and call it the G-representation variety of M. Note that this scheme is, up to isomorphism, independent of the chosen basepoint x since the fundamental group $\pi_{1}(M, x)$ is, up to isomorphism, independent of x.

Example 2.1.4. - The circle S^{1} has fundamental group $\pi_{1}\left(S^{1}, *\right) \cong \mathbb{Z}$, from which follows that $R_{G}\left(S^{1}\right) \cong G$.

- The fundamental group of a closed orientable surface Σ_{g} of genus g can be presented as $\pi_{1}\left(\Sigma_{g}, *\right)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle$, where $\left[a_{i}, b_{i}\right]=a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$ denotes the commutator. Therefore, $R_{G}\left(\Sigma_{g}\right)$ is the closed subscheme of $G^{2 g}$ given by $\prod_{i=1}^{g}\left[A_{i}, B_{i}\right]=1$.
- Let N_{r} be the connected sum of r projective planes, that is, the non-orientable closed surface of demigenus r. Its fundamental group can be presented as $\pi_{1}\left(N_{r}, *\right)=\left\langle a_{1}, \ldots, a_{r} \mid a_{1}^{2} \cdots a_{r}^{2}=1\right\rangle$. Hence, $R_{G}\left(N_{r}\right)$ is the closed subvariety of G^{r} given by $\prod_{i=1}^{r} A_{i}^{2}=1$.

While the G-representation variety $R_{G}(\Gamma)$ is an interesting object on its own, it cannot quite be regarded as the moduli space of representations of Γ into G. Namely, two different points of $R_{G}(\Gamma)$ might represent isomorphic representations, that is, representations that are related through conjugation. Formulated differently, the linear algebraic group G acts on the G-representation variety by conjugation

$$
(g \cdot \rho)(\gamma)=g \rho(\gamma) g^{-1}
$$

for all $g \in G(T)$ and $\gamma \in R_{G}(\Gamma)(T)$. In this sense, the correct moduli space should be the quotient of $R_{G}(\Gamma)$ by the action of G. Unfortunately, quotients are famously hard in algebraic geometry, and it is not always clear which quotient one wants to take.

One possibility is to take the Geometric Invariant Theory (GIT) quotient as developed by Mumford [Mum65]. Given an affine variety $X=\operatorname{Spec} R$ over a field k with an action of a linear algebraic group G over k, encoded by a ring morphism $\hat{\sigma}: R \rightarrow R \otimes_{k} \mathcal{O}_{G}(G)$, the (affine) GIT quotient of X by G is

$$
X / / G=\operatorname{Spec} R^{G}
$$

where $R^{G}=\{r \in R \mid \hat{\sigma}(r)=r \otimes 1\}$ denotes the subring of invariants of R. The projection $X \rightarrow X / / G$ corresponds to the inclusion $R^{G} \subseteq R$. Even though the GIT quotient can be constructed as a scheme, it was shown by Nagata that in general the resulting scheme need not be of finite type over k [Nag59]. However, he also showed that if G is reductive, the ring of invariants will be finitely generated over $k[\operatorname{Nag} 64]$.

Definition 2.1.5. Let G be a reductive linear algebraic group over a field k, and Γ a finitely generated group. The G-character variety of Γ is the GIT quotient

$$
X_{G}(\Gamma)=R_{G}(\Gamma) / / G
$$

Remark 2.1.6. In the literature, the term ' G-character variety' is also used for a notion which is different, but related, to the above definition. Given a linear
algebraic group $G \subseteq \mathrm{GL}_{n}$ over $k=\mathbb{C}$, one defines

$$
\chi_{G}(\Gamma)=\operatorname{Spec} \mathbb{C}\left[\tau_{\gamma} \mid \gamma \in \Gamma\right]
$$

to be the spectrum of the complex algebra generated by the functions $\tau_{\gamma}: \rho \mapsto$ $\operatorname{tr}(\rho(\gamma))$ on $R_{G}(\Gamma)$. Since the functions τ_{γ} are invariant under the action of G, there is a canonical morphism

$$
X_{G}(\Gamma) \rightarrow \chi_{G}(\Gamma)
$$

While this morphism is known to be an isomorphism for various G, such as SL_{n}, $\mathrm{GL}_{n}, \mathrm{Sp}_{2 n}$ and O_{n}, see [FL11, Theorem A.1] and [Pro76], it fails to be so for other groups, such as $\mathrm{SO}_{2 n}$ [Sik13].

Besides the GIT quotient, there are other ways to construct quotients. In the following sections we will apply the theory of quotient stacks, as encountered in Section 1.5, to take the quotient in the category of stacks, defining the G character stack. One advantage to this approach is that the quotient remembers the automorphisms of the representations. Another advantage is that we do not need to assume that G is reductive.

2.2 Character groupoids

Before we properly introduce the G-character stack, we will first forget all geometry, and let G be an ordinary group. Furthermore, we will allow for a more general setup, with Γ being a groupoid, rather than a group.

Definition 2.2.1. Let G be a group. For any groupoid Γ, the G-character groupoid of Γ, denoted $\mathfrak{X}_{G}(\Gamma)$, is the groupoid whose objects are functors $\rho: \Gamma \rightarrow$ G (where G is seen as a groupoid with a single object), and whose morphisms $\rho_{1} \rightarrow \rho_{2}$ are given by natural transformations $\mu: \rho_{1} \Rightarrow \rho_{2}$.
The map \mathfrak{X}_{G} can naturally be extended to a 2 -functor $\mathfrak{X}_{G}: \mathbf{G r p d} \rightarrow \mathbf{G r p d}^{\mathrm{op}}$. Explicitly:

- For any functor $f: \Gamma^{\prime} \rightarrow \Gamma$ between groupoids, let $\mathfrak{X}_{G}(f): \mathfrak{X}_{G}(\Gamma) \rightarrow \mathfrak{X}_{G}\left(\Gamma^{\prime}\right)$ be the functor given by precomposition $\mathfrak{X}_{G}(f)(\rho)=\rho \circ f$ for any $\rho \in \mathfrak{X}_{G}(\Gamma)$, and $\mathfrak{X}_{G}(f)(\mu)=\mu f$ for any morphism $\mu: \rho_{1} \rightarrow \rho_{2}$.
- For any natural transformation $\eta: f_{1} \Rightarrow f_{2}$ between functors $f_{1}, f_{2}: \Gamma^{\prime} \rightarrow \Gamma$, let $\mathfrak{X}_{G}(\eta): \mathfrak{X}_{G}\left(f_{1}\right) \Rightarrow \mathfrak{X}_{G}\left(f_{2}\right)$ be the natural transformation given by $\left(\mathfrak{X}_{G}(\eta)_{\rho}\right)_{x^{\prime}}=$ $\rho\left(\eta_{x^{\prime}}\right)$ for all $\rho \in \mathfrak{X}_{G}(\Gamma)$ and $x^{\prime} \in \Gamma^{\prime}$. Indeed, this defines a natural transfor-
mation as the square

$$
\begin{gathered}
\rho\left(f_{1}\left(x^{\prime}\right)\right) \xrightarrow{\rho\left(\eta_{x^{\prime}}\right)} \rho\left(f_{2}\left(x^{\prime}\right)\right) \\
\rho\left(f_{1}\left(\gamma^{\prime}\right)\right) \downarrow \\
\rho\left(f_{1}\left(y^{\prime}\right)\right) \xrightarrow{\stackrel{\text { l }}{\left.y_{y^{\prime}}\right)}} \boldsymbol{\downarrow} \rho\left(f_{2}\left(\gamma^{\prime}\right)\right) \\
\rho\left(f_{2}\left(y^{\prime}\right)\right)
\end{gathered}
$$

commutes for every $\gamma^{\prime}: x^{\prime} \rightarrow y^{\prime}$ in Γ^{\prime} by naturality of η, and this is natural in ρ.

Note that \mathfrak{X}_{G} strictly preserves composition of 1-morphisms and 2-morphisms, and therefore defines a strict 2 -functor.

Corollary 2.2.2. An equivalence between groupoids Γ and Γ^{\prime} naturally induces an equivalence between the G-character groupoids $\mathfrak{X}_{G}(\Gamma)$ and $\mathfrak{X}_{G}\left(\Gamma^{\prime}\right)$.

Let us apply the above corollary as follows in the case that G is a finite group. If Γ is a finitely generated groupoid, then it can easily be seen that the groupoid $\mathfrak{X}_{G}(\Gamma)$ is finite. But now it follows from Corollary 2.2 .2 that $\mathfrak{X}_{G}(\Gamma)$ is essentially finite if Γ is essentially finitely generated. Therefore, for G finite, we can restrict \mathfrak{X}_{G} to a 2-functor

$$
\mathfrak{X}_{G}: \text { FGGrpd } \rightarrow \text { FinGrpd }^{\mathrm{op}} .
$$

As before, the main example of a finitely generated groupoid Γ for us comes from a compact manifold.

Definition 2.2.3. Let M be a compact manifold. The fundamental groupoid of M is the groupoid $\Pi(M)$ whose objects are the points of M, and morphisms $x \rightarrow y$ are given by homotopy classes of paths from x to y.

For any smooth map of manifolds $f: M \rightarrow N$, there is an induced a functor $\Pi(f): \Pi(M) \rightarrow \Pi(N)$. In particular, one can think of Π as a functor Π : Mnfd \rightarrow Grpd from the category of manifolds to the category of groupoids. Moreover, Π can be promoted to a 2 -functor if one considers Mnfd as a 2-category where 2-morphisms are given by smooth homotopies.

Note that the fundamental groupoid $\Pi(M)$ is essentially finitely generated when M is a compact manifold. Namely, choosing a basepoint x_{1}, \ldots, x_{n} on each of the finitely many connected component of M, we find that $\Pi(M)$ is equivalent to $\pi_{1}\left(M, x_{1}\right) \sqcup \cdots \sqcup \pi_{1}\left(M, x_{n}\right)$, which is finitely generated by Proposition 2.1.3.

Definition 2.2.4. Let G be a group and let M be a compact manifold. The G-character groupoid of M, denoted $\mathfrak{X}_{G}(M)$, is defined as $\mathfrak{X}_{G}(\Pi(M))$, where $\Pi(M)$ is the fundamental groupoid of M. In particular, if G is finite, $\mathfrak{X}_{G}(M)$ is essentially finite.

Let us elaborate a bit more on the groupoid $\mathfrak{X}_{G}(M)$. Its objects $\rho: \Pi(M) \rightarrow G$ assign to every homotopy class of paths γ an element $\rho(\gamma)$ of G. A morphism from ρ_{1} to ρ_{2} is a natural transformation $\mu: \rho_{1} \Rightarrow \rho_{2}$. Such a natural transformation can be thought of as a function $\mu: M \rightarrow G$ such that $\rho_{2}(\gamma)=\mu(y) \rho_{1}(\gamma) \mu(x)^{-1}$ for any path $\gamma: x \rightarrow y$ in $\Pi(M)$. Such transformations are known in physics as local gauge transformations.

With this characterization, the G-character groupoid can be defined in an alternative way. Let $\mathcal{G}_{\Gamma}=\prod_{x \in \Gamma} G$ be the group of local gauge transformations, which acts on the set $X=\operatorname{Hom}(\Gamma, G)$ via

$$
\left(\left(g_{x}\right)_{x \in \Gamma} \cdot \rho\right)(\gamma)=g_{y} \rho(\gamma) g_{x}^{-1}
$$

for any $\rho \in X$ and $\gamma: x \rightarrow y$ in Γ. Now, the G-character groupoid $\mathfrak{X}_{G}(\Gamma)$ is equivalent to the action groupoid $\left[X / \mathcal{G}_{\Gamma}\right]$. This alternative description will be of crucial importance in defining the G-character stacks.

2.3 Character stacks

The G-character stack will be defined as the geometric analogue of the G-character groupoid, replacing the action groupoid by the quotient stack. Fix a base scheme S and let G be a linear algebraic group over S.

Definition 2.3.1. Let Γ be a finitely generated groupoid. The G-representation variety of Γ is the scheme over S whose functor of points is given by

$$
R_{G}(\Gamma)(T)=\operatorname{Hom}(\Gamma, G(T))
$$

where $G(T)$ is seen as a groupoid with a single object. Completely analogous to the discussion below Definition 2.1.1, the G-representation variety is representable by a closed subscheme of G^{n} for some n.

Importantly, note that $R_{G}(\Gamma)$ is not well-defined up to equivalence of Γ. That is, $R_{G}(\Gamma)$ need not be isomorphic to $R_{G}\left(\Gamma^{\prime}\right)$ even when Γ is equivalent to Γ^{\prime}. This problem will be fixed once we pass to the G-character stack.

Analogous to the previous section, for a finitely generated groupoid Γ, we define the group of local gauge transformations to be the group scheme

$$
\mathcal{G}_{\Gamma}=\prod_{x \in \Gamma} G
$$

which, as a finite product of linear algebraic groups, is again a linear algebraic group over S. It acts naturally on $R_{G}(\Gamma)$, and the action is pointwise given by

$$
\left(\left(g_{x}\right)_{x \in \Gamma} \cdot \rho\right)(\gamma)=g_{y} \rho(\gamma) g_{x}^{-1}
$$

for all $\left(g_{x}\right)_{x \in \Gamma} \in \mathcal{G}_{\Gamma}(T)$ and $\rho \in R_{G}(\Gamma)(T)$ and $\gamma: x \rightarrow y$ in Γ.
Definition 2.3.2. Let Γ be a finitely generated groupoid. The G-character stack of Γ is the quotient stack

$$
\mathfrak{X}_{G}(\Gamma)=\left[R_{G}(\Gamma) / \mathcal{G}_{\Gamma}\right] .
$$

As for the G-character groupoids, we want to extend $\mathfrak{X}_{G}(-)$ to essentially finitely generated groupoids, and promote it to a 2-functor FGGrpd $\rightarrow \mathbf{S t c k}_{S}^{\mathrm{op}}$, where $\mathbf{S t c k}_{S}$ is the category of algebraic stacks of finite type over S with affine stabilizers, as defined in Definition 1.6.4.

Let $f: \Gamma^{\prime} \rightarrow \Gamma$ be a functor between finitely generated groupoids. Such a functor induces a morphism between the representation varieties, given by pullback

$$
f^{*}: R_{G}(\Gamma) \rightarrow R_{G}\left(\Gamma^{\prime}\right), \quad \rho \mapsto \rho \circ f \quad \text { for all } \rho \in R_{G}(\Gamma)(T)
$$

and also a morphism of algebraic groups

$$
\mathcal{G}_{f}: \mathcal{G}_{\Gamma} \rightarrow \mathcal{G}_{\Gamma^{\prime}}, \quad\left(g_{x}\right)_{x \in \Gamma} \mapsto\left(g_{f\left(x^{\prime}\right)}\right)_{x^{\prime} \in \Gamma^{\prime}}
$$

In particular, as described in Remark 1.5.6, there is an induced map on character stacks $\mathfrak{X}_{G}(f): \mathfrak{X}_{G}(\Gamma) \rightarrow \mathfrak{X}_{G}\left(\Gamma^{\prime}\right)$ that sends a $\mathcal{G}_{\Gamma^{-}}$-torsor P to the $\mathcal{G}_{\Gamma^{\prime}}$-torsor $\mathcal{G}_{\Gamma^{\prime}} \times{ }_{\mathcal{G}_{\Gamma}} P$. Note that this construction is functorial in f.
Next, let $\eta: f_{1} \Rightarrow f_{2}$ be a natural transformation between functors $f_{1}, f_{2}: \Gamma^{\prime} \rightarrow \Gamma$. We want to assign a 2-morphism $\mathfrak{X}_{G}(\eta): \mathfrak{X}_{G}\left(f_{1}\right) \Rightarrow \mathfrak{X}_{G}\left(f_{2}\right)$ to this natural transformation, which amounts to, for every \mathcal{G}_{Γ}-torsor P over T with \mathcal{G}_{Γ}-equivariant map $\rho: P \rightarrow R_{G}(\Gamma)$, a morphism of $\mathcal{G}_{\Gamma^{\prime}}$-torsors (as indicated by the dashed arrow) such that the diagram

commutes. Analogous to the case for G-character groupoids, this morphism is given by $\left(g^{\prime}, p\right) \mapsto\left(g^{\prime} \rho(p)\left(\eta_{x^{\prime}}\right), p\right)$. One easily sees that this map is well-defined, that is, respects the \mathcal{G}_{Γ}-action on both sides.

Corollary 2.3.3. Any equivalence between finitely generated groupoids Γ and Γ^{\prime} naturally induces an isomorphism between the G-character stacks $\mathfrak{X}_{G}(\Gamma)$ and $\mathfrak{X}_{G}\left(\Gamma^{\prime}\right)$.

This corollary allows us to extend the definition of the G-character stack to groupoids Γ which are only essentially finitely generated, but only up to a natural isomorphism. In particular, we obtain a 2 -functor

$$
\mathfrak{X}_{G}(-): \text { FGGrpd } \rightarrow \text { Stck }_{S}^{\mathrm{op}} .
$$

We are now able to define the G-character stack of a compact manifold.
Definition 2.3.4. Let M be a compact manifold (possibly with boundary). It was shown that the fundamental groupoid $\Pi(M)$ of M is essentially finitely generated, that is, is equivalent to a finitely generated groupoid Γ. The G-character stack of M is defined as

$$
\mathfrak{X}_{G}(M)=\mathfrak{X}_{G}(\Gamma) .
$$

This definition is, up to isomorphism, independent of the choice of Γ by the above corollary.

Remark 2.3.5. It might be tempting to define the G-character stack of Γ, similar to the G-representation variety, as the category fibered in groupoids over $\mathfrak{S}=\mathbf{S c h}_{S}$ whose fiber over an object T is the G-character groupoid $\mathfrak{X}_{G(T)}(\Gamma)$. However, these groupoids are different as explained in Remark 1.5.9.

Lemma 2.3.6. $\mathfrak{X}_{G}(-)$ sends finite colimits in $\mathbf{F G G r p d}$ to limits in $\mathbf{S t c k}_{S}$.
Proof. Let $\Gamma=\operatorname{colim}_{i \in I} \Gamma_{i}$ be a colimit in FGGrpd. Up to equivalence, we can assume all Γ_{i} and Γ are finitely generated groupoids. A T-point of $\lim _{i \in I} \mathfrak{X}_{G}\left(\Gamma_{i}\right)$ is a collection of $\mathcal{G}_{\Gamma_{i}}$-torsors P_{i} over T with $\mathcal{G}_{\Gamma_{i}}$-equivariant morphisms $\rho_{i}: P_{i} \rightarrow$ $R_{G}\left(\Gamma_{i}\right)$, which are compatible in the sense that there are natural isomorphisms $\mathcal{G}_{\Gamma_{i}} \times \mathcal{G}_{\Gamma_{j}} P_{j} \cong P_{i}$ in $\mathfrak{X}_{G}\left(\Gamma_{i}\right)$ for every $i \rightarrow j$ in I. On the other hand, a T-point of $\mathfrak{X}_{G}(\Gamma)$ is a \mathcal{G}_{Γ}-torsor P over T with a \mathcal{G}_{Γ}-equivariant morphism $\rho: P \rightarrow R_{G}(\Gamma)$. Note that ρ, on T^{\prime}-points, is given by

$$
\rho: P\left(T^{\prime}\right) \rightarrow R_{G}(\Gamma)\left(T^{\prime}\right)=\operatorname{Hom}\left(\operatorname{colim}_{i \in I} \Gamma_{i}, G\left(T^{\prime}\right)\right)=\lim _{i \in I} \operatorname{Hom}\left(\Gamma_{i}, G\left(T^{\prime}\right)\right)
$$

so ρ is equivalently described by compatible morphisms $\rho_{i}: P \rightarrow R_{G}\left(\Gamma_{i}\right)$ which are $\mathcal{G}_{\Gamma_{i}}$-equivariant, where $\mathcal{G}_{\Gamma_{i}}$ acts on P via \mathcal{G}_{Γ}.

These two descriptions are related as follows. From the $\mathcal{G}_{\Gamma^{-}}$-torsor P, one constructs the $\mathcal{G}_{\Gamma_{i}}$-torsors $P_{i}=\mathcal{G}_{\Gamma_{i}} \times \mathcal{G}_{\Gamma} P$, which are naturally compatible. Conversely, from the P_{i} one constructs $\lim _{i \in I} P_{i}$, where the limit is taken as schemes over T, which naturally comes with the structure of a $\left(\lim _{i \in I} \mathcal{G}_{\Gamma_{i}}\right)$-torsor, and one puts $P=\mathcal{G}_{\Gamma} \times\left(\lim _{i \in I} \mathcal{G}_{\Gamma_{i}}\right) \lim _{i \in I} P_{i}$. This induces the desired isomorphism between $\lim _{i \in I} \mathfrak{X}_{G}\left(\Gamma_{i}\right)$ and $\mathfrak{X}_{G}(\Gamma)$.

Chapter 3

Motivic invariants

When studying a geometric object, say a compact manifold X, one can try to understand X by means of its invariants. One of the simplest invariants is the Euler characteristic of X, a topological invariant, which is an integer $\chi(X) \in \mathbb{Z}$ given by the alternating sum of its Betti numbers

$$
\chi(X)=\sum_{k \geq 0}(-1)^{k} \operatorname{dim}_{\mathbb{C}} H^{k}(X ; \mathbb{C})
$$

There are many ways in which the Euler characteristic can be refined. For instance, when X is (the analytification of) a smooth projective complex variety, the cohomology groups $H^{k}(X ; \mathbb{C})$ admit a Hodge structure by the Hodge decomposition theorem [PS08, Theorem 1.8]. The Hodge polynomial of X,

$$
\begin{equation*}
P_{\text {Hodge }}(X)=\sum_{p, q \geq 0} \operatorname{dim}_{\mathbb{C}} H^{p, q}(X) u^{p} v^{q} \in \mathbb{Z}[u, v] \tag{3.1}
\end{equation*}
$$

specializes to the Euler characteristic for $u=v=-1$. One may replace $H^{k}(X ; \mathbb{C})$ by the compactly supported cohomology groups $H_{c}^{k}(X ; \mathbb{C})$ in order to extend the Euler characteristic to non-compact X. Analogously, as explained in Section 3.1, by work of Deligne [Del71b, Del74] the Hodge polynomial can be extended to an invariant for all complex varieties, possibly non-smooth and non-projective, called the E-polynomial $e(X) \in \mathbb{Z}[u, v]$, also known as the Hodge-Deligne polynomial or Serre polynomial. This invariant is additive and multiplicative in the sense that $e(X)=e(Z)+e(X \backslash Z)$ and $e(X \times Y)=e(X) e(Y)$ for all complex varieties X and Y and closed subvarieties $Z \subseteq X$.

The goal of this chapter is to discuss various such invariants, and to give tools for computing them. Our main focus will be on the invariant that takes values in the Grothendieck ring of varieties, defined in Section 3.2, which is universal among all additive and multiplicative invariants.

3.1 Mixed Hodge structures

Let X be a complex variety. It was shown by Deligne [Del71a, Del71b] that the singular cohomology groups with compact support $H_{c}^{k}(X ; \mathbb{Q})$ naturally admit the structure of a mixed Hodge structure. Let us recall the definition of a (mixed) Hodge structure.

Definition 3.1.1. A Hodge structure of weight $k \in \mathbb{Z}$ is a pair $\left(H, F^{\bullet} H\right)$ consisting of a finite-dimensional rational vector space H and a decreasing filtration $F^{\bullet} H$ on $H_{\mathbb{C}}=H \otimes_{\mathbb{Q}} \mathbb{C}$,

$$
H_{\mathbb{C}} \supseteq \cdots \supseteq F^{p} H \supseteq F^{p+1} H \supseteq \cdots \supseteq 0
$$

such that $H_{\mathbb{C}}=F^{p} \oplus \overline{F^{q}}$ for $p+q=k+1$. A morphism of Hodge structures of the same weight $\left(H, F^{\bullet} H\right) \rightarrow\left(H^{\prime}, F^{\bullet} H^{\prime}\right)$ is a linear map $f: H \rightarrow H^{\prime}$ which preserves the filtration, that is, $f_{\mathbb{C}}\left(F^{p} H\right) \subseteq F^{p} H^{\prime}$ for all p. A mixed Hodge structure is a triple $\left(H, W_{\bullet} H, F^{\bullet} H\right)$ consisting of a finite-dimensional rational vector space H, an increasing filtration $W_{\bullet} H$ on H, called the weight filtration,

$$
0 \subseteq \cdots \subseteq W_{k} H \subseteq W_{k+1} H \subseteq \cdots \subseteq H
$$

and a decreasing filtration $F^{\bullet} H$ on $H_{\mathbb{C}}$,

$$
H_{\mathbb{C}} \supseteq \cdots \supseteq F^{p} H \supseteq F^{p+1} H \supseteq \cdots \supseteq 0
$$

such that the induced filtration of $F^{\bullet} H$ on the graded pieces $\left(\mathrm{Gr}_{k}^{W} H\right) \otimes_{\mathbb{Q}} \mathbb{C}=$ $\left(W_{k} H / W_{k+1} H\right) \otimes_{\mathbb{Q}} \mathbb{C}$ are Hodge structures of weight k. A morphism of mixed Hodge structures is a linear map which preserves both the increasing and decreasing filtration. The categories of Hodge structures and of mixed Hodge structures are denoted by HS and MHS, respectively.

Now, more precisely, Deligne showed that the cohomology groups $H_{c}^{k}(X ; \mathbb{Q})$ and their complexification $H_{c}^{k}(X ; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}=H_{c}^{k}(X ; \mathbb{C})$ can naturally be equipped with weight filtrations W_{\bullet} and decreasing filtrations F^{\bullet}, respectively, such that the triples $H_{c}^{k}(X)=\left(H_{c}^{k}(X ; \mathbb{Q}), W_{\bullet}, F^{\bullet}\right)$ are mixed Hodge structures. Moreover, the construction is functorial in X, agrees with the usual Hodge decomposition when X is smooth and projective, and is compatible with various classical exact sequences in cohomology. For the explicit construction and more details, we refer to [Del71b, Del74, PS08].
There is an exact functor from the category of mixed Hodge structures to the category of finite-dimensional bigraded complex vector spaces [Del71b, Theorem 1.2.10]:

$$
\begin{equation*}
\operatorname{Gr}_{F}^{*} \mathrm{Gr}_{*}^{W}: \mathbf{M H S} \rightarrow\left(\operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z} \times \mathbb{Z}}\right)_{\mathrm{fin}}, \quad H \mapsto \bigoplus_{p, q \in \mathbb{Z}} \operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H_{\mathbb{C}} \tag{3.2}
\end{equation*}
$$

In the case of a mixed Hodge structure on $H_{c}^{k}(X ; \mathbb{Q})$, we denote its bigraded pieces by

$$
H_{c}^{k ; p, q}(X)=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H_{c}^{k}(X ; \mathbb{C})
$$

In fact, $H_{c}^{k ; p, q}(X)$ is non-zero only if $p, q \geq 0$. The dimensions of these vector spaces can be collected as the coefficients of a polynomial. This way we obtain the following definition, as first introduced in [DK86].

Definition 3.1.2. Let X be a complex variety. The E-polynomial of X (also known as the Hodge-Deligne polynomial or the Serre polynomial) is the polynomial $e(X) \in \mathbb{Z}[u, v]$ given by

$$
e(X)=\sum_{k, p, q \in \mathbb{Z}}(-1)^{k} \operatorname{dim}_{\mathbb{C}} H_{c}^{k ; p, q}(X) u^{p} v^{q}
$$

In particular, when X is smooth and projective, the E-polynomial $e(X)$ coincides with the Hodge polynomial (3.1), up to the change of signs induced by $u \mapsto-u$ and $v \mapsto-v$.

Amazingly, the E-polynomial is additive and multiplicative, in the sense that

$$
\begin{equation*}
e(X)=e(Z)+e(X \backslash Z) \quad \text { and } \quad e(X \times Y)=e(X) e(Y) \tag{3.3}
\end{equation*}
$$

for complex varieties X and Y, and $Z \subseteq X$ a closed subvariety. These properties follow from the long exact sequence

$$
\begin{equation*}
\cdots \rightarrow H_{c}^{k}(X \backslash Z ; \mathbb{C}) \rightarrow H_{c}^{k}(X ; \mathbb{C}) \rightarrow H_{c}^{k}(Z ; \mathbb{C}) \rightarrow H_{c}^{k+1}(X \backslash Z ; \mathbb{C}) \rightarrow \cdots \tag{3.4}
\end{equation*}
$$

of mixed Hodge structures [PS08, p.138], and the Künneth formula [Del74, Proposition 8.2.10], respectively, together with the fact that (3.2) is exact.

3.2 Grothendieck ring of varieties

As seen in the previous section, the E-polynomial is an additive and multiplicative invariant (3.3). In this section, we will define the Grothendieck ring of varieties: the ring in which the universal invariant, among all additive and multiplicative invariants, takes values. This means, in particular, that when computing the E-polynomial of some complex variety using only these properties, one might as well compute the invariant in the Grothendieck ring of varieties, to obtain a more refined invariant. One of the advantages to the Grothendieck ring of varieties is that, as opposed to other invariants, it can be defined for varieties over any field k, and also more generally in the relative setting for varieties over a base variety S.

The Grothendieck ring of varieties $\mathrm{K}_{0}\left(\mathbf{V a r}_{k}\right)$ was originally introduced in a letter from Grothendieck to Serre [CS01, 16 Aug. 1964], and came with a hypothetical morphism

$$
\begin{equation*}
\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow \mathrm{K}_{0}(\mathbf{M}(k)) \tag{3.5}
\end{equation*}
$$

to the 'Grothendieck group of the abelian category of motives'. For this reason, we refer to these invariants as motivic invariants. To gain some understanding about this morphism, we first introduce the Grothendieck group of an abelian or triangulated category.

Definition 3.2.1. The Grothendieck group of an abelian category \mathcal{A}, denoted $\mathrm{K}_{0}(\mathcal{A})$, is the free abelian group on isomorphism classes $[A]$ of objects A of \mathcal{A}, modulo the relations

$$
[B]=[A]+[C]
$$

for all short exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in \mathcal{A}. Similarly, the Grothendieck group of a triangulated category \mathcal{A}, also denoted $\mathrm{K}_{0}(\mathcal{A})$, is the free abelian group on isomorphism classes $[A]$ of objects A of \mathcal{A}, modulo the relations

$$
[B]=[A]+[C]
$$

for all distinguished triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$ in \mathcal{A}. When \mathcal{A} is a tensor triangulated category, the tensor product \otimes induces the structure of a commutative ring on $\mathrm{K}_{0}(\mathcal{A})$ given on generators by

$$
[A][B]=[A \otimes B]
$$

Remark 3.2.2. The Grothendieck group of an abelian category \mathcal{A} is naturally isomorphic to that of its derived category $D^{b}(\mathcal{A})$ as triangulated category. In particular, the functor $\mathcal{A} \rightarrow D^{b}(\mathcal{A})$, which assigns to any object A the complex with A concentrated in degree 0 , induces a morphism $\mathrm{K}_{0}(\mathcal{A}) \rightarrow \mathrm{K}_{0}\left(D^{b}(\mathcal{A})\right)$. It is an easy exercise in homological algebra to show that an inverse is given by $\left[A^{\bullet}\right] \mapsto \sum_{i \in \mathbb{Z}}(-1)^{i}\left[H^{i}\left(A^{\bullet}\right)\right]$.

Even though the category of varieties is neither abelian nor triangulated (not even additive), the Grothendieck ring of varieties is defined similarly, where exact sequences are replaced by closed immersions with open complements. For many invariants, these notions can be related through a long exact sequence such as (3.4).

Definition 3.2.3. Let S be a variety over a field k. The Grothendieck ring of varieties over S, denoted $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$, is the free abelian group on isomorphism classes $[X]$ of varieties X over S, modulo the relations

$$
[X]=[Z]+[X \backslash Z]
$$

for all closed immersions $Z \rightarrow X$ of varieties over S. It admits the structure of a commutative ring, where multiplication is given on generators by

$$
[X][Y]=\left[\left(X \times_{S} Y\right)^{\mathrm{red}}\right]
$$

In particular, the classes $[\varnothing]$ and $[S]$ are the zero and unit of this ring, respectively. For any variety X over S, the element $[X]$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ is also known as the virtual class of X.

Remark 3.2.4. Although the Grothendieck ring is generated by isomorphism classes of varieties X, one could allow for X to be non-reduced without affecting the ring. Indeed, $X^{\text {red }} \subseteq X$ is a closed subscheme with complement \varnothing, so that $\left[X^{\mathrm{red}}\right]=[X]$. Also, in this case, one can define multiplication simply by $[X][Y]=$ [$X \times_{S} Y$]. Similarly, we can omit the condition that X be separated since any scheme X of finite type over S can be partitioned into finitely many separated subschemes X_{1}, \ldots, X_{n}, so that $[X]=\left[X_{1}\right]+\cdots+\left[X_{n}\right]$. However, we cannot permit any X which is not quasi-compact over S. For example, if $X=\bigsqcup_{\mathbb{Z}} S$ and $Z=S$, then $X \backslash Z \cong X$ which would imply $1=[Z]=0$, collapsing the ring to the trivial ring. Indeed, Grothendieck originally defined his ring allowing for isomorphism classes of all schemes X of finite type over S [CS01, 16 Aug. 1964].

Notation 3.2.5. To distinguish between virtual classes over different bases, we sometimes write $[X]_{S}$ to emphasize the virtual class lives in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$. When the base S is clear from context, or when $S=$ Spec k, we simply write $[X]$.

Definition 3.2.6. The virtual class of the affine line \mathbb{A}_{S}^{1} over S in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ is called Lefschetz class and is denoted by \mathbb{L}.

Example 3.2.7. . The virtual class of affine n-space is $\left[\mathbb{A}_{S}^{n}\right]_{S}=\mathbb{L}^{n}$ for any $n \geq 0$.

- Since $\mathbb{P}_{S}^{n} \backslash \mathbb{P}_{S}^{n-1} \cong \mathbb{A}_{S}^{n}$, it follows by induction on n that $\left[\mathbb{P}_{S}^{n}\right]_{S}=\mathbb{L}^{n}+\mathbb{L}^{n-1}+$ $\cdots+1$ for all $n \geq 0$.

Example 3.2.8. The following invariants are additive and multiplicative, and hence factor through the Grothendieck ring of varieties.

- For $S=\operatorname{Spec} \mathbb{C}$, the E-polynomial (see Definition 3.1.2) factors through $\mathrm{K}_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$, which gives a ring morphism

$$
\begin{equation*}
e: \mathrm{K}_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) \rightarrow \mathbb{Z}[u, v], \quad[X] \mapsto e(X) \tag{3.6}
\end{equation*}
$$

- For any point $\operatorname{Spec} \mathbb{F}_{q} \rightarrow S$, one can count \mathbb{F}_{q}-rational points

$$
\#_{\mathbb{F}_{q}}: \operatorname{Ob}\left(\operatorname{Var}_{S}\right) \rightarrow \mathbb{Z}, \quad X \mapsto\left|X\left(\mathbb{F}_{q}\right)\right|
$$

This map, being additive and multiplicative, factors through $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$.

- Let $S=\operatorname{Spec} k$ for a field k with $\operatorname{char}(k)=0$. Then there is a ring morphism

$$
\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow \mathrm{K}_{0}\left(\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(k, \mathbb{Q})\right)
$$

to the Grothendieck group of the \mathbb{Q}-linearization of Voevodsky's triangulated category of effective geometric motives [BD07, Appendix A]. This morphism sends the virtual class $[X]$ of a variety X over k to the class $\left[M_{\mathrm{gm}}^{c}(X)\right]$ of its motive with compact support. Viewing $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(k, \mathbb{Q})$ as a substitute for the derived category of the 'abelian category of motives', this map would be the morphism (3.5) that Grothendieck had in mind in his letter.

- Again, let $S=\operatorname{Spec} k$ for a field k with $\operatorname{char}(k)=0$. Then there is a ring morphism

$$
\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{C H M o t}_{k}\right)
$$

to the Grothendieck group of the category of Chow motives over k with rational coefficients [GN02, (5.5)].

Let us describe some formal and functorial properties of the Grothendieck ring of varieties. Given a morphism $f: X \rightarrow Y$ of varieties over S, there is an induced ring morphism

$$
f^{*}: \mathrm{K}_{0}\left(\operatorname{Var}_{Y}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{X}\right), \quad[W]_{Y} \mapsto\left[W \times_{Y} X\right]_{X}
$$

Indeed, this map is well-defined since, for any variety W over Y and closed subvariety $Z \subseteq W$, we have $\left[W \times_{Y} X\right]_{X}=\left[Z \times_{Y} X\right]_{X}+\left[(W \backslash Z) \times_{Y} X\right]_{X}$. Similarly, f^{*} respects multiplication as $\left(W \times_{Y} W^{\prime}\right) \times_{Y} X \cong\left(W \times_{Y} X\right) \times_{X}\left(W^{\prime} \times_{Y} X\right)$ for any varieties W and W^{\prime} over Y. The morphism f^{*} turns $\mathrm{K}_{0}\left(\operatorname{Var}_{X}\right)$ into a $\mathrm{K}_{0}\left(\operatorname{Var}_{Y}\right)$-algebra, and in particular $\mathrm{K}_{0}\left(\operatorname{Var}_{X}\right)$ is a $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$-algebra for every variety X over S. Moreover, f^{*} is a morphism of $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$-algebras.
Similarly, the morphism $f: X \rightarrow Y$ induces a map

$$
f_{!}: \mathrm{K}_{0}\left(\operatorname{Var}_{X}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{Y}\right), \quad[W]_{X} \mapsto[W]_{Y}
$$

which is a morphism of $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$-modules. However, note that $f_{!}$is generally not a morphism of rings.

Remark 3.2.9. The maps f^{*} and $f_{!}$can more generally be seen as functors

$$
\operatorname{Var}_{X} \underset{f^{*}}{\stackrel{f_{!}}{\rightleftarrows}} \operatorname{Var}_{Y}
$$

given by pulling back along f and post-composing with f, respectively, forming an adjoint pair $f_{!} \dashv f^{*}$. Indeed, for any varieties U over X and V over Y there is a natural bijection

$$
\operatorname{Hom}_{Y}(U, V) \cong \operatorname{Hom}_{X}\left(U, V \times_{Y} X\right)
$$

Example 3.2.10. Let X and Y be varieties over S. There is a natural morphism of $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$-algebras

$$
\mathrm{K}_{0}\left(\operatorname{Var}_{X}\right) \otimes_{\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)} \mathrm{K}_{0}\left(\operatorname{Var}_{Y}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{X \times{ }_{S} Y}\right)
$$

given, on generators, by $[U]_{X} \otimes[V]_{Y} \mapsto\left[U \times_{S} V\right]_{X \times{ }_{S} Y}$ for all varieties U over X and V over Y. This map is generally not surjective. For example, let $X=$ $Y=\mathbb{A}_{k}^{1}$ over $S=\operatorname{Spec} k$ for a finite field $k=\mathbb{F}_{q}$. Consider the class $\left[\Delta_{\mathbb{A}_{k}^{1}}\right]$ of the diagonal in $X \times Y=\mathbb{A}_{k}^{2}$, and suppose [$\Delta_{\mathbb{A}_{k}^{1}}$] is equal to the image of $\sum_{i=1}^{n} u_{i} \otimes v_{i}$ under this map for some $u_{i}, v_{i} \in \mathrm{~K}_{0}\left(\mathbf{V a r}_{\mathbb{A}_{k}^{1}}\right)$. Note that every $\mathbb{F}_{q^{m} \text {-rational point }}$ $x \in \mathbb{A}_{k}^{1}\left(\mathbb{F}_{q^{m}}\right)$ induces a ring morphism

$$
\# x: \mathrm{K}_{0}\left(\operatorname{Var}_{\mathbb{A}_{k}^{1}}\right) \rightarrow \mathbb{Z}, \quad\left[U \xrightarrow{f} \mathbb{A}_{k}^{1}\right] \mapsto\left|f^{-1}(x)\right|
$$

counting the number of $\mathbb{F}_{q^{m} \text {-rational points }}$ in the fiber over x. The same construction works for \mathbb{A}_{k}^{2}, and together they induce the following commutative diagram.

Now, the image of $\left[\Delta_{\mathbb{A}_{k}^{1}}\right]$ in $\mathbb{Z}^{q^{m} \times q^{m}}$ corresponds to the $q^{m} \times q^{m}$ identity matrix, which has rank q^{m}, while the image of $\sum_{i=1}^{n} u_{i} \otimes v_{i}$ has rank at most n. This yields a contradiction for sufficiently large m.

3.3 Stratifications and fibrations

Let S be a variety over a field k.
Definition 3.3.1. Let X be a variety over S. A stratification of X is a collection of disjoint locally closed subvarieties $\left\{X_{i}\right\}_{i \in I}$ of X such that $X=\bigcup_{i \in I} X_{i}$.

Lemma 3.3.2 ([Bri12, Lemma 2.2]). Let X be a variety over S and $\left\{X_{i}\right\}_{i \in I}$ a stratification of X. Then only finitely many of the X_{i} are non-empty and $[X]=\sum_{i \in I}\left[X_{i}\right]$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$.

Proof. Proof by induction on the dimension of X. If $\operatorname{dim} X=0$, then X is a finite set of points, and the result is clear. Now assume that $\operatorname{dim} X>0$ and that the result holds for all varieties of dimension less than $\operatorname{dim} X$.

We prove the result for X by induction on the number of irreducible components of X. If this number is 1 , that is, X is irreducible, then some $U=X_{i}$ contains the generic point of X and is therefore open. The complement $Z=X \backslash U$ is of smaller dimension than X and is stratified by the other X_{i}. Since $[X]=[Z]+[U]$, the result follows from the induction hypothesis (on $\operatorname{dim} X$).

Now suppose that X is reducible. Take an irreducible component and remove the intersections with the other irreducible components, which gives an irreducible open subset $U \subseteq X$. The complement $Z=X \backslash U$ is a closed subvariety with fewer irreducible components than X. Note that $\left\{Z \cap X_{i}\right\}_{i \in I}$ and $\left\{U \cap X_{i}\right\}_{i \in I}$ are stratifications of Z and U, respectively, so only finitely many strata are nonempty, and we have

$$
[U]=\sum_{i \in I}\left[U \cap X_{i}\right] \quad \text { and } \quad[Z]=\sum_{i \in I}\left[Z \cap X_{i}\right]
$$

This follows, if $\operatorname{dim} Z$ (resp. $\operatorname{dim} U$) is less than $\operatorname{dim} X$, from the induction hypothesis on the dimension, or, if $\operatorname{dim} Z$ (resp. $\operatorname{dim} U$) is equal to $\operatorname{dim} X$, from the induction hypothesis on the number of irreducible components. Finally, $\left[X_{i}\right]=\left[U \cap X_{i}\right]+\left[Z \cap X_{i}\right]$ implies that $[X]=[U]+[Z]=\sum_{i \in I}\left[X_{i}\right]$.

Lemma 3.3.3. Let $f: Y \rightarrow X$ be a fiber bundle of varieties over S with fiber F which is locally trivial in the Zariski topology. That is, there exists an open cover $Y=\cup_{i \in I} U_{i}$ such that $f^{-1}\left(U_{i}\right)$ is isomorphic to $F \times U_{i}$ over U_{i} for each $i \in I$. Then $[Y]_{S}=[F] \cdot[X]_{S}$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$.

Proof. From the given open cover, we construct a stratification of Y as follows. Let $Z_{0}=Y$ and inductively construct Z_{j+1} for $j \geq 0$: if $Z_{j} \neq \varnothing$, there exists some $i \in I$ such that $Z_{j} \cap U_{i} \neq \varnothing$, and set $Z_{j+1}=Z_{j} \backslash\left(Z_{j} \cap U_{i}\right)$. As Y is noetherian, this results in a finite descending chain of closed sets

$$
Y=Z_{0} \supsetneq Z_{1} \supsetneq \ldots \supsetneq Z_{n} \supsetneq Z_{n+1}=\varnothing
$$

and the locally closed sets $Y_{j}=Z_{j} \backslash Z_{j+1}$ for $j=0,1, \ldots, n$ form a stratification of Y. Moreover, since $Y_{j} \subseteq U_{i}$ for some i by construction, f is trivial over each Y_{j}, that is, $f^{-1}\left(Y_{j}\right) \cong F \times Y_{j}$. Using Lemma 3.3.2 we conclude

$$
[X]_{S}=\sum_{j=0}^{n}\left[f^{-1}\left(Y_{j}\right)\right]_{S}=\sum_{j=0}^{n}[F] \cdot\left[Y_{j}\right]_{S}=[F] \cdot[Y]_{S}
$$

Example 3.3.4. For any $n \geq 0$, the natural morphism $\mathbb{A}_{S}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}_{S}^{n}$ is a fiber bundle with fiber \mathbb{G}_{m} which is locally trivial in the Zariski topology. Indeed, we have

$$
\left[\mathbb{G}_{m}\right] \cdot\left[\mathbb{P}_{S}^{n}\right]_{S}=(\mathbb{L}-1)\left(\mathbb{L}^{n}+\cdots+\mathbb{L}+1\right)=\mathbb{L}^{n+1}-1=\left[\mathbb{A}_{S}^{n+1} \backslash\{0\}\right]_{S}
$$

Example 3.3.5. Consider the general linear group GL_{n} of rank n over a field k. The morphism $\mathrm{GL}_{n} \rightarrow$ Spec k factors as

$$
\mathrm{GL}_{n}=Y_{n} \rightarrow Y_{n-1} \rightarrow \cdots \rightarrow Y_{0}=\operatorname{Spec} k
$$

where $Y_{m} \subseteq$ Mat $_{n \times m}$ denotes the locally closed subvariety of m-linearly independent vectors over k, and the morphisms are given by forgetting the last vector. Now, for any $m=1, \ldots, n$, the variety Y_{m} can be regarded as the open complement in $Y_{m-1} \times \mathbb{A}_{k}^{n}$ of the closed subvariety $Y_{m-1} \times \mathbb{A}_{k}^{m-1}$. In particular, $\left[Y_{m}\right]=\left(\mathbb{L}^{n}-\mathbb{L}^{m-1}\right)\left[Y_{m-1}\right]$. Therefore, by induction on m, we obtain

$$
\left[\mathrm{GL}_{n}\right]=\prod_{m=1}^{n}\left(\mathbb{L}^{n}-\mathbb{L}^{m-1}\right)
$$

Proposition 3.3.6. Let S be a variety with stratification $\left\{S_{i}\right\}_{i \in I}$ and write $f_{i}: S_{i} \rightarrow S$ for the immersion of S_{i} into S. Then the map

$$
\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right) \rightarrow \bigoplus_{i \in I} \mathrm{~K}_{0}\left(\operatorname{Var}_{S_{i}}\right), \quad X \mapsto\left(f_{i}^{*} X\right)_{i \in I}
$$

is an isomorphism of $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-algebras.
Proof. Every f_{i}^{*} is a morphism of $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-algebras, so this map is as well. Its inverse is given by $\left(X_{i}\right)_{i \in I} \mapsto \sum_{i \in I}\left(f_{i}\right)$! X_{i}, which is well-defined because only finitely many S_{i} are non-empty by Lemma 3.3.2. Indeed, it is a right inverse to the given map because

$$
f_{i}^{*}\left(f_{j}\right)!=\left\{\begin{array}{cc}
\operatorname{id}_{\mathrm{K}_{0}\left(\operatorname{Var}_{S_{i}}\right)} & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
$$

It is a left inverse because any variety T over S is stratified by $\left\{T \times{ }_{S} S_{i}\right\}_{i \in I}$, so that

$$
[T]_{S}=\sum_{i \in I}\left[T \times_{S} S_{i}\right]_{S}=\sum_{i \in I}\left(f_{i}\right)_{!} f_{i}^{*}[T]_{S}
$$

Notation 3.3.7. For any $X \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S}\right)$, we will write $\left.X\right|_{S_{i}} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S_{i}}\right)$ for the components of the image of X under this isomorphism.

Inclusion-exclusion matrix

Let X be a variety over S with stratification $\left\{X_{i}\right\}_{i \in I}$ and let Y be a variety over X. The goal of this subsection is to show that, in order to compute the virtual classes $\left[Y \times_{X} X_{i}\right]$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ for all i, it is sufficient to compute the virtual classes $\left[Y \times_{X} \bar{X}_{i}\right]$ for all i instead, where \bar{X}_{i} denotes the Zariski closure of X_{i} in X, making use of an inclusion-exclusion principle.

Example 3.3.8. Suppose X is stratified by a closed subvariety $X_{0} \subseteq X$ and its open complement $X_{1}=X \backslash X_{0}$. If we were to compute $\left[X_{0}\right]$ and $\left[X_{1}\right]$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$, computing the latter would likely result in the computation $[X]-\left[X_{0}\right]$, so that the result of the computation of $\left[X_{0}\right]$ can be reused. Therefore, instead of computing [X_{0}] and $\left[X_{1}\right]$, one can compute $\left[\bar{X}_{0}\right]=\left[X_{0}\right]$ and $\left[\bar{X}_{1}\right]=[X]$, from which formally follows that $\left[X_{1}\right]=\left[\bar{X}_{1}\right]-\left[\bar{X}_{0}\right]$.

Lemma 3.3.9. Let X be a variety over S with stratification $\left\{X_{i} \neq \varnothing\right\}_{i \in I}$. Then $\bar{X}_{i}=\bar{X}_{j}$ if and only if $i=j$.

Proof. For each $i \in I$, write $X_{i}=Z_{i} \cap U_{i}$ for some closed $Z_{i} \subseteq X$ and open $U_{i} \subseteq X$. Without loss of generality, we may assume $Z_{i}=\bar{X}_{i}$. Now, if $\bar{X}_{i}=\bar{X}_{j}$ for some $i, j \in I$, then both X_{i} and X_{j} are open and dense in $\bar{X}_{i}=\bar{X}_{j} \neq \varnothing$, so they must intersect. But this contradicts the assumption that X_{i} and X_{j} are disjoint, since they are part of the stratification.

Definition 3.3.10. Let X be a variety over S with a finite stratification $\left\{X_{i} \neq\right.$ $\varnothing\}_{i \in I}$. Put a partial order on I where $i \leq j$ if and only if $\bar{X}_{i} \subseteq \bar{X}_{j}$. Reflexivity and transitivity are clear, and anti-symmetry follows from the above lemma. The virtual classes $\left[X_{i}\right]$ and $\left[\bar{X}_{i}\right]$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ are now linearly related through

$$
\left[\bar{X}_{i}\right]=\sum_{j \in I} A_{i j}\left[X_{j}\right]
$$

where $A_{i j}=1$ for $j \leq i$ and $A_{i j}=0$ for $i<j$. Hence, the $A_{i j}$ define a linear map $A: \mathbb{Z}^{I} \rightarrow \mathbb{Z}^{I}$ with determinant 1 . The inverse $C=A^{-1}$ is called the inclusionexclusion matrix of the stratification, and satisfies

$$
\left[X_{i}\right]=\sum_{j \in I} C_{i j}\left[\bar{X}_{j}\right]
$$

Corollary 3.3.11. Let X be a variety over S with finite stratification $\left\{X_{i}\right\}_{i \in I}$ and corresponding inclusion-exclusion matrix C. Then for any variety Y over X, we have

$$
\left[Y \times_{X} X_{i}\right]_{S}=\sum_{j \in I} C_{i j}\left[Y \times_{X} \bar{X}_{j}\right]_{S} .
$$

Special algebraic groups

Special algebraic groups were first introduced by Serre [Ser58]. In this section, we describe some basic properties of these groups, and show why they are extremely useful in the context of computing virtual classes.

Definition 3.3.12. An algebraic group G over a field k is special if any G-torsor in the étale topology is locally trivial in the Zariski topology.

Lemma 3.3.13. Let G be a special algebraic group. Then for every G-torsor of varieties $P \rightarrow X$ in the étale topology over S, we have $[P]_{S}=[G] \cdot[X]_{S}$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$.

Proof. The G-torsor $P \rightarrow X$ is Zariski-locally trivial, so the result follows from Lemma 3.3.3.

Example 3.3.14. In general, the equality $[P]_{S}=[G] \cdot[X]_{S}$ fails to hold when G is not special. Consider for instance the cyclic group $G=\mathbb{Z} / n \mathbb{Z}$ and the G-torsor $P=\mathbb{A}_{\mathbb{C}}^{1} \backslash\{0\} \rightarrow \mathbb{A}_{\mathbb{C}}^{1} \backslash\{0\}=X$ given by $x \mapsto x^{n}$. Then $[P]=\mathbb{L}-1 \neq n(\mathbb{L}-1)=$ $[G][X]$ for $n \geq 2$, showing $\mathbb{Z} / n \mathbb{Z}$ is not special for $n \geq 2$.

Corollary 3.3.15 (Motivic orbit-stabilizer theorem). Let G be an algebraic group over k acting on a variety X. For any point $\xi \in X(k)$, if the stabilizer $\operatorname{Stab}(\xi)$ is special, then

$$
[G]=[\operatorname{Stab}(\xi)][\operatorname{Orbit}(\xi)]
$$

in $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$.
Proof. Since the map $G \rightarrow \operatorname{Orbit}(\xi)$ given by $g \mapsto g \cdot \xi$ is a $\operatorname{Stab}(\xi)$-torsor, the result follows from Lemma 3.3.13.

Proposition 3.3.16. Let $1 \rightarrow N \hookrightarrow G \xrightarrow{\pi} H \rightarrow 1$ be an exact sequence of algebraic groups.
(i) If N and H are special, then so is G.
(ii) If the sequence splits and G is special, then so is H.
(iii) If the sequence splits and G is special, then so is N.

Proof. (i) Any G-torsor $X \rightarrow S$ can be written as the composite of the N-torsor $X \rightarrow X / N$ and the H-torsor $X / N \rightarrow X / G \cong S$. As H is special, there exist opens $S_{i} \subseteq S$ such that $(X / N) \times_{S} S_{i} \cong H \times S_{i}$. Pulling back the N-torsor $X \times{ }_{S} S_{i} \rightarrow H \times S_{i}$ along $S_{i} \xrightarrow{(1, \text { id })} H \times S_{i}$ gives an N-torsor $Y_{i} \rightarrow S_{i}$, which is also Zariski-locally trivial as N is special. Hence, there exist opens $S_{i j} \subseteq S_{i}$ such that $Y_{i} \times{ }_{S_{i}} S_{i j} \cong N \times S_{i j}$. There is now a natural morphism $G \times S_{i j} \rightarrow X \times{ }_{S} S_{i j}$ of G-torsors over $S_{i j}$, which must be an isomorphism. Therefore, $X \rightarrow S$ is Zariski-locally trivial.
(ii) As sequence splits, there exists a section $\sigma: H \rightarrow G$ to π, i.e., $\pi \circ \sigma=\mathrm{id}_{H}$. Let $X \rightarrow S$ be an H-torsor, and consider the G-torsor $G \times_{H} X:=(G \times X) / H \rightarrow S$, where H acts on $G \times X$ via $h \cdot(g, x)=\left(g \sigma(h)^{-1}, h \cdot x\right)$. This G-torsor factors
through the N-torsor $G \times_{H} X \rightarrow X$ given by $(g, x) \mapsto \pi(g) \cdot x$. Hence, any trivialization of $G \times_{H} X$ induces a trivialization of X, and such a trivialization exists as G is special.
(iii) Let $X \rightarrow S$ be an N-torsor, and consider the G-torsor $G \times_{N} X:=(G \times$ $X) / N \rightarrow S$, where N acts on $G \times X$ via $n \cdot(g, x)=\left(g n^{-1}, n \cdot x\right)$. As G is special, there exist opens $S_{i} \subseteq S$ and G-equivariant isomorphism $\varphi_{i}:\left(G \times{ }_{N} X\right) \times{ }_{S} S_{i} \rightarrow$ $G \times S_{i}$. These induce N-equivariant isomorphisms $X \times{ }_{S} S_{i} \rightarrow N \times S_{i}$ given by $(x, s) \mapsto\left(g \sigma\left(\pi\left(g^{-1}\right)\right), s\right)$, where $(g, s)=\varphi_{i}((1, x), s)$, showing the S_{i} also trivialize X.

Example 3.3.17. - By Hilbert's Theorem 90, the general linear groups GL $_{n}$ are special over any field k [Mil80, Proposition III.4.9, Lemma III.4.10].

- The exact sequence $1 \rightarrow \mathrm{SL}_{n} \rightarrow \mathrm{GL}_{n} \xrightarrow{\text { det }} \mathbb{G}_{m} \rightarrow 1$ splits, so it follows from Proposition 3.3.16 (iii) that SL_{n} is also special over any field k.
- The additive group \mathbb{G}_{a} is special over any field k [Mil80, Proposition III.3.7].
- The projective linear group PGL_{n} is not special for $n \geq 2$. In fact, the $\mathrm{PGL}_{n}{ }^{-}$ torsors over a variety X which are not Zariski-locally trivial are classified by the Brauer group of X, which is in general non-trivial [Mil80, IV §2].

3.4 Algorithmic computations

Let k be a field. In this section, we describe, from a practical and computational point of view, various strategies for computing the virtual class of varieties in $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$, in terms of the classes of some simple varieties, such as $\mathbb{L}=\left[\mathbb{A}_{k}^{1}\right]$. These strategies are combined in a recursive algorithm, Algorithm 3.4.3. We remark already that the algorithm will not be a general recipe for computing virtual classes in $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$: it is allowed to fail. In fact, whenever the algorithm does not fail, it will return the virtual class of the given variety as a polynomial in \mathbb{L}. Of course, there exist varieties whose virtual class is not of this form, but it turns out that this algorithm is sufficiently general for the purposes of the later chapters.
In order to algorithmically manipulate varieties, we will encode them as follows. While not all varieties can be encoded in such a way, this should not be too much of a restriction since any variety can be stratified into varieties of this form.

Notation 3.4.1. Let $A=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite set, and let F and G be finite subsets of $k[A]$. Then we write

$$
X(A, F, G)
$$

for the reduced locally closed subvariety of $\mathbb{A}_{k}^{n}=\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right]$ given by $f=0$ for all $f \in F$ and $g \neq 0$ for all $g \in G$.

Furthermore, we will introduce a notation for the evaluation of polynomials.
Notation 3.4.2. Given an element $x \in A$ and polynomials $f \in k[A]$ and $u \in$ $k[A \backslash\{x\}]$, denote by $\operatorname{eval}_{u}^{x}(f)$ the evaluation of f in $x=u$. For polynomials $u, v \in k[A \backslash\{x\}]$, write $\operatorname{eval}_{u / v}^{x}(f)$ for the evaluation of f in $x=u / v$ multiplied by $v^{\operatorname{deg}_{x}(f)}$, so that $\operatorname{eval}_{u / v}^{x}(f) \in k[A \backslash\{x\}]$. Similarly, for subsets $F \subseteq k[A]$, write $\operatorname{eval}_{u}^{x}(F)=\left\{\operatorname{eval}_{u}^{x}(f): f \in F\right\}$ and $\operatorname{eval}_{u / v}^{x}(F)=\left\{\operatorname{eval}_{u / v}^{x}(f): f \in F\right\}$.

An implementation of this algorithm can be found at [Vog22].
Algorithm 3.4.3. Input: Finite sets A, F and G as in Notation 3.4.1.
Output: The virtual class $[X] \in \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$ of $X=X(A, F, G)$ as a polynomial in $\mathbb{L}=\left[\mathbb{A}_{k}^{1}\right]$.

1. If F contains a non-zero constant or if $0 \in G$, then $X=\varnothing$, so return $[X]=0$.
2. If $F=G=\varnothing$ or $A=\varnothing$, then $X=\mathbb{A}_{k}^{|A|}$, so return $[X]=\mathbb{L}^{|A|}$.
3. If $F, G \subseteq k[A \backslash\{x\}]$ for some $x \in A$, then $X \cong \mathbb{A}_{k}^{1} \times X^{\prime}$ with $X^{\prime}=$ $X(A \backslash\{x\}, F, G)$, so return $[X]=\mathbb{L}\left[X^{\prime}\right]$.
4. If $f=u^{n}$ (with $n>1$) for some $f \in F$ and $u \in k[A]$, then we replace f with u without changing X, that is, $X=X(A,(F \backslash\{f\}) \cup\{u\}, G)$. Similarly, if $g=u^{n}$ (with $n>1$) for some $g \in G$ and $u \in k[A]$, then $X=X(S, F,(G \backslash$ $\{g\}) \cup\{u\})$. Continue with this new presentation.
5. If $f \in k[x]$ for some $f \in F$ and $x \in A$, and if f factors as $f=c(x-$ $\left.a_{1}\right) \cdots\left(x-a_{m}\right)$ for some $c \in k^{\times}$and $a_{i} \in k$, then return $[X]=\sum_{i=1}^{m}\left[X_{i}\right]$ with

$$
X_{i}=X\left(A \backslash\{x\}, \operatorname{eval}_{a_{i}}^{x}(F \backslash\{f\}), \operatorname{eval}_{a_{i}}^{x}(G)\right)
$$

6. Suppose $f=u v$ for some $f \in F$ and non-constant $u, v \in k[A]$. Then X is stratified by its closed subvariety given by $u=0$ and its open complement given by $u \neq 0$ and $v=0$. Hence, return $[X]=\left[X_{1}\right]+\left[X_{2}\right]$ with

$$
\begin{aligned}
& X_{1}=X(A,(F \backslash\{f\}) \cup\{u\}, G) \\
& X_{2}=X(A,(F \backslash\{f\}) \cup\{v\}, G \cup\{u\}) .
\end{aligned}
$$

7. Suppose $f=u x+v$ for some element $x \in A$ and polynomials $f \in F$ and $u, v \in k[A \backslash\{x\}]$, with u non-zero. Then X is stratified by its closed
subvariety given by $u=v=0$ and its open complement given by $u \neq 0$ and $a=-v / u$. Hence, return $[X]=\left[X_{1}\right]+\left[X_{2}\right]$ with

$$
\begin{aligned}
& X_{1}=X(A,(F \backslash\{f\}) \cup\{u, v\}, G), \\
& X_{2}=X\left(A, \operatorname{eval}_{a}(F \backslash\{f\},-v / u), \operatorname{eval}_{a}(G,-v / u) \cup\{u\}\right) .
\end{aligned}
$$

8. Suppose $\operatorname{char}(k) \neq 2$ and $f=u x^{2}+v x+w$ for some element $x \in A$ and polynomials $f \in F$ and $u, v, w \in k[A \backslash\{a\}]$ with u non-zero. Moreover, suppose that the discriminant $D=v^{2}-4 u w$ is a square, that is, $D=d^{2}$ for some $d \in k[A \backslash\{a\}]$. Then return $[X]=\left[X_{1}\right]+\left[X_{2}\right]+\left[X_{3}\right]+\left[X_{4}\right]$, where X is stratified by the following varieties:

$$
\begin{aligned}
& X_{1}=X(A,(F \backslash\{f\}) \cup\{u, v x+w\}, G), \\
& X_{2}=X\left(A, \operatorname{eval}_{-v / 2 u}^{x}(F \backslash\{f\}) \cup\{d\}, \operatorname{eval}_{-v / 2 u}^{x}(G) \cup\{u\}\right), \\
& X_{3}=X\left(A, \operatorname{eval}_{(-v-d) / 2 u}^{x}(F \backslash\{f\}), \operatorname{eval}_{(-v-d) / 2 u}^{x}(G) \cup\{u, d\}\right), \\
& X_{4}=X\left(A, \operatorname{eval}_{(-v+d) / 2 u}^{x}(F \backslash\{f\}), \operatorname{eval}_{(-v+d) / 2 u}^{x}(G) \cup\{u, d\}\right) .
\end{aligned}
$$

9. If $G \neq \varnothing$, pick any $g \in G$, and return $[X]=\left[X_{1}\right]-\left[X_{2}\right]$ with

$$
\begin{aligned}
& X_{1}=X(A, F, G \backslash\{g\}), \\
& X_{2}=X(A, F \cup\{g\}, G) .
\end{aligned}
$$

10. If none of the above rules apply, fail.

Remark 3.4.4. Of course, it is possible to replace Step 10 with:
10'. If none of the above rules apply, create a new symbol for the variety $X(A, F, G)$ and return that.

However, this raises the question of what it means to 'compute the virtual class' of a variety. For the purpose of computing motivic invariants, an expression for the virtual class of a variety in terms of the classes of other varieties is only useful if the motivic invariants of those other varieties are known. As far as the applications in this thesis go, the varieties to which this algorithm will be applied all have a virtual class that is a polynomial in \mathbb{L}.

3.5 Grothendieck ring of stacks

In order to study motivic invariants of stacks, we would like to have an analogue of the Grothendieck ring of varieties for stacks. A number of constructions have been proposed by various authors, such as in [Joy07, Toë05, BD07]. We will
follow the construction by Ekedahl as in [Eke09a, Eke09b], since its definition is closest to Definition 3.2.3. As in Definition 1.6.4, we will restrict to algebraic (Artin) stacks which are of finite type over a field with affine stabilizers.

Definition 3.5.1. Let \mathfrak{S} be an algebraic stack of finite type over a field k with affine stabilizers. The Grothendieck ring of stacks over \mathfrak{S}, denoted $\mathbf{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{S}}\right)$, is the free abelian group on isomorphism classes of algebraic stacks of finite type over \mathfrak{S} with affine stabilizers, modulo the relations
(1) $[\mathfrak{X}]=[\mathfrak{Z}]+[\mathfrak{X} \backslash \mathfrak{Z}]$ for all closed immersions $\mathfrak{Z} \rightarrow \mathfrak{X}$ over \mathfrak{S},
(2) $[\mathfrak{E}]=\mathbb{L}^{n}[\mathfrak{X}]$ for any vector bundle \mathfrak{E} over \mathfrak{X} of rank n, where $\mathbb{L}=\left[\mathbb{A}_{\mathfrak{G}}^{1}\right]$.

Multiplication is given on generators by $[\mathfrak{X}][\mathfrak{Y}]=\left[\mathfrak{X} \times_{\mathfrak{S}} \mathfrak{Y}\right]$.
Remark 3.5.2. If S is a variety over k, then the inclusion $\operatorname{Var}_{S} \rightarrow \mathbf{S t c k}_{S}$ induces a ring morphism

$$
\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)
$$

In particular, any relation that holds in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ also holds in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$.
Example 3.5.3. Consider the classifying stack $B \mathbb{G}_{m}=\left[\operatorname{Spec}(k) / \mathbb{G}_{m}\right]$ over a field k. The natural morphism $\left[\mathbb{A}_{k}^{1} / \mathbb{G}_{m}\right] \rightarrow \mathrm{B} \mathbb{G}_{m}$ is a vector bundle of rank one, so $\left[\mathbb{A}_{k}^{1} / \mathbb{G}_{m}\right]=\mathbb{L}\left[\mathrm{B} \mathbb{G}_{m}\right]$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$. On the other hand, the closed subscheme $\mathrm{B} \mathbb{G}_{m} \subseteq\left[\mathbb{A}_{k}^{1} / \mathbb{G}_{m}\right]$, given by the origin, yields the relation $\left[\mathbb{A}_{k}^{1} / \mathbb{G}_{m}\right]=\left[\mathrm{B} \mathbb{G}_{m}\right]+$ $\left[\mathbb{G}_{m} / \mathbb{G}_{m}\right]=\left[\mathrm{B} \mathbb{G}_{m}\right]+1$. Therefore, $(\mathbb{L}-1)\left[\mathrm{B} \mathbb{G}_{m}\right]=1$ and hence $\left[\mathrm{B} \mathbb{G}_{m}\right]$ is invertible with inverse $(\mathbb{L}-1)=\left[\mathbb{G}_{m}\right]$.

The above example can be generalized to other algebraic groups, and more general quotient stacks. The following proposition treats the case $G=\mathrm{GL}_{n}$.

Proposition 3.5.4. For any $n \geq 0$, the element $\left[\mathrm{GL}_{n}\right]$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$ is invertible, and $\left[\mathfrak{X} / \mathrm{GL}_{n}\right]_{\mathfrak{S}}=\left[\mathrm{GL}_{n}\right]^{-1} \cdot[\mathfrak{X}]_{\mathfrak{S}}$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{S}}\right)$ for any algebraic stack \mathfrak{X} over \mathfrak{S} in $\mathbf{S t c k}_{\mathfrak{S}}$ with an action of GL_{n} such that the map $\mathfrak{X} \rightarrow \mathfrak{S}$ is G-invariant.

Proof. As in Example 3.3.5, for any $0 \leq m \leq n$, let $Y_{m} \subseteq$ Mat $_{n \times m}$ be the subscheme of m-linearly independent vectors. The group GL_{n} acts naturally on each Y_{m}, and we construct $\mathfrak{Y}_{m}=\left[\left(Y_{m} \times \mathfrak{X}\right) / \mathrm{GL}_{n}\right]$. Now, the quotient $\mathfrak{X} \rightarrow$ $\left[\mathfrak{X} / \mathrm{GL}_{n}\right]$ factors as

$$
\mathfrak{X}=\mathfrak{Y}_{n} \rightarrow \mathfrak{Y}_{n-1} \rightarrow \cdots \rightarrow \mathfrak{Y}_{0}=\left[\mathfrak{X} / \mathrm{GL}_{n}\right] .
$$

For any $1 \leq m \leq n$, the scheme Y_{m} can be identified with the open complement of $Y_{m-1} \times \mathbb{A}_{k}^{m-1}$ inside $Y_{m-1} \times \mathbb{A}_{k}^{n}$. Hence, $\left[\mathfrak{Y}_{m}\right]_{\mathfrak{S}}=\left(\mathbb{L}^{n}-\mathbb{L}^{m-1}\right)\left[\mathfrak{Y}_{m-1}\right]_{\mathfrak{S}}$ for all
$1 \leq m \leq n$, and thus $[\mathfrak{X}]_{\mathfrak{S}}=\left(\prod_{m=0}^{n-1}\left(\mathbb{L}^{n}-\mathbb{L}^{m}\right)\right)\left[\mathfrak{X} / \mathrm{GL}_{n}\right]_{\mathfrak{S}}=\left[\mathrm{GL}_{n}\right] \cdot\left[\mathfrak{X} / \mathrm{GL}_{n}\right]_{\mathfrak{S}}$. Specializing to the case $\mathfrak{X}=\mathfrak{S}=\operatorname{Spec} k$, we find that $\left[\mathrm{GL}_{n}\right]$ is invertible with inverse $\left[\mathrm{BGL}_{n}\right]$. Therefore, $\left[\mathfrak{X} / \mathrm{GL}_{n}\right]_{\mathfrak{S}}=\left[\mathrm{GL}_{n}\right]^{-1} \cdot[\mathfrak{X}]_{\mathfrak{S}}$.

Proposition 3.5.5. Let G be a special algebraic group over a field k. Then $[G]$ is invertible in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$, and for any G-torsor of $\mathfrak{P} \rightarrow \mathfrak{X}$ in $\mathbf{S t c k}_{\mathfrak{S}}$, one has $[\mathfrak{X}]_{\mathfrak{S}}=[G]^{-1} \cdot[\mathfrak{P}]_{\mathfrak{S}}$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{S}}\right)$.

Proof. Using Proposition 1.6.5, we can reduce to the case where $\mathfrak{X}=\left[X / \mathrm{GL}_{n}\right]$ for a quasi-projective scheme X. Now form the following cartesian diagram.

Then P is a GL_{n}-torsor over \mathfrak{P}, as described in Section 1.5, and a G-torsor over X. By Proposition 3.5.4 and Lemma 3.3.13, we have $\left[\mathrm{GL}_{n}\right] \cdot[\mathfrak{P}]_{\mathfrak{S}}=[P]_{\mathfrak{S}}=$ $[G] \cdot[X]_{\mathfrak{S}}=[G]\left[\mathrm{GL}_{n}\right] \cdot[\mathfrak{X}]_{\mathfrak{S}}$, and hence $[\mathfrak{P}]_{\mathfrak{S}}=[G] \cdot[\mathfrak{X}]_{\mathfrak{S}}$. In the special case that $\mathfrak{P}=\mathfrak{S}=\operatorname{Spec} k$ and $\mathfrak{X}=\mathrm{B} G$, we find that $[G]$ is invertible with inverse $[\mathrm{B} G]$ and thus $[\mathfrak{X}]_{\mathfrak{S}}=[G]^{-1} \cdot[\mathfrak{P}]_{\mathfrak{S}}$.

Example 3.5.6. In general, it need not be the case that $[\mathrm{B} G]=[G]^{-1}$. For example, consider the group $G=\mu_{n}$ of n-th roots of unity. The morphism $\mathbb{G}_{m} \rightarrow \mathrm{~B} \mu_{n}$, corresponding to the μ_{n}-torsor $\mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ given by $x \mapsto x^{n}$, is a \mathbb{G}_{m}-torsor itself, so it follows that $\left[\mathrm{B} \mu_{n}\right]=\left[\mathbb{G}_{m}\right] /\left[\mathbb{G}_{m}\right]=1$. It was shown by Ekedahl that also $\left[\mathrm{B} S_{n}\right]=1$ for the symmetric groups S_{n} for all $n \geq 0$ [Eke09b]. He also showed that there are finite groups G for which $[\mathrm{B} G] \neq 1$.

From Proposition 3.5.4 and the expression of $\left[\mathrm{GL}_{n}\right]$ in terms of \mathbb{L}, see Example 3.3.5, it follows that the elements \mathbb{L} and $\mathbb{L}^{n}-1$ for all $n \geq 1$ are invertible in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{S}}\right)$. Hence, if $\mathfrak{S}=S$ is a variety over k, there is a natural map from the localization $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)\left[\mathbb{L}^{-1},\left(\mathbb{L}^{n}-1\right)^{-1}: n \geq 1\right]$ (where we adjoined inverses of \mathbb{L} and $\mathbb{L}^{n}-1$ for all $n \geq 1$) to $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$. In fact, this map is an isomorphism.

Theorem 3.5.7 ([Eke09a, Theorem 1.2]). The map $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)\left[\mathbb{L}^{-1},\left(\mathbb{L}^{n}-1\right)^{-1}\right.$: $n \geq 1] \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$ is an isomorphism of rings.

Remark 3.5.8. The isomorphism of Theorem 3.5.7 allows us to extend any invariant $\chi: \mathrm{K}_{0}\left(\operatorname{Var}_{S}\right) \rightarrow R$ to $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$, possibly after inverting $\chi(\mathbb{L})$ and $\chi\left(\mathbb{L}^{n}-1\right)$ in R, for all $n \geq 1$, provided they are not zero-divisors in R. In particular, this extends the E-polynomial to all algebraic stacks \mathfrak{X} of finite type over \mathbb{C} with affine stabilizers,

$$
\begin{equation*}
e: \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathbb{C}}\right) \rightarrow \mathbb{Z} \llbracket u, v \rrbracket\left[u^{-1}, v^{-1}\right] . \tag{3.7}
\end{equation*}
$$

This approach is taken for example in [Joy07, Theorem 4.10]. Alternatively, given a presentation $X \rightarrow \mathfrak{X}$, one can construct a simplicial scheme X^{\bullet} resolving \mathfrak{X}, given by $X^{n}=X \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} X(n+1$ times $)$. Now, Deligne's construction applies in fact to simplicial schemes [Del74], so that the cohomology groups $H_{c}^{k}(\mathfrak{X}, \mathbb{C})$ of the geometric realization of the analytification of X^{\bullet} admit a mixed Hodge structure, which can be shown to be independent of the presentation X. The corresponding E-polynomial $e(\mathfrak{X})$ agrees with (3.7). For details, see [BD07] or [Toë05]. In the particular case of a quotient stack $\mathfrak{X}=[X / G]$ with G a connected group, one has $e(\mathfrak{X})=e(X) / e(G)$.

3.6 Equivariant motivic invariants

Let G be a finite group acting on a complex variety X. The action of G turns the cohomology groups $H_{c}^{k}(X ; \mathbb{C})$ into representations of G, by functoriality of cohomology. Moreover, the action of G, being algebraic, respects the mixed Hodge structure [PS08, FS21], so the graded pieces $H_{c}^{k ; p, q}(X)=\operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H_{c}^{k}(X ; \mathbb{C})$, see (3.2), turn into representations of G as well. From this, one constructs the G-equivariant E-polynomial

$$
e^{G}(X)=\sum_{k, p, q}(-1)^{k} u^{p} v^{q} \otimes\left[H_{c}^{k ; p, q}(X)\right] \in \mathbb{Z}[u, v] \otimes R_{\mathbb{C}}(G)
$$

where $R_{\mathbb{C}}(G)$ denotes the representation ring of G. The G-equivariant E-polynomial is still additive and multiplicative, that is,

$$
e^{G}(X)=e^{G}(Z)+e^{G}(X \backslash Z) \quad \text { and } \quad e^{G}(X \times Y)=e^{G}(X) e^{G}(Y)
$$

for complex varieties X and Y with a G-action, and $Z \subseteq X$ a G-invariant closed subvariety [FS21]. The original E-polynomial $e(X)$ can be obtained from $e^{G}(X)$ via the map $\operatorname{dim}: R_{\mathbb{C}}(G) \rightarrow \mathbb{Z}$.

In this section, we investigate to which extent other invariants can be made G equivariant, with a special focus on the virtual class in the Grothendieck ring of varieties.

Definition 3.6.1. Let G be an algebraic group over a field k, and S a variety over k. A G-variety over S is a variety X over S with an action of G such that $X \rightarrow S$ is G-invariant and X admits a cover by G-invariant affine opens. Denote by $\operatorname{Var}_{S}^{G}$ the category of G-varieties over S and G-equivariant morphisms over S between them. The Grothendieck ring of G-varieties over S, denoted $\mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right)$, is defined, analogous to Definition 3.2.3, as the free abelian group on isomorphism classes $[X]$ of G-varieties X over S modulo the relations $[X]=[Z]+[X \backslash Z]$ for all G-invariant closed subvarieties $Z \subseteq X$. Multiplication is given on generators by $[X][Y]=\left[X \times_{S} Y\right]$, where G acts diagonally on $X \times_{S} Y$.

Now, more precisely, we investigate whether an invariant $\chi: \operatorname{Ob}\left(\operatorname{Var}_{k}\right) \rightarrow R$, for some commutative ring R, can be promoted to some $\chi^{G}: \mathrm{Ob}\left(\operatorname{Var}_{k}^{G}\right) \rightarrow$ $R \otimes R_{\mathbb{C}}(G)$ such that χ is obtained from χ^{G} via the map $\operatorname{dim}: R_{\mathbb{C}}(G) \rightarrow \mathbb{Z}$, while remaining additive or multiplicative. We show this is possible in many cases, such as for $R=\mathrm{K}_{0}(\mathbf{M H S})$ or $R=\mathrm{K}_{0}\left(\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(k, \mathbb{C})\right)$. However, we also show this is not possible for $R=\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$. Nevertheless, under certain assumptions on G, we will provide a construction which, although far from ideal, provides a new tool for computations in $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$.

Let us start with a positive result.
Proposition 3.6.2. Let G be a finite group with splitting field K. Let \mathcal{A} be an idempotent complete K-linear tensor category, whose unit object is denoted by K. Suppose G acts on an object X of \mathcal{A}. Then X decomposes in \mathcal{A} as

$$
X \cong \bigoplus_{\rho} X_{\rho} \otimes[\rho]
$$

for some objects X_{ρ} of \mathcal{A}, where ρ ranges over the irreducible representations of G, and $[\rho]:=K^{\oplus \operatorname{dim} \rho}$. Moreover, the isomorphism is G-equivariant when G acts trivially on X_{ρ} and via ρ on $[\rho]$, and the objects X_{ρ} are uniquely determined up to isomorphism.

Proof. Denote by $\rho_{1}, \ldots, \rho_{n}$ the irreducible representations of G over K. The Artin-Wedderburn theorem gives an isomorphism $K[G] \cong \prod_{i=1}^{n} \operatorname{Mat}_{d_{i} \times d_{i}}(K)$, where $d_{i}=\operatorname{dim} \rho_{i}$, given by $g \mapsto\left(\rho_{i}(g)\right)_{i=1}^{n}$ [Ser77, Proposition 10]. This decomposition corresponds to a sequence $e_{1}, \ldots, e_{n} \in K[G]$ of pairwise orthogonal central idempotents such that $\sum_{i=1}^{n} e_{i}=1$. For every $i=1, \ldots, n$, the idempotents e_{i} induce idempotent morphisms $X \xrightarrow{e_{i}} X$ which, by assumption, split as $X \xrightarrow{r_{i}} Y_{i} \xrightarrow{s_{i}} X$ with $s_{i} \circ r_{i}=e_{i}$ and $r_{i} \circ s_{i}=\operatorname{id}_{Y_{i}}$. Orthogonality of the idempotents implies, for $i \neq j$, that $s_{i} \circ r_{i} \circ s_{j} \circ r_{j}=0$ and hence $r_{i} \circ s_{j}=0$. Therefore, we have an isomorphism

$$
\bigoplus_{i=1}^{n} Y_{j} \frac{\amalg_{i} s_{i}}{\stackrel{\sim}{\Pi_{i} r_{i}}} X
$$

Since the e_{i} are central in $K[G]$, the action of G restricts to Y_{i} for every i.
Every idempotent e_{i} corresponds to a factor $\operatorname{Mat}_{d_{i} \times d_{i}}(K)$. Write $E_{j k}$ for the $d_{i} \times d_{i}$ matrix which is zero everywhere, except at position (j, k), where the entry is one. Then $e_{i}=\sum_{j=1}^{d_{i}} e_{i j}$ for the pairwise orthogonal idempotents $e_{i j}=E_{j j}$. As above, this yields a decomposition

$$
Y_{i} \cong \bigoplus_{j=1}^{d_{i}} Z_{i j}
$$

Moreover, the $Z_{i j}$ are isomorphic for all j since $E_{j k}$ defines an isomorphism from $Z_{i k}$ to $Z_{i j}$, with inverse $E_{k j}$, so $Y_{i} \cong Z_{i} \otimes K^{\oplus d_{i}}$. Under this isomorphism, G acts trivially on Z_{i} and on $K^{\oplus d_{i}}$ via ρ_{i}, because of the isomorphism $K[G] \cong$ $\prod_{i=1}^{n} \operatorname{Mat}_{d_{i} \times d_{i}}(K)$. Therefore, $Y_{i} \cong Z_{i} \otimes\left[\rho_{i}\right]$. Finally, the $X_{\rho_{i}}:=Z_{i}$ are uniquely determined up to isomorphism, as they correspond to the idempotents $e_{i j}$.

Remark 3.6.3. Suppose G acts on objects X and Y in \mathcal{A} as in Proposition 3.6.2. Then it follows from the uniqueness statement that

$$
(X \otimes Y)_{\rho_{k}} \cong \bigoplus_{i, j=1}^{n}\left(X_{\rho_{i}} \otimes Y_{\rho_{j}}\right)^{\oplus a_{i j}^{k}}
$$

where $a_{i j}^{k} \in \mathbb{Z}_{\geq 0}$ are the Clebsch-Gordan series, given by $\rho_{i} \otimes \rho_{j} \cong \bigoplus_{k=1}^{n} \rho_{k}^{\oplus a_{i j}^{k}}$.
Now, let \mathcal{A} be as in Proposition 3.6.2, and suppose we are given a functor $\mathcal{X}: \operatorname{Var}_{k} \rightarrow \mathcal{A}$. If \mathcal{A} is an abelian or triangulated category, we obtain an invariant $\chi: \operatorname{Ob}\left(\operatorname{Var}_{k}\right) \rightarrow \mathrm{K}_{0}(\mathcal{A})$ which, using Proposition 3.6.2, promotes to an invariant

$$
\chi^{G}: \operatorname{Ob}\left(\operatorname{Var}_{k}^{G}\right) \rightarrow \mathrm{K}_{0}(\mathcal{A}) \otimes R_{K}(G)
$$

where $\mathcal{X}(X) \cong \bigoplus_{\rho} X_{\rho} \otimes[\rho]$ is sent to $\sum_{\rho}\left[X_{\rho}\right] \otimes[\rho]$. One can obtain χ from χ^{G} via $\operatorname{dim}: R_{K}(G) \rightarrow \mathbb{Z}$ as the image of $[\rho]=K^{\oplus \operatorname{dim} \rho}$ in $\mathrm{K}_{0}(\mathcal{A})$ equals $\operatorname{dim} \rho$.
Furthermore, if G-invariant closed subvarieties $Z \subseteq X$ induce exact sequences $0 \rightarrow \mathcal{X}(X \backslash Z) \rightarrow \mathcal{X}(X) \rightarrow \mathcal{X}(Z) \rightarrow 0$ (when \mathcal{A} is abelian) or distinguished triangles $\mathcal{X}(X \backslash Z) \rightarrow \mathcal{X}(X) \rightarrow \mathcal{X}(Z) \rightarrow \mathcal{X}(X \backslash Z)[1]$ (when \mathcal{A} is triangulated) with G-equivariant maps in \mathcal{A}, then χ^{G} will also be additive, that is, $\chi^{G}(X)=$ $\chi^{G}(Z)+\chi^{G}(X \backslash Z)$. In this case, χ^{G} descends to a group morphism

$$
\begin{equation*}
\chi^{G}: \mathrm{K}_{0}\left(\operatorname{Var}_{k}^{G}\right) \rightarrow \mathrm{K}_{0}(\mathcal{A}) \otimes R_{K}(G) \tag{3.8}
\end{equation*}
$$

Moreover, when \mathcal{A} is tensor triangulated and there are natural isomorphisms $\mathcal{X}(X \times Y) \cong \mathcal{X}(X) \otimes \mathcal{X}(Y)$ for all G-varieties X and Y, where G acts diagonally on $X \times Y$, it follows from Remark 3.6.3 that χ^{G} is multiplicative, that is, $\chi^{G}(X \times$ $Y)=\chi^{G}(X) \chi^{G}(Y)$. In this case, (3.8) is a ring morphism.

Example 3.6.4. - Let $\mathcal{A}=D^{b}$ (MHS) be the derived category of mixed Hodge structures. The assignment of the mixed Hodge structures $H_{c}^{k}(X)$ to a complex variety X can be promoted to a functor $\mathcal{X}=R \Gamma(-, \mathbb{Q}): \operatorname{Var}_{\mathbb{C}} \rightarrow \mathcal{A}$ such that $H_{c}^{k}(X)$ is the k-th cohomology group of $\mathcal{X}(X)$ [Beĭ86]. The resulting G equivariant invariant χ^{G} is additive by the G-equivariant long exact sequence (3.4). It is also multiplicative by the Künneth formula, and hence induces a ring morphism

$$
\chi^{G}: \mathrm{K}_{0}\left(\operatorname{Var}_{\mathbb{C}}^{G}\right) \rightarrow \mathrm{K}_{0}(\mathbf{M H S}) \otimes R_{\mathbb{C}}(G)
$$

- Extending the previous example, note that the exact functor $\mathrm{Gr}_{F}^{*} \mathrm{Gr}_{*}^{W}$ in (3.2) induces an exact functor $D^{b}(\mathbf{M H S}) \rightarrow D^{b}\left(\left(\operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z} \times \mathbb{Z}}\right)_{\mathrm{fin}}\right)$, and let \mathcal{X} be the composite

$$
\operatorname{Var}_{\mathbb{C}} \xrightarrow{R \Gamma(-, \mathbb{Q})} D^{b}(\mathbf{M H S}) \xrightarrow{\operatorname{Gr}_{F}^{*} \mathrm{Gr}_{*}^{W}} D^{b}\left(\left(\operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z} \times \mathbb{Z}}\right)_{\mathrm{fin}}\right)
$$

The induced invariant χ^{G} is still additive and multiplicative, and hence induces ring morphism

$$
\chi^{G}: \mathrm{K}_{0}\left(\operatorname{Var}_{\mathbb{C}}^{G}\right) \rightarrow \mathrm{K}_{0}\left(\left(\operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z} \times \mathbb{Z}}\right)_{\mathrm{fin}}\right) \otimes R_{\mathbb{C}}(G) \cong \mathbb{Z}\left[u^{ \pm 1}, v^{ \pm 1}\right] \otimes R_{\mathbb{C}}(G)
$$

which is precisely the G-equivariant E-polynomial.

- Let $\mathcal{A}=\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(k, K)$ be the K-linearization of Voevodsky's triangulated category of effective geometric motives, with k a field of characteristic zero, and let $\mathcal{X}: \operatorname{Var}_{k} \rightarrow \mathcal{A}$ be the motive M_{gm} or the motive with compact support M_{gm}^{c}. The induced invariant χ^{G} is multiplicative, and if $\mathcal{X}=M_{\mathrm{gm}}^{c}$ also additive.

Grothendieck ring of varieties

Unfortunately, the Grothendieck ring of varieties $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$ is not given by the Grothendieck group of an abelian (or triangulated) category \mathcal{A}. To get an idea of how an analogous construction could work for $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$, we first consider some properties of the G-equivariant E-polynomial.

Let G be a finite group and $H \subseteq G$ a subgroup. Denote by

$$
\operatorname{Res}_{H}^{G}: R_{\mathbb{C}}(G) \rightarrow R_{\mathbb{C}}(H) \quad \text { and } \quad \operatorname{Ind}_{H}^{G}: R_{\mathbb{C}}(H) \rightarrow R_{\mathbb{C}}(G)
$$

the restriction and induction maps [Ser77, p.28]. Using the same symbols, we define restriction and induction for G-varieties.

Definition 3.6.5. Let G be an algebraic group over k with a subgroup $H \subseteq G$, and S a variety over k. Define the functors

$$
\operatorname{Res}_{H}^{G}: \operatorname{Var}_{S}^{G} \rightarrow \operatorname{Var}_{S}^{H} \quad \text { and } \quad \operatorname{Ind}_{H}^{G}: \operatorname{Var}_{S}^{H} \rightarrow \operatorname{Var}_{S}^{G}
$$

where $\operatorname{Res}_{H}^{G}$ restricts the action from G to H (in fact, $\operatorname{Res}_{H}^{G}$ is defined for any morphism $H \rightarrow G$ of algebraic groups), and $\operatorname{Ind}_{H}^{G}(Y)=(G \times Y) / / H$, where H acts on $G \times Y$ via $h \cdot(g, y)=\left(g h^{-1}, h \cdot y\right)$ and G acts on the resulting quotient by left multiplication on the factor of G. Note that, by [PV89, Theorem 4.19], the quotient $(G \times Y) / / H$ is a variety, even when H is non-reductive. It is easy to see that these functors descend to the Grothendieck ring of varieties

$$
\operatorname{Res}_{H}^{G}: \mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{S}^{H}\right) \quad \text { and } \quad \operatorname{Ind}_{H}^{G}: \mathrm{K}_{0}\left(\operatorname{Var}_{S}^{H}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right)
$$

When G and H are finite, the underlying variety of $\operatorname{Ind}_{H}^{G}(Y)$ is simply $\bigsqcup_{G / H} Y$.

Lemma 3.6.6. Let G be a finite group and $H \subseteq G$ a subgroup.
(i) $e^{H}\left(\operatorname{Res}_{H}^{G}(X)\right)=\operatorname{Res}_{H}^{G}\left(e^{G}(X)\right)$ for all objects X of $\operatorname{Var}_{k}^{G}$,
(ii) $e^{G}\left(\operatorname{Ind}_{H}^{G}(Y)\right)=\operatorname{Ind}_{H}^{G}\left(e^{H}(Y)\right)$ for all objects Y of $\operatorname{Var}_{k}^{H}$,
(iii) $e(X / / G)=\left\langle T, e^{G}(X)\right\rangle$, where $T \in R_{\mathbb{C}}(G)$ corresponds to the trivial representation, and $\langle-,-\rangle$ denotes the inner product of characters.

Proof. (i) and (ii) directly follow from the definitions of $\operatorname{Res}_{H}^{G}$ and $\operatorname{Ind}_{H}^{G}$ for representations and varieties. (iii) follows from [FS21, Proposition 4.3].

The following example shows how these properties can be used to compute the G-equivariant E-polynomials in some simple cases.

Example 3.6.7. Consider $G=\mathbb{Z} / 2 \mathbb{Z}$ and denote by $T, N \in R_{\mathbb{C}}(G)$ the trivial and non-trivial character of G. For any G-variety X, we have

$$
e^{G}(X)=\alpha \otimes T+\beta \otimes N
$$

for some $\alpha, \beta \in \mathbb{Z}[u, v]$. The properties of Lemma 3.6.6 imply that $e(X / / G)=\alpha$ and $e(X)=\operatorname{Res}_{1}^{G}\left(e^{G}(X)\right)=\alpha+\beta$. Therefore,

$$
e^{G}(X)=e(X / / G) \otimes T+(e(X)-e(X / / G)) \otimes N
$$

Example 3.6.8. Consider $G=S_{3}$ and denote by $T, S, D \in R_{\mathbb{C}}(G)$ the trivial, sign and standard representation. For any G-variety X, we have

$$
e^{G}(X)=\alpha \otimes T+\beta \otimes S+\gamma \otimes D
$$

for some $\alpha, \beta, \gamma \in \mathbb{Z}[u, v]$. For $\tau=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\rho=\left(\begin{array}{ll}1 & 2\end{array}\right)$ in S_{3}, we find

$$
e(X)=\alpha+\beta+2 \gamma, e(X / /\langle\tau\rangle)=\alpha+\gamma, e(X / /\langle\rho\rangle)=\alpha+\beta, e(X / / G)=\alpha
$$

In particular, it follows that
$\alpha=e(X / / G), \beta=e(X)-2 \cdot e(X / /\langle\tau\rangle)+e(X / / G), \gamma=e(X / /\langle\tau\rangle)-e(X / / G)$.
Note that, since there are more subgroups than irreducible representations, the relation

$$
\begin{equation*}
e(X)-2 \cdot e(X / /\langle\tau\rangle)-e(X / /\langle\rho\rangle)+2 \cdot e(X / / G)=0 \tag{3.9}
\end{equation*}
$$

will always hold.

Let us return to the Grothendieck ring of varieties. Given a G-variety X, we want to define $[X]^{G} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{k}\right) \otimes R_{\mathbb{C}}(G)$ such that

$$
\begin{equation*}
\left\langle T_{H}, \operatorname{Res}_{H}^{G}[X]^{G}\right\rangle=[X / / H] \tag{3.10}
\end{equation*}
$$

for every subgroup $H \subseteq G$. Unfortunately, here we run into trouble trying to define $[X]^{G}$. The following example shows that the analogue of (3.9) need not hold in $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$ in general.

Example 3.6.9 ([Saw22]). Let $G=S_{3}$ and let X be a complex smooth projective curve of genus $6 g+1$ for some $g \geq 1$ with a free action of S_{3}. By the Riemann-Hurwitz formula, the quotients $X / /\langle\tau\rangle, X / /\langle\rho\rangle$ and $X / / S_{3}$ have genera $3 g+1,2 g+1$ and $g+1$, respectively. Hence, none of these quotients are stably birational to X or to each other. Now, the isomorphism $\mathrm{K}_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) /(\mathbb{L}) \cong \mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]$ by Larsen and Lunts [LL03] shows there is no \mathbb{Z}-linear relation between their classes in $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$.

It seems that having too many subgroups results in $[X]^{G}$ being ill-defined. A possible remedy could be to fix a set of subgroups of G. On the other hand, having too few subgroups could also be a problem, e.g. for $G=\mathbb{Z} / 3 \mathbb{Z}$, which has 3 irreducible representations but only 2 subgroups. For this reason, we will focus only on rational representations of G. This makes sense in analogy with the G-equivariant E-polynomial, since $H_{c}^{k}(X ; \mathbb{C})=H_{c}^{k}(X ; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}$. Finally, note that the quotient $X / / H$ only depends on the conjugacy class of H.

Definition 3.6.10. Let G be a finite group, and let \mathcal{H} be a set of conjugacy classes of subgroups of G. Define the map

$$
\Psi_{G}^{\mathcal{H}}: R_{\mathbb{Q}}(G) \rightarrow \bigoplus_{[H] \in \mathcal{H}} \mathbb{Z}, \quad V \mapsto\left(\left\langle T_{H}, \operatorname{Res}_{H}^{G} V\right\rangle\right)_{[H] \in \mathcal{H}}
$$

Lemma 3.6.11. If \mathcal{H} contains the conjugacy classes of all subgroups of G, then $\Psi_{G}^{\mathcal{H}}$ is injective.

Proof. Take any $V \in R_{\mathbb{Q}}(G)$ such that $\left\langle T_{H}, \operatorname{Res}_{H}^{G} V\right\rangle=0$ for all H. By Frobenius reciprocity, this is the same as $\left\langle\operatorname{Ind}_{H}^{G} T_{H}, V\right\rangle=0$ for all H. Now, by [Ser77, Theorem 30], the elements $\operatorname{Ind}_{H}^{G} T_{H}$ generate $R_{\mathbb{Q}}(G)$, so $V=0$.

Shrinking \mathcal{H} appropriately, the map $\Psi_{G}^{\mathcal{H}}$ will still be injective, and its image will have rank equal to $|\mathcal{H}|$. In particular, $\Psi_{G}^{\mathcal{H}} \otimes \mathbb{Q}$ will be an isomorphism, so further tensoring with $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$ shows the existence and uniqueness of an element $[X]^{G} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{k}\right) \otimes R_{\mathbb{Q}}(G) \otimes \mathbb{Q}$ satisfying (3.10) for all $[H] \in \mathcal{H}$. We end up with the following definition.

Definition 3.6.12. Let G be a finite group and \mathcal{H} a set of conjugacy classes of subgroups of G such that

$$
\begin{equation*}
\Psi_{G}^{\mathcal{H}} \otimes \mathbb{Q}: R_{\mathbb{Q}}(G) \otimes \mathbb{Q} \rightarrow \bigoplus_{H \in \mathcal{H}} \mathbb{Q} \tag{3.11}
\end{equation*}
$$

is an isomorphism. In this case we say that \mathcal{H} is a good set of conjugacy classes of subgroups of G. Then for any G-variety X over S, the G-virtual class of X is the unique element $[X]^{G} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S}\right) \otimes R_{\mathbb{Q}}(G) \otimes \mathbb{Q}$ such that

$$
\left\langle T_{H}, \operatorname{Res}_{H}^{G}[X]^{G}\right\rangle=[X / / H]
$$

in $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ for all $[H] \in \mathcal{H}$.
Remark 3.6.13. The G-virtual class is clearly additive, that is, $[X]^{G}=[Z]^{G}+$ $[X \backslash Z]^{G}$ for all G-invariant closed subvarieties $Z \subseteq X$. Hence, it induces a group morphism

$$
[-]^{G}: \mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{S}\right) \otimes R_{\mathbb{Q}}(G) \otimes \mathbb{Q}
$$

Example 3.6.14. Let $G=\mathbb{Z} / n \mathbb{Z}$ for some $n \geq 1$ and let \mathcal{H} be the set of conjugacy classes of all subgroups of G. Then $\Psi_{G}^{\mathcal{H}} \otimes \mathbb{Q}$ is injective by Lemma 3.6.11, and an isomorphism because $|\mathcal{H}|$ equals the number of divisors of n, which is equal to the rank of $R_{\mathbb{Q}}(G)$.

Example 3.6.15. Consider the symmetric group $G=S_{n}$ with the set $\mathcal{H}=$ $\left\{S_{\lambda_{1}} \times \cdots \times S_{\lambda_{k}}: \lambda\right.$ a partition of $\left.n\right\}$ of Young subgroups. From the representation theory of S_{n} [FH91, Lecture 4] it can be shown that (3.11) is an isomorphism. In particular, the irreducible representations of S_{n} are parametrized by the partitions λ of n. Denote by V_{λ} the irreducible representation of S_{n} corresponding to such a partition λ. Now, for any $V=\sum_{\lambda} a_{\lambda}\left[V_{\lambda}\right] \in R_{\mathbb{Q}}\left(S_{n}\right)$, we find that

$$
\begin{aligned}
\Psi_{G}^{\mathcal{H}}(V) & =\left(\left\langle T_{S_{\lambda}}, \operatorname{Res}_{S_{\lambda}}^{S_{n}} V\right\rangle\right)_{S_{\lambda} \in \mathcal{H}} \\
& =\left(\left\langle\operatorname{Ind}_{S_{\lambda}}^{S_{n}} T_{S_{\lambda}}, V\right\rangle\right)_{S_{\lambda} \in \mathcal{H}} \\
& =\left(\sum_{\mu} a_{\mu} K_{\mu \lambda}\right)_{S_{\lambda} \in \mathcal{H}}
\end{aligned}
$$

where $K_{\mu \lambda}$ are the Kostka numbers, by Young's rule [FH91, Corollary 4.39]. Since $K_{\lambda \lambda}=1$ and $K_{\mu \lambda}=0$ for $\mu<\lambda$ (for the lexicographical order on partitions), it follows that $\Psi_{G}^{\mathcal{H}}$ is invertible.

Example 3.6.16. Suppose G_{1} and G_{2} are finite groups with good sets of conjugacy classes of subgroups \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. Then

$$
\mathcal{H}=\left\{\left[H_{1} \times H_{2}\right]:\left[H_{1}\right] \in \mathcal{H}_{1} \text { and }\left[H_{2}\right] \in \mathcal{H}_{2}\right\}
$$

is a good set of conjugacy classes of subgroups of $G_{1} \times G_{2}$ if $R_{\mathbb{Q}}\left(G_{1}\right)=R_{\mathbb{C}}\left(G_{1}\right)$ or $R_{\mathbb{Q}}\left(G_{2}\right)=R_{\mathbb{C}}\left(G_{2}\right)$. In particular, this provides good sets of conjugacy classes of subgroups for all Young subgroups $S_{\lambda_{1}} \times \cdots \times S_{\lambda_{k}}$.

Even though the G-virtual class is additive, the following example shows that in general, already for $G=\mathbb{Z} / 2 \mathbb{Z}$, the G-virtual class is not multiplicative.

Example 3.6.17. Let $G=\mathbb{Z} / 2 \mathbb{Z}$ and take A and B elliptic curves over $k=\mathbb{C}$ with $[A] \neq[B]$ and $A \times A \cong B \times B$ as abelian varieties, as in [Poo02, Lemma 3]. Equip the elliptic curves A and B with the G-action of negation, $P \mapsto-P$. Now suppose that the G-virtual class is multiplicative. Then, using the notation $[X]^{G}=[X]_{+} \otimes T+[X]_{-} \otimes N$ with $[X]_{+}=[X / / G]$ and $[X]_{-}=[X]-[X / / G]$, we find that

$$
\begin{aligned}
& {[A \times A]_{+}=[A]_{+}^{2}+[A]_{-}^{2}=\left[\mathbb{P}_{k}^{1}\right]^{2}+\left([A]-\left[\mathbb{P}_{k}^{1}\right]\right)^{2}=[A]^{2}+2\left[\mathbb{P}_{k}^{1}\right]^{2}-2[A]\left[\mathbb{P}_{k}^{1}\right]} \\
& {[B \times B]_{+}=[B]_{+}^{2}+[B]_{-}^{2}=\left[\mathbb{P}_{k}^{1}\right]^{2}+\left([B]-\left[\mathbb{P}_{k}^{1}\right]\right)^{2}=[B]^{2}+2\left[\mathbb{P}_{k}^{1}\right]^{2}-2[B]\left[\mathbb{P}_{k}^{1}\right]}
\end{aligned}
$$

where $A / / G \cong B / / G \cong \mathbb{P}_{k}^{1}$. Since the isomorphism $A \times A \cong B \times B$ is G equivariant, we have $[A \times A]_{+}=[B \times B]_{+}$, and hence $([A]-[B])\left[\mathbb{P}_{k}^{1}\right]=0$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$. However, the Albanese map $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow \mathbb{Z}\left[A V_{k}\right]$, described in [Poo02, Section 4], from the Grothendieck ring of varieties to the monoid ring of abelian varieties over k sends $([A]-[B])\left[\mathbb{P}_{k}^{1}\right]$ to $[A]-[B]$, which is non-zero in $\mathbb{Z}\left[\mathrm{AV}_{k}\right]$. Therefore, the G-virtual class cannot be multiplicative.

Nevertheless, we present the following construction, to measure to which extent the G-virtual class is multiplicative.

Lemma 3.6.18. Let G be a finite group and \mathcal{H} a good set of conjugacy classes of subgroups of G. Let $\mathcal{V}_{G}^{\mathcal{H}} \subseteq \mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right)$ be the subset of elements X such that $[X Y]^{G}=[X]^{G}[Y]^{G}$ for all $Y \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S}^{G}\right)$. Then $\mathcal{V}_{G}^{\mathcal{H}}$ is a $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$-subalgebra of $\mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right)$.

Proof. Note that $\mathcal{V}_{G}^{\mathcal{H}}$ is the left radical of the $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$-bilinear form

$$
\begin{aligned}
\mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right) \times \mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right) & \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{S}\right) \otimes R_{\mathbb{Q}}(G) \otimes \mathbb{Q} \\
(X, Y) & \mapsto[X Y]^{G}-[X]^{G}[Y]^{G}
\end{aligned}
$$

and is therefore a subgroup of $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$. Furthermore, $\mathcal{V}_{G}^{\mathcal{H}}$ is closed under multiplication, because for all $X, Y \in \mathcal{V}_{G}^{\mathcal{H}}$ and $Z \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S}^{G}\right)$ we have

$$
[(X Y) Z]^{G}=[X(Y Z)]^{G}=[X]^{G}[Y Z]^{G}=[X]^{G}[Y]^{G}[Z]^{G}=[X Y]^{G}[Z]^{G}
$$

Theorem 3.6.19. Let G be a finite group, \mathcal{H} a good set of conjugacy classes of subgroups of G, and suppose that k is a splitting field for G.
(i) If G acts linearly on \mathbb{A}_{k}^{1}, then $\mathcal{V}_{G}^{\mathcal{H}}$ contains $\left[\mathbb{A}_{k}^{1}\right]$.
(ii) If G acts diagonally on \mathbb{A}_{k}^{n}, then $\mathcal{V}_{G}^{\mathcal{H}}$ contains $\left[\mathbb{A}_{k}^{n}\right]$.
(iii) If G acts diagonally on \mathbb{P}_{k}^{n}, then $\mathcal{V}_{G}^{\mathcal{H}}$ contains $\left[\mathbb{P}_{k}^{n}\right]$.
(iv) Let $[H] \in \mathcal{H}$ be such that $\left[H^{\prime} \cap g H g^{-1}\right] \in \mathcal{H}$ for all $\left[H^{\prime}\right] \in \mathcal{H}$ and $g \in G$. Then the set G / H of cosets with the natural action of G lies in $\mathcal{V}_{G}^{\mathcal{H}}$.

Proof. (i) As $\left[\mathbb{A}_{k}^{1} / / H\right]=\mathbb{L}$ for any finite group H acting linearly on \mathbb{A}_{k}^{1}, we have $\left[\mathbb{A}_{k}^{1}\right]^{G}=\mathbb{L} \otimes T$ where $T \in R_{\mathbb{Q}}(G)$ corresponds to the trivial representation. Hence, it suffices to show that $\left[\left(\mathbb{A}_{k}^{1} \times Y\right) / / H\right]_{S}=\mathbb{L}[Y / / H]_{S}$ for all $Y \in \operatorname{Var}_{S}^{G}$ and $[H] \in \mathcal{H}$. Take such Y and H, write $\tau: H \rightarrow \mathrm{GL}_{1}(k)$ for the representation via which H acts on \mathbb{A}_{k}^{1}, and let $N=\operatorname{ker} \tau$. Since

$$
\left(\mathbb{A}_{k}^{1} \times Y\right) / / H=\left(\mathbb{A}_{k}^{1} \times(Y / / N)\right) / /(H / N)
$$

we may, replacing H by H / N and Y by $Y / / N$, assume that H is a finite cyclic group, that is, $H=\mathbb{Z} / n \mathbb{Z}$ for some $n \geq 1$.
Also, we may assume $Y=\operatorname{Spec} R$ is affine. Write $R^{H} \subseteq R$ for the subring of H-invariants. Then R is finitely generated as R^{H}-module [Mon80, Corollary 5.9], so it can be written as

$$
R=R^{H}\left\langle\sigma_{1,1}, \ldots, \sigma_{1, m_{1}}\right\rangle \oplus \cdots \oplus R^{H}\left\langle\sigma_{n-1,1}, \ldots, \sigma_{n-1, m_{n-1}}\right\rangle
$$

for some $\sigma_{i, j} \in R$ such that H acts via $(a \bmod n) \cdot \sigma_{i, j} \mapsto \zeta_{n}^{a i} \sigma_{i, j}$, where $\zeta_{n} \in k$ is a primitive n-th root of unity. Note that, for any $1 \leq i \leq n-1$, we have $\sigma_{i, 1}^{n}=r$ for some $r \in R^{H}$, and for any $2 \leq j \leq m_{i}$, we have $\sigma_{i, 1}^{n-1} \sigma_{i, j}=s$ for some $s \in R^{H}$. But then, over the closed subvariety of Y given by $r=0$, we have $\sigma_{i, 1}^{n}=r=0$, so we can omit $\sigma_{i, 1}$ from the generators. Similarly, over the open complement where r is invertible (so $\sigma_{i, 1}$ is invertible as well), we can remove $\sigma_{i, j}=\frac{s}{r} \sigma_{i, 1}$ from the generators. Hence, after sufficiently many stratifications, we may reduce to the case that

$$
R=R^{H} \oplus R^{H}\left\langle\sigma_{d}\right\rangle \oplus R^{H}\left\langle\sigma_{2 d}\right\rangle \oplus \cdots \oplus R^{H}\left\langle\sigma_{n-d}\right\rangle
$$

for some $d \geq 1$ dividing n, and some $\sigma_{i} \in R^{\times}$, such that H acts via $(a \bmod n)$. $\sigma_{i}=\zeta_{n}^{a i} \cdot \sigma_{i}$. In particular, for any $1 \leq m \leq n / d$, we have $\sigma_{d}^{m}=r_{m} \sigma_{m d}$ for some $r_{m} \in\left(R^{H}\right)^{\times}$, that is, $\sigma_{m d}=\sigma_{d}^{m} / r_{m}$, and hence

$$
R=R^{H}[\sigma] /\left(\sigma^{n / d}-r\right)
$$

with $\sigma=\sigma_{d}$ and $r=r_{n / d}$.

Note that $\tau: H \rightarrow \mathrm{GL}_{1}(k)$ must be of the form $\tau(a \bmod n)=\zeta_{n}^{a c}$ for some $0 \leq c \leq n-1$. Stratifying \mathbb{A}_{k}^{1} as $\{0\} \sqcup\left(\mathbb{A}_{k}^{1} \backslash\{0\}\right)$, we find that

$$
(\{0\} \times Y) / / H=Y / / H
$$

and

$$
\begin{aligned}
\left(\left(\mathbb{A}_{k}^{1} \backslash\{0\}\right) \times Y\right) / / H & \cong \operatorname{Spec} R\left[x^{ \pm 1}\right]^{H} \\
& \cong \operatorname{Spec}\left(R^{H}\left[\sigma, x^{ \pm 1}\right] /\left(\sigma^{n / d}-r\right)\right)^{H} \\
& \cong \operatorname{Spec} R^{H}\left\langle x^{i} \sigma^{j}:(i, j) \in L\right\rangle
\end{aligned}
$$

where $L=\left\{(i, j) \in \mathbb{Z}^{2} \mid c i+d j \equiv 0 \bmod n\right\}$ is a lattice. Take some $\left(i_{0}, j_{0}\right) \in L$ such that $i_{0}>0$ is minimal, and write $w=x^{i_{0}} \sigma^{j_{0}}$. Then, for any other $(i, j) \in L$, we must have $i=m i_{0}$ for some $m \in \mathbb{Z}$, and hence $\left(x^{i} \sigma^{j}\right) / w^{m}$ is an element of R^{H}. Therefore,

$$
\left(\left(\mathbb{A}_{k}^{1} \backslash\{0\}\right) \times Y\right) / / H \cong \operatorname{Spec} R^{H}\left[w^{ \pm 1}\right] \cong\left(\mathbb{A}_{k}^{1} \backslash\{0\}\right) \times(Y / / H)
$$

Finally, we find that

$$
\begin{aligned}
{\left[\left(\mathbb{A}_{k}^{1} \times Y\right) / / H\right]_{S} } & =[(\{0\} \times Y) / / H]_{S}+\left[\left(\left(\mathbb{A}_{k}^{1} \backslash\{0\}\right) \times Y\right) / / H\right]_{S} \\
& =[Y / / H]_{S}+(\mathbb{L}-1)[Y / / H]_{S} \\
& =\mathbb{L}[Y / / H]_{S}
\end{aligned}
$$

as desired.
Since $\mathcal{V}_{G}^{\mathcal{H}}$ is closed under multiplication, (ii) follows from (i). For (iii), stratify \mathbb{P}_{S}^{n} as $\mathbb{A}_{S}^{n} \sqcup \mathbb{P}_{S}^{n-1}$, so that the result follows from (i) and by induction on n.
For (iv), note that $[G / H]^{G}=1 \otimes \operatorname{Ind}_{H}^{G}\left(T_{H}\right)$, where $T_{H} \in R_{\mathbb{Q}}(H)$ corresponds to the trivial representation. Now, for any $\left[H^{\prime}\right] \in \mathcal{H}$, we can choose representatives $g H$ for the points of the quotient $(G / H) / / H^{\prime}$. Note that the stabilizer of $g H$ for the action of H^{\prime} is $H^{\prime} \cap g H^{-1}$, and therefore

$$
((G / H) \times Y) / / H^{\prime}=\bigsqcup_{[g H] \in(G / H) / / H^{\prime}} Y / /\left(H^{\prime} \cap g H g^{-1}\right)
$$

Since $\left[H^{\prime} \cap g H g^{-1}\right] \in \mathcal{H}$ by assumption, it follows that the coefficients of $[(G / H) \times$ $Y]_{S}^{G}$ can be written naturally in terms of the coefficients of $[Y]_{S}^{G}$, and therefore $[G / H]$ must be contained in $\mathcal{V}_{G}^{\mathcal{H}}$.

Remark 3.6.20. The condition in (iv) of the above theorem is trivially satisfied when \mathcal{H} contains the conjugacy classes of all subgroups of G. Also, it is satisfied in the case of Example 3.6 .15 with $G=S_{n}$. That is, the intersection of conjugates of Young subgroups is again the conjugate of a Young subgroup.

We conclude this section with two examples, both for the group $G=\mathbb{Z} / 2 \mathbb{Z}$. Let $T, N \in R_{\mathbb{Q}}(G)$ correspond to the trivial and non-trivial irreducible representation of G, respectively. For any G-variety X, the G-virtual class is, similar to Example 3.6.7, given by

$$
\begin{equation*}
[X]^{\mathbb{Z} / 2 \mathbb{Z}}=[X / /(\mathbb{Z} / 2 \mathbb{Z})] \otimes T+([X]-[X / /(\mathbb{Z} / 2 \mathbb{Z})]) \otimes N \tag{3.12}
\end{equation*}
$$

Example 3.6.21. Let k be an algebraically closed field with $\operatorname{char}(k) \neq 2$. Consider the subvariety $M=\left\{A \in \mathrm{SL}_{2} \mid \operatorname{tr} A \neq \pm 2\right\}$ of SL_{2}, over k, of diagonalizable non-scalar matrices. Note that we have a cartesian diagram

where $D \subseteq \mathrm{GL}_{2}$ is the subgroup of diagonal matrices, and GL_{2} / D the left coset space. The bottom morphism is given by $\lambda \mapsto \lambda+\lambda^{-1}$, and the top morphism by $(P, \lambda) \mapsto P\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) P^{-1}$. The group $G=\mathbb{Z} / 2 \mathbb{Z}$ acts both on GL_{2} / D and $\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}$, via $P \mapsto P\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and $\lambda \mapsto \lambda^{-1}$, respectively, and we can identify M with $\left(\mathrm{GL}_{2} / D \times\left(\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right)\right) / / G$. Since $\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}$ is a projective line minus some points, its class lies in $\mathcal{V}_{G}^{\mathcal{H}}$ using Theorem 3.6.19, so we can compute $[M] \in \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$ from the G-virtual classes $\left[\mathrm{GL}_{2} / D\right]^{G}$ and $\left[\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right]^{G}$. Using $\left(\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right) / / G \cong \mathbb{A}_{k}^{1} \backslash\{ \pm 2\}$ and (3.12), we find that

$$
\left[\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right]^{G}=(\mathbb{L}-2) \otimes T-1 \otimes N
$$

Similarly, from $\left[\left(\mathrm{GL}_{2} / D\right) / / G\right]=\mathbb{L}^{2}$ follows that

$$
\left[\mathrm{GL}_{2} / D\right]^{G}=\mathbb{L}^{2} \otimes T+\mathbb{L} \otimes N
$$

and hence

$$
\left[\mathrm{GL}_{2} / D \times\left(\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right)\right]^{G}=\left(\mathbb{L}^{3}-2 \mathbb{L}^{2}+\mathbb{L}\right) \otimes T+\left(2 \mathbb{L}^{2}-2 \mathbb{L}\right) \otimes N
$$

Therefore, $[M]=\mathbb{L}^{3}-2 \mathbb{L}^{2}+\mathbb{L}$.
Example 3.6.22. Consider $G=\mathbb{Z} / 2 \mathbb{Z}$ acting on $X=\mathbb{G}_{m}$ via $x \mapsto x^{-1}$, over any field k. As $[X]=\mathbb{L}-1$ and $[X / / G]=\mathbb{L}$, we obtain $[X]^{G}=\mathbb{L} \otimes T-1 \otimes N$. Since X can be seen as a projective line minus two points, its class lies in $\mathcal{V}_{G}^{\mathcal{H}}$, so we find that

$$
\left[\begin{array}{ll}
X^{n} / / G
\end{array}\right]=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\mathbb{L} & -1 \\
-1 & \mathbb{L}
\end{array}\right)^{n}\binom{1}{0}=\frac{(\mathbb{L}-1)^{n}+(\mathbb{L}+1)^{n}}{2}
$$

Chapter 4

Topological Quantum Field Theories

The aim of this chapter is to study motivic invariants of character stacks associated to closed manifolds. One of the first approaches in this direction was by Hausel and Rodriguez-Villegas [HR08], whose idea was to study the G representation variety by counting the number of points over finite fields \mathbb{F}_{q}. They could express these counts in terms of the representation theory of the finite groups $G\left(\mathbb{F}_{q}\right)$, and moreover, determine from these counts the E-polynomial of the G-representation variety. We call this approach the arithmetic method.

A few years later, Logares, Muñoz and Newstead [LMN13] initiated the geometric method, a geometric approach to compute the same invariant, making use of clever stratifications of the G-representation variety. González-Prieto, Logares and Muñoz [GLM20] showed that the geometric method can be phrased in terms of a Topological Quantum Field Theory (TQFT).
TQFTs, originating from physics, describe the topological aspects of a quantum field theory. Atiyah [Ati88] was the first to mathematically axiomatize the notion of a TQFT, defining a TQFT as a monoidal functor from the category of bordisms to the category of vector spaces. The idea that TQFTs can be used to compute invariants of geometric objects is not a new idea. For instance, Witten, in his seminal paper [Wit89], constructed a TQFT that computes the Jones polynomial of knots.

In this chapter, we will describe both the arithmetic and geometric method, and show how they can be unified using the framework of TQFTs. Specifically, we will show that both methods can be formulated as TQFTs, and that these TQFTs can be related through natural transformations.

4.1 Monoidal categories

Central to the theory of TQFTs is the notion of a monoidal category. Monoidal categories were defined by Mac Lane [Mac63] under the name 'bicategory', and by Bénabou [Bén63] under the name 'categories with multiplication'.

Definition 4.1.1. A monoidal category is a category \mathcal{C} with a functor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow$ \mathcal{C}, called the tensor product, an object 1 in \mathcal{C}, called the unit object, and natural isomorphisms

$$
\begin{array}{clc}
\alpha:-\otimes(-\otimes-) \Rightarrow(-\otimes-) \otimes- & \lambda: 1 \otimes-\Rightarrow \mathrm{id}_{\mathcal{C}} & \rho:-\otimes 1 \Rightarrow \mathrm{id}_{\mathcal{C}} \\
(\text { the associator }) & \text { (the left unitor) } & \text { (the right unitor) }
\end{array}
$$

such that the triangle

$$
(X \otimes 1) \otimes Y \underset{\rho_{X} \otimes \operatorname{id}_{Y}}{\longrightarrow} X \otimes Y \longleftrightarrow \alpha_{X, 1, Y} \longrightarrow X \otimes(1 \otimes Y)
$$

and the pentagon

commute for all objects X, Y, Z and W in \mathcal{C}. A symmetric monoidal category is a monoidal category \mathcal{C} together with natural isomorphisms

$$
\tau_{X, Y}: X \otimes Y \rightarrow Y \otimes X
$$

such that

$$
\tau_{Y, X} \circ \tau_{X, Y}=\operatorname{id}_{X \otimes Y}
$$

and the diagrams

$$
\begin{array}{r}
\quad(X \otimes Y) \otimes Z \xrightarrow{\alpha_{X, Y, Z}} X \otimes(Y \otimes Z) \xrightarrow{\tau_{X, Y \otimes Z}(Y \otimes Z) \otimes X} \begin{array}{r}
\downarrow_{X, Y} \otimes \mathrm{id}_{Z} \downarrow \\
\quad(Y \otimes X) \otimes Z \xrightarrow{\alpha_{Y, Z, X}} \\
\quad \alpha_{Y, X, Z}
\end{array} \otimes(X \otimes Z) Y \xrightarrow{\mathrm{id}_{Y} \otimes \tau_{X, Z}} Y \otimes(Z \otimes X)
\end{array}
$$

and

$$
\begin{array}{r}
\quad X \otimes(Y \otimes Z) \xrightarrow{\alpha_{X, Y, Z}^{-1}}(X \otimes Y) \otimes Z \xrightarrow{\tau_{X \otimes Y, Z}} Z \otimes(X \otimes Y) \\
\operatorname{id}_{X} \otimes \tau_{Y, Z} \downarrow \\
\quad X \otimes(Y \otimes Z) \xrightarrow{\alpha_{X, Z, Y}^{-1}}(X \otimes Z) \otimes Y \xrightarrow{\tau_{X, Z} \otimes \mathrm{id} Y}(Z \otimes X) \otimes Y
\end{array}
$$

commute for all X, Y and Z in \mathcal{C}.

Example 4.1.2. A basic example of a monoidal category is the category Set with tensor product \times and unit object $\{1\}$. More generally, any category \mathcal{C} with finite products can naturally be promoted to a monoidal category with tensor product \times and unit object a terminal object. Such a monoidal category is called a cartesian monoidal category. Dually, a category with finite coproducts can be promoted to a monoidal category with tensor product \sqcup and unit object an initial object, which is called a cocartesian monoidal category. For example, Set with \sqcup and \varnothing, or the category of R-algebras $\mathbf{A l g}_{R}$ with \otimes_{R} and R, for a commutative ring R. Another typical example of a monoidal category is the category of R modules Mod_{R} with tensor product \otimes_{R} and unit object R. All of these examples are naturally also symmetric monoidal categories.

Definition 4.1.3. A monoidal functor is a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between monoidal categories together with a natural isomorphism

$$
\mu: F(-) \otimes_{\mathcal{D}} F(-) \Rightarrow F\left(-\otimes_{\mathcal{C}}-\right)
$$

and an isomorphism $\varepsilon: 1_{\mathcal{D}} \rightarrow F\left(1_{\mathcal{C}}\right)$, such that the diagrams

$$
\begin{aligned}
& \mu_{X, Y} \otimes \operatorname{id}_{F(Z)} \downarrow \quad \downarrow \downarrow{ }^{2(X)} \otimes \mu_{Y, Z} \\
& F\left(X \otimes_{\mathcal{C}} Y\right) \otimes_{\mathcal{D}} F(Z) \quad F(X) \otimes_{\mathcal{D}} F\left(Y \otimes_{\mathcal{C}} Z\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1_{\mathcal{D}} \otimes_{\mathcal{D}} F(X) \xrightarrow{\varepsilon \otimes \mathrm{id}_{F(X)}} F\left(1_{\mathcal{C}}\right) \otimes_{\mathcal{D}} F(X) \quad F(X) \otimes_{\mathcal{D}} 1_{\mathcal{D}} \xrightarrow{\mathrm{id}_{F(X)} \otimes \varepsilon} F(X) \otimes_{\mathcal{D}} F\left(1_{\mathcal{C}}\right)
\end{aligned}
$$

commute for all objects X, Y and Z in \mathcal{C}. If μ is only a natural transformation, and ε only a morphism, then such a functor is called a lax monoidal functor. A (lax) monoidal functor between symmetric monoidal categories is said to be symmetric if it respects the symmetric structure, that is, the diagram

$$
\begin{array}{cc}
F(X) \otimes_{\mathcal{D}} F(Y) \xrightarrow{\tau_{F(X), F(Y)}^{\mathcal{D}}} & F(Y) \otimes_{\mathcal{D}} F(X) \\
\quad \mu_{X, Y} \downarrow & \downarrow_{Y, X} \\
F\left(X \otimes_{\mathcal{C}} Y\right) \xrightarrow{F\left(\tau_{X, Y}^{\mathcal{C}}\right)} & F\left(Y \otimes_{\mathcal{C}} X\right)
\end{array}
$$

commutes for all X and Y in \mathcal{C}.

4.2 Bordisms

The monoidal category that is central in the theory of TQFTs is the category of bordisms. By convention, we consider all manifolds to be smooth.

Definition 4.2.1. Let $n \geq 1$. Given two closed ($n-1$)-dimensional manifolds M_{1} and M_{2}, a bordism from M_{1} to M_{2} is a compact n-dimensional manifold W with boundary ∂W together with inclusions

$$
M_{2} \xrightarrow{i_{2}} W \stackrel{i_{1}}{\leftarrow} M_{1}
$$

such that $\partial W=i_{1}\left(M_{1}\right) \sqcup i_{2}\left(M_{2}\right)$.
Definition 4.2.2. The category of n-bordisms, denoted $\mathbf{B o r d}_{n}$, is the category defined as follows.

- Its objects are closed ($n-1$)-dimensional manifolds.
- A morphism $M_{1} \rightarrow M_{2}$ is an equivalence class of bordisms from M_{1} to M_{2}, where two such bordisms W and W^{\prime} are called equivalent if there is a diffeomorphism $f: W \rightarrow W^{\prime}$ such that the diagram

commutes. We will also refer to such equivalences classes as bordisms, with the understanding that it is only up to diffeomorphism.
- The composite of morphisms $W: M_{1} \rightarrow M_{2}$ and $W^{\prime}: M_{2} \rightarrow M_{3}$ is given by $W \sqcup_{M_{2}} W^{\prime}: M_{1} \rightarrow M_{3}$. While this operation is not well-defined on bordisms (there can be multiple manifold structures on $W \sqcup_{M_{2}} W^{\prime}$ such that the inclusions of W and W^{\prime} are smooth), such a structure is unique up to diffeomorphism, making it a well-defined operation on equivalence classes of bordisms [Mil65].
- For any closed $(n-1)$-dimensional manifold M, the identity on M is given by (the equivalence class of) the cylinder $M \times[0,1]$, with the inclusions $M \times\{0\} \rightarrow$ $M \times[0,1] \leftarrow M \times\{1\}$.

The category Bord_{n} naturally carries the structure of a symmetric monoidal category, whose tensor product is the disjoint union operator and whose unital object is the empty manifold \varnothing.

Definition 4.2.3. Let R be a commutative ring. An n-dimensional Topological Quantum Field Theory (TQFT) over R is a monoidal functor

$$
Z: \operatorname{Bord}_{n} \rightarrow \operatorname{Mod}_{R}
$$

where Mod_{R} is monoidal with tensor product \otimes_{R} and unit object R. If such a functor is only lax monoidal it is called a lax n-dimensional TQFT, and similarly if it is symmetric.

Interestingly, observe that $Z(\varnothing)$ is by definition naturally isomorphic to R for any TQFT $Z: \operatorname{Bord}_{n} \rightarrow \mathbf{M o d}_{R}$. Hence, any closed n-dimensional manifold W, viewed as a bordism $W: \varnothing \rightarrow \varnothing$, induces a morphism $Z(W): R \rightarrow R$ that is multiplication by $Z(W)(1) \in R$. The element $Z(W)(1)$ is an invariant associated to W, that is, it is the same for all W^{\prime} diffeomorphic to W.

Definition 4.2.4. Let χ be an R-valued invariant of closed n-dimensional manifolds. An n-dimensional TQFT Z is said to quantize χ if $Z(W)(1)=\chi(W)$ for all closed n-dimensional manifolds W.

There are many variations on the category of bordisms, by equipping the manifolds with extra data. One common is to equip them with an orientation.

Definition 4.2.5. Let $i: M \rightarrow \partial W$ be an embedding of a closed oriented ($n-1$)dimensional manifold M into the boundary of a compact oriented n-dimensional manifold W. Then i is said to be an in-boundary (resp. out-boundary) if for all $x \in M$, positively oriented bases v_{1}, \ldots, v_{n-1} for $T_{x} M$, and $w \in T_{i(x)} W$ pointing inwards (resp. outwards) compared to W, the basis $d i_{x}\left(v_{1}\right), \ldots, d i_{x}\left(v_{n-1}\right), w$ for $T_{i(x)} W$ is positively oriented.
Given two closed oriented ($n-1$)-dimensional manifolds M_{1} and M_{2}, an oriented bordism from M_{1} to M_{2} is a bordism

$$
M_{2} \xrightarrow{i_{2}} W \stackrel{i_{1}}{\leftarrow} M_{1}
$$

with an orientation on W such that i_{1} an in-boundary and i_{2} is an out-boundary. The category of oriented n-bordisms, denoted $\operatorname{Bord}_{n}^{\text {or }}$, is the category whose objects are closed oriented $(n-1)$-dimensional manifolds, and morphisms are equivalence classes of oriented bordisms, with composition given as for Bord $_{n}$. Finally, an n-dimensional oriented $T Q F T$ over R is a monoidal functor

$$
Z: \operatorname{Bord}_{n}^{\mathrm{or}} \rightarrow \operatorname{Mod}_{R} .
$$

While any TQFT induces an oriented TQFT, simply by forgetting the orientation, not every oriented TQFT can be extended to a TQFT, as will be shown in Section 4.4.

Remark 4.2.6. Although in Definition 4.2 .2 the category of bordisms Bord $_{n}$ was defined as a 1-category, it can naturally be promoted to a 2-category: the objects still being closed $(n-1)$-dimensional manifolds, a 1-morphism being a bordism (rather than an equivalence class of bordisms), and a 2-morphism between bordisms being an equivalence as in (4.1). Now, if we view Bord_{n} as a 2-category, it is only natural to promote Mod_{R} to a 2-category as well and require a TQFT to be a 2 -functor. We will promote Mod_{R} in the trivial way, where the only 2 -morphisms are identity morphisms. Note that, in essence, this does not change the definition of a TQFT, since two bordisms which are equivalent must be sent to the same R-linear map. Therefore, in the context of TQFTs as in Definition 4.2.3, it does not matter whether we view Bord ${ }_{n}$ as a 2-category or simply as a 1-category.
For the correct notions of monoidal categories and monoidal functors in the context of 2-categories, see [KV94, BN96].

4.3 Physical interpretation

As mentioned, the notion of a TQFT originates from physics, and was first mathematically axiomatized by Atiyah [Ati88]. While not strictly necessary, we believe it is helpful to discuss the physical interpretation of these objects for a better intuition of the remainder of this chapter.

A TQFT describes a quantum mechanical system, specifically a quantum field theory. Space, at some point in time, is represented by a closed manifold, that is, an object of Bord $_{n}$. A morphism in this category, a bordism connecting such manifolds, represents a part of spacetime, where the extra dimension corresponds to the dimension of time.

Figure 4.1: A bordism connecting two boundaries, representing a part of spacetime connecting space at two points in time.

For simplicity, let us take $R=\mathbb{C}$. Then a TQFT assigns to a space M a complex vector space $\mathcal{H}=Z(M)$ and to a spacetime $W: M_{1} \rightarrow M_{2}$ a linear map $Z(W): \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$. We can think of the vector space \mathcal{H} as the Hilbert space associated to M, that is, the vector space of all quantum states on this space. The linear map $Z(W)$ describes the time-evolution of the system.

What makes a TQFT 'topological', is that the system it describes has no actual dynamics. That is, the Hamiltonian of the system is zero, and only topological effects come into play. For instance, the cylinder $M \times[0,1]$, being topologically trivial, induces the identity on \mathcal{H}, and hence does not change the state of the system.

It is not uncommon for Hilbert spaces to be infinite-dimensional, and in this case the tensor product of Hilbert spaces is not simply the tensor product of the underlying vector spaces: it should be completed. For this reason, the Hilbert space \mathcal{H} associated to a disjoint union $M_{1} \sqcup M_{2}$ is not necessarily expected to be equal to the tensor product (as vector spaces) of the Hilbert spaces associated to M_{1} and M_{2}, but at least there should be a natural morphism $\mathcal{H}_{1} \otimes_{\mathbb{C}} \mathcal{H}_{2} \rightarrow$ \mathcal{H}. Although this might be an indication that the category of vector spaces is not quite the correct target for a TQFT, we will take it as motivation for the definition of a lax TQFT.

A common way to construct a TQFT is as the composite of two functors, a field theory and a quantization functor. This corresponds to describing a classical field theory, followed by a quantization procedure. The field theory \mathcal{F} assigns to a manifold M a phase space $\mathcal{F}(M)$: a geometric object parametrizing all possible classical states, or field configuration, of the system on M. For simplicity, we can think of such a state or field as a vector bundle or a local system on M. Note that, given a bordism $W: M_{1} \rightarrow M_{2}$, a field over W can be restricted to a field over any of the boundaries. In particular, we obtain the following diagram.

Such a diagram is known as a correspondence from $\mathcal{F}\left(M_{1}\right)$ to $\mathcal{F}\left(M_{2}\right)$. The field theory \mathcal{F} should therefore be a functor from Bord_{n} to the category of correspondences, whose objects are some kind of geometric objects and whose morphisms are correspondences between them. Now, let us consider what happens to a composite of bordisms. Two bordisms $W: M_{1} \rightarrow M_{2}$ and $W^{\prime}: M_{2} \rightarrow M_{3}$ induce the
following diagram.

A field over $W \sqcup_{M_{2}} W^{\prime}$ is essentially the same as a field over W and a field over W^{\prime} that agree over M_{2}, so the middle square will be cartesian. This is precisely how the composition of correspondences is defined, so \mathcal{F} will indeed be a functor.
Next, let us consider the quantization functor \mathcal{Q}. This functor assigns to the phase space $\mathcal{F}(M)$ a complex vector space, its Hilbert space, whose vectors represent the quantum states of the system on M. For simplicity, we can think of a quantum state as a complex-valued function (a wave function) on $\mathcal{F}(M)$, which describes a distribution or superposition of classical states. Furthermore, on correspondences, \mathcal{Q} is commonly given by a 'pull-push' construction. Given a quantum state $\psi_{1} \in \mathcal{Q}\left(\mathcal{F}\left(M_{1}\right)\right)$, that is, a complex-valued function on $\mathcal{F}\left(M_{1}\right)$, one can pull back ψ_{1} along i_{1}^{*} to obtain $\Psi=\psi_{1} \circ i_{1}^{*} \in \mathcal{Q}(\mathcal{F}(W))$, a complexvalued function on $\mathcal{F}(W)$. Next, one can push forward Ψ along i_{2}^{*}, by integrating along fibers, to obtain $\psi_{2} \in \mathcal{Q}\left(\mathcal{F}\left(M_{2}\right)\right)$ given by

$$
\psi_{2}(y)=\int_{\left(i_{2}^{*}\right)^{-1}(y)} \Psi(x) d x
$$

provided such an integral exists. The resulting map $\mathcal{Q}\left(\mathcal{F}\left(M_{1}\right)\right) \rightarrow \mathcal{Q}\left(\mathcal{F}\left(M_{2}\right)\right)$ corresponds, roughly speaking, to a (Feynman) path integral. That is, the amplitude corresponding to state y is determined by considering all possible paths to state y (points on $\mathcal{F}(W)$ over y), and their amplitudes are added.
More generally, one could replace the above integral by a weighted integral with weight $e^{i S(x)}$, where S is a function on $\mathcal{F}(W)$ called the action. For TQFTs there is no such weighting, since only the topology of the bordisms is considered, and no other extra data. However, equipping the bordisms with extra data can result in QFTs with non-trivial actions. For example, one obtains a conformal field theory by equipping the bordisms with a conformal structure.

4.4 Low-dimensional TQFTs

Let us discuss some properties of an oriented TQFT $Z: \mathbf{B o r d}_{n}^{\text {or }} \rightarrow \operatorname{Mod}_{R}$. Given a closed oriented ($n-1$)-dimensional manifold M, denote by \bar{M} the same manifold but with opposite orientation, and by $U_{M}: \varnothing \rightarrow M \sqcup \bar{M}$ and $U_{M}^{\dagger}: M \sqcup$ $\bar{M} \rightarrow \varnothing$ be the bordisms with underlying manifold $M \times[0,1]$. Note that the
$\operatorname{map} Z\left(U_{M}\right): R \rightarrow Z(M) \otimes_{R} Z(\bar{M})$ is completely determined by the element $Z\left(U_{M}\right)(1)=\sum_{i=1}^{m} v_{i} \otimes \bar{v}_{i}$ with $v_{i} \in Z(M)$ and $\bar{v}_{i} \in Z(\bar{M})$. From the equality $\left(U_{M}^{\dagger} \sqcup \operatorname{id}_{M}\right) \circ\left(\operatorname{id}_{M} \sqcup \tau_{M, \bar{M}}\right) \circ\left(\operatorname{id}_{M} \sqcup U_{M}\right)=\operatorname{id}_{M}$, depicted pictorially as

it follows that

$$
v=\sum_{i=1}^{m} Z\left(U_{M}^{\dagger}\right)\left(v \otimes \bar{v}_{i}\right) v_{i}
$$

for all $v \in Z(M)$. In particular, $Z(M)$ is generated by v_{1}, \ldots, v_{m}. Similarly, from the equality $\left(U_{M}^{\dagger} \sqcup \mathrm{id}_{\bar{M}}\right) \circ\left(\tau_{\bar{M}, M} \sqcup \mathrm{id}_{\bar{M}}\right) \circ\left(\mathrm{id}_{\bar{M}} \sqcup U_{M}\right)=\mathrm{id}_{\bar{M}}$ it follows that

$$
\bar{v}=\sum_{i=1}^{m} Z\left(U_{M}^{\dagger}\right)\left(v_{i} \otimes \bar{v}\right) \bar{v}_{i}
$$

for all $\bar{v} \in Z(\bar{M})$, so $Z(\bar{M})$ is generated by $\bar{v}_{1}, \ldots, \bar{v}_{m}$. This shows that $Z(M)$ is a dualizable object with dual $Z(\bar{M})$, unit $Z\left(U_{M}\right)$ and counit $Z\left(U_{M}^{\dagger}\right)$.

Remark 4.4.1. If Z is only a lax TQFT, the image of $Z\left(U_{M}\right)$ need not necessarily lie in the tensor product $Z(M) \otimes Z(\bar{M})$, and consequently, the module $Z(M)$ need not be finitely generated. This will be the case for the TQFT constructed in Section 4.7.

In the category of R-modules, the dualizable objects are precisely the finitely generated projective modules [PS14]. In dimension $n=1$, this completely characterizes the TQFT.

Proposition 4.4.2. Let R be a commutative ring. There is an equivalence of categories

$$
\text { 1-TQFT }_{R}^{\mathrm{or}} \simeq \text { FGProjMod }_{R}
$$

between the category of 1-dimensional oriented TQFTs over R and the category of finitely generated projective R-modules, which assigns to a TQFT Z the R module $Z(p)$, where p is the point with orientation +1 .

Proof. As shown above, an oriented 1-TQFT Z over R determines a dualizable (that is, finitely generated projective) R-module $M=Z(p)$. From a morphism between such TQFTs (a natural transformation) we obtain a morphism between the corresponding modules. This gives a functor 1-TQFT ${ }_{R}^{\text {or }} \rightarrow$ FGProjMod $_{R}$.

Conversely, let M be a dualizable R-module. The objects of Bord $_{1}^{\text {or }}$ are finite disjoint unions of p and \bar{p}. As shown above, $Z(\bar{p})$ is dual to $Z(p)$, so by monoidality, specifying $Z(p)=M$ determines Z on objects, with $Z(\bar{p})=\operatorname{Hom}_{R}(M, R)$. The only connected bordisms in Bord $_{1}^{\text {or }}$ are

$$
\begin{aligned}
\operatorname{id}_{p}: p \rightarrow p, & \operatorname{id}_{\bar{p}}: \bar{p} \rightarrow \bar{p} \\
U_{p}: \varnothing \rightarrow p \sqcup \bar{p}, & U_{p}^{\dagger}: p \sqcup \bar{p} \rightarrow \varnothing
\end{aligned}
$$

and $S^{1}=U_{p}^{\dagger} \circ U_{p}: \varnothing \rightarrow \varnothing$, all of whose image under Z is canonically determined by the unit and counit of the dualizable module M. This construction, being natural in M, defines a functor FGProjMod ${ }_{R} \rightarrow$ 1-TQFT ${ }_{R}^{\text {or }}$.
These functors are easily seen to be pseudo-inverses of each other, establishing the equivalence of categories.

A similar characterization of oriented TQFTs can be given in dimension $n=2$. The objects of $\mathbf{B o r d}_{2}^{\text {or }}$ are disjoint unions of S^{1}, the circle, where we fix an orientation of S^{1}. Using the classification of oriented surfaces, one can show the morphisms in $\mathbf{B o r d}_{2}^{\text {or }}$ are 'generated' by the following bordisms:

$$
\begin{align*}
& 0: S^{1} \rightarrow S^{1}, \quad 8: S^{1} \sqcup S^{1} \rightarrow S^{1}, \quad \text { ? } 0: S^{1} \rightarrow S^{1} \sqcup S^{1}, \\
& 0: S^{1} \rightarrow \varnothing, \quad D: \varnothing \rightarrow S^{1} \text { and } S^{1} \sqcup S^{1} \rightarrow S^{1} \sqcup S^{1} . \tag{4.2}
\end{align*}
$$

That is, any bordism in $\mathbf{B o r d}_{2}^{\text {or }}$ is isomorphic to a composite of disjoint unions of these bordisms [Koc04, Proposition 1.4.13]. Hence, we expect 2-dimensional oriented TQFTs to correspond to dualizable modules with some extra algebraic structure. For $R=k$ a field, the correct algebraic structure turns out to be that of a Frobenius algebra.

Definition 4.4.3. A Frobenius algebra over a field k is an algebra A over k, whose multiplication and unit we denote by $\mu: A \otimes_{k} A \rightarrow A$ and $\eta: k \rightarrow A$, equipped with a bilinear form $\beta: A \otimes_{k} A \rightarrow k$, which is

- associative, that is, $\beta(\mu(a \otimes b) \otimes c)=\beta(a \otimes \mu(b \otimes c))$ for all $a, b, c \in A$,
- non-degenerate, that is, there exists a k-linear map $\gamma: k \rightarrow A \otimes_{k} A$ such that $\left(\beta \otimes \mathrm{id}_{A}\right)(a \otimes \gamma(1))=a=\left(\mathrm{id}_{A} \otimes \beta\right)(\gamma(1) \otimes a)$ for all $a \in A$.

Remark 4.4.4. For any Frobenius algebra A, writing $\gamma(1)=\sum_{i} a_{i} \otimes b_{i}$ for some $a_{i}, b_{i} \in A$, we find that $a=\left(\operatorname{id}_{A} \otimes \beta\right)\left(\sum_{i} a_{i} \otimes b_{i} \otimes a\right)=\sum_{i} a_{i} \beta\left(b_{i} \otimes a\right)$ for all $a \in A$. In particular, A is finite-dimensional and generated by the a_{i}. This equality also shows that β is non-degenerate in the usual sense: if $\beta(b \otimes a)=0$ for all $b \in A$, then $a=0$. Similarly, one shows non-degeneracy in the other
argument. Furthermore, this implies γ must be unique. Namely, if γ and γ^{\prime} both satisfy the condition, then write $\gamma(1)-\gamma^{\prime}(1)=\sum_{i} a_{i} \otimes b_{i}$ with $a_{i}, b_{i} \in A$ and the a_{i} are linearly independent. Since $0=\left(\operatorname{id}_{A} \otimes \beta\right)\left(\sum_{i} a_{i} \otimes b_{i} \otimes a\right)=\sum_{i} a_{i} \beta\left(b_{i} \otimes a\right)$ for all $a \in A$, it follows that $b_{i}=0$ for all i, so $\gamma(1)=\gamma^{\prime}(1)$.

A Frobenius algebra naturally carries the structure of a k-coalgebra, see [Koc04, Section 2.3], where the comultiplication δ and counit ε are given by

$$
\begin{equation*}
\delta=\left(\mu \otimes \operatorname{id}_{A}\right) \circ\left(\mathrm{id}_{A} \otimes \gamma\right) \quad \text { and } \quad \varepsilon=\beta \circ\left(\mathrm{id}_{A} \otimes \eta\right) \tag{4.3}
\end{equation*}
$$

A morphism of Frobenius algebras is a morphism of k-algebras which is also a morphism of k-coalgebras.

The following theorem makes a precise correspondence between 2-dimensional oriented TQFTs and Frobenius algebras. It was initially proved by Dijkgraaf [Dij89], and later reproved in more detail by others, such as [Abr96, Koc04].

Theorem 4.4.5. Let k be a field. There is an equivalence of categories

$$
\text { 2-TQFT }{ }_{k}^{\text {or }} \simeq \text { CFrobAlg }_{k}
$$

between the category of 2-dimensional oriented TQFTs over k and the category of commutative Frobenius algebras over k, which assigns to a TQFT Z the Frobenius algebra $A=Z\left(S^{1}\right)$ and

$$
\begin{aligned}
& Z(0)=\eta, \quad Z\binom{0}{0}=\mu, \quad Z\binom{0}{0}=\beta, \\
& Z(0)=\varepsilon, \quad Z\binom{0}{0}=\delta, \quad Z\binom{0}{0}=\gamma .
\end{aligned}
$$

Example 4.4.6. Let S be a finite set and let $A=k^{S}$ be the k-algebra of k valued functions on S, where multiplication is given pointwise. Then A admits the structure of a Frobenius algebra with $\beta(f \otimes g)(s)=\sum_{s \in S} f(s) g(s)$ and $\gamma(1)=\sum_{s \in S} \mathbb{1}_{s} \otimes \mathbb{1}_{s}$, where $\mathbb{1}_{s}$ denotes the indicator function. From (4.3), we find that the coalgebra structure is given by $\varepsilon(f)=\sum_{s \in S} f(s)$ and $\delta(f)=$ $\sum_{s \in S} f(s) \mathbb{1}_{s} \otimes \mathbb{1}_{s}$. For any closed surface Σ_{g} of genus g, we have

$$
Z\left(\Sigma_{g}\right)(1)=Z(0) \circ Z(\boxed{\sigma})^{g} \circ Z(D)=\left(\varepsilon \circ(\mu \circ \delta)^{g} \circ \eta\right)(1)=|S|
$$

Therefore, $Z(M)(1)=|S|^{\pi_{0}(M)}$ for any general closed oriented surface M, that is, Z quantizes the number of connected components of M.

Example 4.4.7. The complex numbers $A=\mathbb{C}$ are a Frobenius algebra over $k=\mathbb{R}$ with $\beta\left(z_{1} \otimes z_{2}\right)=\operatorname{Re}\left(z_{1} z_{2}\right)$ and $\gamma(1)=1 \otimes 1-i \otimes i$. One quickly finds that $\delta(z)=z \otimes 1-i z \otimes i$ and $\varepsilon(z)=\operatorname{Re}(z)$. The corresponding TQFT yields

$$
Z\left(\Sigma_{g}\right)(1)=Z(\bigcirc) \circ Z(\widetilde{\sigma})^{g} \circ Z(0)=\left(\varepsilon \circ(\mu \circ \delta)^{g} \circ \eta\right)(1)=2^{g} .
$$

In this sense, this TQFT quantizes the genus of the surface.

Remark 4.4.8. Let us make a note about the difference between oriented and unoriented TQFTs. Clearly, via the forgetful functor $\mathbf{B o r d}_{n}^{\text {or }} \rightarrow$ Bord $_{n}$, which forgets the orientation, any TQFT induces an oriented TQFT. In this sense, an unoriented TQFT can be seen as an oriented TQFT with extra structure. However, not every oriented TQFT arises in such a way. This follows from Proposition 4.4.2 and the fact that not every finitely generated projective module (that is, dualizable module) is isomorphic to its dual.

4.5 Representation ring as TQFT

Let G be a finite group, and denote by $A=R_{\mathbb{C}}(G)$ the representation ring of G, that is, the complex algebra generated by \mathbb{C}-valued class functions on G. Of great importance in the representation theory of G is the inner product that is defined on A, which we will denote by $\beta: A \otimes_{\mathbb{C}} A \rightarrow \mathbb{C}$, and which is given by

$$
\beta(a \otimes b)=\frac{1}{|G|} \sum_{g \in G} a(g) b\left(g^{-1}\right) \quad \text { for } a, b \in A
$$

A lesser known but equally important operation on A is the convolution operation $\mu: A \otimes_{\mathbb{C}} A \rightarrow A$ on A, which is given by

$$
\mu(a \otimes b)(g)=\sum_{h \in G} a(h) b\left(h^{-1} g\right) \quad \text { for } a, b \in A
$$

and is related to the inner product via $\beta(a \otimes b)=\mu(a \otimes b)(1)$ for $a, b \in A$. The unit $\eta: \mathbb{C} \rightarrow A$ with respect to μ is given by $\eta(1)(1)=1$ and $\eta(1)(g)=0$ for $g \neq 1$. Alternatively, η can be expressed as

$$
\begin{equation*}
\eta(1)=\frac{1}{|G|} \sum_{\chi \in \hat{G}} \chi(1) \chi \tag{4.4}
\end{equation*}
$$

where \hat{G} denotes the set of irreducible complex characters of G. These operations give $R_{\mathbb{C}}(G)$ the structure of a commutative Frobenius algebra over \mathbb{C}.

Proposition 4.5.1. The representation ring $R_{\mathbb{C}}(G)$ is a commutative Frobenius algebra over \mathbb{C} with multiplication μ and bilinear form β.

Proof. First note that μ is associative as

$$
\begin{aligned}
\mu(a \otimes \mu(b \otimes c))(g) & =\sum_{h_{1}, h_{2} \in G} a\left(h_{1}\right) b\left(h_{2}\right) c\left(h_{2}^{-1} h_{1}^{-1} g\right) \\
& =\sum_{h_{1}^{\prime}, h_{2}^{\prime} \in G} a\left(h_{2}^{\prime}\right) b\left(h_{2}^{\prime-1} h_{1}^{\prime}\right) c\left(h_{1}^{\prime-1} g\right)=\mu(\mu(a \otimes b) \otimes c)(g)
\end{aligned}
$$

for all $a, b, c \in A$ and $g \in G$, where $h_{1}^{\prime}=h_{1} h_{2}$ and $h_{2}^{\prime}=h_{1}$, and μ is commutative as

$$
\mu(a \otimes b)(g)=\sum_{h \in G} a(h) b\left(h^{-1} g\right)=\sum_{h^{\prime} \in G} b\left(h^{\prime}\right) a\left(h^{\prime-1} g\right)=\mu(b \otimes a)(g)
$$

for all $a, b \in A$ and $g \in G$, where $h^{\prime}=h^{-1} g$. Furthermore, β is associative as

$$
\begin{aligned}
\beta(\mu(a \otimes b) \otimes c) & =\frac{1}{|G|} \sum_{g, h \in G} a(h) b\left(h^{-1} g\right) c\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g, h \in G} a(g) b\left(g^{-1} h\right) c\left(h^{-1}\right)=\beta(a \otimes \mu(b \otimes c))
\end{aligned}
$$

for all $a, b, c \in A$. Finally, β is non-degenerate as $\gamma: \mathbb{C} \rightarrow A \otimes_{\mathbb{C}} A$ given by $\gamma(1)=\sum_{\chi \in \hat{G}} \chi \otimes \chi$ satisfies

$$
\left(\beta \otimes \operatorname{id}_{A}\right)(a \otimes \gamma(1))=\sum_{\chi \in \hat{G}} \beta(a \otimes \chi) \chi=a
$$

by the first orthogonality theorem [Ser77, Theorem 3], and by the same argument $\left(\operatorname{id}_{A} \otimes \beta\right)(\gamma(1) \otimes a)=a$, for all $a \in A$.

Remark 4.5.2. The copairing $\gamma: \mathbb{C} \rightarrow A \otimes_{\mathbb{C}} A$, or rather $\gamma(1)$, can be seen as an inner product on the conjugacy classes of G. As a function $G \times G \rightarrow \mathbb{C}$, it is given by

$$
\gamma(1)\left(g_{1}, g_{2}\right)=\left|\left\{h \in G \mid h g_{1} h^{-1}=g_{2}\right\}\right| .
$$

Under the equivalence of Theorem 4.4.5, the representation ring $A=R_{\mathbb{C}}(G)$ corresponds to a 2-dimensional oriented TQFT

$$
Z_{G}: \mathbf{B o r d}_{2}^{\mathrm{or}} \rightarrow \text { Vect }_{\mathbb{C}} .
$$

From (4.3), we find that the comultiplication $\delta: A \rightarrow A \otimes_{\mathbb{C}} A$ and counit $\varepsilon: A \rightarrow \mathbb{C}$ on A are given by

$$
\begin{equation*}
\delta(a)=\sum_{\chi \in \hat{G}} \mu(a \otimes \chi) \otimes \chi \quad \text { and } \quad \varepsilon(a)=\frac{1}{|G|} a(1) \tag{4.5}
\end{equation*}
$$

The convolution of irreducible characters $\chi, \chi^{\prime} \in \hat{G}$ is well known [Isa76, Theorem 2.13] to be given by

$$
\mu\left(\chi \otimes \chi^{\prime}\right)=\left\{\begin{array}{cl}
\frac{|G|}{\chi(1)} \chi & \text { if } \chi=\chi^{\prime} \tag{4.6}\\
0 & \text { otherwise }
\end{array}\right.
$$

This implies that, for any irreducible character $\chi \in \hat{G}$,

$$
\begin{equation*}
Z_{G}(\overparen{\square})(\chi)=(\mu \circ \delta)(\chi)=\frac{|G|^{2}}{\chi(1)^{2}} \chi \tag{4.7}
\end{equation*}
$$

In other words, the irreducible characters of G form a basis of eigenvectors for the $\operatorname{map} Z_{G}(-0)$. The following theorem describes the invariant that this TQFT quantizes.

Theorem 4.5.3. The $T Q F T Z_{G}$ quantizes the groupoid cardinality $\left|\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right|=$ $\left|R_{G}\left(\Sigma_{g}\right)\right| /|G|$. In particular,

$$
Z_{G}\left(\Sigma_{g}\right)(1)=\sum_{\chi \in \hat{G}}\left(\frac{|G|}{\chi(1)}\right)^{2 g-2}=\left|\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right|
$$

Proof. The first equality follows from (4.7) and the expressions for η and ε. For the second equality, let $f: G \rightarrow \mathbb{C}$ be the class function given by $f(g)=$ $\left|\left\{(A, B) \in G^{2} \mid[A, B]=g\right\}\right|$. From the explicit presentation of $R_{G}\left(\Sigma_{g}\right)$,

$$
R_{G}\left(\Sigma_{g}\right)=\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}\right) \in G^{2 g} \mid \prod_{i=1}^{g}\left[A_{i}, B_{i}\right]=1\right\}
$$

and the definition of the convolution operator on $R_{\mathbb{C}}(G)$, it is clear that

$$
\left|R_{G}\left(\Sigma_{g}\right)\right|=(\underbrace{f * \cdots * f}_{g \text { times }})(1),
$$

where $f * f=\mu(f \otimes f)$. Therefore, it suffices to show that f is equal to

$$
Z_{G}(\overparen{\square} \circ \emptyset)(1)=(\mu \circ \delta \circ \eta)(1)=\sum_{\chi \in \hat{G}} \frac{|G|}{\chi(1)} \chi,
$$

or equivalently, that $\beta(f \otimes \chi)=|G| / \chi(1)$ for every irreducible complex character χ of G. Note that $\beta(f \otimes \chi)$ is equal to

$$
\frac{1}{|G|} \sum_{g \in G} f(g) \chi\left(g^{-1}\right)=\frac{1}{|G|} \sum_{A, B \in G} \chi\left([A, B]^{-1}\right)=\frac{1}{|G|} \sum_{A, B \in G} \chi\left(B A B^{-1} A^{-1}\right)
$$

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation with character χ. Schur's lemma implies that, for any $A \in G$, the operator $T_{A}=\sum_{B \in G} \rho\left(B A B^{-1}\right)$ is a scalar multiple of the identity, that is, $T_{A}=\operatorname{tr}\left(T_{A}\right) / \chi(1)=|G| \chi(A) / \chi(1)$. Hence, it follows that

$$
\beta(f \otimes \chi)=\frac{1}{|G|} \sum_{A, B \in G} \operatorname{tr}\left(T_{A} A^{-1}\right)=\frac{1}{|G|} \sum_{A \in G} \frac{|G|}{\chi(1)} \chi(A) \chi\left(A^{-1}\right)=\frac{|G|}{\chi(1)}
$$

Example 4.5.4. When G is abelian, all irreducible representations of G are of one-dimensional, so $Z_{G}(-0)$ is simply multiplication by $|G|^{2}$. Therefore, $\left|R_{G}\left(\Sigma_{g}\right)\right|=|G|^{2 g}$ as expected.

4.6 Arithmetic method

Let us elaborate on the arithmetic method from [HR08]. Given a complex algebraic group G, typically a linear algebraic group such as GL_{n} or SL_{n}, the goal of this method is to compute the E-polynomial of the G-representation variety $R_{G}\left(\Sigma_{g}\right)$. It tries to accomplish this using the following theorem, which is a consequence of [HR08, Theorem 6.1.2].

Theorem 4.6.1 (Katz' theorem). Let X be a complex variety with a spreadingout \tilde{X} over a finitely generated \mathbb{Z}-algebra $R \subseteq \mathbb{C}$. If there exists a polynomial $P \in \mathbb{Z}[q]$ such that $\left|\left(\tilde{X} \times_{R} \mathbb{F}_{q}\right)\left(\mathbb{F}_{q}\right)\right|=P(q)$ for all ring morphisms $R \rightarrow \mathbb{F}_{q}$, then the E-polynomial of X is given by $P(u v) \in \mathbb{Z}[u, v]$.

Most common linear algebraic groups G, such as GL_{n} and SL_{n}, can be defined over \mathbb{Z}, which determine a natural spreading-out of $R_{G}\left(\Sigma_{g}\right)$ over $R=\mathbb{Z}$. In this case, we find that

$$
\begin{aligned}
\left|R_{G}\left(\Sigma_{g}\right)\left(\mathbb{F}_{q}\right)\right| & =\left|\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}, *\right), G\left(\mathbb{F}_{q}\right)\right)\right| \\
& =\left|G\left(\mathbb{F}_{q}\right)\right|\left|\mathfrak{X}_{G\left(\mathbb{F}_{q}\right)}\left(\Sigma_{g}\right)\right| \\
& =\left|G\left(\mathbb{F}_{q}\right)\right| Z_{G\left(\mathbb{F}_{q}\right)}\left(\Sigma_{g}\right)(1) .
\end{aligned}
$$

Hence, to compute this point count, we can apply Theorem 4.5.3. This reduces the problem to studying the representation theory of the finite groups $G\left(\mathbb{F}_{q}\right)$, or more specifically, to studying the dimensions of their irreducible representations. This was originally done for the groups $G=\mathrm{GL}_{n}$ in [HR08], and later also for the groups $G=\mathrm{SL}_{n}$ in [Mer15].

However, note that it is not clear at all why these point counts should be polynomial in q. It will be, by Theorem 4.5.3, when $\left|G\left(\mathbb{F}_{q}\right)\right|$ is polynomial in q and the irreducible representations χ of $G\left(\mathbb{F}_{q}\right)$ come in families in which both $\chi(1)$ and the size of the family is polynomial in q. This is the case in [HR08, Mer15], but fails already when G is not a linear algebraic group, such as an elliptic curve.

An amazing result by [BK22] shows that the above quantities are polynomial in q when G is a connected split reductive group, using Lusztig's Jordan decomposition to describe the irreducible representations of $G\left(\mathbb{F}_{q}\right)$. More precisely, these quantities are polynomial in q after fixing a congruence condition $q \equiv i \bmod d$, where d is an integer depending on the root datum of G, and i can be any integer. By appropriate choice of finitely generated \mathbb{Z}-algebra R, one can enforce the congruence condition $q \equiv 1 \bmod d$, implying that the E-polynomial of the character stack $\mathfrak{X}_{G}\left(\Sigma_{g}\right)$ is polynomial in $u v$ [BK22, Corollary 4].

4.7 Character stack TQFT

In this section, we will construct a lax TQFT quantizing the virtual class of the G-character stack in the Grothendieck ring of stacks. The construction of this TQFT is an adaptation of the work of González-Prieto, Logares and Muñoz [GLM20], the main differences being that we will not fix a set of basepoints on our manifolds, and that we focus on the character stack rather than the representation variety.
Fix a base scheme S and let G be a linear algebraic group over S. Like described in Section 4.3, the TQFT will be constructed as the composite of two functors, a field theory \mathcal{F}_{G} and a quantization functor \mathcal{Q},

$$
\operatorname{Bord}_{n} \xrightarrow{\mathcal{F}_{G}} \operatorname{Corr}\left(\mathbf{S t c k}_{S}\right) \xrightarrow{\mathcal{Q}} \mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right) \text {-Mod }
$$

where the category $\operatorname{Corr}\left(\mathbf{S t c k}{ }_{S}\right)$ is defined as follows. Recall from Definition 1.6.4 that $\mathbf{S t c k}$ is the 2-category of algebraic stacks of finite type over S with affine stabilizers, which has pullbacks by Lemma 1.6.3.

Definition 4.7.1. Let \mathcal{C} be a 2 -category with pullbacks. The category of correspondences over \mathcal{C} is the 2-category, denoted by $\operatorname{Corr}(\mathcal{C})$, defined as follows. Its objects are the objects of \mathcal{C}. A 1-morphism from X to Y is a correspondence, that is, a diagram $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$ in \mathcal{C}. A 2-morphism between correspondences $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$ and $X \stackrel{f^{\prime}}{\leftarrow} Z^{\prime} \xrightarrow{g^{\prime}} Y$ is an isomorphism $h: Z \rightarrow Z^{\prime}$ in \mathcal{C} together with 2-isomorphisms $\alpha: f \Rightarrow f^{\prime} \circ h$ and $\beta: g \Rightarrow g^{\prime} \circ h$.

The composition of correspondences $X \stackrel{f}{\leftarrow} Y \xrightarrow{g} X^{\prime}$ and $X^{\prime} \stackrel{f^{\prime}}{\leftarrow} Y^{\prime} \xrightarrow{g^{\prime}} X^{\prime \prime}$ is given by $X \stackrel{f \circ \pi_{Y}}{\longleftarrow} Y \times_{X^{\prime}} Y^{\prime} \xrightarrow{g \circ \pi_{Y^{\prime}}} X^{\prime \prime}$. If \mathcal{C} is monoidal, then so is $\operatorname{Corr}(\mathcal{C})$.

Remark 4.7.2. Correspondences over \mathcal{C} can be viewed as an extension of morphisms in \mathcal{C}, since any morphism $f: X \rightarrow Y$ in \mathcal{C} can be seen as the correspondence $X \stackrel{\text { id }_{X}}{\longleftarrow} X \xrightarrow{f} Y$.

Let us start with the field theory. For this we want to consider Bord_{n} as a 2-category, as in Remark 4.2.6.

Definition 4.7.3. Let $\mathcal{F}_{G}: \operatorname{Bord}_{n} \rightarrow \operatorname{Corr}\left(\mathbf{S t c k}_{S}\right)$ be the 2-functor that assigns to a closed manifold M the character stack $\mathfrak{X}_{G}(M)$, to a bordism $W: M_{1} \rightarrow M_{2}$ the correspondence

$$
\mathfrak{X}_{G}(M) \leftarrow \mathfrak{X}_{G}(W) \rightarrow \mathfrak{X}_{G}\left(M^{\prime}\right)
$$

induced by the inclusions $M_{i} \rightarrow W$, and finally to an equivalence of bordisms $f: W \rightarrow W^{\prime}$ the diagram

where the vertical isomorphism is induced by f.
Proposition 4.7.4. \mathcal{F}_{G} defines a symmetric monoidal functor.
Proof. As $M \times[0,1]$ is homotopy equivalent to M, it follows that $\mathfrak{X}_{G}(M \times[0,1]) \cong$ $\mathfrak{X}_{G}(M)$ for any closed manifold M, so \mathcal{F}_{G} preserves identity morphisms. For any two bordisms $W: M_{1} \rightarrow M_{2}$ and $W^{\prime}: M_{2} \rightarrow M_{3}$, the diagram

naturally commutes, and the square is a pushout square by the Seifert-van Kampen theorem for fundamental groupoids [Bro67]. Lemma 2.3.6 implies that the resulting square on G-character stacks is a cartesian square, which shows that \mathcal{F}_{G} is functorial. The same lemma also shows $\mathfrak{X}_{G}\left(M_{1} \sqcup M_{2}\right)$ is naturally isomorphic to $\mathfrak{X}_{G}\left(M_{1}\right) \times \mathfrak{X}_{G}\left(M_{2}\right)$, and this isomorphism clearly respects the symmetric monoidal structure, that is, \mathcal{F}_{G} is symmetric monoidal.

Next, we define the quantization functor. As in Remark 4.2.6, we view the category $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$-Mod as a 2-category in the trivial way, and define \mathcal{Q} as a 2-functor. Equivalently, one can think of \mathcal{Q} as a 1-functor after identifying isomorphic 1-morphisms in $\operatorname{Corr}\left(\mathbf{S t c k}_{S}\right)$.

Definition 4.7.5. Let $\mathcal{Q}: \operatorname{Corr}\left(\mathbf{S t c k}_{S}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$-Mod be the 2-functor that assigns to an object \mathfrak{X} the $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$-module

$$
\mathcal{Q}(\mathfrak{X})=\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{X}}\right)
$$

and to a correspondence $\mathfrak{X} \stackrel{f}{\leftarrow} \mathfrak{Z} \xrightarrow{g} \mathfrak{Y}$ the morphism

$$
\mathcal{Q}(\mathfrak{X} \stackrel{f}{\leftarrow} \mathfrak{Z} \xrightarrow{g} \mathfrak{Y})=g!\circ f^{*}: \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{X}}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{Y}}\right)
$$

with f^{*} and g ! as in Section 3.2. Note that two correspondences connected by a 2-morphism are indeed assigned to the same $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$-module morphism.

Proposition 4.7.6. \mathcal{Q} is a symmetric lax monoidal functor.
Proof. For any object \mathfrak{X} of $\mathbf{S t c k}_{S}$, it is immediate from the definition that $\mathcal{Q}\left(\mathrm{id}_{\mathfrak{X}}\right)=\operatorname{id}_{\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{X}}\right)}$. Consider a composite of correspondences

for which the square is a 2 -cartesian square. To show \mathcal{Q} respects composition, it suffices to show $f_{2}^{*} \circ\left(g_{1}\right)_{!}=j_{!} \circ h^{*}$ as morphisms $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{Y}_{1}}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{Y}_{2}}\right)$. This is true for formal reasons: for any $\mathfrak{U} \rightarrow \mathfrak{Y}_{1}$, the diagram

is a 2 -cartesian rectangle as both squares are 2-cartesian squares. Therefore, $\left(f_{2}^{*} \circ\left(g_{1}\right)!\right)\left(\left[\mathfrak{U} \rightarrow \mathfrak{Y}_{1}\right]\right)=\left[\mathfrak{U} \times_{\mathfrak{Y}_{1}} \mathfrak{Z}\right]=\left(j_{!} \circ h^{*}\right)\left(\left[\mathfrak{U} \rightarrow \mathfrak{Y}_{1}\right]\right)$. The fact that \mathcal{Q} is lax monoidal and symmetric follows from the natural morphism

$$
\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{X}}\right) \otimes_{\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)} \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{Y}}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{X} \times_{S} \mathfrak{Y}}\right) .
$$

Remark 4.7.7. Note that \mathcal{Q} is only lax monoidal, and not monoidal, since the above morphism is not necessarily an isomorphism, see Example 3.2.10.

Finally, let us show that the TQFT obtained through the composition of \mathcal{F}_{G} and \mathcal{Q} indeed quantizes the virtual class of the G-character stack.

Theorem 4.7.8. There exists a lax TQFT

$$
Z_{G}: \operatorname{Bord}_{n} \rightarrow \mathrm{~K}_{0}\left(\mathbf{S t c k}_{S}\right) \text {-Mod }
$$

given by the composite $Z_{G}=\mathcal{Q} \circ \mathcal{F}_{G}$, quantizing the virtual class of the G character stack. That is, $\left[\mathfrak{X}_{G}(W)\right]=Z_{G}(W)(1)$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$ for any closed manifold W.

Proof. For any closed manifold W, viewed as a bordism from and to \varnothing, the corresponding field theory $\mathcal{F}_{G}(W)$ is given by the correspondence

$$
S \stackrel{t}{\longleftrightarrow} \mathfrak{X}_{G}(W) \xrightarrow{t} S
$$

where t is the terminal morphism. Applying the quantization functor \mathcal{Q}, it follows that

$$
Z_{G}(W)(1)=t_{!} t^{*}(1)=\left[\mathfrak{X}_{G}(W)\right] \in \mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)
$$

4.8 Field theory of surfaces

The goal of this section is to make explicit the field theories $\mathcal{F}_{G}(W)$ corresponding to various bordisms W in dimension $n=2$. We focus in particular on the generators (4.2), as any 2-dimensional oriented bordism can be built from these through composition and taking disjoint unions.

Example 4.8.1. The inclusions $S^{1} \rightarrow S^{1} \times[0,1]$ of the in- and out-boundary into the cylinder induce an equivalence of groupoids $\Pi\left(S^{1}\right) \simeq \Pi\left(S^{1} \times[0,1]\right)$. Therefore, the field theory $\mathcal{F}_{G}\left(S^{1} \times[0,1]\right)$ is given by the identity on $\mathcal{F}_{G}\left(S^{1}\right)$, as expected.

Proposition 4.8.2. The field theory of the bordism $\left(\mathcal{D}\right.$ from \varnothing to S^{1} is given by

$$
S \longleftarrow \mathrm{~B} G \xrightarrow{e}[G / G],
$$

where e is induced by the unit of G, and G acts on itself by conjugation. Similarly, the field theory of the bordism \bigcirc from S^{1} to \varnothing is given by

$$
[G / G] \longleftarrow e{ }^{e} \mathrm{~B} G \longrightarrow S
$$

Proof. Since the fundamental group of the disk is trivial, its G-character stack is given by $\mathfrak{X}_{G}\left(D^{1}\right)=\mathrm{B} G$. The inclusion of S^{1} into the disk induces the trivial homomorphism $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z} \rightarrow 1=\pi_{1}\left(D^{1}, *\right)$ between fundamental groups, and consequently the corresponding map $\mathrm{B} G \rightarrow[G / G]$ is given by the inclusion of the identity.

Proposition 4.8.3. The field theory of the bordism $\sqrt[8]{ }$ from $S^{1} \sqcup S^{1}$ to S^{1} is given by

$$
[G / G]^{2} \stackrel{\pi_{1} \times \pi_{2}}{\longleftrightarrow}\left[G^{2} / G\right] \xrightarrow{m}[G / G]
$$

where $\pi_{1}, \pi_{2}:\left[G^{2} / G\right] \rightarrow[G / G]$ are induced by the projections, and m by multiplication on G. Similarly, the field theory of the bordism from S^{1} to $S^{1} \sqcup S^{1}$ is given by

$$
[G / G] \stackrel{m}{\longleftarrow}\left[G^{2} / G\right] \xrightarrow{\pi_{1} \times \pi_{2}}[G / G]^{2}
$$

Proof. We will compute the field theory for 0 , and the field theory for 8 be computed completely analogous. Choose a basepoint x on the out-boundary, basepoints y and z on the in-boundary, a path γ_{1} from x to y, a path γ_{2} from x to z, and let α and β be generators of the fundamental group $\pi_{1}(\sigma, x) \cong F_{2}$ as depicted in the figure below.

Under the inclusion of the in-boundary $S^{1} \sqcup S^{1}$ into $\sqrt[8]{8}$, the generators of $\pi_{1}\left(S^{1}, y\right) \cong \mathbb{Z}$ and $\pi_{1}\left(S^{1}, z\right) \cong \mathbb{Z}$ are sent to $\gamma_{1} \alpha \gamma_{1}^{-1}$ and $\gamma_{2} \beta \gamma_{2}^{-1}$, respectively.

Figure 4.2: The pair of pants as a bordism from $S^{1} \sqcup S^{1}$ to S^{1}. A basepoint x on the out-boundary is chosen, and basepoints y and z on the in-boundary. Also are chosen paths γ_{1} from x to y and γ_{2} from x to z, and two generators α and β of the fundamental group at x.

This determines the map $\left[G^{2} / G\right] \rightarrow[G / G]^{2}$ as claimed. Under the inclusion of the out-boundary S^{1} into σ, the generator of $\pi_{1}\left(S^{1}, x\right) \cong \mathbb{Z}$ is sent to the loop $\alpha \beta$, which determines the map $\left[G^{2} / G\right] \rightarrow[G / G]$ as claimed.

Proposition 4.8.4. The field theory of the bordism σ from S^{1} to S^{1} is given by

$$
[G / G] \longleftrightarrow \pi_{1}\left[G^{3} / G\right] \xrightarrow{\theta}[G / G]
$$

where π_{1} is induced by the first projection $G^{3} \rightarrow G$, and θ is induced by $G^{3} \rightarrow G$ given by $(C, A, B) \mapsto C[A, B]$.

Proof. Since $\rightarrow 0$ is equal to the composite the composite of the correspondences as given by Proposition 4.8.3. Hence, let us describe the fiber product $\mathfrak{X}=\left[G^{2} / G\right] \times{ }_{[G / G]^{2}}\left[G^{2} / G\right]$. By definition of fiber products of stacks, the objects of \mathfrak{X} over T are tuples $\left(P, Q, g_{1}, h_{1}, g_{2}, h_{2}, \alpha, \beta\right)$, where P and Q are G-torsors over T with G-equivariant morphisms $P \xrightarrow{\left(g_{1}, h_{1}\right)} G^{2}$ and $Q \xrightarrow{\left(g_{2}, h_{2}\right)} G^{2}$, and $\alpha, \beta: P \rightarrow Q$ are morphisms of G-torsors such that $g_{1}=g_{2} \circ \alpha$ and $h_{1}=h_{2} \circ \beta$. A morphism from $\left(P^{\prime}, Q^{\prime}, g_{1}^{\prime}, h_{1}^{\prime}, g_{2}^{\prime}, h_{2}^{\prime}, \alpha^{\prime}, \beta^{\prime}\right)$ to $\left(P, Q, g_{1}, h_{1}, g_{2}, h_{2}, \alpha, \beta\right)$ is a pair of morphisms of G-torsors $\left(\gamma_{1}: P^{\prime} \rightarrow P, \gamma_{2}: Q^{\prime} \rightarrow\right.$ $Q)$ such that $g_{i}^{\prime}=g_{i} \circ \gamma_{i}$ and $h_{i}^{\prime}=h_{i} \circ \gamma_{i}$ for $i=1,2$ and $\alpha=\gamma_{2} \circ \alpha^{\prime} \circ \gamma_{1}^{-1}$ and $\beta=\gamma_{2} \circ \beta^{\prime} \circ \gamma_{1}^{-1}$. Note that every object is isomorphic one with $P=Q$ and $\beta=\operatorname{id}_{P}$. Therefore, we can equivalently describe this category as the category whose objects over T are tuples (P, C, A, B), where P is a G-torsor over T and $C=m \circ\left(g_{1}, h_{1}\right), A=h_{1}^{-1}$ and $B=\alpha$, and a morphism $\left(P^{\prime}, C^{\prime}, A^{\prime}, B^{\prime}\right) \rightarrow$ (P, C, A, B) is a morphism $\gamma: P^{\prime} \rightarrow P$ such that $C^{\prime}=C \circ \gamma, A^{\prime}=A \circ \gamma$ and
$B^{\prime}=\gamma^{-1} \circ B \circ \gamma$. With this description it is clear that $\mathfrak{X} \cong\left[G^{3} / G\right]$. Unfolding the definitions, the morphism $\mathfrak{X} \rightarrow[G / G]$ corresponding to the in-boundary is indeed given by $(C, A, B) \mapsto C$. The morphism $\mathfrak{X} \rightarrow[G / G]$ corresponding to the out-boundary is given by $(C, A, B) \mapsto B^{-1} C A B A^{-1}$, which is naturally isomorphic to $C[A, B]$.

Besides orientable bordisms, there are also non-orientable bordisms, which our field theory \mathcal{F}_{G} allows. Of interest to us are the bordisms

$$
\begin{equation*}
\text { O,O: } S^{1} \rightarrow S^{1} \quad \text { and } \quad \bigcirc \bigcirc: S^{1} \rightarrow S^{1} \tag{4.8}
\end{equation*}
$$

corresponding to the projective plane with two punctures and the cylinder which reverses the orientation of S^{1}, respectively. The field theory $\mathcal{F}_{G}(\mathbb{O})$ is easily seen to be the correspondence

$$
[G / G] \longleftarrow \stackrel{i}{\longleftrightarrow}[G / G] \xrightarrow{\text { id }}[G / G]
$$

where i is induced by the inversion $g \mapsto g^{-1}$. The field theory of the punctured projective plane is described by the following proposition.

Proposition 4.8.5. The field theory of the bordism $\overrightarrow{\text { O, }}$ from S^{1} to S^{1} is given by

$$
[G / G] \stackrel{\pi_{1}}{\longleftrightarrow}\left[G^{2} / G\right] \xrightarrow{v}[G / G]
$$

where v is given by $(B, A) \mapsto B A^{2}$.

Proof. Choose basepoints x and y on the in- and out-boundary of the bordism, respectively, and let α and β be generators of the fundamental group $\pi_{1}(\widehat{\widehat{O}, \mathrm{O}}, x) \cong F_{2}$ as depicted in the figure below.

Figure 4.3: The projective plane with two punctures as a bordism from S^{1} to S^{1}. Basepoints x and y are chosen on in- and out-boundary, respectively. Also, generators α and β of the fundamental group at x are chosen, and path γ connecting x and y.

Under the inclusion of the in-boundary S_{1} into $\widehat{O^{\prime} \text {, the generator of } \pi_{1}\left(S^{1}, x\right) ~}$ $\cong \mathbb{Z}$ is sent to β, and under the inclusion of the out-boundary S^{1}, the generator of $\pi_{1}\left(S^{1}, y\right) \cong \mathbb{Z}$ is sent to $\gamma \beta \alpha^{2} \gamma^{-1}$. These determine the maps $\left[G^{2} / G\right] \rightarrow[G / G]$ as claimed.

4.9 Arithmetic TQFT

In this section we will construct a higher-dimensional analogue of the TQFT of Section 4.5. To be precise, for any finite group G, we will construct an arithmetic TQFT

$$
Z_{G}^{\#}: \operatorname{Bord}_{n} \rightarrow \operatorname{Vect}_{\mathbb{C}}
$$

which will agree (up to natural isomorphism) with the TQFT of Section 4.5. Whereas the construction of the TQFT of Section 4.5 is very ad-hoc, in terms of specific operations on the representation ring $R_{\mathbb{C}}(G)$, the construction of $Z_{G}^{\#}$ will be very much like that of the character stack TQFT: as the composite of a field theory and a quantization functor.

Field theory and quantization

Fix a finite group G.
Definition 4.9.1. The arithmetic field theory is the 2-functor

$$
\mathcal{F}_{G}^{\#}: \operatorname{Bord}_{n} \rightarrow \operatorname{Corr}(\text { FinGrpd })
$$

which assigns to a closed ($n-1$)-dimensional manifold M the G-character groupoid

$$
\mathcal{F}_{G}^{\#}(M)=\mathfrak{X}_{G}(M)
$$

and to a bordism $W: M_{1} \rightarrow M_{2}$ the correspondence

$$
\mathcal{F}_{G}^{\#}(W)=\left(\mathfrak{X}_{G}\left(M_{1}\right) \stackrel{i_{1}}{\leftarrow} \mathfrak{X}_{G}(W) \xrightarrow{i_{2}} \mathfrak{X}_{G}\left(M_{2}\right)\right)
$$

Proposition 4.9.2. $\mathcal{F}_{G}^{\#}$ is a symmetric monoidal functor.

Proof. The proof is completely analogous to that of Proposition 4.7.4, where $\mathfrak{X}_{G}(-)$ is also sends finite colimits in FGGrpd to limits in FinGrpd.

Definition 4.9.3. Given a groupoid A, denote by \mathbb{C}^{A} the complex vector space of complex-valued functions on the objects of A which are invariant under isomorphism.

This construction admits some functoriality. Given a functor $f: A \rightarrow B$ between groupoids, we can pull back functions via

$$
f^{*}: \mathbb{C}^{B} \rightarrow \mathbb{C}^{A}, \quad \varphi \mapsto \varphi \circ f
$$

Pullback is functorial in the sense that $(g \circ f)^{*}=f^{*} \circ g^{*}$ for functors $f: A \rightarrow B$ and $g: B \rightarrow C$. Moreover, if $\mu: f \Rightarrow g$ is a natural transformation between functors $f, g: A \rightarrow B$, then $f^{*}=g^{*}$. In particular, if A and B are equivalent groupoids, then \mathbb{C}^{A} and \mathbb{C}^{B} are naturally isomorphic.
Furthermore, if $f: A \rightarrow B$ is a functor between essentially finite groupoids, we define pushforward along f as

$$
f_{!}: \mathbb{C}^{A} \rightarrow \mathbb{C}^{B}, \quad \varphi \mapsto\left(b \mapsto \sum_{[(a, \beta)] \in f^{-1}(b) / \sim} \frac{\varphi(a)}{|\operatorname{Aut}(a, \beta)|}\right)
$$

where $f^{-1}(b)$ denotes the fiber product $A \times_{B}\{b\}$ as in Definition 1.1.6. It is an easy exercise to show that pushforward is also functorial in the sense that $(g \circ f)!=g_{!} \circ f!$ for functors $f: A \rightarrow B$ and $g: B \rightarrow C$.

Example 4.9.4. For any groupoid A, let $f: A \rightarrow\{*\}$ be the final morphism and let $\varphi \in \mathbb{C}^{A}$ be the constant function $\varphi(a)=1$. Then $\left(f_{!} \varphi\right)(*)=|A|$ is the groupoid cardinality of A.

Definition 4.9.5. The arithmetic quantization functor is the functor

$$
\mathcal{Q}^{\#}: \operatorname{Corr}(\text { FinGrpd }) \rightarrow \text { Vect }_{\mathbb{C}}
$$

which assigns to a groupoid A the vector space \mathbb{C}^{A}, and which assigns to a correspondence of groupoids $A \stackrel{f}{\leftarrow} B \xrightarrow{g} C$ the morphism $g!\circ f^{*}: \mathbb{C}^{A} \rightarrow \mathbb{C}^{C}$. Note that two correspondences connected by a 2 -morphism are indeed assigned to the same linear map.

Lemma 4.9.6. $\mathcal{Q}^{\#}$ is a symmetric monoidal functor.
Proof. Let $D \stackrel{f}{\leftarrow} B \xrightarrow{g} A$ and $A \stackrel{h}{\leftarrow} C \xrightarrow{i} E$ be correspondences of essentially finite groupoids. The relevant diagram in Vect $_{\mathbb{C}}$ is given by

where $\pi_{B}: B \times{ }_{A} C \rightarrow B$ and $\pi_{C}: B \times{ }_{A} C \rightarrow C$ are the projections. To show $\mathcal{Q}^{\#}$ respects composition, it suffices to show that $h^{*} \circ g_{!}=\left(\pi_{C}\right)!\circ \pi_{B}^{*}$.

First note that, for any $x \in C$, the groupoids $\pi_{C}^{-1}(x)=\left(B \times{ }_{A} C\right) \times{ }_{C}\{x\}$ and $g^{-1}(h(x))=B \times{ }_{A}\{h(x)\}$ are equivalent. Explicitly, an object of $\pi_{C}^{-1}(x)$ is a tuple (b, c, α, γ) with $(b, c, \alpha) \in B \times_{A} C$ and $\gamma: c \rightarrow x$ a morphism in C. A morphism $\left(b^{\prime}, c^{\prime}, \alpha^{\prime}, \gamma^{\prime}\right) \rightarrow(b, c, \alpha, \gamma)$ is given by a tuple of morphisms $\left(\beta: b^{\prime} \rightarrow b, \zeta: c^{\prime} \rightarrow c\right)$ such that $\alpha \circ g(\beta)=h(\zeta) \circ \alpha^{\prime}$ and $\gamma \circ \zeta=\gamma^{\prime}$. By appropriate choice of ζ, this is equivalent to the groupoid whose objects are (b, α) with $b \in B$ and $\alpha: g(b) \rightarrow h(x)$ and morphisms $\left(b^{\prime}, \alpha^{\prime}\right) \rightarrow(b, \alpha)$ are morphisms $\beta: b^{\prime} \rightarrow b$ such that $\alpha^{\prime} \circ g(\beta)=\alpha$. But this is precisely $g^{-1}(h(x))$.
Now, for any $\varphi \in \mathbb{C}^{B}$ and any $c \in C$, it follows that

$$
\begin{aligned}
\left(\left(\pi_{C}\right)!\pi_{B}^{*} \varphi\right)(c) & =\sum_{[(b, c, \alpha, \gamma)] \in \pi_{C}^{-1}(c) / \sim} \frac{\varphi(b)}{|\operatorname{Aut}(b, c, \alpha, \gamma)|} \\
& =\sum_{[(b, \alpha)] \in g^{-1}(h(c)) / \sim} \frac{\varphi(b)}{|\operatorname{Aut}(b, \alpha)|}=\left(h^{*} g!\varphi\right)(c)
\end{aligned}
$$

Definition 4.9.7. The arithmetic $T Q F T Z_{G}^{\#}: \operatorname{Bord}_{n} \rightarrow$ Vect $_{\mathbb{C}}$ is the composite $\mathcal{Q}^{\#} \circ \mathcal{F}_{G}^{\#}$.

Proposition 4.9.8. The arithmetic TQFT quantizes the groupoid cardinality of the G-character groupoid, that is,

$$
Z_{G}^{\#}(W)(1)=\left|\mathfrak{X}_{G}(W)\right|
$$

for any closed n-dimensional manifold W, seen as a bordism $\varnothing \rightarrow \varnothing$.

Proof. The field theory $\mathcal{F}_{G}^{\#}(W)$ is given by

$$
\{*\} \stackrel{t}{\longleftrightarrow} \mathfrak{X}_{G}(W) \xrightarrow{t}\{*\}
$$

where t is the final morphism. Applying the quantization functor $\mathcal{Q}^{\#}$, we find

$$
Z_{G}^{\#}(W)(1)=t_{!} t^{*}(1)=\sum_{[x] \in t^{-1}(*) / \sim} \frac{1}{|\operatorname{Aut}(x)|}=\left|\mathfrak{X}_{G}(W)\right|,
$$

using that $t^{-1}(*)=\mathfrak{X}_{G}(W)$.

Remark 4.9.9. The arithmetic TQFT can be seen as a special case of the Dijkgraaf-Witten TQFT [DW90] with $\alpha=0 \in H^{n}(\mathrm{~B} G, \mathbb{R} / \mathbb{Z})$. This TQFT is also known as finite gauge theory, since the gauge group G is finite.

Comparison with the representation ring

Let us return to case $n=2$. For a finite group G, we have $\mathfrak{X}_{G}\left(S^{1}\right)=[G / G]$ where G acts on itself by conjugation. In particular, $Z_{G}^{\#}\left(S^{1}\right)$ is the complex vector space of complex-valued functions on G which are invariant under conjugation. But this is precisely the underlying vector space of the representation ring $R_{\mathbb{C}}(G)$, that is, there is a canonical isomorphism

$$
\begin{equation*}
Z_{G}^{\#}\left(S^{1}\right)=\mathbb{C}^{[G / G]} \cong R_{\mathbb{C}}(G)=Z_{G}\left(S^{1}\right) \tag{4.9}
\end{equation*}
$$

Proposition 4.9.10. Let G be a finite group. For $n=2$, there is a natural isomorphism

$$
Z_{G}^{\#} \cong Z_{G}
$$

as functors Bord $_{2}^{\text {or }} \rightarrow$ Vect $_{\mathbb{C}}$ from the arithmetic TQFT to the TQFT of Section 4.5.

Proof. Since both $Z_{G}^{\#}$ and Z_{G} are monoidal functors, the isomorphism (4.9) naturally extends to isomorphisms $Z_{G}^{\#}\left(\sqcup_{i=1}^{m} S^{1}\right) \cong Z_{G}\left(\sqcup_{i=1}^{m} S^{1}\right)$ for all $m \geq 0$. As the category Bord ${ }_{2}^{\text {or }}$ of 2-dimensional oriented bordisms is generated by the bordisms (4.2), it suffices to verify the naturality of the isomorphisms for these generators only.

- Case $W=\varnothing$. The field theory $\mathcal{F}_{G}^{\#}(W)$ is given by

$$
\{*\} \stackrel{t}{\longleftrightarrow}[\{*\} / G] \xrightarrow{e}[G / G]
$$

where t is the terminal morphism and e is the inclusion of the unit of G. Hence, the morphism $Z_{G}^{\#}(W): \mathbb{C} \rightarrow \mathbb{C}^{[G / G]}$ sends 1 to $e_{!} t^{*} 1$, which is precisely the indicator function on the unit of G and corresponds, under the isomorphism (4.9), to the unit $\eta(1)$ of $R_{\mathbb{C}}(G)$.

- Case $W=0$. Similarly, the field theory $\mathcal{F}_{G}^{\#}(W)$ is given by

$$
[G / G] \stackrel{e}{\longleftarrow}[\{*\} / G] \xrightarrow{t}\{*\}
$$

so the morphism $Z_{G}^{\#}(W): \mathbb{C}^{[G / G]} \rightarrow \mathbb{C}$ is given by $f \mapsto t_{!} e^{*} f=\frac{1}{|G|} f(1)$, which corresponds, under the isomorphism (4.9), to the counit ε of $R_{\mathbb{C}}(G)$.

- Case $W=\sqrt[8]{8}$. The field theory $\mathcal{F}_{G}^{\#}(W)$ is given by

$$
[G / G]^{2} \stackrel{\pi_{1} \times \pi_{2}}{\longleftrightarrow}\left[G^{2} / G\right] \xrightarrow{m}[G / G]
$$

where m is multiplication on G. Hence, the morphism $Z_{G}^{\#}(W): R_{\mathbb{C}}(G) \otimes_{\mathbb{C}}$ $R_{\mathbb{C}}(G) \rightarrow R_{\mathbb{C}}(G)$ maps $f_{1} \otimes f_{2} \mapsto m_{!}\left(\pi_{1} \times \pi_{2}\right)^{*}\left(f_{1} \otimes f_{2}\right)$ which is precisely $\mu\left(f_{1} \otimes f_{2}\right)$.

- Case $W=0$. Similarly, the field theory $\mathcal{F}_{G}^{\#}(W)$ is given by

$$
[G / G] \longleftrightarrow{ }^{m}\left[G^{2} / G\right] \xrightarrow{\pi_{1} \times \pi_{2}}[G / G]^{2}
$$

so the morphism $Z_{G}^{\#}(W): R_{\mathbb{C}}(G) \rightarrow R_{\mathbb{C}}(G) \otimes_{\mathbb{C}} R_{\mathbb{C}}(G)$ is given by $f \mapsto\left(\pi_{1} \times\right.$ $\left.\pi_{2}\right)!m^{*} f$. Note that, for any $g_{1}, g_{2} \in G$, the groupoid $\left(\pi_{1} \times \pi_{2}\right)^{-1}\left(g_{1}, g_{2}\right)$ is equivalent to G as a set. Hence, for any irreducible character χ, we find

$$
Z_{G}^{\#}(W)(\chi)\left(g_{1}, g_{2}\right)=\sum_{h \in G} \chi\left(g_{1} h g_{2} h^{-1}\right)=|G| \chi(g) \chi(h) / \chi(1),
$$

where the last equality is shown as in the proof of Theorem 4.5.3. Therefore, using (4.5) and (4.6), we find that $Z_{G}^{\#}(W)(\chi)$ is precisely $\delta(\chi)$.

- Case $W=0$. The field theory $\mathcal{F}_{G}^{\#}(W)$ is given by

$$
[G / G]^{2} \stackrel{\text { id }}{\longleftrightarrow}[G / G]^{2} \xrightarrow{t}[G / G]^{2}
$$

where t switches the two copies of G. Clearly, $Z_{G}^{\#}(W)$ is given by $f_{1} \otimes f_{2} \mapsto$ $f_{2} \otimes f_{1}$, which is precisely τ.

Non-orientable surfaces

Recall that the TQFT of Section 4.5 was given by the Frobenius algebra structure on the representation ring $R_{\mathbb{C}}(G)$. However, $Z_{G}^{\#}$ is also defined for non-orientable bordisms, so we obtain additional operations on the representation ring. In particular, let us consider the orientation-reversing cylinder $\mathcal{O}: S^{1} \rightarrow S^{1}$ and the projective plane $\widehat{\text { O, }}$: $S^{1} \rightarrow S^{1}$ as in (4.8).
The field theory $\mathcal{F}_{G}^{\#}(\mathcal{O})$ is easily seen to be

$$
[G / G] \longleftarrow{ }^{i}[G / G] \xrightarrow{\text { id }}[G / G]
$$

where i is induced by the inversion $g \mapsto g^{-1}$. Hence, it follows that

$$
Z_{G}^{\#}(\mathbb{O}): R_{\mathbb{C}}(G) \rightarrow R_{\mathbb{C}}(G), \quad f \mapsto i^{*} f=\left(g \mapsto f\left(g^{-1}\right)\right)=\bar{f}
$$

is complex conjugation of class functions.
Regarding the projective plane, we have the following lemma.
Lemma 4.9.11. The map $\nu:=Z_{G}^{\#}\left(\underset{\left.\mathrm{O}^{\prime},\right\}}{ }\right): R_{\mathbb{C}}(G) \rightarrow R_{\mathbb{C}}(G)$ is given by

$$
\nu(\chi)=\varepsilon_{\chi} \frac{|G|}{\chi(1)} \chi
$$

for any irreducible character $\chi \in \hat{G}$, where $\varepsilon_{\chi}=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{2}\right)$ is known as the Frobenius-Schur indicator of χ [FS06].

Proof. Analogous to Proposition 4.8.5, the field theory $\mathcal{F}_{G}^{\#}(\underset{\sim \rightarrow}{(,)})$ is

$$
[G / G] \stackrel{\pi_{1}}{\longleftarrow}\left[G^{2} / G\right] \xrightarrow{v}[G / G]
$$

where v is induced by $(B, A) \mapsto B A^{2}$. Applying $\mathcal{Q}^{\#}$ we find that

$$
\nu(f)=v!\pi_{1}^{*} f=\left(g \mapsto \sum_{B A^{2}=g} f(B)=\sum_{h \in G} f\left(g h^{2}\right)\right)
$$

Note that we have an equality of bordisms

$$
0,0,0 \cdot 0 \cdot \stackrel{0,0+0}{0,0} \cdot 0
$$

which shows that $\nu(f)=\mu((\nu \circ \eta)(1) \otimes f)$ for all $f \in R_{\mathbb{C}}(G)$. We compute

$$
(\nu \circ \eta)(1)(g)=\sum_{h \in G} \eta(1)\left(g h^{2}\right)=\left|\left\{h \in G \mid h^{2}=g^{-1}\right\}\right|
$$

and thus, for any $\chi \in \hat{G}$, we find

$$
\beta((\nu \circ \eta)(1) \otimes \chi)=\frac{1}{|G|} \sum_{g \in G}(\nu \circ \eta)(1)(g) \chi\left(g^{-1}\right)=\frac{1}{|G|} \sum_{h \in G} \chi\left(h^{2}\right)=\varepsilon_{\chi}
$$

from which we obtain that

$$
(\nu \circ \eta)(1)=\sum_{\chi \in \hat{G}} \varepsilon_{\chi} \chi .
$$

Finally, using (4.6) we conclude that $\nu(\chi)=\mu((\nu \circ \eta)(1) \otimes \chi)=\varepsilon_{\chi} \frac{|G|}{\chi(1)} \chi$.
This expression can be used to compute the groupoid cardinality $\left|\mathfrak{X}_{G}\left(N_{r}\right)\right|$ of the G-character groupoid of the non-orientable closed surface N_{r} of demigenus r, that is, the connected sum of r non-projective planes. The decomposition $N_{r}=0 \circ{\widehat{O}{ }^{r}}^{r} \circ$ yields the following proposition. Note that this formula was already known to Frobenius and Schur in [FS06, (9), p.197].

Proposition 4.9.12. Let N_{r} be the closed non-orientable surface of demigenus r, that is, the surface obtained as the connected sum of r projective planes. Then

$$
Z_{G}^{\#}\left(N_{r}\right)(1)=\left|\mathfrak{X}_{G}\left(N_{r}\right)\right|=\sum_{\chi \in \hat{G}} \varepsilon_{\chi}^{r}\left(\frac{|G|}{\chi(1)}\right)^{r-2}
$$

4.10 Comparison of TQFTs

Let us summarize the various TQFTs constructed so far. Fix a base scheme S, a linear algebraic group G over S, a finite field \mathbb{F}_{q}, and an \mathbb{F}_{q}-rational point $x: \operatorname{Spec} \mathbb{F}_{q} \rightarrow S$ of S. The functors defined in the previous sections, i.e., the field theory and quantization functors, fit nicely together in the following (not necessarily commutative!) diagram. The dashed arrow, completing the diagram, will be defined in this section.

Recall that for any algebraic stack \mathfrak{X} over S, the groupoid $\mathfrak{X}\left(\mathbb{F}_{q}\right)$ is the groupoid of \mathbb{F}_{q}-points $\operatorname{Spec} \mathbb{F}_{q} \rightarrow \mathfrak{X}$ whose composition to S is equal to the fixed point $x: \operatorname{Spec} \mathbb{F}_{q} \rightarrow S$. In particular, $S\left(\mathbb{F}_{q}\right)=\{x\}$.
We can see the TQFT of G-character stacks, $Z_{G}=\mathcal{Q} \circ \mathcal{F}_{G}$, in the top row, and the arithmetic TQFT, $Z_{G\left(\mathbb{F}_{q}\right)}^{\#}=\mathcal{Q}^{\#} \circ \mathcal{F}_{G\left(\mathbb{F}_{q}\right)}^{\#}$, in the bottom row. Note that one can interpolate between the two: using the field theory \mathcal{F}_{G}, then taking the \mathbb{F}_{q}-rational points, and finally applying the arithmetic quantization functor $\mathcal{Q}^{\#}$, we obtain yet another TQFT given by the composite $\tilde{Z}_{G}=\mathcal{Q}^{\#} \circ(-)\left(\mathbb{F}_{q}\right) \circ \mathcal{F}_{G}$. It turns out all three TQFTs all quantize different invariants. Of course, Z_{G} quantizes a different type of invariant (an element in the Grothendieck ring of stacks) while $Z_{G}^{\#}$ and \tilde{Z}_{G} quantize a complex number. Nevertheless, in this section we will relate these TQFTs through natural transformations. More precisely, there will be a natural transformation in the square on the right in the diagram, and, if G is connected, a natural isomorphism in the triangle on the left. The functor μ_{S}^{*} will be defined in order to relate the targets of the geometric and arithmetic TQFT.

Definition 4.10 .1 . For any object \mathfrak{X} of $\mathbf{S t c k}{ }_{S}$, define

$$
\mu_{\mathfrak{X}}: \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathfrak{X}}\right) \rightarrow \mathbb{C}^{\mathfrak{X}\left(\mathbb{F}_{q}\right)}, \quad[\mathfrak{Y} \xrightarrow{f} \mathfrak{X}] \mapsto\left(x \mapsto\left|f^{-1}(x)\right|\right)
$$

where the groupoid cardinality of $f^{-1}(x)=\mathfrak{Y}\left(\mathbb{F}_{q}\right) \times_{\mathfrak{X}\left(\mathbb{F}_{q}\right)}\{x\}$ was taken. This map is easily seen to be a morphism of rings, where multiplicativity follows from
the following diagram, in which all squares are cartesian:

In particular, the morphism $\mu_{S}: \mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right) \rightarrow \mathbb{C}^{S\left(\mathbb{F}_{q}\right)}=\mathbb{C}$ induces the functor

$$
\mu_{S}^{*}: \operatorname{Vect}_{\mathbb{C}} \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right) \text {-Mod }
$$

given by restriction of scalars.
Proposition 4.10.2. The maps $\mu_{\mathfrak{X}}$ define a natural transformation

$$
\mu: \mathcal{Q} \Rightarrow \mu_{S}^{*} \circ \mathcal{Q}^{\#} \circ(-)\left(\mathbb{F}_{q}\right)
$$

In particular, this induces a natural transformation of TQFTs

$$
Z_{G} \Rightarrow \mu_{S}^{*} \circ \mathcal{Q}^{\#} \circ(-)\left(\mathbb{F}_{q}\right) \circ \mathcal{F}_{G} .
$$

Proof. For any correspondence $\mathfrak{X} \stackrel{f}{\leftarrow} \mathfrak{Z} \xrightarrow{h} \mathfrak{Y}$ in $\mathbf{S t c k}_{S}$, the relevant diagram of $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$-modules is:

Let us show that the first square commutes. For any stack $\mathfrak{U} \xrightarrow{h} \mathfrak{X}$ and point $z \in \mathfrak{Z}\left(\mathbb{F}_{q}\right)$, we have

$$
\mu_{\mathcal{Z}}\left(f^{*}[\mathfrak{U}]\right)(z)=\sum_{[(u, z, \alpha)] \in\left(\mathfrak{U} \times_{\mathfrak{x}} \mathfrak{Z}\right)\left(\mathbb{F}_{q}\right) / \sim} \frac{|\operatorname{Aut}(z)|}{|\operatorname{Aut}(u, z, \alpha)|} .
$$

As in the proof of Lemma 1.6.3, the group $\operatorname{Aut}(u) \times \operatorname{Aut}(z)$ acts naturally on the set $\operatorname{Hom}_{\mathfrak{X}\left(\mathbb{F}_{q)}\right)}(h(u), f(z))$, and the stabilizer of any α in this set is precisely Aut (u, z, α). Hence, it follows from the orbit-stabilizer theorem that

$$
\begin{aligned}
\mu_{\mathfrak{Z}}\left(f^{*}[\mathfrak{U}]\right)(z)= & \sum_{\substack{[u] \in \mathfrak{U}\left(\mathbb{F}_{\boldsymbol{q}}\right) / \sim \\
\alpha: h(u)}} \frac{1}{\rightarrow \operatorname{Aut}(u) \mid} \\
= & \sum_{[(u, \alpha)] \in h^{-1}(f(z)) / \sim} \frac{1}{|\operatorname{Aut}(u)|} \\
& =\left|h^{-1}(f(z))\right|=\left(f^{*} \mu_{\mathfrak{X}}([\mathfrak{U}])\right)(z) .
\end{aligned}
$$

Next, let us show that the second square commutes. For any stack $\mathfrak{U} \xrightarrow{h} \mathfrak{Z}$ and point $y \in \mathfrak{Y}\left(\mathbb{F}_{q}\right)$, we have

$$
\left(g_{!} \mu_{\mathfrak{Z}}[\mathfrak{U}]\right)(y)=\sum_{[(z, \alpha)] \in g^{-1}(y) / \sim} \frac{\left|h^{-1}(z)\right|}{|\operatorname{Aut}(z)|}=\left|(g \circ h)^{-1}(y)\right|=\left(\mu_{\mathfrak{Y}} g![\mathfrak{U}]\right)(y) .
$$

Proposition 4.10.3. If G is connected, there is a natural isomorphism

$$
(-)\left(\mathbb{F}_{q}\right) \circ \mathcal{F}_{G} \cong \mathcal{F}_{G\left(\mathbb{F}_{q}\right)}^{\#}
$$

In particular, this induces a natural isomorphism of TQFTs

$$
\mathcal{Q}^{\#} \circ(-)\left(\mathbb{F}_{q}\right) \circ \mathcal{F}_{G} \cong Z_{G\left(\mathbb{F}_{q}\right)}^{\#} .
$$

Proof. Proposition 1.5.10 implies that $\mathfrak{X}_{G}(M)\left(\mathbb{F}_{q}\right)$ is naturally isomorphic to $\mathfrak{X}_{G\left(\mathbb{F}_{q}\right)}(M)$ for any compact manifold M. The statement now follows directly from the definitions of the field theories.

Remark 4.10.4. For non-connected G, there need not even be a natural transformation $(-)\left(\mathbb{F}_{q}\right) \circ \mathcal{F}_{G} \Rightarrow \mathcal{F}_{G\left(\mathbb{F}_{q}\right)}^{\#}$. Consider the 2 -sphere S^{2} as a bordism $\varnothing \rightarrow \varnothing$. Since the G-character stack of S^{2} is $\mathrm{B} G$, one has $\tilde{Z}_{G}\left(S^{2}\right)(1)=\left|\mathrm{B} G\left(\mathbb{F}_{q}\right)\right|$, whereas $Z_{G\left(\mathbb{F}_{q}\right)}^{\#}\left(S^{2}\right)(1)=\left|R_{G}\left(S^{2}\right)\left(\mathbb{F}_{q}\right)\right| /\left|G\left(\mathbb{F}_{q}\right)\right|=|1| /\left|G\left(\mathbb{F}_{q}\right)\right|$. Already for $G=\mathbb{Z} / 2 \mathbb{Z}$, these quantities are different, see Remark 1.5.9.

Corollary 4.10.5. Suppose G is connected. Then there is a natural transformation between the geometric and arithmetic TQFT

$$
Z_{G} \Rightarrow \mu_{S}^{*} \circ Z_{G\left(\mathbb{F}_{q}\right)}^{\#}
$$

Unfolding the definitions in dimension $n=2$, we obtain the following theorem, relating the geometric method to the arithmetic method.

Theorem 4.10.6. Suppose G is connected. Denote by $I \in \mathrm{~K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ the class of $[S / G] \rightarrow[G / G]$ induced by the unit of G. If the $\mathbf{K}_{0}\left(\mathbf{S t c k}_{S}\right)$-module $\mathcal{V}=\left\langle Z_{G}(\circlearrowleft)^{g}(I)\right.$ for $\left.g \in \mathbb{Z}_{\geq 0}\right\rangle$ is finitely generated, then:
(i) The sums of equidimensional irreducible complex characters form a basis for the subspace $\mu_{[G / G]}(\mathcal{V}) \subseteq \mathbb{C}^{[G / G]\left(\mathbb{F}_{q}\right)}$.
(ii) The dimensions of the irreducible complex characters of $G\left(\mathbb{F}_{q}\right)$ are precisely given by

$$
d_{i}=\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\sqrt{\lambda_{i}}}
$$

for $\lambda_{i} \in \mathbb{Z}$ the eigenvalues of $\mu_{S}(A)$, where A is any matrix representing the linear map $Z_{G}(\circlearrowleft)$ with respect to a generating set of \mathcal{V}.
(iii) Write $\mu_{[G / G]}(I)=\sum_{i} v_{i}$, where v_{i} are eigenvectors of $\mu_{S}(A)$ corresponding to the eigenvalues λ_{i}. Then each v_{i} is a scalar multiple of the sum of equidimensional characters, or more precisely,

$$
v_{i}=\frac{d_{i}}{\left|G\left(\mathbb{F}_{q}\right)\right|} \sum_{\substack{\chi \in \hat{G} \text { s.t. } \\ \chi(1)=d_{i}}} \chi .
$$

Proof. By Corollary 4.10.5, we have the following commutative diagram.

$$
\begin{aligned}
& \mathrm{K}_{0}\left(\operatorname{Stck}_{S}\right) \xrightarrow{Z_{G}(\mathbb{D})} \mathrm{K}_{0}\left(\operatorname{Stck}_{[G / G]}\right) \xrightarrow{Z_{G}(\boxed{\sigma})} \mathrm{K}_{0}\left(\operatorname{Stck}_{[G / G]}\right)
\end{aligned}
$$

The square on the right shows that

$$
\mu_{[G / G]}(\mathcal{V})=\left\langle Z_{G\left(\mathbb{F}_{q}\right)}^{\#}(\overparen{-})\left(\mu_{[G / G]}(I)\right) \text { for } g \in \mathbb{Z}_{\geq 0}\right\rangle
$$

and the square on the left shows that $\mu_{[G / G]}(I) \in \mathbb{C}^{[G / G]\left(\mathbb{F}_{q}\right)} \cong R_{\mathbb{C}}\left(G\left(\mathbb{F}_{q}\right)\right)$ corresponds to the unit

$$
\begin{equation*}
\eta(1)=\frac{1}{\left|G\left(\mathbb{F}_{q}\right)\right|} \sum_{\chi \in \hat{G}} \chi(1) \chi=\sum_{d \geq 0} w_{d} \quad \text { with } \quad w_{d}=\frac{d}{\left|G\left(\mathbb{F}_{q}\right)\right|} \sum_{\substack{\chi \in \hat{G} \text { s.t. } \\ \chi(1)=d}} \chi \tag{*}
\end{equation*}
$$

Clearly, the w_{d} are linearly independent, and moreover, by (4.7), they are eigenvectors of $Z_{G\left(\mathbb{F}_{q}\right)}^{\#}(-0)$ with eigenvalues $\left|G\left(\mathbb{F}_{q}\right)\right|^{2} / d^{2}$. Since the eigenvalues are distinct, the w_{d} form a basis for $\mu_{[G / G]}(\mathcal{V})$, proving (i).
For (ii), as the matrix $\mu_{S}(A)$ represents $Z_{G\left(\mathbb{F}_{q}\right)}^{\#}(\sigma)$, its eigenvalues are precisely given by $\left|G\left(\mathbb{F}_{q}\right)\right|^{2} / d^{2}$. Finally, (iii) follows from $(*)$.

$4.11 \mathbb{G}_{m} \rtimes \mathbb{Z} / 2 \mathbb{Z}$-character stacks

Let us illustrate how the arithmetic TQFT and the character stack TQFT are related, and how they differ, by means of an example. Throughout this section, we consider the group $G=\mathbb{G}_{m} \rtimes \mathbb{Z} / 2 \mathbb{Z}$, where $\mathbb{Z} / 2 \mathbb{Z}$ acts on \mathbb{G}_{m} via $x \mapsto x^{-1}$, over any field k of characteristic not equal to 2 , or more generally, over the finitely generated algebra $R=\mathbb{Z}\left[\frac{1}{2}\right]$.

Arithmetic method. Following the arithmetic method, we consider the representation theory of the finite groups $G\left(\mathbb{F}_{q}\right)=\mathbb{F}_{q}^{\times} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ with q is odd. The
character table of $G\left(\mathbb{F}_{q}\right)$ can easily be computed, e.g. using [Ser77, Proposition 25]. Fixing any generator $x \in \mathbb{F}_{q}^{\times}$, the character table of $G\left(\mathbb{F}_{q}\right)$ is given by

	$\{1\}$	$\{-1\}$	$\left\{x^{\ell}, x^{-\ell}\right\}$	$\left(\mathbb{F}_{q}^{\times}\right)^{2} \sigma$	$\left(\mathbb{F}_{q}^{\times}\right)^{2} x \sigma$
$\rho_{\varepsilon, \delta}$	1	$\varepsilon^{\frac{q-1}{2}}$	ε^{ℓ}	δ	$\varepsilon \delta$
τ_{k}	2	$2(-1)^{k}$	$\zeta_{q-1}^{k \ell}+\zeta_{q-1}^{-k \ell}$	0	0

where $1 \leq k, \ell \leq \frac{q-3}{2}$ and $\varepsilon, \delta= \pm 1$, and σ is the non-trivial element in $\mathbb{Z} / 2 \mathbb{Z}$. Summing characters of the same dimension, the character table reduces to

	$\{1\}$	$\{-1\}$	$\left\{x^{\ell}, x^{-\ell}\right\}$	$\left(\mathbb{F}_{q}^{\times}\right)^{2} \sigma$	$\left(\mathbb{F}_{q}^{\times}\right)^{2} x \sigma$
$v_{1}=\sum_{\varepsilon, \delta} \rho_{\varepsilon, \delta}$	4	$4 \alpha_{(q-1) / 2}$	$4 \alpha_{\ell}$	0	0
$v_{2}=\sum_{k} \tau_{k}$	$q-3$	$-2 \alpha_{(q-1) / 2}$	$-2 \alpha_{\ell}$	0	0

where $\alpha_{\ell}=1$ for ℓ even and $\alpha_{\ell}=0$ for ℓ odd. Alternatively, this table can be expressed as

	$\{1\}$	$\left\{t \in G\left(\mathbb{F}_{q}\right) \mid t \neq 1\right.$ a square $\}$	$\left\{t \in G\left(\mathbb{F}_{q}\right) \mid t\right.$ not a square $\}$
v_{1}	4	4	0
v_{2}	$q-3$	-2	0

Now, from (4.4), (4.5) and (4.7) follows that the TQFT $Z_{G\left(\mathbb{F}_{q}\right)}^{\#}$ is, with respect to the basis v_{1}, v_{2}, given by

$$
\begin{aligned}
& Z_{G\left(\mathbb{F}_{q}\right)}^{\#}(\overparen{\bigotimes})=\left|G\left(\mathbb{F}_{q}\right)\right|^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{4}
\end{array}\right), \\
& Z_{G\left(\mathbb{F}_{q}\right)}^{\#}(\bigcirc)=\frac{1}{\left|G\left(\mathbb{F}_{q}\right)\right|}\left(\begin{array}{ll}
4 & q-3
\end{array}\right), \quad Z_{G\left(\mathbb{F}_{q}\right)}^{\#}(D)=\frac{1}{\left|G\left(\mathbb{F}_{q}\right)\right|}\binom{1}{2},
\end{aligned}
$$

where, of course, $\left|G\left(\mathbb{F}_{q}\right)\right|=2(q-1)$. Therefore, the number of points of the $G\left(\mathbb{F}_{q}\right)$-representation varieties are given by

$$
\left|R_{G\left(\mathbb{F}_{q}\right)}\left(\Sigma_{g}\right)\right|=(q-3)(q-1)^{2 g-1}+2^{2 g+1}(q-1)^{2 g-1}
$$

Applying Theorem 4.6.1 (with $R=\mathbb{Z}\left[\frac{1}{2}\right]$), we obtain the E-polynomial

$$
e\left(R_{G \times_{R} \mathbb{C}}\left(\Sigma_{g}\right)\right)=(u v-3)(u v-1)^{2 g-1}+2^{2 g+1}(u v-1)^{2 g-1} .
$$

Geometric method. Following the geometric method, the goal is to compute the $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$-module morphism $Z_{G}(\sigma)$. Since $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ is not finitely generated as $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$-module, it is impossible to compute this map in full, so instead we restrict to a finitely generated submodule of $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ which will be invariant under this map.
Note that, via the natural map $[G / G] \rightarrow \mathrm{B} G$, we can view $\mathrm{K}_{0}\left(\operatorname{Stck}_{[G / G]}\right)$ as a $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathrm{B} G}\right)$-module. Moreover, from Proposition 4.8.4 it is not hard to see that $Z_{G}(\Omega)$ promotes to a morphism of $\mathrm{K}_{0}\left(\right.$ Stck $\left._{\mathrm{B} G}\right)$-modules.
Denote by $I \in \mathrm{~K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ the class of the inclusion $[\{1\} / G] \rightarrow[G / G]$ of the identity, and denote by $S \in \mathrm{~K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ the class of the morphism $\left[\mathbb{G}_{m} / G\right] \rightarrow[G / G]$ induced by the squaring map $x \mapsto x^{2}$. Furthermore, we will make use of the following classes in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathrm{B} G}\right)$. Denote by A, B and C the classes $\left[\mathbb{G}_{m} / G\right],\left[\mathbb{G}_{m} \sigma / G\right]$ and $[(\mathbb{Z} / 2 \mathbb{Z}) / G]$, respectively, where $\mathbb{G}_{m}, \mathbb{G}_{m} \sigma$ (recall that σ denotes the non-trivial element of $\mathbb{Z} / 2 \mathbb{Z}$) and $\mathbb{Z} / 2 \mathbb{Z}$ are viewed as subvarieties of G on which G acts by conjugation.

Proposition 4.11.1. The $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathrm{B} G}\right)$-submodule $\langle I, S\rangle \subseteq \mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ is invariant under $Z_{G}(\sigma)$, and

$$
\begin{aligned}
& Z_{G}(\boxed{\square})(I)=A^{2} \cdot I+3 B \cdot S, \\
& Z_{G}(\boxed{\square})(S)=(A+B)^{2} \cdot S .
\end{aligned}
$$

Proof. The image of I is the virtual class of the morphism $\left[G^{2} / G\right] \rightarrow[G / G]$ induced by the commutator $[-,-]: G^{2} \rightarrow G$. Stratifying G by \mathbb{G}_{m} and $\mathbb{G}_{m} \sigma$, we find

$$
\begin{aligned}
{[x, y] } & =1, & {[x, y \sigma] } & =x^{2} \\
{[x \sigma, y] } & =y^{-2}, & {[x \sigma, y \sigma] } & =x^{2} y^{-2}
\end{aligned}
$$

The first stratum contributes $A^{2} \cdot I$. The second and third stratum both contribute $B \cdot S$. After a change of variables $x^{\prime}=x^{2} y^{-2}$ and $y^{\prime}=y$, we find that the fourth stratum contributes $B \cdot S$ as well.
Next, the image of S is the virtual class of the morphism $\left[\left(\mathbb{G}_{m} \times G^{2}\right) / G\right] \rightarrow[G / G]$ induced by

$$
\mathbb{G}_{m} \times G^{2} \rightarrow G, \quad(z, a, b) \mapsto z^{2}[a, b] .
$$

Stratifying G as above, this morphism is given by

$$
\begin{aligned}
z^{2}[x, y] & =z^{2}, & z^{2}[x, y \sigma] & =x^{2} z^{2} \\
z^{2}[x \sigma, y] & =y^{-2} z^{2}, & z^{2}[x \sigma, y \sigma] & =x^{2} y^{-1} z^{2}
\end{aligned}
$$

The first stratum contributes $A^{2} \cdot S$, the second and third stratum contribute $A B \cdot S$ each, and the fourth stratum contributes $B^{2} \cdot S$.

In order to repeatedly apply $Z_{G}(\sigma)$, we must understand how the scalars A, B and C behave under multiplication.

Lemma 4.11.2. In $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathrm{B} G}\right)$, the following relations hold:
(i) $A^{2}=(\mathbb{L}+2) A-(\mathbb{L}-2) C-(\mathbb{L}+1)$
(ii) $B^{2}=A B$
(iii) $C^{2}=2 C$
(iv) $A C=(\mathbb{L}-1) C$

Proof. (ii) and (iii) follow from the G-equivariant isomorphisms

$$
\begin{aligned}
\mathbb{G}_{m} \sigma \times \mathbb{G}_{m} \sigma & \rightarrow \mathbb{G}_{m} \sigma \times \mathbb{G}_{m}, & (x \sigma, y \sigma) & \mapsto\left(x \sigma, \frac{y}{x} \sigma\right) \\
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} & \rightarrow\{ \pm 1\} \times \mathbb{Z} / 2 \mathbb{Z}, & (a, b) & \mapsto(a b, b)
\end{aligned}
$$

where G acts trivially on $\{ \pm 1\}$. For (i), the action of G on \mathbb{G}_{m} by conjugation can be extended to \mathbb{P}_{k}^{1}, so that $A=\left[\mathbb{P}_{k}^{1} / G\right]-C$. After a change of variables on \mathbb{P}_{k}^{1}, the action of G can be described by $\sigma \cdot(x: y)=(-x: y)$. Note that this change of variables uses the assumption that 2 is invertible. Now, $\left[\mathbb{P}_{k}^{1} / G\right]=\left[\mathbb{A}_{k}^{1} / G\right]+1$ where G acts on \mathbb{A}_{k}^{1} by $\sigma \cdot x=-x$, and thus $A=\left[\mathbb{A}_{k}^{1} / G\right]+1-C$. One sees, similar to (ii) and (iii), that $\left[\mathbb{A}_{k}^{1} / G\right]^{2}=\mathbb{L}\left[\mathbb{A}_{k}^{1} / G\right]$ and $\left[\mathbb{A}_{k}^{1} / G\right] C=\mathbb{L} C$. It follows that

$$
\begin{aligned}
A^{2} & =\left(\left[\mathbb{A}_{k}^{1} / G\right]+1-C\right)^{2} \\
& =(\mathbb{L}+2)\left[\mathbb{A}_{k}^{1} / G\right]-2 \mathbb{L} C+1 \\
& =(\mathbb{L}+2) A-(\mathbb{L}-2) C-(\mathbb{L}+1)
\end{aligned}
$$

Finally, (iv) follows as $A C=\left(\left[\mathbb{A}_{k}^{1} / G\right]+1-C\right) C=(\mathbb{L}-1) C$.
The above lemma, in combination with Proposition 4.11.1, allows us to obtain the images under $Z_{G}(\Omega)$ of the elements

$$
I, \quad A \cdot I, \quad C \cdot I, \quad B \cdot S, \quad A B \cdot S, \quad B C \cdot S
$$

Moreover, it follows that the $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$-submodule of $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ generated by these elements is invariant under $Z_{G}(\sigma)$. In terms of these generators, the $\operatorname{map} Z_{G}(-0)$ is represented by the following matrix.

$$
\left[\begin{array}{cccccc}
-\mathbb{L}-1 & -\mathbb{L}^{2}-3 \mathbb{L}-2 & 0 & 0 & 0 & 0 \\
\mathbb{L}+2 & \mathbb{L}^{2}+3 \mathbb{L}+3 & 0 & 0 & 0 & 0 \\
2-\mathbb{L} & -2 \mathbb{L}^{2}+3 \mathbb{L}+2 & \mathbb{L}^{2}-2 \mathbb{L}+1 & 0 & 0 & 0 \\
3 & 0 & 0 & -4 \mathbb{L}-4 & -4 \mathbb{L}^{2}-12 \mathbb{L}-8 & 0 \\
0 & 3 & 0 & 4 \mathbb{L}+8 & 4 \mathbb{L}^{2}+12 \mathbb{L}+12 & 0 \\
0 & 0 & 3 & 8-4 \mathbb{L} & -8 \mathbb{L}^{2}+12 \mathbb{L}+8 & 4 \mathbb{L}^{2}-8 \mathbb{L}+4
\end{array}\right]
$$

One diagonalizes this matrix with eigenvalues

$$
1, \quad 4, \quad(\mathbb{L}-1)^{2}, \quad(\mathbb{L}+1)^{2}, \quad 4(\mathbb{L}-1)^{2}, \quad 4(\mathbb{L}+1)^{2}
$$

and eigenvectors

$$
\left[\begin{array}{c}
\mathbb{L}+1 \\
-1 \\
-1 \\
-\mathbb{L}-1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathbb{L}+1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
(\mathbb{L}-1)^{2} \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
2(\mathbb{L}+1)^{2} \\
-2(\mathbb{L}+1)^{2} \\
(\mathbb{L}-2)(\mathbb{L}+1)^{2} \\
-2 \\
2 \\
2-\mathbb{L}
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
2 \\
-2 \\
\mathbb{L}-2
\end{array}\right]
$$

respectively. From the decomposition $\Sigma_{g}=\varnothing \circ \sigma^{g} \circ \emptyset$, we can now compute the virtual class $\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathrm{B} G}\right)$. Using that

$$
Z_{G}(\circlearrowleft)(1)=I, \quad Z_{G}(\bigcirc)(I)=1 \quad \text { and } \quad Z_{G}(\bigcirc)(S)=2
$$

we obtain the following theorem.
Theorem 4.11.3. Let $G=\mathbb{G}_{m} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ over a field of characteristic not equal to 2. The virtual class of the G-character stack $\mathfrak{X}_{G}\left(\Sigma_{g}\right)$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathrm{B} G}\right)$ equals

$$
\begin{aligned}
{\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]=} & \mathbb{L}^{-1}\left(\mathbb{L}+1-(\mathbb{L}+1)^{2 g}\right) \\
& +\mathbb{L}^{-1}\left((\mathbb{L}+1)^{2 g}-1\right) A \\
& +2 \mathbb{L}^{-1}\left(4^{g}-1\right)\left(\mathbb{L}-(\mathbb{L}+1)^{2 g-2}+1\right) B \\
& +\frac{1}{2} \mathbb{L}^{-1}\left(\mathbb{L}(\mathbb{L}-1)^{2 g}-(\mathbb{L}-2)(\mathbb{L}+1)^{2 g}-2\right) C \\
& +2 \mathbb{L}^{-1}\left(4^{g}-1\right)\left((\mathbb{L}+1)^{2 g-2}-1\right) A B \\
& +\mathbb{L}^{-1}\left(4^{g}-1\right)\left(\mathbb{L}(\mathbb{L}-1)^{2 g-2}-(\mathbb{L}-2)(\mathbb{L}+1)^{2 g-2}-2\right) B C .
\end{aligned}
$$

Finally, in order to obtain the virtual class of the character stack in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$, we simply need to compute the images of $1, A, B, C, A B$ and $B C$ under the morphism

$$
c_{!}: \mathrm{K}_{0}\left(\mathbf{S t c k}_{\mathrm{B} G}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right) .
$$

Lemma 4.11.4. In $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$, the following equalities hold:
(i) $c_{!}(1)=\mathbb{L} /\left(\mathbb{L}^{2}-1\right)$
(iv) $c_{!}(C)=(\mathbb{L}-1)^{-1}$
(ii) $c_{!}(A)=1$
(v) $c_{!}(A B)=\mathbb{L}$
(iii) $c_{!}(B)=1$
(vi) $c_{!}(B C)=1$

Proof. (i) View G as the subgroup of GL_{2} generated by $\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. From the GL_{2}-torsor $\left[\mathrm{GL}_{2} / G\right] \rightarrow \mathrm{B} G$ follows that $[\mathrm{B} G]=\left[\mathrm{GL}_{2} / G\right] /\left[\mathrm{GL}_{2}\right]$. Writing $\mathrm{GL}_{2}=\operatorname{Spec} k\left[a, b, c, d,(a d-b c)^{-1}\right]$, we can identify

$$
\begin{aligned}
{\left[\mathrm{GL}_{2} / G\right] } & =\operatorname{Spec} k\left[a b, c d, a d+b c,(a d-b c)^{-2}\right] \\
& =\operatorname{Spec} k\left[x, y, z,\left(z^{2}-4 x y\right)^{-1}\right]
\end{aligned}
$$

whose virtual class is easily seen to be $\mathbb{L}^{2}(\mathbb{L}-1)$. Hence, we obtain $c_{!}(1)=$ $\mathbb{L}^{2}(\mathbb{L}-1) /\left[\mathrm{GL}_{2}\right]=\mathbb{L} /\left(\mathbb{L}^{2}-1\right)$.
(ii) From the GL_{2}-torsor $\mathrm{GL}_{2} \times_{G} \mathbb{G}_{m} \rightarrow\left[\mathbb{G}_{m} / G\right]$, it follows that $\left[\mathbb{G}_{m} / G\right]=$ $\left[\mathbb{G}_{m} \times{ }_{G} \mathrm{GL}_{2}\right] /\left[\mathrm{GL}_{2}\right]$, where we can identify $\left[\mathbb{G}_{m} \times{ }_{G} \mathrm{GL}_{2}\right]$ with

$$
\begin{aligned}
& \text { Spec } k\left[a b, c d, a d+b c, x+x^{-1},(a d-b c)\left(x-x^{-1}\right),(a d-b c)^{-2}\right] \\
& \quad=\operatorname{Spec} k\left[u, v, w, t, s,\left(w^{2}-4 u v\right)^{-1}\right] /\left(s^{2}-\left(t^{2}-4\right)\left(w^{2}-4 u v\right)\right)
\end{aligned}
$$

whose virtual class can be computed as $\mathbb{L}(\mathbb{L}-1)^{2}(\mathbb{L}+1)$. Hence, we obtain $c_{!}(A)=\mathbb{L}(\mathbb{L}-1)^{2}(\mathbb{L}+1) /\left[\mathrm{GL}_{2}\right]=1$.
(iii) This case is analogous to (ii).
(iv) $\mathrm{As}[(\mathbb{Z} / 2 \mathbb{Z}) / G]=\mathrm{B} \mathbb{G}_{m}$ and \mathbb{G}_{m} is special, we find $[(\mathbb{Z} / 2 \mathbb{Z}) / G]=(\mathbb{L}-1)^{-1}$.
(v) Note that $\left[\mathbb{G}_{m} \sigma \times \mathbb{G}_{m} / G\right] \cong \mathrm{B}(\mathbb{Z} / 2 \mathbb{Z}) \times\left[\mathbb{G}_{m} /\langle\sigma\rangle\right]$. Since $[\mathrm{B}(\mathbb{Z} / 2 \mathbb{Z})]=1$ and $\left[\mathbb{G}_{m} /\langle\sigma\rangle\right]=\mathbb{L}$, we find that $\left[\mathbb{G}_{m} \sigma \times \mathbb{G}_{m} / G\right]=\mathbb{L}$.
(vi) Finally, $\left[\left(\mathbb{G}_{m} \sigma \times(\mathbb{Z} / 2 \mathbb{Z})\right) / G\right]=[B(\mathbb{Z} / 2 \mathbb{Z})]=1$.

Corollary 4.11.5. Let $G=\mathbb{G}_{m} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ over a field k of characteristic not equal to 2 . The virtual class of the G-character stack $\mathfrak{X}_{G}\left(\Sigma_{g}\right)$ in $\mathbf{K}_{0}(\mathbf{S t c k} k)$ is given by

$$
\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]=\frac{(\mathbb{L}-1)^{2 g-2}\left(2^{2 g+1}+\mathbb{L}-3\right)}{2}+\frac{(\mathbb{L}+1)^{2 g-2}\left(2^{2 g+1}+\mathbb{L}-1\right)}{2}
$$

Indeed, note that $\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right] \neq\left[R_{G}\left(\Sigma_{g}\right)\right] /[G]$ in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$, reflecting the fact that G is not connected.

4.12 Representation variety TQFT

While the construction of the TQFT of Theorem 4.7.8 is quite elegant, using it to explicitly compute the virtual class of character stacks can be rather hard. When M is a connected closed manifold and G a special algebraic group, the virtual class of the G-character stack $\mathfrak{X}_{G}(M)$ can also be computed as
$\left[\mathfrak{X}_{G}(M)\right]=\left[R_{G}(M)\right] /[G]$ by Proposition 3.5.5. Hence, if there were to exist a (lax) TQFT that quantizes the virtual class of the G-representation variety $R_{G}(M)$, this would lead to a more practical approach, as more stratifications will be allowed for in computations: stratifications on $R_{G}(M)$, as opposed to stratifications on $\mathfrak{X}_{G}(M)$, need not be G-equivariant with respect to the action of G by conjugation. Such a TQFT was proposed by [GLM20], making use of pointed bordisms instead of bordisms, that is, bordisms equipped with a choice of basepoints on their boundaries. These basepoints are used to keep track of any non-trivial loops that arise when bordisms are composed. The downside of this TQFT is that it does not quite quantize the virtual class of $R_{G}(M)$, but rather $[G]^{n}\left[R_{G}(M)\right]$, where n is the number of basepoints on M. Without these basepoints, no such TQFT exists.

Nevertheless, we can define the following morphisms, which will effectively compute the virtual class of the representation variety. However, we stress that these maps do not come from a TQFT.

Definition 4.12.1. Let G be a linear algebraic group over a field k. Define the following $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-module morphisms,

$$
\begin{aligned}
& Z_{G}^{\mathrm{rep}}(D): \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right), \quad 1 \quad \mapsto[\{1\} \rightarrow G] \\
& Z_{G}^{\mathrm{rep}}(\bigcirc): \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right),\left[\begin{array}{c}
X \\
\underset{ }{\downarrow} \\
G
\end{array}\right] \mapsto\left[f^{-1}(1)\right] \\
& Z_{G}^{\mathrm{rep}}(\overparen{\sigma}): \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right),\left[\begin{array}{c}
X \\
\downarrow f \\
\downarrow \\
G
\end{array}\right] \mapsto\left[\begin{array}{cc}
X \times G^{2} & (x, A, B) \\
\downarrow & \downarrow \\
G & f(x)[A, B]
\end{array}\right] \\
& Z_{G}^{\mathrm{rep}}(\underset{\widehat{O}, \bigcirc)}{(\mathrm{O}}): \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right),\left[\begin{array}{c}
X \\
\downarrow f \\
\downarrow^{f}
\end{array}\right] \mapsto\left[\begin{array}{cc}
X \times G & (x, A) \\
\downarrow & \downarrow \\
G & f(x) A^{2}
\end{array}\right]
\end{aligned}
$$

where $\{1\} \rightarrow G$ is the inclusion of the unit, and $[A, B]=A B A^{-1} B^{-1}$ denotes the group commutator. Furthermore, we define the $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-module morphism

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\underset{8}{0}): \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \otimes \mathrm{K}_{0}\left(\mathbf{V a r}_{G}\right) & \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \\
{[X \xrightarrow{f} G] \otimes[Y \xrightarrow{g} G] } & \mapsto[X \times Y \xrightarrow{m \circ(f \times g)} G]
\end{aligned}
$$

where $m: G \times G \rightarrow G$ denotes the multiplication map.
From the explicit presentations of the G-representation varieties of the orientable and non-orientable surfaces, $R_{G}\left(\Sigma_{g}\right)$ and $R_{G}\left(N_{r}\right)$, as in Example 2.1.4, it follows
that their virtual classes can be computed through the following formulas.

$$
\begin{align*}
& {\left[R_{G}\left(\Sigma_{g}\right)\right]=Z_{G}^{\mathrm{rep}}(0) \circ Z_{G}^{\mathrm{rep}}(\boxed{\sigma})^{g} \circ Z_{G}^{\mathrm{rep}}(0)(1)} \tag{4.10}\\
& {\left[R_{G}\left(N_{r}\right)\right]=Z_{G}^{\mathrm{rep}}(0) \circ Z_{G}^{\mathrm{rep}}(\widehat{\bigcirc,})^{g} \circ Z_{G}^{\mathrm{rep}}(\Omega)(1)} \tag{4.11}
\end{align*}
$$

Moreover, it follows immediately from the expressions in Definition 4.12.1 that the following relations hold, for all $X \in \mathrm{~K}_{0}\left(\operatorname{Var}_{G}\right)$:

$$
\begin{align*}
& Z_{G}^{\mathrm{rep}}(\sigma 0)(X)=Z_{G}^{\mathrm{rep}}(\sigma)\left(X \otimes\left(Z_{G}^{\mathrm{rep}}(\sigma) \circ Z_{G}^{\mathrm{rep}}(D)\right)(1)\right) \tag{4.12}\\
& Z_{G}^{\mathrm{rep}}(\widehat{\bigcirc, \bigcirc)})(X)=Z_{G}^{\mathrm{rep}}(\sigma)\left(X \otimes\left(Z_{G}^{\mathrm{rep}}(\widehat{\bigcirc, \bigcirc)}) \circ Z_{G}^{\text {rep }}(0)\right)(1)\right) \tag{4.13}
\end{align*}
$$

Let us explain why the above equations are useful. They show that, in order to compute $Z_{G}^{\mathrm{rep}}(\Omega)$ and $Z_{G}^{\mathrm{rep}}(\overrightarrow{\mathrm{O},})$, it suffices to understand only the image of $Z_{G}^{\text {rep }}(\Omega)$ (1) under these maps, and to compute $Z_{G}^{\text {rep }}(\sqrt{8})$. However, this latter is only 'linear' in the two inputs, whereas the original maps $Z_{G}^{\text {rep }}(\underset{\sigma}{ })$ and $Z_{G}^{\text {rep }}(\vec{O}, \mathcal{O})$ are 'quadratic' in their inputs. This will result in significant simplifications in the concrete computations of the following chapters.

Chapter 5

SL_{2}-character stacks

In this chapter, we apply the theory of Chapter 4 to compute the virtual classes of the G-character stacks $\mathfrak{X}_{G}(M)$, for M equal to both orientable and non-orientable closed surfaces, and G equal to

$$
\mathrm{SL}_{2}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\} .
$$

Even though $G=\mathrm{SL}_{2}$ is one of the simplest non-trivial groups, the resulting computations are quite intricate. Throughout this chapter, we work over an algebraically closed field k with $\operatorname{char}(k) \neq 2$.

Similar computations were performed by [LMN13, MM16] to compute the corresponding E-polynomials. While the scissor relation (3.3) is the main ingredient in these computations, they cannot simply be lifted to the Grothendieck ring of varieties. Instead, many subtle points arise and have to be dealt with, such as the study of \mathbb{P}^{1}-fibrations, equivariant motivic invariants (as in Section 3.6), and non-zero elements in the Grothendieck ring of varieties whose E-polynomial is zero.

As $G=\mathrm{SL}_{2}$ is a special group, the virtual class of the G-character stack $\mathfrak{X}_{G}(M)$ is equal to that of the G-representation variety $R_{G}(M)$ divided by $\left[\mathrm{SL}_{2}\right]=\mathbb{L}(\mathbb{L}-$ $1)(\mathbb{L}+1)$. Hence, we can apply the theory of Section 4.12 , allowing us to make non-equivariant stratifications. In order to use (4.10), (4.11), (4.12) and (4.13), we will compute

$$
\begin{equation*}
Z_{G}^{\mathrm{rep}}(\varnothing) \circ Z_{G}^{\mathrm{rep}}(D) \quad \text { and } \quad Z_{G}^{\mathrm{rep}}(\underset{\mathrm{O}, \mathrm{O}}{ }) \circ Z_{G}^{\mathrm{rep}}(\Omega) \tag{5.1}
\end{equation*}
$$

in Section 5.2 and Section 5.3, respectively, and in Section 5.4 we compute

$$
\begin{equation*}
Z_{G}^{\text {rep }}(0) . \tag{5.2}
\end{equation*}
$$

It is not necessary to compute these maps in full. Rather it suffices to compute their restriction to a certain finitely generated submodule of $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$. The generators for this submodule are described in Section 5.1. For the computation of some of these maps, we need an extra relation in the Grothendieck ring of varieties regarding \mathbb{P}^{1}-fibrations. This will also be discussed in Section 5.1.

Finally, in Section 5.5 we collect and discuss the results.

5.1 Generators, relations and \mathbb{P}^{1}-fibrations

Let us introduce some notation. The following varieties are all considered naturally as varieties over $G=\mathrm{SL}_{2}$.

$$
\begin{align*}
I_{+} & =\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} \\
I_{-} & =\left\{\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} \\
J_{+} & =\left\{A \in G \mid A \text { conjugate to }\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\right\} \\
J_{-} & =\left\{A \in G \mid A \text { conjugate to }\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)\right\}, \\
M & =\{A \in G \mid \operatorname{tr}(A) \neq \pm 2\}, \tag{5.3}\\
X_{2} & =\left\{(A, \ell) \in M \times \mathbb{A}_{k}^{1} \mid \ell^{2}=\operatorname{tr}(A)-2\right\}, \\
X_{-2} & =\left\{(A, \ell) \in M \times \mathbb{A}_{k}^{1} \mid \ell^{2}=\operatorname{tr}(A)+2\right\}, \\
X_{2,-2} & =\left\{(A, \ell) \in M \times \mathbb{A}_{k}^{1} \mid \ell^{2}=\operatorname{tr}(A)^{2}-4\right\}, \\
Y & =\left\{(A, \omega) \in M \times \mathbb{A}_{k}^{1} \backslash\{0\} \mid \operatorname{tr}(A)=\omega^{2}+\omega^{-2}\right\},
\end{align*}
$$

By the same symbols, we will also denote their virtual class in $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$. These elements will be the generators of the $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-submodule of $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$ on which (5.1) and (5.2) will be computed. A useful alternative presentation of the last five generators is as follows:

$$
\begin{aligned}
M & \cong\left(\mathrm{GL}_{2} / D \times \mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right) / / S_{2} \rightarrow G, & & (P, \lambda) \mapsto P\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) P^{-1} \\
X_{2} & \cong\left(\mathrm{GL}_{2} / D \times \mathbb{A}_{k}^{1} \backslash\{0, \pm 1, \pm i\}\right) / / S_{2} \rightarrow G, & & (P, \omega) \mapsto P\left(\begin{array}{cc}
-\omega^{2} & 0 \\
0 & -\omega^{-2}
\end{array}\right) P^{-1} \\
X_{-2} & \cong\left(\mathrm{GL}_{2} / D \times \mathbb{A}_{k}^{1} \backslash\{0, \pm 1, \pm i\}\right) / / S_{2} \rightarrow G, & & (P, \omega) \mapsto P\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega^{-2}
\end{array}\right) P^{-1} \\
X_{2,-2} & \cong \mathrm{GL}_{2} / D \times \mathbb{A}_{k}^{1} \backslash\{0, \pm 1\} \rightarrow G, & & (P, \lambda) \mapsto P\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right) P^{-1} \\
Y & \cong \mathrm{GL}_{2} / D \times \mathbb{A}_{k}^{1} \backslash\{0, \pm 1, \pm i\} \rightarrow G, & & (P, \omega) \mapsto P\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega^{-2}
\end{array}\right) P^{-1}
\end{aligned}
$$

where $D \subseteq \mathrm{GL}_{2}$ is the subgroup of diagonal matrices, and where S_{2} acts on the left coset space GL_{2} / D by $P \mapsto P\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$, and acts on the coordinates λ and ω by $\lambda \mapsto \lambda^{-1}$ and $\omega \mapsto \omega^{-1}$. The following lemma gives a better understanding of the relation between these generators.

Lemma 5.1.1. The following relations hold in $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$:

$$
\begin{gathered}
X_{2}^{2}=2 X_{2}, \quad X_{-2}^{2}=2 X_{-2}, \quad X_{2,-2}^{2}=2 X_{2,-2} \\
\text { and } \quad Y=X_{2} X_{-2}=X_{2} X_{2,-2}=X_{-2} X_{2,-2}
\end{gathered}
$$

Proof. The first equality follows from

$$
X_{2} \times_{M} X_{2}=\left\{\left(A, \ell_{1}, \ell_{2}\right) \in M \times \mathbb{A}_{k}^{2} \mid \ell_{1}^{2}=\operatorname{tr}(A)-2 \text { and } \ell_{2}= \pm \ell_{1}\right\} \cong X_{2} \sqcup X_{2}
$$

and similarly for the second and third. The final two equalities follow from the fact that, if $\ell_{1}^{2}=\operatorname{tr}(A)-2$ and $\ell_{2}^{2}=\operatorname{tr}(A)+2$, then $\left(\ell_{1} \ell_{2}\right)^{2}=\operatorname{tr}(A)^{2}-4$. Finally, the fourth equality follows from the isomorphism
$Y \xrightarrow{\sim} X_{2} \times_{M} X_{-2}=\left\{\left(A, \ell_{1}, \ell_{2}\right) \in M \times \mathbb{A}_{k}^{2} \mid \ell_{1}^{2}=\operatorname{tr}(A)-2\right.$ and $\left.\ell_{2}^{2}=\operatorname{tr}(A)+2\right\}$
which is given by $(A, \omega) \mapsto\left(A, \omega-\omega^{-1}, \omega+\omega^{-1}\right)$ with inverse $\left(A, \ell_{1}, \ell_{2}\right) \mapsto$ $\left(A, \frac{1}{2}\left(\ell_{1}+\ell_{2}\right)\right)$.

Remark 5.1.2. The symbols X_{2}, X_{-2} and $X_{2,-2}$ were adopted from [Gon20] and reflect the monodromy action of these spaces as covering spaces over M. They are double covers of M, and have non-trivial monodromy for loops around $\operatorname{tr} A=2$ or $\operatorname{tr} A=-2$ as indicated by the subscript of the symbol. More precisely, write T for the trivial representation of $\pi_{1}(M, *)$ and N_{2} (resp. N_{-2}) for the 1dimensional representation that sends a loop around $\operatorname{tr} A=2$ (resp. $\operatorname{tr} A=-2$) to -1 . Then the monodromy representations of X_{2}, X_{-2} and $X_{2,-2}$ are $T \oplus N_{2}$, $T \oplus N_{-2}$ and $T \oplus N_{2} \otimes N_{-2}$, respectively. Since $Y \cong X_{2} \times_{M} X_{-2}$, it follows that Y is a 4 -to- 1 cover of M with monodromy representation $T \oplus N_{2} \oplus N_{-2} \oplus N_{2} \otimes N_{-2}$. In particular, the monodromy representation of $M \sqcup M \sqcup Y$ is equal to that of $X_{2} \sqcup X_{-2} \sqcup X_{2,-2}$. This is also the case for their Hodge monodromy representation [LMN13, (5)], and for this reason, the generator Y is not needed in the E polynomial computations of [LMN13, MM16]. However, the analogous equality does not (necessarily) hold in $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$ as $M \sqcup M \sqcup Y$ is not isomorphic to $X_{2} \sqcup X_{-2} \sqcup X_{2,-2}$ over M : the former has two sections over M whereas the latter has none.

Finally, when computing the images of the generators (5.3) under the maps (5.1) and (5.2), we will encounter some non-trivial \mathbb{P}^{1}-fibrations. Recall, a \mathbb{P}^{1} fibration is a morphism $P \rightarrow X$ which is étale-locally of the form $X \times \mathbb{P}_{k}^{1} \xrightarrow{\pi_{X}} X$, where π_{X} denotes the projection to X. However, as many motivic invariants $\chi: \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow R$ satisfy $\chi(P)=\chi\left(\mathbb{P}_{k}^{1}\right) \chi(X)$ for all \mathbb{P}^{1}-fibrations $P \rightarrow X$, we will impose this relation as well. This includes the point-count over finite fields, and the E-polynomial and Euler characteristic over \mathbb{C} [MOV09, Lemma 2.4].

Definition 5.1.3. Let S be a variety over k. Denote by $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\operatorname{Var}_{S}\right)$ the quotient of $\mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ by relations of the form

$$
\begin{equation*}
[P]_{S}=\left[\mathbb{P}_{k}^{1}\right] \cdot[X]_{S} \tag{5.4}
\end{equation*}
$$

for all \mathbb{P}^{1}-fibrations $P \rightarrow X$ over S. Similarly, denote by $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\mathbf{S t c k}_{S}\right)$ the quotient of $\mathrm{K}_{0}\left(\mathbf{S t c k}_{S}\right)$ by the same relations. Furthermore, if G is a finite group, denote by $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\operatorname{Var}_{S}^{G}\right)$ the quotient of $\mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right)$ by the same relations, for all G-equivariant \mathbb{P}^{1}-fibrations $P \rightarrow X$ over S.

We will need the G-equivariant version when dealing with varieties of the form $X / / G$, and we want to stratify X in a G-equivariant manner. In that case, it is important that taking the quotient with respect to G respects the relation (5.4).

Proposition 5.1.4. Let S be variety over k, and let G be a finite group. The morphism $\mathrm{K}_{0}\left(\operatorname{Var}_{S}^{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{S}\right)$ given by $[X]_{S} \mapsto[X / / G]_{S}$ descends to a morphism

$$
\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\operatorname{Var}_{S}^{G}\right) \rightarrow \mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\operatorname{Var}_{S}\right)
$$

Proof. It must be shown that for every G-equivariant \mathbb{P}^{1}-fibration $P \rightarrow X$ over S, we have $[P / / G]_{S}=\left[\mathbb{P}_{k}^{1}\right] \cdot[X / / G]_{S}$ in $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\operatorname{Var}_{S}\right)$.
If G does not act faithfully on X, then $N=\{g \in G \mid g \cdot x=x$ for all $x \in X\}$ is a normal subgroup of G which acts trivially on X. Since $X / / G=X / /(G / N)$ and $P / / G=(P / / N) / /(G / N)$, we may replace G by G / N and P by $P^{\prime}=P / / N$ (still a \mathbb{P}^{1}-fibration over X) and assume that G does act faithfully on X.
Next, let \mathcal{H} be a set of representatives for the conjugacy classes of subgroups of G. Stratify $X=\bigsqcup_{H \in \mathcal{H}} X_{H}$, where $X_{H}=\{x \in X \mid \operatorname{Stab}(x)$ is conjugate to $H\}$. Note that the action of G restricts to X_{H} since $\operatorname{Stab}(g \cdot x)=g \operatorname{Stab}(x) g^{-1}$ for all $g \in G$ and $x \in X$. Furthermore, we have $X_{H} / / G=Y_{H} / / N_{G}(H)$, where $Y_{H}=\{x \in X \mid \operatorname{Stab}(x)=H\}$ and $N_{G}(H)$ is the normalizer of H in G, and similarly $\left(P \times_{X} X_{H}\right) / / G=\left(P \times_{X} Y_{H}\right) / / N_{G}(H)$. Hence, replacing G by $N_{G}(H)$ and X by Y_{H}, we may assume $\operatorname{Stab}(x)$ is constant and normal in G. Moreover, since we could assume G to act faithfully on X, we can assume the action of G on X to be free.
After stratifying X into smooth strata, the quotient map $X \rightarrow X / / G$ is étale [Dré04, Proposition 4.11], so from the cartesian diagram

it follows that $P / / G \rightarrow X / / G$ is a \mathbb{P}^{1}-fibration over S as well. Therefore, $[P / / G]_{S}=\left[\mathbb{P}_{k}^{1}\right] \cdot[X / / G]_{S}$, as desired.

5.2 Orientable surfaces

The goal of this section is to prove the following proposition, which completely characterizes the first map of (5.1). The stratifications used are similar to those in [LMN13], but adapted to the setting of $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\operatorname{Var}_{G}\right)$.

Proposition 5.2.1. The virtual class of $G^{2} \rightarrow G$ given by $(A, B) \mapsto[A, B]$ in $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\operatorname{Var}_{G}\right)$ is equal to

$$
\begin{aligned}
&\left(Z_{G}^{\mathrm{rep}}(\mathbb{\Omega}) \circ Z_{G}^{\mathrm{rep}}(D)\right)(1) \\
&= \mathbb{L}(\mathbb{L}-1)(\mathbb{L}+1)(\mathbb{L}+4) I_{+}+\mathbb{L}(\mathbb{L}-1)(\mathbb{L}+1) I_{-} \\
& \quad+\mathbb{L}(\mathbb{L}-3)(\mathbb{L}+1) J_{+}+\mathbb{L}^{2}(\mathbb{L}+3) J_{-}+(\mathbb{L}-1)^{2}(\mathbb{L}+1) M \\
&+2 \mathbb{L}(\mathbb{L}+1) X_{2}-\mathbb{L}(\mathbb{L}+1) X_{-2}-(\mathbb{L}-1)^{2} X_{2,-2}+\mathbb{L}(\mathbb{L}-2) Y .
\end{aligned}
$$

Proof. Write $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\left(\begin{array}{ll}x & y \\ z & w\end{array}\right)$ and stratify based on the conjugacy class of $[A, B]$.

- If $[A, B]=1$, we consider the following cases.
- Case $A= \pm 1$. Since any B commutes with A, this stratum has a virtual class equal to $2[G] I_{+}=2 \mathbb{L}(\mathbb{L}-1)(\mathbb{L}+1) I_{+}$.
- Case $A \in J_{ \pm}$. Conjugate A to $\left(\begin{array}{cc} \pm 1 & 1 \\ 0 & \pm 1\end{array}\right)$ to find that B must be of the form $\left(\begin{array}{cc} \pm 1 & x \\ 0 & \pm 1\end{array}\right)$. Hence, we obtain $4 \mathbb{L}\left[J_{+}\right] I_{+}=4 \mathbb{L}(\mathbb{L}-1)(\mathbb{L}+1) I_{+}$.
- Case $A \in M$. Note that A can be conjugated to $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ for some $\lambda \neq 0, \pm 1$, after which B must be diagonal. Hence, this stratum can be identified with

$$
\left(\left\{(P, \lambda, \mu) \in \mathrm{GL}_{2} / D \times\left(\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right) \times\left(\mathbb{A}_{k}^{1} \backslash\{0\}\right)\right\}\right) / / S_{2}
$$

where $A=P\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) P^{-1}$ and $B=P\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu^{-1}\end{array}\right) P^{-1}$, and where S_{2} acts via $(P, \lambda, \mu) \mapsto\left(P\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \lambda^{-1}, \mu^{-1}\right)$. To compute the virtual class of this quotient, we apply Section 3.6 with the finite (cyclic) group $S_{2}=\mathbb{Z} / 2 \mathbb{Z}$. Using notation as in (3.12), we find

$$
\begin{aligned}
{\left[\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right]^{S_{2}} } & =(\mathbb{L}-2) \otimes T-1 \otimes N \\
{\left[\mathbb{A}_{k}^{1} \backslash\{0\}\right]^{S_{2}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D\right]^{S_{2}} } & =\mathbb{L}^{2} \otimes T+\mathbb{L} \otimes N
\end{aligned}
$$

Therefore, we obtain $\mathbb{L}(\mathbb{L}-2)(\mathbb{L}-1)(\mathbb{L}+1) I_{+}$.

Together, these cases add up to $\mathbb{L}(\mathbb{L}-1)(\mathbb{L}+1)(\mathbb{L}+4) I_{+}$.

- Suppose $[A, B]=-1$. From the equivalent expressions $A B A^{-1}=-B$ and $B^{-1} A B=-A$ follows that $\operatorname{tr} A=\operatorname{tr} B=0$. In particular, we can conjugate A to $\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, after which B must be of the form $\left(\begin{array}{cc}0 & y \\ -1 / y & 0\end{array}\right)$. Hence, we obtain $\mathbb{L}(\mathbb{L}-1)(\mathbb{L}+1) I_{-}$.
- Suppose $[A, B] \in J_{+}$. Conjugate $[A, B]$ to $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. From $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B A$ follows that $\operatorname{tr} B=\operatorname{tr}\left(A B A^{-1}\right)=\operatorname{tr}\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B\right)$ and hence $z=0$. Similarly, $\operatorname{tr} A=$ $\operatorname{tr}\left(B A B^{-1}\right)=\operatorname{tr}\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{-1} A\right)$ implies $c=0$. Now $\operatorname{det} A=\operatorname{det} B=1$ yields $d=a^{-1}$ and $w=x^{-1}$, and the only remaining equation is $y\left(a-a^{-1}\right)-b(x-$ $\left.x^{-1}\right)=1 / a x$. Consider the following cases.
- If $a \neq \pm 1$, we can solve for $y=\left(1 / a x+b\left(x-x^{-1}\right)\right) /\left(a-a^{-1}\right)$, and obtain $\mathbb{L}(\mathbb{L}-3)(\mathbb{L}-1) J_{+}$.
- If $a= \pm 1$, we must have $x \neq \pm 1$ and can solve for $b=a /\left(1-x^{2}\right)$. We obtain $2 \mathbb{L}(\mathbb{L}-3) J_{+}$.

Together, these cases add up to $\mathbb{L}(\mathbb{L}-3)(\mathbb{L}+1) J_{+}$.

- Suppose $[A, B] \in J_{-}$. Conjugate $[A, B]$ to $\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$. From $\operatorname{tr} B=\operatorname{tr}\left(A B A^{-1}\right)=$ $\operatorname{tr}\left(\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right) B\right.$) follows that $z=2(x+w)$, and from $\operatorname{tr} A=\operatorname{tr}\left(B A B^{-1}\right)=$ $\operatorname{tr}\left(\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)^{-1} A\right)$ follows that $c=-2(a+d)$. The only remaining equation is $a y-b w-b x-d w+d y=0$. Consider the following cases.
- Case $w=-x$. From det $B=1$ follows that $x= \pm i$. The action of conjugation by $\left\{\left(\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right)\right\} \cong \mathbb{G}_{a}$ turns this stratum into a \mathbb{G}_{a}-torsor over the stratum with $y=0$. On this stratum with $y=0$, we can solve for $d=0$, and $\operatorname{det} A=1$ implies $a \neq 0$ and $b=1 / 2 a$. Hence, we obtain $2 \mathbb{L}(\mathbb{L}-1) J_{-}$.
- Case $w \neq-x$. The action of conjugation by $\left.\left\{\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right)\right\} \cong \mathbb{G}_{a}$ turns this stratum into a \mathbb{G}_{a}-torsor over the stratum with $w=0$. On this stratum with $w=0$, it follows from $\operatorname{det} B=1$ that $x \neq 0$ and $y=-1 / 2 x$. We can solve for $b=-(a+d) / 2 x^{2}$. Finally, $\operatorname{det} A=1$ translates to $a d-(a+d)^{2} / x^{2}=1$.
* Case $d=-a$. Solve for $a= \pm i$ to obtain $2 \mathbb{L}(\mathbb{L}-1) J_{-}$.
* Case $d \neq-a$. Make a substitution $x^{\prime}=(a+d) / x$ to rewrite the equation as $a d-\left(x^{\prime}\right)^{2}=1$. This is easily seen to give $\mathbb{L}\left(\mathbb{L}^{2}-\mathbb{L}+4\right) J_{-}$.

Together, these cases add up to $\mathbb{L}^{2}(\mathbb{L}+3) J_{-}$.

- Suppose $[A, B] \in M$. Diagonalizing $[A, B]$, this stratum can be expressed as

$$
\left\{(P, A, B, \lambda) \in \mathrm{GL}_{2} / D \times G^{2} \times\left(\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right) \left\lvert\,[A, B]=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)\right.\right\} / / S_{2}
$$

where S_{2} acts via $\lambda \mapsto \lambda^{-1}$ and $P \mapsto P\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and on A and B via conjugation by $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. From $\operatorname{tr} A=\operatorname{tr}\left(B A B^{-1}\right)=\operatorname{tr}\left(\left(\begin{array}{cc}\lambda^{-1} & 0 \\ 0 & \lambda\end{array}\right) A\right)$ follows that $d=a / \lambda$, and from $\operatorname{tr} B=\operatorname{tr}\left(A B A^{-1}\right)=\operatorname{tr}\left(\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B\right)$ that $w=\lambda x$. The relevant equations are now $a x+b z-\lambda(a x+c y)=0$ and $\operatorname{det} A=a^{2} \lambda^{-1}-b c=1$ and $\operatorname{det} B=\lambda x^{2}-y z=1$. Consider the following cases.

- Case $b=c=0$. It follows that $a^{2}=\lambda, x=0$ and $z=-y^{-1}$. Note that S_{2} acts via $a \mapsto d=a / \lambda=a^{-1}$ and $y \mapsto z=-y^{-1}$. Therefore, we obtain the following S_{2}-virtual classes

$$
\begin{gathered}
{[\{y \neq 0\}]^{S_{2}}=\mathbb{L} \otimes T-1 \otimes N} \\
{\left[\mathrm{GL}_{2} / D \times\left\{a^{2}=\lambda\right\}\right]_{M}^{S_{2}}=X_{-2} \otimes T+\left(Y-X_{-2}\right) \otimes N .}
\end{gathered}
$$

Multiplying these and taking the quotient by S_{2}, we obtain $(\mathbb{L}+1) X_{-2}-Y$.

- Case $y=z=0$. Similarly, we obtain $(\mathbb{L}+1) X_{-2}-Y$.
- Case $b=0$ or $c=0$, but not both. The action of S_{2} swaps b and c, so we can identify the S_{2}-quotient with the stratum where $b=0$ and $c \neq 0$. The action of conjugation by $\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)\right\} \cong \mathbb{G}_{m}$ turns this stratum into a \mathbb{G}_{m}-torsor over the stratum with $c=1$. On this stratum with $c=1$, we find that $a^{2}=\lambda, y=a x\left(\lambda^{-1}-1\right)$ with $x \neq 0$, and $z=\left(\lambda x^{2}-1\right) / y$. Hence, we obtain $(\mathbb{L}-1)^{2} Y$.
- Case $y=0$ or $z=0$, but not both. Similarly, we obtain $(\mathbb{L}-1)^{2} Y$.
- In the above cases, we have counted twice the stratum given by $b=z=0$ or $c=y=0$, so we need to subtract it once. Note that these conditions cannot be satisfied simultaneously, and moreover, the action of S_{2} swaps them. Therefore, we can identify the S_{2}-quotient with the stratum where $b=z=0$ (and $c, y \neq 0$). The action of conjugation by $\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)\right\} \cong \mathbb{G}_{m}$ turns this stratum into a \mathbb{G}_{m}-torsor over the stratum with $c=1$. On this stratum with $c=1$, we find $a^{2}=\lambda$ and solve for $(x, y)= \pm\left(a^{-1}, a^{-1}-a\right)$. Hence, we obtain $-2(\mathbb{L}-1) Y$, where the minus sign signifies this stratum must be subtracted from the total.
- Case $b c y z \neq 0$. Solve for $c=\left(a^{2} / \lambda-1\right) / b$ and $z=\left(\lambda x^{2}-1\right) / y$. The conditions $c, z \neq 0$ translate to $a^{2} \neq \lambda$ and $x^{-2} \neq \lambda$. The remaining equation is

$$
x^{2}-\frac{a^{\prime}(\lambda-1)}{(\lambda+1)} x y^{\prime}+\left(1-\frac{\left(a^{\prime}\right)^{2}}{\lambda+\lambda^{-1}+2}\right)\left(y^{\prime}\right)^{2}=\lambda^{-1}
$$

where we made substitutions $y^{\prime}=y / b$ and $a^{\prime}=a\left(1+\lambda^{-1}\right)$. The condition $a^{2} \neq \lambda$ translates to $\left(a^{\prime}\right)^{2} \neq \lambda+\lambda^{-1}+2$. This equation describes a family of conics over the plane $\left\{\left(a^{\prime}, \lambda\right) \mid\left(a^{\prime}\right)^{2} \neq \lambda+\lambda^{-1}+2\right\}$ with discriminant $D=\left(a^{\prime}-2\right)\left(a^{\prime}+2\right)$. To compute its virtual class, the idea is to complete
this family of conics to a \mathbb{P}^{1}-fibration over the $\left(a^{\prime}, \lambda\right)$-plane, for $D \neq 0$, so that relation (5.4) can be used. The stratum at infinity will be computed separately, and must be subtracted from the total.
Note that the variable $b \neq 0$ is independent of a^{\prime}, x and y^{\prime}, except through the action of S_{2} given by $b \mapsto c=\left(a^{\prime} \lambda /(\lambda+1)^{2}-1\right) / b$. Extending b to be $\mathbb{P}^{1}-$ valued, we can regard this stratum as a \mathbb{P}^{1}-fibration minus the stratum with $b=0$ or $b=\infty$. Note that the cases $b=0$ and $b=\infty$ are interchanged by the action of S_{2}. Hence, for the sake of the computation, we can effectively act as if b is completely independent of a^{\prime}, x and y^{\prime}, with S_{2}-virtual class $[\{b \neq 0\}]^{S_{2}}=\mathbb{L} \otimes T-1 \otimes N$.

* Case $D=0$. Solve for $a^{\prime}= \pm 2$. Suppose $a^{\prime}=2$. Then $\left(x-\frac{\lambda-1}{\lambda+1} y^{\prime}\right)^{2}=$ λ^{-1}. Write $\omega=x-\frac{\lambda-1}{\lambda+1} y^{\prime}$ so that $\omega^{2}=\lambda^{-1}$ and note that S_{2} acts via $\omega \mapsto-\omega^{-1}$. The condition $x^{2} \neq \lambda^{-1}$ translates to $x \neq \pm \omega$. Substituting $x^{\prime}=x / \omega$ yields $x^{\prime} \neq \pm 1$ and S_{2} acts via $x^{\prime} \mapsto-x^{\prime}$. From the S_{2}-virtual classes

$$
\begin{aligned}
{[\{b \neq 0\}]^{S_{2}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\left\{x^{\prime} \neq \pm 1\right\}\right]^{S_{2}} } & =(\mathbb{L}-1) \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D \times\left\{\omega^{2}=\lambda^{-1}\right\}\right]_{M}^{S_{2}} } & =X_{2} \otimes T+\left(Y-X_{2}\right) \otimes N
\end{aligned}
$$

we obtain $\mathbb{L}(\mathbb{L}+1) X_{2}-(2 \mathbb{L}-1) Y$. The case $a^{\prime}=-2$ is completely similar, so we double this virtual class to obtain $2 \mathbb{L}(\mathbb{L}+1) X_{2}-(4 \mathbb{L}-2) Y$.

* Case $D \neq 0$. Complete the family of conics to a \mathbb{P}^{1}-fibration given by

$$
\begin{equation*}
X^{2}-\frac{a^{\prime}(\lambda-1)}{(\lambda+1)} X Y+\left(1-\frac{\left(a^{\prime}\right)^{2}}{\lambda+\lambda^{-1}+2}\right) Y^{2}=\lambda^{-1} Z^{2} \tag{5.5}
\end{equation*}
$$

over the base $B=\mathrm{GL}_{2} / D \times\left\{\left(a^{\prime}, \lambda\right) \mid a^{\prime} \neq \pm 2\right.$ and $\left.\left(a^{\prime}\right)^{2} \neq \lambda+\lambda^{-1}+2\right\}$. Regarding B as the open complement of $\left(a^{\prime}\right)^{2}=\lambda+\lambda^{-1}+2$, we compute its S_{2}-virtual class as

$$
\begin{aligned}
{[B]_{M}^{S_{2}}=} & (\mathbb{L}-2)\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
& -\left(X_{-2} \otimes T+\left(Y-X_{-2}\right) \otimes N\right)
\end{aligned}
$$

Multiplying by $\left[\mathbb{P}_{k}^{1}\right]=\mathbb{L}+1$ and by $[\{b \neq 0\}]^{S_{2}}=\mathbb{L} \otimes T-1 \otimes N$, and taking the quotient by S_{2}, we obtain

$$
(\mathbb{L}-2)(\mathbb{L}+1)^{2} M-(\mathbb{L}+1)^{2} X_{-2}-(\mathbb{L}-2)(\mathbb{L}+1) X_{2,-2}+(\mathbb{L}+1) Y .
$$

* Now we must subtract the stratum of points at infinity, that is, the points given by $Z=0$. Since there are no solutions with $X=0$, we can work
with the dehomogenized coordinate Y / X. In fact, writing $u=Y / X$. $\left(1-\frac{\left(a^{\prime}\right)^{2} \lambda}{(\lambda+1)^{2}}\right)$, equation (5.5) reduces to

$$
\left(2 u-\frac{a^{\prime}(\lambda-1)}{(\lambda+1)}\right)^{2}=\left(a^{\prime}-2\right)\left(a^{\prime}+2\right)
$$

Substituting $u^{\prime}=2 u-\frac{a^{\prime}(\lambda-1)}{\lambda+1}$, we find that u^{\prime} is invariant under S_{2}, and the equation simplifies to

$$
\left(u^{\prime}\right)^{2}=\left(a^{\prime}\right)^{2}-4 .
$$

Regarding this stratum as the open complement of $\left(a^{\prime}\right)^{2}=\lambda+\lambda^{-1}+2$, we compute its S_{2}-virtual class as

$$
\begin{aligned}
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\left(u^{\prime}\right)^{2}=\left(a^{\prime}\right)^{2}-4 \neq 0 \\
\left(a^{\prime}\right)^{2} \neq \lambda+\lambda^{-1}+2
\end{array}\right\}\right]_{M}^{S_{2}}=} & (\mathbb{L}-3)\left(M \otimes T-\left(X_{2,-2}-M\right) \otimes N\right) \\
& -Y \otimes(T+N)
\end{aligned}
$$

Multiplying by $[\{b \neq 0\}]^{S_{2}}=\mathbb{L} \otimes T-1 \otimes N$ and taking the quotient by S_{2}, we obtain

$$
-\left((\mathbb{L}-3)(\mathbb{L}+1) M-(\mathbb{L}-3) X_{2,-2}-(\mathbb{L}-1) Y\right)
$$

where the overall minus sign signifies this stratum should be subtracted from the total.

* Finally, we must subtract the stratum where $x^{-2}=\lambda$. In this case, we solve for $y^{\prime}=0$ or $y^{\prime}=\frac{a^{\prime} x(\lambda-1)(\lambda+1)}{(\lambda+1)^{2}-\left(a^{\prime}\right)^{2} \lambda}$. When $a^{\prime}=0$, these values coincide, so from the S_{2}-virtual classes

$$
\begin{aligned}
{[\{b \neq 0\}]^{S_{2}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D \times\left\{x^{-2}=\lambda\right\}\right]_{M}^{S_{2}} } & =X_{-2} \otimes T+\left(Y-X_{-2}\right) \otimes N
\end{aligned}
$$

we obtain

$$
-\left((\mathbb{L}+1) X_{-2}-Y\right)
$$

When $a^{\prime} \neq 0$, the values for y^{\prime} are interchanged by the action of S_{2}. Hence, we can identify the S_{2}-quotient with the stratum where $y^{\prime}=0$. The condition $\left(a^{\prime}\right)^{2} \neq \lambda+\lambda^{-1}+2$ translates to $a^{\prime} \neq \pm\left(x+x^{-1}\right)$. This gives

$$
-((\mathbb{L}-5)(\mathbb{L}-1) Y)
$$

Together, these cases add up to $(\mathbb{L}-1)^{2}(\mathbb{L}+1) M+2 \mathbb{L}(\mathbb{L}+1) X_{2}-\mathbb{L}(\mathbb{L}+$ 1) $X_{-2}-(\mathbb{L}-1)^{2} X_{2,-2}+\mathbb{L}(\mathbb{L}-2) Y$.

5.3 Non-orientable surfaces

Analogous to the previous section, we prove the following proposition, characterizing the second map of (5.1).

Proposition 5.3.1. The virtual class of $G \rightarrow G$ given by $A \mapsto A^{2}$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$ is equal to

$$
\left(Z_{G}^{\mathrm{rep}}\left(\underset{\mathrm{O}^{\prime},}{ }\right) \circ Z_{G}^{\mathrm{rep}}(\mathrm{D})\right)(1)=2 I_{+}+\mathbb{L}(\mathbb{L}+1) I_{-}+2 J_{+}+X_{-2}
$$

Proof. Write $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and stratify based on the conjugacy class of A^{2}.

- If $A^{2}=1$, then $A= \pm 1$, so we obtain $2 I_{+}$.
- Suppose $A^{2}=-1$. If $b=0$, then $d=a^{-1}$ with $a= \pm i$, contributing $2 \mathbb{L} I_{-}$. If $b \neq 0$ and $c=0$, then $d=a^{-1}$ with $a \neq \pm i$, contributing $2(\mathbb{L}-1) I_{-}$. If $b, c \neq 0$, then $d=-a$ and $a^{2}+b c=-1$, contributing $(\mathbb{L}-2)(\mathbb{L}-1) I_{-}$. In total, we obtain $\mathbb{L}(\mathbb{L}+1) I_{-}$.
- Suppose $A^{2} \in J_{+}$. By conjugating we can assume $A^{2}=\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$. There are no solutions for $c \neq 0$, and $c=0$ yields $a=d=b / 2= \pm 1$, so we obtain $2 J_{+}$.
- There are no solutions with $A^{2} \in J_{-}$.
- Suppose $A^{2} \in M$. This stratum is given by

$$
\left(\mathrm{GL}_{2} / D \times\left(\mathbb{A}_{k}^{1} \backslash\{0, \pm 1, \pm i\}\right)\right) / / S_{2} \rightarrow G, \quad(P, \omega) \mapsto P\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega^{-2}
\end{array}\right) P^{-1}
$$

where S_{2} acts on ω via $\omega \mapsto \omega^{-1}$. Hence, this is equal to X_{-2}.

5.4 Multiplication in SL_{2}

In this section, we compute the images $Z_{G}^{\mathrm{rep}}(\underset{\square}{0})(X \otimes Y)$ for all pairs (X, Y) of generators in (5.3), in a series of lemmas. For conciseness, we will omit some cases, but those can be obtained directly from the cases we do compute. For example, the cases with $X=I_{-}$are straightforward, and the cases with $X=J_{-}$ and $X=X_{-2}$ can be derived from those with $X=J_{+}$and X_{2}.
First, let us fix some notation. When computing $Z_{G}^{\text {rep }}(\underset{8}{0})(X \otimes Y)$ for a pair (X, Y), we write A for a point of X and $B=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ for a point of Y. When Y is of the form $\left(\mathrm{GL}_{2} / D \times \Lambda\right) / / S_{2}$ for some S_{2}-variety Λ over $\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}$, we also write $B=P\left(\begin{array}{cc}\mu & 0 \\ 0 & \mu^{-1}\end{array}\right) P^{-1}$ with $P=\left(\begin{array}{c}\alpha \beta \\ \gamma \\ \delta\end{array}\right) \in \mathrm{GL}_{2} / D$ and $\mu \in \mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}$. Recall that S_{2} acts on (P, μ) via $(P, \mu) \mapsto\left(P\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \mu^{-1}\right)$. More specifically, when $\Lambda=\mathbb{A}_{k}^{1} \backslash\{0, \pm 1, \pm i\}$, we write $\mu=\omega^{2}$ with $\omega \in \Lambda$. Similarly, when X is of the
form $\left(\mathrm{GL}_{2} / D \times \Lambda\right) / / S_{2}$ for such Λ, we write $A=Q\left(\begin{array}{cc}\rho & 0 \\ 0 & \rho^{-1}\end{array}\right) Q^{-1}$ with $Q \in \mathrm{GL}_{2} / D$ and $\rho \in \mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}$, and write $\rho=\nu^{2}$ when $\Lambda=\mathbb{A}_{k}^{1} \backslash\{0, \pm 1, \pm i\}$.
When dealing with the strata where $A B \in M$, we usually want to diagonalize $A B$. This can be done once we base change along the double cover $\left(\mathrm{GL}_{2} / D \times\right.$ $\left.\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}\right) \rightarrow M$. We write λ for the coordinate on $\mathbb{A}_{k}^{1} \backslash\{0, \pm 1\}$. The group S_{2} acts on this double cover via $(P, \lambda) \mapsto\left(P\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \lambda^{-1}\right)$.
Strata often admit symmetry by the action of conjugation with some subgroup of SL_{2}. When this happens for the subgroups $\left\{\left(\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right)\right\} \cong \mathbb{G}_{a}$ or $\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)\right\} \cong \mathbb{G}_{m}$, we will speak of \mathbb{G}_{a}-symmetry or \mathbb{G}_{m}-symmetry, respectively. In these cases, such a stratum turns into a (Zariski-locally trivial) \mathbb{G}_{a}-torsor or \mathbb{G}_{m}-torsor, so to compute its virtual class it suffices to compute that of the base.
Finally, to avoid confusion between the various S_{2}-actions, we write $S_{2}^{\lambda}, S_{2}^{\mu}$ and S_{2}^{ρ} to differentiate between them.

Lemma 5.4.1.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\circlearrowleft \mathbb{O})\left(J_{+} \otimes J_{+}\right)= & (\mathbb{L}+1)(\mathbb{L}-1) I_{+}+(\mathbb{L}-2) J_{+}+\mathbb{L} J_{-} \\
& +(\mathbb{L}+1) M-X_{2,-2}
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B=1$, then $A=B^{-1}$, so we obtain $\left[J_{+}\right] I_{+}=(\mathbb{L}+1)(\mathbb{L}-1) I_{+}$.
- If $A B=-1$, there are no solutions as $\operatorname{tr} A=2 \neq-2=-\operatorname{tr} B^{-1}$.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}w-z & x-y \\ -z & x\end{array}\right)$. From $\operatorname{tr} A=\operatorname{tr} B=2$ follows that $z=0$ and (using $\operatorname{det} B=1$) also $x=w=1$. Furthermore, $y \neq 0,1$ as $A, B \neq 1$, so we obtain $(\mathbb{L}-2) J_{+}$.
- If $A B \in J_{-}$, then conjugate to $A B=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}-w-z & x+y \\ z & -x\end{array}\right)$. From $\operatorname{tr} A=\operatorname{tr} B=2$ follows that $z=-4$. Fix $x=0$ using \mathbb{G}_{a}-symmetry, and solve for $w=2$ and $y=1 / 4$. We obtain $\mathbb{L} J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda w & -\lambda y \\ -z / \lambda & x / \lambda\end{array}\right)$. From $\operatorname{tr} B=2$ follows that $w=2-x$. From $\operatorname{tr} A=2$ and $\operatorname{det} A=1$ and $\lambda \neq 1$ follows that $z \neq 0$. From $\operatorname{det} B=1$ follows that $y=(x w-1) / z$. From $\operatorname{tr} A=2$ follows that $x=\frac{2 \lambda}{\lambda+1}$. Make a substituting $z^{\prime}=z \frac{\lambda+1}{\lambda-1}$, and note that S_{2}^{λ} acts via $z^{\prime} \mapsto 1 / z^{\prime}$. Now, from the S_{2}^{λ}-virtual classes

$$
\begin{aligned}
& {\left[\left\{z^{\prime} \neq 0\right\}\right]^{S_{2}^{\lambda}}=\mathbb{L} \otimes T-1 \otimes N} \\
& {\left[\mathrm{GL}_{2} / D \times\{\lambda \neq 0, \pm 1\}\right]_{M}^{S_{2}^{\lambda}}=M \otimes T-\left(X_{2,-2}-M\right) \otimes N}
\end{aligned}
$$

follows that the quotient by S_{2}^{λ} is $(\mathbb{L}+1) M-X_{2,-2}$.

Lemma 5.4.2.

$$
Z_{G}^{\mathrm{rep}}(\sigma \mathfrak{0})\left(J_{+} \otimes M\right)=\mathbb{L}(\mathbb{L}-2)\left(J_{+}+J_{-}\right)+(\mathbb{L}-3)(\mathbb{L}+1) M+2 X_{2,-2}
$$

Proof. Note that $Z_{G}^{\text {rep }}(\underset{\square}{0})(X \otimes G)=[X] \cdot G$ for all $X \in \mathrm{~K}_{0}\left(\operatorname{Var}_{G}\right)$. Since $G=I_{+}+I_{-}+J_{+}+J_{-}+M$, the result can be derived from the above lemma.

Lemma 5.4.3.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\circlearrowleft \mathbb{O})\left(J_{+} \otimes X_{2}\right)= & \mathbb{L}(\mathbb{L}-3)\left(J_{+}+J_{-}\right)+(\mathbb{L}-3)(\mathbb{L}+1) M \\
& -(\mathbb{L}+1) X_{2}-(\mathbb{L}-3) X_{2,-2}+\mathbb{L} Y
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B= \pm 1$, there are no solutions.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}w-z & x-y \\ -z & x\end{array}\right)$. From $\operatorname{tr} A=2$ follows that $z=x+w-2$ and from $\operatorname{det} B=1$ that $y=(x w-1) / z$. Furthermore, we can solve for $w=\ell^{2}-x+2$ with $\ell \neq 0, \pm 2 i$. Hence, we obtain $\mathbb{L}(\mathbb{L}-3) J_{+}$。
- If $A B \in J_{-}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-3) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda w & -\lambda y \\ -z / \lambda & x / \lambda\end{array}\right)$. Consider the following cases.
- Case $y=z=0$. There are no solutions.
- Case $y=0$ or $z=0$, but not both. Since the action of S_{2}^{λ} swaps y and z, we can identify the S_{2}^{λ}-quotient with the stratum where $z=0$. From $\operatorname{tr} A=2$ and $\operatorname{det} A=1$ follows that $x=w^{-1}=\lambda$, so in particular $\ell^{2}=\lambda+\lambda^{-1}-2$. Since $A \neq 1$, we have $y \neq 0$, so we obtain $(\mathbb{L}-1) Y$.
- Case $y z \neq 0$. From $\operatorname{tr} A=2$ follows that $w=(2-x / \lambda) / \lambda$ and from $\operatorname{det} B=1$ that $y=(x w-1) / z$. We substitute $z^{\prime}=z \lambda /(x-\lambda)$ so that S_{2}^{λ} acts via $z^{\prime} \mapsto 1 / z^{\prime}$. Using $\ell^{2}=\operatorname{tr} B-2$, we can solve for $x=\lambda\left(\ell^{2} \lambda+2 \lambda-2\right) /\left(\lambda^{2}-1\right)$. The conditions $y \neq 0$ and $\operatorname{tr} B \neq \pm 2$ translate to $\ell^{2} \neq \lambda+\lambda^{-1}-2$ and $\ell^{2} \neq 0,-4$. From the S_{2}^{λ}-virtual classes

$$
\begin{aligned}
{\left[\left\{z^{\prime} \neq 0\right\}\right]^{S_{2}^{\lambda}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\ell^{2} \neq \lambda+\lambda^{-1}-2 \\
\ell \neq 0, \pm 2 i
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda}}=} & (\mathbb{L}-3)\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
& -\left(X_{2} \otimes T+\left(Y-X_{2}\right) \otimes N\right)
\end{aligned}
$$

we obtain $(\mathbb{L}-3)(\mathbb{L}+1) M-(\mathbb{L}+1) X_{2}-(\mathbb{L}-3) X_{2,-2}+Y$.

Lemma 5.4.4.

$$
Z_{G}^{\mathrm{rep}}\left(\sigma_{0}^{\mathbb{Q}}\right)\left(J_{+} \otimes X_{2,-2}\right)=\mathbb{L}(\mathbb{L}-3)\left(J_{+}+J_{-}\right)+(\mathbb{L}-3)(\mathbb{L}+1) M+2 X_{2,-2}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B= \pm 1$, there are no solutions.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B^{-1}$. We have $\gamma \neq 0$ since $\operatorname{tr} A=2$ and $\mu \neq \pm 1$. Hence, we can fix $\gamma=1, \alpha=0$ and $\beta=1$ by lifting P to GL_{2} and using \mathbb{G}_{a}-symmetry. Now $\operatorname{tr} A=2$ implies $\delta=-\frac{\mu-1}{\mu+1}$ with $\mu \neq 0, \pm 1$, so we obtain $\mathbb{L}(\mathbb{L}-3) J_{+}$.
- If $A B \in J_{+}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-3) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\alpha \gamma=0$. The action of S_{2}^{λ} swaps α and γ, so we can break the S_{2}^{λ}-action and consider only the stratum with $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. From $\operatorname{tr} A=2$ follows that $\mu=\lambda$. Furthermore, we must have $\beta \neq 0$ to ensure $A \neq 1$, so we obtain $(\mathbb{L}-1) X_{2,-2}$.
- Case $\alpha \gamma \neq 0$ and $\beta \delta=0$. The action of S_{2}^{λ} swaps β and δ, so we can identify the S_{2}^{λ}-quotient with the stratum where $\delta=0$. Fix $\beta=\gamma=1$ by lifting P to GL_{2}. From $\operatorname{tr} A=2$ follows that $\mu=\lambda^{-1}$. Furthermore, there are no conditions on α other than $\alpha \neq 0$, so we obtain another $(\mathbb{L}-1) X_{2,-2}$.
- Case $\alpha \beta \gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Note that there are no solutions with $\mu=\lambda^{ \pm 1}$, and use $\operatorname{tr} A=2$ to solve for $\beta=\alpha \frac{(\lambda-\mu)^{2}}{(\lambda \mu-1)^{2}}$. Note that S_{2}^{λ} acts via $\alpha \mapsto \alpha^{-1}$. From the S_{2}^{λ}-virtual classes

$$
\begin{aligned}
{[\{\alpha \neq 0\}]^{S_{2}^{\lambda}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\lambda \neq 0, \pm 1 \\
\mu \neq 0, \pm 1, \lambda^{ \pm 1}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda}}=} & (\mathbb{L}-3)\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
& -X_{2,-2} \otimes(T+N)
\end{aligned}
$$

we obtain $(\mathbb{L}-3)(\mathbb{L}+1) M-2(\mathbb{L}-2) X_{2,-2}$.

Lemma 5.4.5.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\underset{\mathbb{O}}{\mathscr{O}})\left(J_{+} \otimes Y\right)= & \mathbb{L}(\mathbb{L}-5)\left(J_{+}+J_{-}\right)+(\mathbb{L}-5)(\mathbb{L}+1) M \\
& -(\mathbb{L}-5) X_{2,-2}+(\mathbb{L}-1) Y
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B= \pm 1$, there are no solutions.
- If $A B \in J_{+}$, the computation is the same as for $A \in J_{+}$and $B \in X_{2,-2}$, but with $\mu=\omega^{2}$ and $\omega \neq 0, \pm 1, \pm i$. Hence, we obtain $\mathbb{L}(\mathbb{L}-5) J_{+}$.
- If $A B \in J_{-}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-5) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\alpha \gamma=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. From $\operatorname{tr} A=2$ follows that $\omega^{2}=\lambda$. Furthermore, we must have $\beta \neq 0$ to ensure $A \neq 1$, so we obtain $(\mathbb{L}-1) Y$.
- Case $\alpha \gamma \neq 0$ and $\beta \delta=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\delta=0$. Fix $\beta=\gamma=1$ by lifting P to GL_{2}. From $\operatorname{tr} A=2$ follows that $\omega^{2}=\lambda^{-1}$. Furthermore, there are no conditions on α other than $\alpha \neq 0$, so we obtain another $(\mathbb{L}-1) Y$.
- Case $\alpha \beta \gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Note that there are no solutions with $\mu=\lambda^{ \pm 1}$, and use $\operatorname{tr} A=2$ to solve for $\beta=\alpha \frac{(\lambda-\mu)^{2}}{(\lambda \mu-1)^{2}}$. Note that S_{2}^{λ} acts via $\alpha \mapsto \alpha^{-1}$. From the S_{2}^{λ}-virtual classes

$$
\begin{aligned}
{[\{\alpha \neq 0\}]^{S_{2}^{\lambda}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\lambda \neq 0, \pm 1 \\
\omega^{2} \neq 0, \pm 1, \lambda^{ \pm 1}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda}}=} & (\mathbb{L}-5)\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
& -Y \otimes(T+N)
\end{aligned}
$$

we obtain $(\mathbb{L}-5)(\mathbb{L}+1) M-(\mathbb{L}-5) X_{2,-2}-(\mathbb{L}-1) Y$.

Lemma 5.4.6.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\Omega)(M \otimes M)= & \mathbb{L}\left(\mathbb{L}^{2}-2 \mathbb{L}-1\right)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-3)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +\left(\mathbb{L}^{3}-4 \mathbb{L}^{2}+3 \mathbb{L}+4\right) M-4 X_{2,-2} \\
Z_{G}^{\mathrm{rep}}(\Omega)\left(M \otimes X_{2}\right)= & \mathbb{L}\left(\mathbb{L}^{2}-3 \mathbb{L}-2\right)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-4)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +\left(\mathbb{L}^{3}-5 \mathbb{L}^{2}+2 \mathbb{L}+6\right) M+\mathbb{L}\left(X_{2}+X_{-2}\right) \\
& +2(\mathbb{L}-3) X_{2,-2}-2 \mathbb{L} Y \\
Z_{G}^{\mathrm{rep}}(\Omega)\left(M \otimes X_{2,-2}\right)= & \mathbb{L}(\mathbb{L}-3)(\mathbb{L}+1)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-3)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +(\mathbb{L}-3)(\mathbb{L}-2)(\mathbb{L}+1) M-6 X_{2,-2}
\end{aligned}
$$

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\sigma)(M \otimes Y)= & \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +(\mathbb{L}-5)(\mathbb{L}-2)(\mathbb{L}+1) M+2(\mathbb{L}-5) X_{2,-2}-2 \mathbb{L} Y
\end{aligned}
$$

Proof. Note that $Z_{G}^{\text {rep }}(\underset{\square}{8})(G \otimes X)=[X] \cdot G$ for all $X \in \mathrm{~K}_{0}\left(\operatorname{Var}_{G}\right)$. Since $G=I_{+}+I_{-}+J_{+}+J_{-}+M$, the result follows from the earlier lemmas.

Lemma 5.4.7.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\underset{0}{\Omega})\left(X_{2,-2} \otimes X_{2,-2}\right)= & 2 \mathbb{L}(\mathbb{L}-3)(\mathbb{L}+1)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-3)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +(\mathbb{L}-3)^{2}(\mathbb{L}+1) M+\left(\mathbb{L}^{2}-4 \mathbb{L}-9\right) X_{2,-2}
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B=1$, then solve for $A=B^{-1}$ to obtain $\left[X_{2,-2} \times_{M} X_{2,-2}\right] I_{+}=2\left[X_{2,-2}\right] I_{+}=$ $2 \mathbb{L}(\mathbb{L}-3)(\mathbb{L}+1) I_{+}$.
- If $A B=-1$, then solve for $A=-B^{-1}$ to obtain $\left[X_{2,-2} \times_{M} X_{2,-2}\right] I_{-}=$ $2\left[X_{2,-2}\right]=2 \mathbb{L}(\mathbb{L}-3)(\mathbb{L}+1) I_{-}$.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}, and fix $\beta=0$ using \mathbb{G}_{a}-symmetry. Solving for $\rho=\mu^{ \pm 1} \neq 0, \pm 1$, we obtain $2 \mathbb{L}(\mathbb{L}-3) J_{+}$.
- Case $\gamma \neq 0$. Fix $\gamma=1, \alpha=0$ and $\beta=1$ by lifting P to GL_{2} and using \mathbb{G}_{a}-symmetry. Using $\operatorname{tr} A=\rho+\rho^{-1}$, solve for $\delta=-\frac{(\mu-\rho)(\mu \rho-1)}{\rho(\mu-1)(\mu+1)}$. Since $\mu, \rho \neq 0, \pm 1$, we obtain $\mathbb{L}(\mathbb{L}-3)^{2} J_{+}$.
- If $A B \in J_{-}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-3)(\mathbb{L}-1) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\alpha \gamma=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\rho=\left(\lambda \mu^{-1}\right)^{ \pm 1}$. In both cases $\mu \neq 0, \pm 1, \pm \lambda$, so we obtain $2 \mathbb{L}(\mathbb{L}-5) X_{2,-2}$.
- Case $\alpha \gamma \neq 0$ and $\beta \delta=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\beta=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\rho=\left(\lambda \mu^{-1}\right)^{ \pm 1}$. In both cases $\mu \neq 0, \pm 1, \pm \lambda$, so we obtain $2(\mathbb{L}-1)(\mathbb{L}-5) X_{2,-2}$.
- Case $\alpha \beta \gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Solve for $\beta=$ $\frac{\alpha(\lambda-\mu \rho)(\lambda \rho-\mu)}{(\lambda \mu-\rho)(\lambda \mu \rho-1)}$. Note that $\alpha \neq \beta$ is automatically satisfied as there are no solutions with $\rho=\lambda^{ \pm 1} \mu^{ \pm 1}$. Note that S_{2}^{λ} acts via $\alpha \mapsto \alpha^{-1}$. From the S_{2}^{λ}-virtual classes

$$
\begin{gathered}
{[\{\alpha \neq 0\}]^{S_{2}^{\lambda}}=\mathbb{L} \otimes T-1 \otimes N} \\
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\lambda, \mu \neq 0, \pm 1 \\
\rho \neq 0, \pm 1, \lambda^{ \pm 1} \mu^{ \pm 1}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda}}=} \\
=(\mathbb{L}-3)^{2}\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
\\
-2(\mathbb{L}-5) X_{2,-2} \otimes(T+N)
\end{gathered}
$$

we obtain $(\mathbb{L}-3)^{2}(\mathbb{L}+1) M-\left(3 \mathbb{L}^{2}-18 \mathbb{L}+19\right) X_{2,-2}$.

Lemma 5.4.8.

$$
\begin{aligned}
Z_{G}^{\text {rep }}(\Omega)\left(X_{2,-2} \otimes Y\right)= & 2 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +(\mathbb{L}-5)(\mathbb{L}-3)(\mathbb{L}+1) M \\
& +(\mathbb{L}-5)(\mathbb{L}+3) X_{2,-2}-4 \mathbb{L} Y
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B=1$, then solve for $A=B^{-1}$ to obtain $\left[X_{2,-2} \times_{M} Y\right] I_{+}=2[Y] I_{+}=$ $2 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{+}$.
- If $A B=-1$, then solve for $A=-B^{-1}$ to obtain $\left[X_{2,-2} \times_{M} Y\right] I_{-}=2[Y] I_{+}=$ $2 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{-}$.
- If $A B \in J_{+}$, the computation is the same as for $A \in X_{2,-2}$ and $B \in X_{2,-2}$, but with $\mu=\omega^{2}$ and $\omega \neq 0, \pm 1, \pm i$. Hence, we obtain $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1) J_{+}$.
- If $A B \in J_{-}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\alpha \gamma=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\rho=\left(\lambda \mu^{-1}\right)^{ \pm 1}$. In both cases $\mu=\omega^{2} \neq 0, \pm 1, \pm \lambda$, so we obtain $2 \mathbb{L}(\mathbb{L}-5) X_{2,-2}-4 \mathbb{L} Y$.
- Case $\alpha \gamma \neq 0$ and $\beta \delta=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\beta=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\rho=\left(\lambda \mu^{-1}\right)^{ \pm 1}$. In both cases $\mu=\omega^{2} \neq 0, \pm 1, \pm \lambda$, so we obtain $2(\mathbb{L}-1)(\mathbb{L}-5) X_{2,-2}-4(\mathbb{L}-1) Y$.
- Case $\alpha \beta \gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Note that there are no solutions with $\rho=\lambda^{ \pm 1} \mu^{ \pm 1}$, and solve for $\beta=\frac{\alpha(\lambda-\mu \rho)(\lambda \rho-\mu)}{(\lambda \mu-\rho)(\lambda \mu \rho-1)}$. Furthermore,
note that S_{2}^{λ} acts via $\alpha \mapsto \alpha^{-1}$. From the S_{2}^{λ}-virtual classes

$$
\begin{aligned}
{[\{\alpha \neq 0\}]^{S_{2}^{\lambda}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\lambda, \omega^{2}, \rho \neq 0, \pm 1 \\
\rho \neq \lambda^{ \pm 1} \omega^{ \pm 2}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda}} } & =(\mathbb{L}-5)(\mathbb{L}-3)\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
& -\left(2(\mathbb{L}-5) X_{2,-2}-4 Y\right) \otimes(T+N)
\end{aligned}
$$

we obtain $(\mathbb{L}-5)(\mathbb{L}-3)(\mathbb{L}+1) M-(\mathbb{L}-5)(3 \mathbb{L}-5) X_{2,-2}+4(\mathbb{L}-1) Y$.

Lemma 5.4.9.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\Omega)(Y \otimes Y)= & 4 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +(\mathbb{L}-5)^{2}(\mathbb{L}+1) M-(\mathbb{L}-5)^{2} X_{2,-2}+2 \mathbb{L}(\mathbb{L}-9) Y
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B=1$, then solve for $A=B^{-1}$ to obtain $\left[Y \times_{M} Y\right] I_{+}=4[Y] I_{+}=$ $4 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{+}$.
- If $A B=-1$, then solve for $A=-B^{-1}$ to obtain $\left[Y \times_{M} Y\right] I_{-}=4[Y] I_{-}=$ $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{-}$.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}, and fix $\beta=0$ using $\mathbb{G}_{a^{-}}$ symmetry. Then $\nu^{2}=\omega^{ \pm 2}$, that is, $\nu= \pm \omega^{ \pm 1} \neq 0, \pm 1, \pm i$. Hence, we obtain $4 \mathbb{L}(\mathbb{L}-5) J_{+}$.
- Case $\gamma \neq 0$. Fix $\gamma=1, \alpha=0$ and $\beta=1$ by lifting P to GL_{2} and using \mathbb{G}_{a}-symmetry. Solve for $\delta=-\frac{(\mu-\rho)(\mu \rho-1)}{\rho(\mu-1)(\mu+1)}$. Since $\omega, \nu \neq 0, \pm 1, \pm i$, we obtain $\mathbb{L}(\mathbb{L}-5)^{2} J_{+}$.
- If $A B \in J_{-}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\alpha \gamma=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\nu^{2}=\left(\lambda \omega^{-2}\right)^{ \pm 1}$. If $\nu^{2}=\lambda \omega^{-2}$, then substituting $u=\nu \omega$ yields $u^{2}=\lambda$ with $\omega \neq 0, \pm 1, \pm i, \pm u, \pm i u$. The case $\nu^{2}=\left(\lambda \omega^{-2}\right)^{-1}$ is similar with $u=\nu / \omega$, so we obtain $2 \mathbb{L}(\mathbb{L}-9) Y$.
- Case $\alpha \gamma \neq 0$ and $\beta \delta=0$. Identify the S_{2}^{λ}-quotient with the stratum where $\beta=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\nu^{2}=\left(\lambda \omega^{-2}\right)^{ \pm 1}$. Again, substituting $u=\nu \omega^{ \pm 1}$, respectively, we obtain $2(\mathbb{L}-9)(\mathbb{L}-1) Y$.
- Case $\alpha \beta \gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Note that there are no solutions with $\rho=\lambda^{ \pm 1} \mu^{ \pm 1}$, and solve for $\beta=\frac{\alpha(\lambda-\mu \rho)(\lambda \rho-\mu)}{(\lambda \mu-\rho)(\lambda \mu \rho-1)}$. Furthermore, note that S_{2}^{λ} acts via $\alpha \mapsto \alpha^{-1}$. From the S_{2}^{λ}-virtual classes

$$
\begin{aligned}
{[\{\alpha \neq 0\}]^{S_{2}^{\lambda}} } & =\mathbb{L} \otimes T-1 \otimes N \\
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\lambda, \omega^{2}, \nu^{2} \neq 0, \pm 1 \\
\nu^{2} \neq \lambda^{ \pm 1} \omega^{ \pm 2}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda}}=} & (\mathbb{L}-5)^{2}\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
& -2(\mathbb{L}-9) Y \otimes(T+N)
\end{aligned}
$$

we obtain $(\mathbb{L}-5)^{2}(\mathbb{L}+1) M-(\mathbb{L}-5)^{2} X_{2,-2}-2(\mathbb{L}-9)(\mathbb{L}-1) Y$.

Lemma 5.4.10.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\sigma \mathbb{O})\left(X_{2,-2} \otimes X_{2}\right)= & \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-4)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +(\mathbb{L}-3)^{2}(\mathbb{L}+1) M+(\mathbb{L}-9) X_{2,-2}-2 \mathbb{L} Y
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B=1$, then solve for $A=B^{-1}$ to obtain $\left[X_{2,-2} \times_{M} X_{2}\right] I_{+}=[Y] I_{+}=$ $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{+}$.
- If $A B=-1$, then solve for $A=-B^{-1}$ to obtain $\left[X_{2,-2} \times_{M} X_{-2}\right] I_{-}=[Y] I_{+}=$ $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{-}$.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\gamma \delta=0$. Identify the S_{2}^{μ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}, and fix $\beta=0$ using \mathbb{G}_{a}-symmetry. Solve for $\rho=\omega^{ \pm 2}$. Hence, we obtain $2 \mathbb{L}(\mathbb{L}-5) J_{+}$.
- Case $\gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}, and fix $\alpha=0$ using \mathbb{G}_{a}-symmetry. Note that there are no solutions with $\rho=\omega^{ \pm 2}$, and solve for $\beta=-\frac{\rho(\mu-1)(\mu+1)}{(\mu-\rho)(\mu \rho-1)}$. Since

$$
\left[\left\{\begin{array}{c}
\rho, \omega^{2} \neq 0, \pm 1 \\
\rho \neq \omega^{ \pm 2}
\end{array}\right\} / / S_{2}^{\mu}\right]=(\mathbb{L}-3)^{2}-(\mathbb{L}-5)=\mathbb{L}^{2}-7 \mathbb{L}+14
$$

we obtain $\mathbb{L}\left(\mathbb{L}^{2}-7 \mathbb{L}+14\right) J_{+}$.

- If $A B \in J_{-}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-4)(\mathbb{L}-1) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case P is (anti-)diagonal. Identify the S_{2}^{μ}-quotient with the stratum where P is diagonal. Fix $\alpha=\delta=1$ by lifting P to GL_{2} and using \mathbb{G}_{m}-symmetry. Solve for $\rho=\left(\lambda \omega^{-2}\right)^{ \pm 1}$, and identify the S_{2}^{λ}-quotient with the stratum where $\rho=\lambda \omega^{-2}$. From the conditions $\omega \neq 0, \pm 1, \pm i$ and $\omega^{2} \neq \pm \lambda$, we obtain $(\mathbb{L}-5) X_{2,-2}-2 Y$.
- Case P has one zero. Identify the S_{2}^{μ}-quotient with the stratum where $\alpha \gamma=$ 0 , and subsequently the S_{2}^{λ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\rho=\left(\lambda \omega^{-2}\right)^{ \pm 1}$. From the conditions $\beta \neq 0, \omega \neq 0, \pm 1, \pm i$ and $\omega^{2} \neq \pm \lambda$, we obtain $2(\mathbb{L}-5)(\mathbb{L}-1) X_{2,-2}-4(\mathbb{L}-$ 1) Y.
- Case P has no zeros. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Note that there are no solutions with $\rho=\lambda^{ \pm 1} \mu^{ \pm 1}$, and solve for $\beta=\frac{\alpha(\lambda-\mu \rho)(\lambda \rho-\mu)}{(\lambda \mu-\rho)(\lambda \mu \rho-1)}$. Substituting $\alpha^{\prime}=\alpha \frac{\lambda \rho-\mu}{\lambda \mu-\rho}$, we find that S_{2}^{λ} and S_{2}^{μ} act via $\alpha^{\prime} \mapsto 1 / \alpha^{\prime}$ and $\alpha^{\prime} \mapsto \alpha^{\prime}$, respectively. From the $S_{2}^{\lambda} \times S_{2}^{\mu}$-virtual classes

$$
\begin{gathered}
{\left[\left\{\alpha^{\prime} \neq 0\right\}\right]^{S_{2}^{\lambda} \times S_{2}^{\mu}}=\left(\mathbb{L} \otimes T^{\lambda}-1 \otimes N^{\lambda}\right) \otimes T^{\mu}} \\
{\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{l}
\rho, \omega^{2} \neq 0, \pm 1 \\
\rho \neq \lambda^{ \pm 1} \omega^{ \pm 2}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda} \times S_{2}^{\mu}}=} \\
(\mathbb{L}-3)\left((\mathbb{L}-3) \otimes T^{\mu}-2 \otimes N^{\mu}\right)\left(M \otimes T^{\lambda}+\left(X_{2,-2}-M\right) \otimes N^{\lambda}\right) \\
-\left((\mathbb{L}-5) X_{2,-2}-2 Y\right) \otimes\left(T^{\lambda}+N^{\lambda}\right) \otimes\left(T^{\mu} \otimes N^{\mu}\right)
\end{gathered}
$$

we obtain $(\mathbb{L}-3)^{2}(\mathbb{L}+1) M-2\left(\mathbb{L}^{2}-6 \mathbb{L}+7\right) X_{2,-2}+2(\mathbb{L}-1) Y$.

Lemma 5.4.11.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\underset{\mathrm{O}}{0})\left(Y \otimes X_{2}\right)= & 2 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1)\left(I_{+}+I_{-}\right) \\
& +\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1)\left(J_{+}+J_{-}\right) \\
& +(\mathbb{L}-5)(\mathbb{L}-3)(\mathbb{L}+1) M \\
& -(\mathbb{L}-5)(\mathbb{L}-3) X_{2,-2}+\mathbb{L}(\mathbb{L}-9) Y
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B=1$, then solve for $A=B^{-1}$ to obtain $\left[Y \times_{M} X_{2}\right] I_{+}=2[Y] I_{+}=$ $2 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{+}$.
- If $A B=-1$, then solve for $A=-B^{-1}$ to obtain $\left[Y \times_{M} X_{-2}\right] I_{-}=2[Y] I_{-}=$ $2 \mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{-}$.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\gamma \delta=0$. Identify the S_{2}^{μ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}, and fix $\beta=0$ using \mathbb{G}_{a}-symmetry. Solve for $\nu^{2}=\omega^{ \pm 2}$, that is, $\nu= \pm \omega^{ \pm 1}$. Since $\omega \neq 0, \pm 1, \pm i$, we obtain $4 \mathbb{L}(\mathbb{L}-5) J_{+}$.
- Case $\gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}, and fix $\alpha=0$ using \mathbb{G}_{a}-symmetry. Note that there are no solutions with $\rho=\omega^{ \pm 2}$, and solve for $\beta=-\frac{\rho(\mu-1)(\mu+1)}{(\mu-\rho)(\mu \rho-1)}$. Since

$$
\left.\left[\begin{array}{c}
\nu \omega \neq 0, \pm 1, \pm i \\
\nu \neq \pm \omega^{ \pm 1}
\end{array}\right\} / / S_{2}^{\mu}\right]=(\mathbb{L}-5)(\mathbb{L}-3)-2(\mathbb{L}-5)=(\mathbb{L}-5)^{2}
$$

we obtain $\mathbb{L}(\mathbb{L}-5)^{2} J_{+}$.

- If $A B \in J_{-}$, then similarly we obtain $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1) J_{-}$.
- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case P is (anti-)diagonal. Identify the S_{2}^{μ}-quotient with the stratum where P is diagonal. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\nu^{2}=\left(\lambda \omega^{-2}\right)^{ \pm 1}$, and identify the S_{2}^{λ}-quotient with the stratum where $\nu^{2}=\lambda \omega^{-2}$. Substitute $u=\nu \omega$ so that $u^{2}=\lambda$. From the condition $\omega \neq 0, \pm 1, \pm i, \pm u, \pm i u$, we obtain $(\mathbb{L}-9) Y$.
- Case P has one zero. Identify the S_{2}^{μ}-quotient with the stratum where $\alpha \gamma=$ 0 , and subsequently the S_{2}^{λ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. Solve for $\nu^{2}=\left(\lambda \omega^{-2}\right)^{ \pm 1}$. Again, substituting $u=\nu \omega^{ \pm 1}$, respectively, we obtain $2(\mathbb{L}-9)(\mathbb{L}-1) Y$.
- Case P has no zeros. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Note that there are no solutions with $\rho=\lambda^{ \pm 1} \mu^{ \pm 1}$, and solve for $\beta=\frac{\alpha(\lambda-\mu \rho)(\lambda \rho-\mu)}{(\lambda \mu-\rho)(\lambda \mu \rho-1)}$. Substituting $\alpha^{\prime}=\alpha \frac{\lambda \rho-\mu}{\lambda \mu-\rho}$, we find that S_{2}^{λ} and S_{2}^{μ} act via $\alpha^{\prime} \mapsto 1 / \alpha^{\prime}$ and $\alpha^{\prime} \mapsto \alpha^{\prime}$, respectively. From the $S_{2}^{\lambda} \times S_{2}^{\mu}$-virtual classes

$$
\begin{aligned}
& {\left[\left\{\alpha^{\prime} \neq 0\right\}\right]^{S_{2}^{\lambda} \times S_{2}^{\mu}}=}\left(\mathbb{L} \otimes T^{\lambda}-1 \otimes N^{\lambda}\right) \otimes T^{\mu} \\
& {\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\nu, \omega \neq 0, \pm 1, \pm i \\
\nu^{2} \neq \lambda^{ \pm 1} \omega^{ \pm 2}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda} \times S_{2}^{\mu}}=} \\
&(\mathbb{L}-5)\left((\mathbb{L}-3) \otimes T^{\mu}-2 \otimes N^{\mu}\right)\left(M \otimes T^{\lambda}+\left(X_{2,-2}-M\right) \otimes N^{\lambda}\right) \\
&-(\mathbb{L}-9) Y \otimes\left(T^{\lambda}+N^{\lambda}\right) \otimes\left(T^{\mu} \otimes N^{\mu}\right)
\end{aligned}
$$

we obtain $(\mathbb{L}-5)(\mathbb{L}-3)(\mathbb{L}+1) M-(\mathbb{L}-5)(\mathbb{L}-3) X_{2,-2}-(\mathbb{L}-9)(\mathbb{L}-1) Y$.

Lemma 5.4.12.

$$
\begin{aligned}
Z_{G}^{\mathrm{rep}}(\underset{)}{0})\left(X_{2} \otimes X_{2}\right)= & 2 \mathbb{L}\left(\mathbb{L}^{2}-3 \mathbb{L}-2\right) I_{+}+\mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{-} \\
& +\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-1) J_{+}+\mathbb{L}(\mathbb{L}-4)(\mathbb{L}-1) J_{-} \\
& +(\mathbb{L}-3)^{2}(\mathbb{L}+1) M-\mathbb{L}(\mathbb{L}-3) X_{-2} \\
& -(\mathbb{L}-3)^{2} X_{2,-2}+\mathbb{L}(\mathbb{L}-6) Y
\end{aligned}
$$

Proof. Stratify based on the conjugacy class of the product $A B$.

- If $A B=1$, then solve for $A=B^{-1}$. It follows that $\nu^{2}=\omega^{ \pm 2}$, that is, $\nu= \pm \omega^{ \pm 1}$, so identify the S_{2}^{ρ}-quotient with the stratum where $\nu= \pm \omega^{-1}$. From the S_{2}^{μ} virtual classes

$$
\begin{aligned}
{\left[\mathrm{GL}_{2} / D\right]^{S_{2}^{\mu}} } & =\mathbb{L}^{2} \otimes T+\mathbb{L} \otimes N \\
{\left[\left\{\begin{array}{c}
\omega \neq 0, \pm 1, \pm i \\
\nu \neq \pm \omega
\end{array}\right\}\right]^{S_{2}^{\mu}} } & =2((\mathbb{L}-3) \otimes T-2 \otimes N)
\end{aligned}
$$

we obtain $2 \mathbb{L}\left(\mathbb{L}^{2}-3 \mathbb{L}-2\right) I_{+}$.

- If $A B=-1$, then solve for $A=-B^{-1}$. It follows that $\nu^{2}=-\omega^{ \pm 2}$, that is, $\nu= \pm i \omega^{ \pm 1}$. Identify the S_{2}^{ρ}-quotient with the stratum where $\nu= \pm i \omega^{-1}$, and subsequently identify the S_{2}^{μ}-quotient with the stratum where $\nu=i \omega^{-1}$. We obtain $[Y] I_{-}=\mathbb{L}(\mathbb{L}-5)(\mathbb{L}+1) I_{-}$.
- If $A B \in J_{+}$, then conjugate to $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and solve for $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\gamma \delta=0$. Identify the S_{2}^{μ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=\delta=1$ by lifting P to GL_{2}, and fix $\beta=0$ using \mathbb{G}_{a}-symmetry. It follows that $\nu^{2}=\omega^{ \pm 2}$, that is, $\nu= \pm \omega^{ \pm 1}$, so identify the S_{2}^{ρ}-quotient with the stratum where $\nu= \pm \omega$. Since $\omega \neq 0, \pm 1, \pm i$, we obtain $2 \mathbb{L}(\mathbb{L}-5) J_{+}$.
- Case $\gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}, and fix $\alpha=0$ using \mathbb{G}_{a}-symmetry. Note that there are no solutions with $\rho=\omega^{ \pm 2}$, and solve for $\beta=-\frac{\rho(\mu-1)(\mu+1)}{(\mu-\rho)(\mu \rho-1)}$. Since

$$
\left[\left\{\begin{array}{c}
\nu, \omega \neq 0, \pm 1, \pm i \\
\nu^{2} \neq \omega^{ \pm 2}
\end{array}\right\} / / S_{2}^{\mu} \times S_{2}^{\rho}\right]=(\mathbb{L}-3)^{2}-2(\mathbb{L}-3)=(\mathbb{L}-5)(\mathbb{L}-3)
$$

we obtain $\mathbb{L}(\mathbb{L}-5)(\mathbb{L}-3) J_{+}$.

- If $A B \in J_{-}$, then conjugate to $A B=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right) B^{-1}$. Consider the following cases.
- Case $\gamma \delta=0$. Similarly to the above we obtain $2 \mathbb{L}(\mathbb{L}-5) J_{-}$.
- Case $\gamma \delta \neq 0$. Fix $\gamma=\delta=1$ by lifting P to GL_{2}, and fix $\alpha=0$ using \mathbb{G}_{a}-symmetry. Note that there are no solutions with $\rho=-\mu^{ \pm 1}$, and solve for $\beta=\frac{\rho(\mu-1)(\mu+1)}{(\mu+\rho)(\mu \rho+1)}$. Since

$$
\left[\left\{\begin{array}{c}
\nu, \omega \neq 0, \pm 1, \pm i \\
\nu \neq \pm i \omega^{ \pm 1}
\end{array}\right\} / / S_{2}^{\mu} \times S_{2}^{\rho}\right]=(\mathbb{L}-3)^{2}-(\mathbb{L}-5)=\mathbb{L}^{2}-7 \mathbb{L}+14
$$

we obtain $\mathbb{L}\left(\mathbb{L}^{2}-7 \mathbb{L}+14\right) J_{-}$.

- If $A B \in M$, then conjugate to $A B=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ and solve for $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right) B^{-1}$. Consider the following cases.
- Case P is (anti)-diagonal. Identify the S_{2}^{μ}-quotient with the stratum where P is diagonal. Fix $\alpha=\delta=1$ by lifting P to GL_{2}. It follows that $\nu^{2}=\left(\lambda \omega^{-2}\right)^{ \pm 1}$, so identify the S_{2}^{ρ}-quotient with the stratum where $\nu^{2}=\lambda \omega^{-2}$. Substitute $u=\nu \omega$ so that $u^{2}=\lambda$. Since $\omega \neq 0, \pm 1, \pm i, \pm u, \pm i u$, we find

$$
\begin{aligned}
& {\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\substack{u^{2}=\lambda \\
\omega \neq 0, \pm 1, \pm i, \pm u, \pm i u}
\end{array}\right\}\right]_{M}^{S_{2}^{\lambda}}=} \\
& \quad\left(X_{-2} \otimes T+\left(Y-X_{-2}\right) \otimes N\right)((\mathbb{L}-6) \otimes T-3 \otimes N)
\end{aligned}
$$

so we obtain $(\mathbb{L}-3) X_{-2}-3 Y$.

- Case P has one zero. Identify the S_{2}^{μ}-quotient with the stratum where $\alpha \gamma=$ 0 , and subsequently the S_{2}^{λ}-quotient with the stratum where $\gamma=0$. Fix $\alpha=$ $\delta=1$ by lifting P to GL_{2}. Identify the S_{2}^{ρ}-quotient with the stratum where $\nu^{2}=\lambda \omega^{-2}$. Substitute $u=\nu \omega$ so that $u^{2}=\lambda$ and $\omega \neq 0, \pm 1, \pm i, \pm u, \pm i u$. Furthermore, $\beta \neq 0$, so we obtain $(\mathbb{L}-9)(\mathbb{L}-1) Y$.
- Case P has no zeros. Fix $\gamma=\delta=1$ by lifting P to GL_{2}. Note that there are no solutions with $\rho=\lambda^{ \pm 1} \mu^{ \pm 1}$, and solve for $\beta=\frac{\alpha(\lambda-\mu \rho)(\lambda \rho-\mu)}{(\lambda \mu-\rho)(\lambda \mu \rho-1)}$. The various S_{2}-actions on α are given by

$$
\alpha \stackrel{S_{2}^{\lambda}}{\mapsto} \alpha^{-1}, \quad \alpha \stackrel{S_{ٌ}^{\mu}}{\mapsto} \beta=\frac{\alpha(\lambda-\mu \rho)(\lambda \rho-\mu)}{(\lambda \mu-\rho)(\lambda \mu \rho-1)}, \quad \alpha \stackrel{S^{\rho}}{\longmapsto} \alpha .
$$

Extending α to be \mathbb{P}^{1}-valued, we can consider this stratum as a \mathbb{P}^{1}-fibration minus the stratum where $\alpha=0$ or $\alpha=\infty$. Since the cases $\alpha=0$ or $\alpha=\infty$ are interchanged by S_{2}^{λ} but invariant under S_{2}^{μ}, we can effectively act as if α is invariant under S_{2}^{μ} and S_{2}^{ρ} and has S_{2}^{λ}-virtual class $[\{\alpha \neq 0\}]^{S_{2}^{\lambda}}=$ $\mathbb{L} \otimes T-1 \otimes N$. Together with the S_{2}^{λ}-virtual class

$$
\begin{aligned}
& {\left[\mathrm{GL}_{2} / D \times\left\{\begin{array}{c}
\nu, \omega \neq 0, \pm 1, \pm i \\
\nu^{2} \neq \lambda^{ \pm 1} \omega^{ \pm 2}
\end{array}\right\} / / S_{2}^{\mu} \times S_{2}^{\rho}\right]_{M}^{S_{2}^{\lambda}}=} \\
& \\
& \quad(\mathbb{L}-3)^{2}\left(M \otimes T+\left(X_{2,-2}-M\right) \otimes N\right) \\
& \quad-\left(X_{-2} \otimes T+\left(Y-X_{-2}\right) \otimes N\right)((\mathbb{L}-6) \otimes T-3 \otimes N)
\end{aligned}
$$

we obtain $(\mathbb{L}-3)^{2}(\mathbb{L}+1) M-(\mathbb{L}-3)(\mathbb{L}+1) X_{-2}-(\mathbb{L}-3)^{2} X_{2,-2}+(4 \mathbb{L}-6) Y$.

5.5 Results

Using (4.13), Proposition 5.3.1 and the lemmas in Section 5.4, we obtain an expression for the matrix associated with $Z_{G}^{\text {rep }}(\widehat{O}, \widehat{O})$ with respect to the generators (5.3).

$$
\begin{aligned}
& Z_{G}^{\text {rep }}(\uparrow \bigcirc \bigcirc)=\left[\begin{array}{ccccc}
2 & \mathbb{L}^{2}+\mathbb{L} & 2 \mathbb{L}^{2}-2 & 0 & \mathbb{L}^{3}-3 \mathbb{L}^{2}-2 \mathbb{L} \\
\mathbb{L}^{2}+\mathbb{L} & 2 & 0 & 2 \mathbb{L}^{2}-2 & \mathbb{L}^{3}-3 \mathbb{L}^{2}-2 \mathbb{L} \\
2 & 0 & \mathbb{L}^{2}-\mathbb{L}-2 & 2 \mathbb{L}^{2} & \mathbb{L}^{3}-3 \mathbb{L}^{2} \\
0 & 2 & 2 \mathbb{L}^{2} & \mathbb{L}^{2}-\mathbb{L}-2 & \mathbb{L}^{3}-3 \mathbb{L}^{2} \\
0 & 0 & \mathbb{L}^{2}-1 & \mathbb{L}^{2}-1 & \mathbb{L}^{3}-2 \mathbb{L}^{2}-\mathbb{L}+2 \\
0 & 1 & 0 & -\mathbb{L}-1 & \mathbb{L} \\
1 & 0 & -\mathbb{L}-1 & 0 & \mathbb{L} \\
0 & 0 & 1-\mathbb{L} & 1-\mathbb{L} & 2 \mathbb{L}-2 \\
0 & 0 & \mathbb{L} & \mathbb{L} & -2 \mathbb{L}
\end{array}\right. \\
& \left.\begin{array}{cccc}
\mathbb{L}^{3}-4 \mathbb{L}^{2}-5 \mathbb{L} & 2 \mathbb{L}^{3}-6 \mathbb{L}^{2}-4 \mathbb{L} & \mathbb{L}^{3}-4 \mathbb{L}^{2}-5 \mathbb{L} & 2 \mathbb{L}^{3}-8 \mathbb{L}^{2}-10 \mathbb{L} \\
2 \mathbb{L}^{3}-6 \mathbb{L}^{2}-4 \mathbb{L} & \mathbb{L}^{3}-4 \mathbb{L}^{2}-5 \mathbb{L} & \mathbb{L}^{3}-4 \mathbb{L}^{2}-5 \mathbb{L} & 2 \mathbb{L}^{3}-8 \mathbb{L}^{2}-10 \mathbb{L} \\
\mathbb{L}^{3}-3 \mathbb{L}^{2}-2 \mathbb{L} & \mathbb{L}^{3}-4 \mathbb{L}^{2}-\mathbb{L} & \mathbb{L}^{3}-3 \mathbb{L}^{2}-2 \mathbb{L} & \mathbb{L}^{3}-4 \mathbb{L}^{2}-5 \mathbb{L} \\
\mathbb{L}^{3}-4 \mathbb{L}^{2}-\mathbb{L} & \mathbb{L}^{3}-3 \mathbb{L}^{2}-2 \mathbb{L} & \mathbb{L}^{3}-3 \mathbb{L}^{2}-2 \mathbb{L} & \mathbb{L}^{3}-4 \mathbb{L}^{2}-5 \mathbb{L} \\
\mathbb{L}^{3}-3 \mathbb{L}^{2}-\mathbb{L}+3 & \mathbb{L}^{3}-3 \mathbb{L}^{2}-\mathbb{L}+3 & \mathbb{L}^{3}-3 \mathbb{L}^{2}-\mathbb{L}+3 & \mathbb{L}^{3}-5 \mathbb{L}^{2}-\mathbb{L}+5 \\
-\mathbb{L}^{2}+\mathbb{L} & \mathbb{L}^{2}+\mathbb{L} & 0 & 0 \\
\mathbb{L}^{2}+\mathbb{L} & -\mathbb{L}^{2}+\mathbb{L} & 0 & 0 \\
-\mathbb{L}^{2}+4 \mathbb{L}-3 & -\mathbb{L}^{2}+4 \mathbb{L}-3 & \mathbb{L}^{2}+2 \mathbb{L}-3 & -\mathbb{L}^{2}+6 \mathbb{L}-5 \\
\mathbb{L}^{2}-4 \mathbb{L} & \mathbb{L}^{2}-4 \mathbb{L} & -2 \mathbb{L} & 2 \mathbb{L}^{2}-6 \mathbb{L}
\end{array}\right]
\end{aligned}
$$

This matrix can be diagonalized with eigenvalues

$$
\begin{gathered}
0, \quad-\mathbb{L}(\mathbb{L}-1), \quad \mathbb{L}(\mathbb{L}-1), \quad \mathbb{L}(\mathbb{L}-1)(\mathbb{L}+1), \quad(\mathbb{L}-1)(\mathbb{L}+1), \\
-\mathbb{L}(\mathbb{L}+1), \quad 2 \mathbb{L}(\mathbb{L}+1), \quad 2 \mathbb{L}(\mathbb{L}-1), \quad \mathbb{L}(\mathbb{L}+1)
\end{gathered}
$$

and respective eigenvectors

$$
\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
2 \\
-1 \\
-1 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{c}
-\mathbb{L}-1 \\
\mathbb{L}+1 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
-\mathbb{L}^{2}+4 \mathbb{L}+5 \\
-\mathbb{L}^{2}+4 \mathbb{L}+5 \\
5-\mathbb{L} \\
5-\mathbb{L} \\
0 \\
0 \\
0 \\
0 \\
2
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
\mathbb{L} \\
\mathbb{L} \\
0 \\
0 \\
-1 \\
0 \\
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{c}
(\mathbb{L}-1)^{2} \\
-(\mathbb{L}-1)^{2} \\
1-\mathbb{L} \\
\mathbb{L}-1 \\
0 \\
-2 \\
2 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
1-\mathbb{L} \\
\mathbb{L}-1 \\
1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
\mathbb{L}+1 \\
\mathbb{L}+1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{c}
-(\mathbb{L}-1)^{2} \\
-(\mathbb{L}-1)^{2} \\
\mathbb{L}-1 \\
\mathbb{L}-1 \\
0 \\
-2 \\
-2 \\
0 \\
2
\end{array}\right] .
$$

The following theorem now follows from (4.11).
Theorem 5.5.1. For any $r \geq 0$, the virtual class of the SL_{2}-character stack of N_{r} in $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\mathbf{S t c k}_{k}\right)$ is

$$
\begin{aligned}
{\left[\mathfrak{X}_{\mathrm{SL}_{2}}\left(N_{r}\right)\right]=} & \frac{1}{4} \mathbb{L}^{r-2}(\mathbb{L}+1)^{r-2}\left((\mathbb{L}-1)\left(1+(-1)^{r}\right)-(-2)^{r+1}\right) \\
& +\frac{1}{4} \mathbb{L}^{r-2}(\mathbb{L}-1)^{r-2}\left((\mathbb{L}-1)\left(1+(-1)^{r}\right)+2^{r+1}-4\right) \\
& +\left(\mathbb{L}^{r-2}+1\right)(\mathbb{L}-1)^{r-2}(\mathbb{L}+1)^{r-2}
\end{aligned}
$$

Remark 5.5.2. The first eigenvector, with eigenvalue 0 , corresponds to the element $2 M+Y-X_{2}-X_{-2}-X_{2,-2} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{G}\right)$. We encountered this element already in Remark 5.1.2, where it was shown to be non-zero. On the other hand, the (Hodge) monodromy representation of $M+M+Y$ agrees with that of $X_{2}+$ $X_{-2}+X_{2,-2}$, so it is not surprising to encounter this element in the kernel of $Z_{G}^{\mathrm{rep}}(\overrightarrow{\mathrm{O}, \mathrm{O}})$.

Similarly, for the orientable surfaces, using (4.12), Proposition 5.2.1 and the lemmas in Section 5.4, we obtain an expression for the matrix associated with $Z_{G}^{\mathrm{rep}}(\Omega)$ with respect to the same set of generators.

$$
\begin{aligned}
& Z_{G}^{\text {rep }}(\Omega)=\left[\begin{array}{ccc}
\mathbb{L}^{4}+4 \mathbb{L}^{3}-\mathbb{L}^{2}-4 \mathbb{L} & \mathbb{L}^{3}-\mathbb{L} & \mathbb{L}^{5}-2 \mathbb{L}^{4}-4 \mathbb{L}^{3}+2 \mathbb{L}^{2}+3 \mathbb{L} \\
\mathbb{L}^{3}-\mathbb{L} & \mathbb{L}^{4}+4 \mathbb{L}^{3}-\mathbb{L}^{2}-4 \mathbb{L} & \mathbb{L}^{5}+3 \mathbb{L}^{4}-\mathbb{L}^{3}-3 \mathbb{L}^{2} \\
\mathbb{L}^{3}-2 \mathbb{L}^{2}-3 \mathbb{L} & \mathbb{L}^{3}+3 \mathbb{L}^{2} & \mathbb{L}^{5}+\mathbb{L}^{4}+3 \mathbb{L}^{2}+3 \mathbb{L} \\
\mathbb{L}^{3}+3 \mathbb{L}^{2} & \mathbb{L}^{3}-2 \mathbb{L}^{2}-3 \mathbb{L} & \mathbb{L}^{5}-3 \mathbb{L}^{3}-6 \mathbb{L}^{2} \\
\mathbb{L}^{3}-\mathbb{L}^{2}-\mathbb{L}+1 & \mathbb{L}^{3}-\mathbb{L}^{2}-\mathbb{L}+1 & \mathbb{L}^{5}-2 \mathbb{L}^{3}+\mathbb{L} \\
2 \mathbb{L}^{2}+2 \mathbb{L} & -\mathbb{L}^{2}-\mathbb{L} & -2 \mathbb{L}^{3}-4 \mathbb{L}^{2}-2 \mathbb{L} \\
-\mathbb{L}^{2}-\mathbb{L} & 2 \mathbb{L}^{2}+2 \mathbb{L} & \mathbb{L}^{3}+2 \mathbb{L}^{2}+\mathbb{L} \\
-\mathbb{L}^{2}+2 \mathbb{L}-1 & -\mathbb{L}^{2}+2 \mathbb{L}-1 & -2 \mathbb{L}^{3}+4 \mathbb{L}^{2}-2 \mathbb{L} \\
\mathbb{L}^{2}-2 \mathbb{L} & \mathbb{L}^{2}-2 \mathbb{L} & 2 \mathbb{L}^{3}-2 \mathbb{L}^{2}+2 \mathbb{L}
\end{array}\right. \\
& \begin{array}{ccc}
\mathbb{L}^{5}+3 \mathbb{L}^{4}-\mathbb{L}^{3}-3 \mathbb{L}^{2} & \mathbb{L}^{6}-2 \mathbb{L}^{5}-4 \mathbb{L}^{4}+3 \mathbb{L}^{2}+2 \mathbb{L} & \mathbb{L}^{6}-11 \mathbb{L}^{4}-3 \mathbb{L}^{3}+10 \mathbb{L}^{2}+3 \mathbb{L} \\
\mathbb{L}^{5}-2 \mathbb{L}^{4}-4 \mathbb{L}^{3}+2 \mathbb{L}^{2}+3 \mathbb{L} & \mathbb{L}^{6}-2 \mathbb{L}^{5}-4 \mathbb{L}^{4}+3 \mathbb{L}^{2}+2 \mathbb{L} & \mathbb{L}^{6}-3 \mathbb{L}^{5}-8 \mathbb{L}^{4}+7 \mathbb{L}^{2}+3 \mathbb{L} \\
\mathbb{L}^{5}-3 \mathbb{L}^{3}-6 \mathbb{L}^{2} & \mathbb{L}^{6}-2 \mathbb{L}^{5}-3 \mathbb{L}^{4}+\mathbb{L}^{3}+3 \mathbb{L}^{2} & \mathbb{L}^{6}-3 \mathbb{L}^{5}-4 \mathbb{L}^{4}-3 \mathbb{L}^{3}+9 \mathbb{L}^{2} \\
\mathbb{L}^{5}+\mathbb{L}^{4}+3 \mathbb{L}^{2}+3 \mathbb{L} & \mathbb{L}^{6}-2 \mathbb{L}^{5}-3 \mathbb{L}^{4}+\mathbb{L}^{3}+3 \mathbb{L}^{2} & \mathbb{L}^{6}-3 \mathbb{L}^{5}-\mathbb{L}^{4}-3 \mathbb{L}^{3}+6 \mathbb{L}^{2} \\
\mathbb{L}^{5}-2 \mathbb{L}^{3}+\mathbb{L} & \mathbb{L}^{6}-2 \mathbb{L}^{5}-2 \mathbb{L}^{4}+2 \mathbb{L}^{3}+3 \mathbb{L}^{2}-2 & \mathbb{L}^{6}-3 \mathbb{L}^{5}-3 \mathbb{L}^{4}+4 \mathbb{L}^{3}+5 \mathbb{L}^{2}-\mathbb{L}-3 \\
\mathbb{L}^{3}+2 \mathbb{L}^{2}+\mathbb{L} & \mathbb{L}^{3}+\mathbb{L}^{2} & 2 \mathbb{L}^{4}+2 \mathbb{L}^{3} \\
-2 \mathbb{L}^{3}-4 \mathbb{L}^{2}-2 \mathbb{L} & \mathbb{L}^{3}+\mathbb{L}^{2} & -2 \mathbb{L}^{4}+2 \mathbb{L}^{2} \\
-2 \mathbb{L}^{3}+4 \mathbb{L}^{2}-2 \mathbb{L} & 4 \mathbb{L}^{3}-6 \mathbb{L}^{2}+2 & -2 \mathbb{L}^{4}+11 \mathbb{L}^{3}-13 \mathbb{L}^{2}+\mathbb{L}+3 \\
2 \mathbb{L}^{3}-2 \mathbb{L}^{2}+2 \mathbb{L} & -4 \mathbb{L}^{3}+2 \mathbb{L}^{2} & 2 \mathbb{L}^{4}-11 \mathbb{L}^{3}+7 \mathbb{L}^{2}
\end{array} \\
& \mathbb{L}^{6}-3 \mathbb{L}^{5}-8 \mathbb{L}^{4}+7 \mathbb{L}^{2}+3 \mathbb{L} \\
& \mathbb{L}^{6}-2 \mathbb{L}^{5}-9 \mathbb{L}^{4}-\mathbb{L}^{3}+8 \mathbb{L}^{2}+3 \mathbb{L} \quad \mathbb{L}^{6}-\mathbb{L}^{5}-20 \mathbb{L}^{4}-4 \mathbb{L}^{3}+19 \mathbb{L}^{2}+5 \mathbb{L} 7 \\
& \mathbb{L}^{6}-11 \mathbb{L}^{4}-3 \mathbb{L}^{3}+10 \mathbb{L}^{2}+3 \mathbb{L} \quad \mathbb{L}^{6}-2 \mathbb{L}^{5}-9 \mathbb{L}^{4}-\mathbb{L}^{3}+8 \mathbb{L}^{2}+3 \mathbb{L} \quad \mathbb{L}^{6}-\mathbb{L}^{5}-20 \mathbb{L}^{4}-4 \mathbb{L}^{3}+19 \mathbb{L}^{2}+5 \mathbb{L} \\
& \mathbb{L}^{6}-3 \mathbb{L}^{5}-\mathbb{L}^{4}-3 \mathbb{L}^{3}+6 \mathbb{L}^{2} \quad \mathbb{L}^{6}-2 \mathbb{L}^{5}-5 \mathbb{L}^{4}+6 \mathbb{L}^{2} \quad \mathbb{L}^{6}-4 \mathbb{L}^{5}-4 \mathbb{L}^{4}-8 \mathbb{L}^{3}+15 \mathbb{L}^{2} \\
& \mathbb{L}^{6}-3 \mathbb{L}^{5}-4 \mathbb{L}^{4}-3 \mathbb{L}^{3}+9 \mathbb{L}^{2} \quad \mathbb{L}^{6}-2 \mathbb{L}^{5}-5 \mathbb{L}^{4}+6 \mathbb{L}^{2} \quad \mathbb{L}^{6}-4 \mathbb{L}^{5}-4 \mathbb{L}^{4}-8 \mathbb{L}^{3}+15 \mathbb{L}^{2} \\
& (\mathbb{L}-1)^{2}(\mathbb{L}+1)\left(\mathbb{L}^{3}-2 \mathbb{L}^{2}-4 \mathbb{L}-3\right) \\
& \begin{array}{c}
-2 \mathbb{L}^{4}+2 \mathbb{L}^{2} \\
2 \mathbb{L}^{4}+2 \mathbb{L}^{3}
\end{array} \\
& -2 \mathbb{L}^{4}+11 \mathbb{L}^{3}-13 \mathbb{L}^{2}+\mathbb{L}+3 \\
& 2 \mathbb{L}^{4}-11 \mathbb{L}^{3}+7 \mathbb{L}^{2} \\
& (\mathbb{L}-3)(\mathbb{L}-1)^{2}(\mathbb{L}+1)^{3} \\
& \begin{array}{l}
0 \\
0
\end{array} \\
& \mathbb{L}^{4}+6 \mathbb{L}^{3}-12 \mathbb{L}^{2}+2 \mathbb{L}+3 \\
& -6 \mathbb{L}^{3}+6 \mathbb{L}^{2} \\
& \left.\begin{array}{c}
(\mathbb{L}-5)(\mathbb{L}-1)^{2}(\mathbb{L}+1)^{3} \\
0 \\
0 \\
-3 \mathbb{L}^{4}+20 \mathbb{L}^{3}-26 \mathbb{L}^{2}+4 \mathbb{L}+5 \\
4 \mathbb{L}^{4}-20 \mathbb{L}^{3}+16 \mathbb{L}^{2}
\end{array}\right]
\end{aligned}
$$

It turns out this matrix can be diagonalized using the same set of eigenvectors. The corresponding eigenvalues are

$$
\begin{gathered}
0, \quad \mathbb{L}^{2}(\mathbb{L}-1)^{2}, \quad \mathbb{L}^{2}(\mathbb{L}-1)^{2}, \quad \mathbb{L}^{2}(\mathbb{L}-1)^{2}(\mathbb{L}+1)^{2}, \quad(\mathbb{L}-1)^{2}(\mathbb{L}+1)^{2}, \\
\mathbb{L}^{2}(\mathbb{L}+1)^{2}, \quad 4 \mathbb{L}^{2}(\mathbb{L}+1)^{2}, \quad 4 \mathbb{L}^{2}(\mathbb{L}-1)^{2}, \quad \mathbb{L}^{2}(\mathbb{L}+1)^{2}
\end{gathered}
$$

The following theorem now follows from (4.10). The corresponding E-polynomials can be seen to agree with [MM16].

5.5. RESULTS

Theorem 5.5.3. For any $g \geq 0$, the virtual class of the SL_{2}-character stack of Σ_{g} in $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\mathbf{S t c k}_{k}\right)$ is

$$
\begin{aligned}
{\left[\mathfrak{X}_{\mathrm{SL}_{2}}\left(\Sigma_{g}\right)\right]=} & \frac{1}{2} \mathbb{L}^{2 g-2}(\mathbb{L}+1)^{2 g-2}\left(2^{2 g}+\mathbb{L}-1\right) \\
& +\frac{1}{2} \mathbb{L}^{2 g-2}(\mathbb{L}-1)^{2 g-2}\left(2^{2 g}+\mathbb{L}-3\right) \\
& +\left(\mathbb{L}^{2 g-2}+1\right)(\mathbb{L}-1)^{2 g-2}(\mathbb{L}+1)^{2 g-2}
\end{aligned}
$$

The fact that both matrices can be simultaneously diagonalized is not too surprising considering the fact that \rightarrow thermore, it can be seen that

$$
Z_{G}^{\mathrm{rep}}(\stackrel{\widehat{\mathrm{O},} \mathrm{O}}{ })^{3}=Z_{G}^{\mathrm{rep}}(\stackrel{\widehat{\mathrm{O}}, \mathrm{O}}{ }) \circ Z_{G}^{\mathrm{rep}}(\boxed{\Omega})
$$

which reflects the equality of bordisms

$$
\widehat{O, O}^{3}=\widehat{O, O}^{\circ} \cdot
$$

What is remarkable is that the equality

$$
Z_{G}^{\mathrm{rep}}(\widehat{\mathrm{O}, \mathrm{O}})^{2}=Z_{G}^{\mathrm{rep}}(\widehat{\boxed{O}})
$$

holds for $G=\mathrm{SL}_{2}$ (at least on the set of generators (5.3)), even though it does not for general G. For example, it already fails to hold for $G=\mathbb{G}_{m}$. Comparing Theorem 5.5.3 and Theorem 5.5.1, we find the following.

Corollary 5.5.4. $\left[\mathfrak{X}_{\mathrm{SL}_{2}}\left(\Sigma_{g}\right)\right]=\left[\mathfrak{X}_{\mathrm{SL}_{2}}\left(N_{2 g}\right)\right]$ in $\mathrm{K}_{0}^{\mathbb{P}^{1}}\left(\mathbf{S t c k}_{k}\right)$ for all $g \geq 0$.

An explanation for this relation between the orientable and non-orientable case can be given for the corresponding E-polynomials, from the point of view of the arithmetic method.

Suppose G is a linear algebraic group over a finitely generated \mathbb{Z}-algebra R. Comparing Theorem 4.5.3 and Proposition 4.9.12, it follows that, for any morphism $R \rightarrow \mathbb{F}_{q}$, the point counts $\left|R_{G}\left(\Sigma_{g}\right)\left(\mathbb{F}_{q}\right)\right|$ and $\left|R_{G}\left(N_{2 g}\right)\left(\mathbb{F}_{q}\right)\right|$ agree whenever the Frobenius-Schur indicators ε_{χ} of all irreducible characters χ of $G\left(\mathbb{F}_{q}\right)$ are equal to ± 1. That is, if all irreducible representations of $G\left(\mathbb{F}_{q}\right)$ are either real or pseudoreal.

Indeed, if we take $G=\mathrm{SL}_{2}$ and $R=\mathbb{Z}[1 / 2, i]$, then a map $R \rightarrow \mathbb{F}_{q}$ exists if and only if $q \equiv 1 \bmod 4$. For such q, any element of $\operatorname{SL}_{2}\left(\mathbb{F}_{q}\right)$ is conjugate to its inverse, and hence

$$
\chi(g)=\chi\left(g^{-1}\right)=\overline{\chi(g)}
$$

for all $g \in \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ and irreducible characters χ of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$. This shows that all irreducible characters χ of $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$, with $q \equiv 1 \bmod 4$, are either real or pseudoreal, that is, $\varepsilon_{\chi}= \pm 1$, and hence

$$
\left|R_{\mathrm{SL}_{2}}\left(\Sigma_{g}\right)\left(\mathbb{F}_{q}\right)\right|=\left|R_{\mathrm{SL}_{2}}\left(N_{2 g}\right)\left(\mathbb{F}_{q}\right)\right| .
$$

Since these numbers are polynomial in q, it follows from Theorem 4.6.1 (Katz' theorem) that $e\left(R_{\mathrm{SL}_{2}}\left(\Sigma_{g}\right)\right)=e\left(R_{\mathrm{SL}_{2}}\left(N_{2 g}\right)\right)$, and in turn that $e\left(\mathfrak{X}_{\mathrm{SL}_{2}}\left(\Sigma_{g}\right)\right)=$ $e\left(\mathfrak{X}_{\mathrm{SL}_{2}}\left(N_{2 g}\right)\right)$.

Chapter 6

Upper triangular matrices

In this chapter we apply the theory of the Chapter 4 in order to study the G character stacks of the closed orientable surfaces Σ_{g}, for G equal to one of the following algebraic groups, over any field k :

- the group $\mathbb{T}_{n}=\left\{A \in \mathrm{GL}_{n} \mid A_{i j}=0\right.$ for $\left.1 \leq j<i \leq n\right\} \subseteq \mathrm{GL}_{n}$ of $n \times n$ upper triangular matrices, and
- its subgroup $\mathbb{U}_{n}=\left\{A \in \mathbb{T}_{n} \mid A_{i i}=1\right.$ for $\left.1 \leq i \leq n\right\}$ of unipotent matrices.

These groups can be realized as semidirect products of copies of \mathbb{G}_{a} and \mathbb{G}_{m} and are therefore all special, see Proposition 3.3.16 and Example 3.3.17. In particular, the virtual class of the G-character stack of Σ_{g} in the Grothendieck ring of stacks is simply given by the quotient

$$
\begin{equation*}
\left[\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right]=\left[R_{G}\left(\Sigma_{g}\right)\right] /[G] \tag{6.1}
\end{equation*}
$$

as in Proposition 3.5.5. Hence, it suffices to apply the theory of Section 4.12, and work on the level of the G-representation variety.

Furthermore, these groups G are all connected. Therefore, the geometric TQFT and the arithmetic TQFT can be compared, as there is a natural transformation between them, see Corollary 4.10.5. We will consider both the geometric and the arithmetic method, and compare the results.

Note that the algebraic groups \mathbb{T}_{n}, for all $n \geq 1$, decompose as a product

$$
\mathbb{T}_{n}=\mathbb{G}_{m} \times \tilde{\mathbb{T}}_{n} \quad \text { where } \quad \tilde{\mathbb{T}}_{n}=\left\{A \in \mathbb{T}_{n} \mid A_{n n}=1\right\}
$$

In turn, this induces a decomposition of representation varieties

$$
\begin{equation*}
R_{\mathbb{T}_{n}}(M) \cong R_{\widetilde{\mathbb{T}}_{n}}(M) \times R_{\mathbb{G}_{m}}(M) \tag{6.2}
\end{equation*}
$$

As \mathbb{G}_{m} is abelian, we have $R_{\mathbb{G}_{m}}\left(\Sigma_{g}\right) \cong \mathbb{G}_{m}^{2 g}$, and we can focus on $\tilde{\mathbb{T}}_{n}$ instead. This slightly simplifies the computations as dimension is lower.

6.1 Algebraic representatives

Before doing computations, we first introduce the notion of algebraic representatives, which are crucial to doing computations in the later sections.

Definition 6.1.1. Let G be an algebraic group over k, and let X be a variety over k with a transitive G-action. A point $\xi \in X(k)$ is an algebraic representative for X if the $\operatorname{Stab}(\xi)$-torsor

$$
G \rightarrow X, \quad g \mapsto g \cdot \xi
$$

is Zariski-locally trivial. Equivalently, ξ is an algebraic representative for X if every point of X has an open neighborhood U and a morphism $\gamma: U \rightarrow G$ such that $x=\gamma(x) \cdot \xi$ for all $x \in U$.

Remark 6.1.2. - If there exists an algebraic representative ξ for X, then every $\xi^{\prime} \in X(k)$ is an algebraic representative for X. Namely, if $\xi=g \cdot \xi^{\prime}$, then one takes $\gamma^{\prime}(x)=\gamma(x) g$.

- Algebraic representatives need not always exist. For example, consider the group $G=\mathbb{G}_{m}$ acting on $X=\mathbb{A}_{k}^{1} \backslash\{0\}$ via $t \cdot x=t^{2} x$. Then X does not have an algebraic representative as $\mathbb{G}_{m} \rightarrow \mathbb{A}_{k}^{1} \backslash\{0\}$ given by $t \mapsto t^{2}$ is not Zariski-locally trivial.
- The proof of Corollary 3.3 .15 shows that $\xi \in X(k)$ is an algebraic representative for X if $\operatorname{Stab}(\xi)$ is special. However, it is possible that ξ is an algebraic representative even when $\operatorname{Stab}(\xi)$ is not special. For example, consider any non-special group G acting trivially on a point.

For us, the main example of algebraic representatives are for any of the groups $\mathbb{U}_{n}, \mathbb{T}_{n}$ or $\tilde{\mathbb{T}}_{n}$ acting by conjugation on a conjugacy class.
Proposition 6.1.3. Let G be $\mathbb{U}_{n}, \mathbb{T}_{n}$ or $\tilde{\mathbb{T}}_{n}$, for some $n \geq 1$, acting on itself by conjugation. Then the stabilizer $\operatorname{Stab}(A)$ of any point $A \in G(k)$ is special. In particular, A is an algebraic representative for its conjugacy class.

Proof. If $G=\mathbb{T}_{n}$, the stabilizer $\operatorname{Stab}(A) \subseteq \mathbb{T}_{n}$ is triangularizable, and can be written as an extension

$$
1 \rightarrow U \rightarrow \operatorname{Stab}(A) \rightarrow D \rightarrow 1
$$

of $D=\{B \in \operatorname{Stab}(A) \mid B$ is diagonal $\}$ by the maximal normal unipotent subgroup $U=\operatorname{Stab}(A) \cap \mathbb{U}_{n}$. We will show that both U and D are special, so that the result follows from Proposition 3.3.16 (i). If $G=\mathbb{U}_{n}$, we have $\operatorname{Stab}(A)=U$, so the result follows from the same proof. If $G=\tilde{\mathbb{T}}_{n}$, then the action of $\tilde{\mathbb{T}}_{n}$ on
itself by conjugation can be extended to an action of \mathbb{T}_{n}, and the corresponding stabilizers are related by $\operatorname{Stab}_{\mathbb{T}_{n}}(A) \cong \mathbb{G}_{m} \times \operatorname{Stab}_{\tilde{\mathbb{T}}_{n}}(A)$. The result then follows from Proposition 3.3.16 (ii) or (iii) and the fact that $\operatorname{Stab}_{\mathbb{T}_{n}}(A)$ is special.

Note that $U=\left\{B \in \mathbb{U}_{n} \mid A B-B A=0\right\}$ is a subgroup of \mathbb{U}_{n} given by a linear subspace, identifying $\mathbb{U}_{n} \cong \mathbb{A}_{k}^{n(n-1) / 2}$ in the usual way. From [Mil15, Example 8.46] we know that \mathbb{U}_{n} admits a normal series

$$
\mathbb{U}_{n}=U_{n}^{(0)} \supseteq \cdots \supseteq U_{n}^{(r)} \supseteq U_{n}^{(r+1)} \supseteq \cdots \supseteq U_{n}^{(n(n-1) / 2)}=\{1\}
$$

where each $U_{n}^{(r)} \subseteq \mathbb{U}_{n}$ is a normal subgroup given by a linear subspace of \mathbb{U}_{n}, whose quotients $U_{n}^{(r)} / U_{n}^{(r+1)}$ are canonically isomorphic to \mathbb{G}_{a}. Therefore, intersecting this normal series with U yields a normal series of U where each quotient is either \mathbb{G}_{a} or 0 . Hence, U is an extension of copies of \mathbb{G}_{a}, which is special by Proposition 3.3.16 (i).

Furthermore, D can be identified with

$$
\begin{aligned}
D & =\{B \in G \mid B \text { is diagonal and } A B-B A=0\} \\
& =\left\{\left(B_{11}, \ldots, B_{n n}\right) \in \mathbb{G}_{m}^{n} \mid A_{i j}\left(B_{i i}-B_{j j}\right)=0 \text { for all } 1 \leq i \leq j \leq n\right\} \\
& =\left\{\left(B_{11}, \ldots, B_{n n}\right) \in \mathbb{G}_{m}^{n} \mid B_{i i}=B_{j j} \text { whenever } A_{i j} \neq 0\right\}
\end{aligned}
$$

which, being a product of copies of \mathbb{G}_{m}, is also special.
The notion of algebraic representatives can be generalized to a relative setting as follows. This generalization is useful when the G-action is not transitive, and we will use it in the later sections.

Definition 6.1.4. Let G be an algebraic group over k, acting on a variety X over k, and let $\pi: X \rightarrow T$ be a G-invariant morphism. A family of algebraic representatives for X over T is a morphism $\xi: T \rightarrow X$ over T (that is, $\pi \circ \xi=\mathrm{id}_{T}$) such that the $\operatorname{Stab}(\xi)$-torsor

$$
G \times T \rightarrow X, \quad(g, t) \mapsto g \cdot \xi(t)
$$

of varieties over T is Zariski-locally trivial. Note that by $\operatorname{Stab}(\xi)$ we understand $(G \times T) \times{ }_{X} T$ as a group over T. Equivalently, ξ is a family of algebraic representatives for X over T if every point of X has an open neighborhood U and a morphism $\gamma: U \rightarrow G$ such that $x=\gamma(x) \cdot \xi(\pi(x))$ for all $x \in U$.

Example 6.1.5. Consider the group $G=\mathbb{T}_{2}=\left\{\left.\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right) \right\rvert\, x, z \neq 0\right\}$ of 2×2 upper triangular matrices acting on $X=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) \right\rvert\, a \neq 0,1\right\}$ by conjugation. Then X has a family of algebraic representatives over $T=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \right\rvert\, a \neq 0,1\right\}$, with π and ξ the projection and inclusion, respectively, as one can take

$$
\gamma\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{b}{1-a} \\
0 & 1
\end{array}\right)
$$

The following lemma shows why it is useful to have algebraic representatives in the context of computing virtual classes.

Proposition 6.1.6. Let G be an algebraic group over k, acting on a variety S over k. Let $\pi: S \rightarrow T$ be a G-invariant morphism, and let $\xi: T \rightarrow S$ be a family of algebraic representatives for S over T. Then for any morphism $f: Y \rightarrow S$ and G-equivariant morphism $g: X \rightarrow S$, we have

$$
\left[X \times_{S} Y\right]_{S}=\left[\left(X \times_{S} T\right) \times_{T} Y\right]_{S} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S}\right)
$$

where $\left(X \times_{S} T\right) \times_{T} Y$ is seen as a variety over S via the composite $f \circ \pi_{Y}$.

Proof. Locally on X, there is a commutative diagram

where $\varphi(x, y)=(\gamma(f(y)) \cdot x, \pi(f(y)), y)$ and $\psi((x, t), y)=(\gamma(f(y)) \cdot x, y)$. One easily sees that φ and ψ are well-defined over S and inverse to each other.

In the case of algebraic representatives, that is, when T is a point, we obtain the following corollaries.

Corollary 6.1.7. Let G be an algebraic group over k, acting on a variety S over k with algebraic representative $\xi \in S(k)$. Then for any morphism $f: Y \rightarrow S$ and G-equivariant morphism $g: X \rightarrow S$, we have

$$
\left[X \times_{S} Y\right]_{S}=\left[X \times_{S}\{\xi\}\right] \cdot[Y]_{S} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S}\right)
$$

Corollary 6.1.8. Let G be an algebraic group over k, acting on a variety S over k with algebraic representative $\xi \in S(k)$. Then for any G-equivariant morphism $g: X \rightarrow S$, we have

$$
[S] \cdot[X]_{S}=[X] \cdot[S]_{S} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{S}\right)
$$

Proof. Apply Corollary 6.1 .7 with $f=\mathrm{id}_{S}$ to find that

$$
[X]_{S}=\left[X \times_{S}\{\xi\}\right] \cdot[S]_{S}
$$

Applying $c_{!}$to both sides of this equation, for $c: S \rightarrow \operatorname{Spec} k$ the final morphism, yields $[S]\left[X \times_{S}\{\xi\}\right]=[X]$ in $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$.

6.2 Geometric method

The virtual classes of the G-representation varieties $R_{G}\left(\Sigma_{g}\right)$ in the Grothendieck ring of varieties can be computed, as was shown in Section 4.12, using the morphisms

$$
\begin{gathered}
Z_{G}^{\mathrm{rep}}(\bigcirc): \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right), \quad Z_{G}^{\mathrm{rep}}(D): \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \\
\text { and } Z_{G}^{\mathrm{rep}}(\boxed{\boxed{O}}): \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)
\end{gathered}
$$

of $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-modules. Note that all varieties over G that we consider are naturally equipped with a G-action such that the morphism to G is G-equivariant, even though the ring $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$ does not remember this information. For this reason, it turns out that $K_{0}\left(\operatorname{Var}_{G}\right)$ is best understood via a decomposition

$$
\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right) \cong \bigoplus_{i=1}^{N} \mathrm{~K}_{0}\left(\operatorname{Var}_{\mathcal{C}_{i}}\right)
$$

as in Proposition 3.3.6, where the \mathcal{C}_{i} are locally closed subvarieties of G given by families of conjugacy classes. We will show that each \mathcal{C}_{i} has a family of algebraic representatives. As a result, the submodule of $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$ generated by the units $\mathbf{1}_{\mathcal{C}_{i}} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{\mathcal{C}_{i}}\right)$ will be invariant under $Z_{G}^{\text {rep }}(\Omega)$.

Conjugacy classes of $\tilde{\mathbb{T}}_{n}$

Let us start by describing the conjugacy classes of $\tilde{\mathbb{T}}_{n}$, with a focus on the unipotent conjugacy classes. We will give algebraic representatives for the unipotent conjugacy classes, and families of algebraic representatives for (families of) nonunipotent conjugacy classes. Furthermore, we will determine equations describing the unipotent conjugacy classes, and finally, compute the virtual classes of the unipotent conjugacy classes as well as those of the stabilizers of their representatives. All of this data will be used to compute $Z_{G}^{\text {rep }}(\sigma)$) as a matrix with respect to the generators given by the unipotent classes.

Unipotent conjugacy classes. To find the number of unipotent conjugacy classes of $\tilde{\mathbb{T}}_{n}$, and a representative for each one, one can use Belitskii's algorithm as described in [Kob05]. Given a unipotent matrix $A \in \tilde{\mathbb{T}}_{n}$ over any field k, Belitskii's algorithm outputs a canonical representative of the conjugacy class of A. It achieves this by repeatedly conjugating A by certain elementary matrices in order to make as many entries of A as possible equal to 0 or 1 , see [Kob05] for details. For $n=1, \ldots, 5$, it turns out there are only finitely many unipotent conjugacy classes $\mathcal{U}_{1}, \ldots, \mathcal{U}_{M}$, and the canonical representatives ξ_{1}, \ldots, ξ_{M} only
have entries with 0's and 1's [Kob05]. The number M of unipotent conjugacy classes is given by the following table.

n	1	2	3	4	5
M	1	2	5	16	61

We will use the convention that \mathcal{U}_{1} is the conjugacy class of the identity. Note that the representatives will be automatically algebraic by Proposition 6.1.3.

Remark 6.2.1. The qualitative result of Belitskii's algorithm, that for $n=$ $1, \ldots, 5$ every unipotent matrix in $\tilde{\mathbb{T}}_{n}$ can be conjugated to a matrix containing only 0 's and 1 's, is enough to find representatives. Only finitely many such matrices exist $\left(2^{n(n-1) / 2}\right)$ and they are easily partitioned by whether they are conjugate. Then, one simply chooses one representative in each conjugacy class.

Non-unipotent conjugacy classes. Next, we describe the non-unipotent conjugacy classes of $\tilde{\mathbb{T}}_{n}$ in terms of families depending on their diagonal. Define a diagonal pattern to be a partition of the set $\{1,2, \ldots, n\}$. Then, for any matrix $A \in \tilde{\mathbb{T}}_{n}$, the diagonal pattern δ_{A} of A is the partition such that i and j are equivalent if $A_{i i}=A_{j j}$. Note that two matrices A and B in $\tilde{\mathbb{T}}_{n}$ are conjugate only if their diagonals coincide, but not necessarily if. Now, we look at the following families of conjugacy classes:

$$
\mathcal{C}_{\delta, i}=\left\{A \in \tilde{\mathbb{T}}_{n} \mid \delta_{A}=\delta \text { and } A \sim \operatorname{diag}(A)+\xi_{i}-1\right\}
$$

for any diagonal pattern δ and $i=1, \ldots, M$, where $\operatorname{diag}(A)$ denotes the diagonal part of A. We claim that any such $\mathcal{C}_{\delta, i}$ has a family of representatives over

$$
C_{\delta, i}=\left\{A \in \tilde{\mathbb{T}}_{n} \mid \delta_{A}=\delta \text { and } A=\operatorname{diag}(A)+\xi_{i}-1\right\}
$$

where $\pi_{\delta, i}: \mathcal{C}_{\delta, i} \rightarrow C_{\delta, i}$ and $\xi_{\delta, i}: C_{\delta, i} \rightarrow \mathcal{C}_{\delta, i}$ are given by $\pi_{\delta, i}(A)=\operatorname{diag}(A)+\xi_{i}-1$ and $\xi_{\delta, i}(A)=A$. This is proved in Lemma 6.2 .2 below. Of course, some $\mathcal{C}_{\delta, i}$ may be equal to $\mathcal{C}_{\delta, j}$ while $i \neq j$, but one can explicitly check whether any of the representatives are conjugate in order to remove any such duplicates. In particular, one can ensure $A_{i j}=0$ for all $A \in C_{\delta, k}$ whenever $A_{i i} \neq A_{j j}$, after appropriate conjugation. In the end, we obtain families of conjugacy classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{N}$ with families of algebraic representatives over C_{1}, \ldots, C_{N}, where the number N is given by the following table.

n	1	2	3	4	5
N	2	3	12	61	372

We will choose our indices in such a way that the ξ_{i} coincide with the unipotent representatives for $i=1, \ldots, M$.

Lemma 6.2.2. For every $i=1, \ldots, N$, the following statements hold:
(i) the stabilizer $H_{i}:=\operatorname{Stab}\left(\xi_{i}(t)\right)$ is independent of $t \in C_{i}$,
(ii) ξ_{i} is a family of representatives of \mathcal{C}_{i} over C_{i},
(iii) the map $G / H_{i} \times C_{i} \rightarrow \mathcal{C}_{i}$ given by $(g, t) \mapsto g \xi_{i}(t) g^{-1}$ is an isomorphism.

Proof. (i) The statement can easily be verified by a computer, as there are only a finite number of cases to consider. Alternatively, write $A=\xi_{i}(t)$ and note that $B \in \operatorname{Stab}(A)$ if and only if for all $1 \leq i \leq j \leq n$,

$$
\begin{equation*}
B_{i j}\left(A_{i i}-A_{j j}\right)+\sum_{k=i+1}^{j} B_{k j} A_{i k}-\sum_{k=i}^{j-1} B_{i k} A_{k j}=0 \tag{*}
\end{equation*}
$$

We claim that $B_{i j}=0$ for all $i \leq j$ such that $A_{i i} \neq A_{j j}$. The result follows from this claim, because $A_{i j}$ is independent of t for $i \neq j$ (by definition of C_{i}), so the solutions to $(*)$ will be independent of t. We proof the claim by induction on $j-i$, the case $j-i=0$ being trivial. For the general case, take $i \leq j$ such that $A_{i i} \neq A_{j j}$. Now, for every $k \in\{i+1, \ldots, j\}$ such that $A_{i k} \neq 0$, we have $A_{k k}=A_{i i} \neq A_{j j}$, so $B_{k j}=0$ by the induction hypothesis. Similarly, for every $k \in\{i, \ldots, j-1\}$ such that $A_{k j} \neq 0$, we have $A_{k k}=A_{j j} \neq A_{i i}$ so $B_{i k}=0$ by the induction hypothesis. Therefore, $(*)$ reduces to $B_{i j}=0$.
(ii) From (i) follows that the map

$$
G \times C_{i} \rightarrow \mathcal{C}_{i}, \quad(g, t) \mapsto g \xi_{i}(t) g^{-1}
$$

is an H_{i}-torsor, which is Zariski-locally trivial because H_{i} is special by Proposition 6.1.3. Hence, it follows that ξ_{i} is a family of algebraic representatives for \mathcal{C}_{i} over C_{i}. This also proves (iii).

Equations. Next, we want to find equations describing the unipotent conjugacy classes \mathcal{U}_{i} for $i=1, \ldots, M$. For simplicity, we will compute equations for the closures $\overline{\mathcal{U}}_{i}$ rather than \mathcal{U}_{i}. This is sufficient using the inclusion-exclusion matrix of Section 3.3. The closure $\overline{\mathcal{U}}_{i}$ is the closure of the image of the morphism

$$
f_{i}: G \rightarrow G, \quad g \mapsto g \xi_{i} g^{-1}
$$

Since $G=\tilde{\mathbb{T}}_{n}$ is affine, f_{i} can equivalently be described by the corresponding morphism on the coordinate ring of G,

$$
f_{i}^{\#}: \mathcal{O}_{G}(G) \rightarrow \mathcal{O}_{G}(G)
$$

In particular, the closure $\overline{\mathcal{U}}_{i}$ corresponds to the ideal $I_{i} \subseteq \mathcal{O}_{G}(G)$ which is the kernel of $f_{i}^{\#}$. Generators for these ideals can be computed using Gröbner basis [AL94], and this gives us the desired equations. In particular, we use [AL94, Theorem 2.4.2] in order to compute the kernel of $f_{i}^{\#}$.

Example 6.2.3. Consider the unipotent conjugacy class \mathcal{U} of $\xi=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ in $G=\tilde{\mathbb{T}}_{3}$. The morphism $f: G \rightarrow G, g \mapsto g \xi g^{-1}$ is given by

$$
f\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

that is, $f^{\#}(a)=f^{\#}(d)=1, f^{\#}(b)=f^{\#}(e)=0$ and $f^{\#}(c)=a$. Indeed, we find that the ideal ker $f^{\#}=(a-1, b, d-1, e)$ describes the closure of the conjugacy class $\mathcal{U}=\left\{\left.\left(\begin{array}{lll}1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\, c \neq 0\right\}$.

Orbits and stabilizers. For any $A \in \tilde{\mathbb{T}}_{n}$, in order to compute the virtual class of the conjugacy class of A, we can use Corollary 3.3.15. Indeed, the stabilizer $\operatorname{Stab}(A)$ of any $A \in \tilde{\mathbb{T}}_{n}$ is special by Proposition 6.1.3. To compute the virtual class of the stabilizer of A, we apply Algorithm 3.4.3, using the explicit description

$$
\operatorname{Stab}(A)=\left\{B \in \tilde{\mathbb{T}}_{n} \mid A B-B A=0\right\}
$$

Computing the TQFT

Let us return to the problem of computing the matrix associated to $Z(\sigma)$ with respect to the generators $\mathbf{1}_{\mathcal{U}_{i}}=\left[\mathcal{U}_{i}\right]_{G} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{G}\right)$. We start by computing the first column of this matrix. Recall that by convention $\mathcal{U}_{1}=\{1\}$ is the conjugacy class of the identity, and that c denotes the final morphism to $\operatorname{Spec} k$. To compute the first column of this matrix, we write

$$
\begin{aligned}
c_{!}\left(Z_{G}^{\mathrm{rep}}(\circlearrowleft)\right. & \left.\left(\mathbf{1}_{\mathcal{U}_{1}}\right) \mid \mathcal{U}_{i}\right) \\
& =\left[\left\{(A, B) \in G^{2} \mid[A, B] \in \mathcal{U}_{i}\right\}\right] \\
& =\sum_{j=1}^{N}\left[\left\{(A, B) \in G \times \mathcal{C}_{j} \mid[A, B] \in \mathcal{U}_{i}\right\}\right] \\
& =\sum_{j=1}^{N}\left[\left\{(A, t) \in G \times C_{j} \mid\left[A, \xi_{j}(t)\right] \in \mathcal{U}_{i}\right\}\right] \times\left[\tilde{\mathbb{T}}_{n} / \operatorname{Stab}\left(\xi_{j}\left(t_{0}\right)\right)\right] \\
& =\sum_{j=1}^{N} E_{i j}\left[\operatorname{Orbit}\left(\xi_{j}\left(t_{0}\right)\right)\right]
\end{aligned}
$$

where $E_{i j}=\left[\left\{(A, t) \in G \times C_{j} \mid\left[A, \xi_{j}(t)\right] \in \mathcal{U}_{i}\right\}\right]$ and $t_{0} \in C_{j}$ is any closed point. For the third equality, we used Proposition 6.1.6 with $Y=S=\mathcal{C}_{j}$ and $X=\left\{(A, B) \in G \times \mathcal{C}_{j} \mid[A, B] \in \mathcal{U}_{i}\right\}$, in combination with Lemma 6.2 .2 (iii).
Since we have computed equations describing the closures $\overline{\mathcal{U}}_{i}$, it is in fact easier to compute the classes $\bar{E}_{i j}=\left[\left\{(A, t) \in G \times C_{j} \mid\left[A, \xi_{j}(t)\right] \in \overline{\mathcal{U}}_{i}\right\}\right]$ rather than the $E_{i j}$. By Corollary 3.3.11, they are related through the inclusion-exclusion matrix C of the stratification by

$$
E_{i j}=\sum_{k=1}^{M} C_{i k} \bar{E}_{k j}
$$

The coefficients $\bar{E}_{i j}$ can be computed using Algorithm 3.4.3. Then, using Corollary 6.1.8, we obtain

$$
Z_{G}^{\mathrm{rep}}(\overparen{\Omega})\left(\mathbf{1}_{\mathcal{U}_{1}}\right)=\sum_{i, k=1}^{M} \sum_{j=1}^{N} C_{i k} \bar{E}_{k j}\left[\operatorname{Orbit}\left(\xi_{j}\left(t_{0}\right)\right)\right] /\left[\mathcal{U}_{i}\right] \cdot \mathbf{1}_{\mathcal{U}_{i}} .
$$

Next, to compute the other columns of the matrix associated to $Z_{G}^{\text {rep }}(\sigma)$, we will make use of the already computed first column. In particular, we have

$$
\begin{aligned}
c_{!}\left(Z_{G}^{\mathrm{rep}}(\circlearrowleft)\right. & \left.\left(\mathbf{1}_{\mathcal{U}_{j}}\right) \mid \mathcal{U}_{i}\right) \\
& =\left[\left\{(g, A, B) \in \mathcal{U}_{j} \times G^{2} \mid g[A, B] \in \mathcal{U}_{i}\right\}\right] \\
& =\sum_{k=1}^{M}\left[\left\{(g, A, B) \in \mathcal{U}_{j} \times G^{2} \mid g[A, B] \in \mathcal{U}_{i},[A, B] \in \mathcal{U}_{k}\right\}\right] \\
& =\sum_{k=1}^{M}\left[\left\{g \in \mathcal{U}_{j} \mid g \xi_{k} \in \mathcal{U}_{i}\right\}\right]\left[\left\{(A, B) \in G^{2} \mid[A, B] \in \mathcal{U}_{k}\right\}\right] \\
& =\sum_{k=1}^{M} F_{i j k} c_{!}\left(\left.Z_{G}^{\mathrm{rep}}(\Omega)\left(\mathbf{1}_{\mathcal{U}_{1}}\right)\right|_{\mathcal{U}_{k}}\right),
\end{aligned}
$$

where $F_{i j k}=\left[\left\{g \in \mathcal{U}_{j} \mid g \xi_{k} \in \mathcal{U}_{i}\right\}\right]$. Note that the third equality follows from Corollary 6.1.7 applied to $S=\mathcal{U}_{k}$ and $X=\left\{(g, h) \in \mathcal{U}_{j} \times \mathcal{U}_{k} \mid g h \in \mathcal{U}_{i}\right\}$ and $Y=\left\{(A, B) \in G^{2} \mid[A, B] \in \mathcal{U}_{k}\right\}$.
As for the coefficients $E_{i j}$, it is easier to compute $\bar{F}_{i j k}=\left[\left\{g \in \overline{\mathcal{U}}_{j} \mid g \xi_{k} \in \overline{\mathcal{U}}_{i}\right\}\right]$ rather than $F_{i j k}$, and they are related through the inclusion-exclusion matrix of the stratification by

$$
F_{i j k}=\sum_{m, \ell=1}^{M} C_{i m} C_{j \ell} \bar{F}_{m \ell k}
$$

The coefficients $\bar{F}_{i j k}$ can be computed using Algorithm 3.4.3. Finally, using Corollary 6.1 .8 we obtain

$$
Z_{G}^{\mathrm{rep}}(\overparen{\Omega})\left(\mathbf{1}_{\mathcal{U}_{j}}\right)=\sum_{i, k, \ell, m=1}^{M} C_{i m} C_{j \ell} \bar{F}_{m \ell k} c_{!}\left(\left.Z_{G}^{\mathrm{rep}}(\Omega)\left(\mathbf{1}_{\mathcal{U}_{1}}\right)\right|_{\mathcal{U}_{k}}\right) /\left[\mathcal{U}_{i}\right] \cdot \mathbf{1}_{\mathcal{U}_{i}}
$$

Remark 6.2.4. Naively computing the coefficients of the matrix representing $Z_{G}^{\text {rep }}(\varnothing)$) would require computing the virtual class of M^{2} varieties, each of which being a subvariety of G^{3}, with equations being mostly quadratic due to the commutator $[A, B]$. With this new setup, one needs to compute the virtual class of $M N+M^{3}$ varieties to obtain the coefficients $\bar{E}_{i j}$ and $\bar{F}_{i j k}$. However, the advantage of this approach is that these varieties will now be subvarieties of $G \times C_{j}$ and \mathcal{U}_{j}, respectively, with equations being mostly linear. In practice, the simplification of these systems of equations far outweighs the number of such systems. It is due to the (families of) algebraic representatives of the conjugacy classes \mathcal{C}_{i} that these simplifications can be made.

Remark 6.2.5. Let us make a few computational remarks. First, to speed up the computation of the coefficients $\bar{E}_{i j}$ and $\bar{F}_{i j k}$, which are done by Algorithm 3.4.3, note that these can be performed in parallel as they are independent. Second, there are some checks one can perform to detect obvious errors. In particular, one can assert that the following equalities hold:

- $\sum_{i=1}^{M} c_{!}\left(\left.Z_{G}^{\text {rep }}(\sigma)\left(\mathbf{1}_{\mathcal{U}_{j}}\right)\right|_{\mathcal{U}_{i}}\right)=[G]^{2}\left[\mathcal{U}_{j}\right]$ for all j,
- $\sum_{i=1}^{M} F_{i j k}=\left[\mathcal{U}_{j}\right]$ for all j, k,
- $\sum_{j=1}^{M} F_{i j k}=\left[\mathcal{U}_{i}\right]$ for all i, k,
- $\sum_{i=1}^{M} E_{i j}=[G]\left[C_{j}\right]$ for all j.

Results

The code to perform the computations as described in this section can be found in [Vog22]. For every $n=1, \ldots, 5$, the resulting matrix associated to $Z_{G}^{\mathrm{rep}}(\Omega)$, with respect to the generators $\mathbf{1}_{\mathcal{U}_{i}}$, is a matrix whose coefficients are polynomials in the Lefschetz class \mathbb{L}. These matrices can be diagonalized over the field $\mathbb{Q}(\mathbb{L})$ of rational functions in \mathbb{L}, and the resulting eigenvalues and eigenvectors are recorded in Appendix A.
Applying equations (4.10), (6.2) and (6.1), we obtain the following theorem.
Theorem 6.2.6. The virtual classes of the \mathbb{T}_{n}-character stacks of Σ_{g} in the Grothendieck ring of stacks for $n=2,3,4,5$ are given by
(i) $\left[\mathfrak{X}_{\mathbb{T}_{2}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{2 g-2}(\mathbb{L}-1)^{2 g-1}+\mathbb{L}^{2 g-2}(\mathbb{L}-1)^{4 g-2}$
(ii) $\left[\mathfrak{X}_{\mathbb{T}_{3}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{4 g-4}(\mathbb{L}-1)^{4 g-2}+\mathbb{L}^{6 g-6}(\mathbb{L}-1)^{2 g-1}+2 \mathbb{L}^{6 g-6}(\mathbb{L}-1)^{4 g-2}+$ $\mathbb{L}^{6 g-6}(\mathbb{L}-1)^{6 g-3}$
(iii) $\left[\mathfrak{X}_{\mathbb{T}_{4}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{8 g-8}(\mathbb{L}-1)^{4 g-2}+\mathbb{L}^{8 g-8}(\mathbb{L}-1)^{6 g-3}+\mathbb{L}^{10 g-10}(\mathbb{L}-1)^{2 g-1}+$ $3 \mathbb{L}^{10 g-10}(\mathbb{L}-1)^{4 g-2}+2 \mathbb{L}^{10 g-10}(\mathbb{L}-1)^{6 g-3}+\mathbb{L}^{12 g-12}(\mathbb{L}-1)^{2 g-1}+$ $3 \mathbb{L}^{12 g-12}(\mathbb{L}-1)^{4 g-2}+3 \mathbb{L}^{12 g-12}(\mathbb{L}-1)^{6 g-3}+\mathbb{L}^{12 g-12}(\mathbb{L}-1)^{8 g-4}$
(iv) $\left[\mathfrak{X}_{\mathbb{T}_{5}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{12 g-12}(\mathbb{L}-1)^{6 g-3}+2 \mathbb{L}^{14 g-14}(\mathbb{L}-1)^{4 g-2}+$ $3 \mathbb{L}^{14 g-14}(\mathbb{L}-1)^{6 g-3}+\mathbb{L}^{14 g-14}(\mathbb{L}-1)^{8 g-4}+2 \mathbb{L}^{16 g-16}(\mathbb{L}-1)^{2 g-1}+$ $7 \mathbb{L}^{16 g-16}(\mathbb{L}-1)^{4 g-2}+7 \mathbb{L}^{16 g-16}(\mathbb{L}-1)^{6 g-3}+2 \mathbb{L}^{16 g-16}(\mathbb{L}-1)^{8 g-4}+$ $2 \mathbb{L}^{18 g-18}(\mathbb{L}-1)^{2 g-1}+7 \mathbb{L}^{18 g-18}(\mathbb{L}-1)^{4 g-2}+8 \mathbb{L}^{18 g-18}(\mathbb{L}-1)^{6 g-3}+$ $3 \mathbb{L}^{18 g-18}(\mathbb{L}-1)^{8 g-4}+\mathbb{L}^{20 g-20}(\mathbb{L}-1)^{2 g-1}+4 \mathbb{L}^{20 g-20}(\mathbb{L}-1)^{4 g-2}+$ $6 \mathbb{L}^{20 g-20}(\mathbb{L}-1)^{6 g-3}+4 \mathbb{L}^{20 g-20}(\mathbb{L}-1)^{8 g-4}+\mathbb{L}^{20 g-20}(\mathbb{L}-1)^{10 g-5}$.

The computation times ${ }^{1}$ for $Z_{G}^{\text {rep }}(\Omega)$ for the groups $G=\tilde{\mathbb{T}}_{n}$ are listed in the table below. These times do not include the diagonalization of $Z_{G}^{\text {rep }}(\underset{\sim}{0})$, as this was done by hand.

n	2	3	4	5
world time	1.92 s	5.17 s	1 m 19 s	1 h 38 m
CPU time	2.11 s	31.50 s	28 m 12 s	50 h 9 m

Finally, we note that precisely the same method can be applied to the groups $G=\mathbb{U}_{n}$ for $n=1, \ldots, 5$. In fact, the coefficients $F_{i j k}$ can be reused. For these groups, the map $Z_{G}^{\text {rep }}(-0)$ is given by

$$
\begin{aligned}
& Z_{G}^{\mathrm{rep}}(\boxed{\sigma})\left(\mathbf{1}_{\mathcal{U}_{1}}\right)=\sum_{i, j, k=1}^{M} C_{i k} \bar{E}_{k j}\left[\operatorname{Orbit}\left(\xi_{j}\right)\right] /\left[\mathcal{U}_{i}\right] \cdot \mathbf{1}_{\mathcal{U}_{i}} \\
& Z_{G}^{\mathrm{rep}}(\boxed{\Omega})\left(\mathbf{1}_{\mathcal{U}_{j}}\right)=\sum_{i, k, \ell, m=1}^{M} C_{i m} C_{j \ell} \bar{F}_{m \ell k} c_{!}\left(\left.Z_{G}^{\mathrm{rep}}(\boxed{\Omega})\left(\mathbf{1}_{\mathcal{U}_{1}}\right)\right|_{\mathcal{U}_{k}}\right) /\left[\mathcal{U}_{i}\right] \cdot \mathbf{1}_{\mathcal{U}_{i}}
\end{aligned}
$$

where now $\bar{E}_{i j}=\left[\left\{A \in \mathbb{U}_{n} \mid\left[A, \xi_{j}\right] \in \overline{\mathcal{U}}_{i}\right\}\right]$, and $\bar{F}_{i j k}$ are the same as for $G=\tilde{\mathbb{T}}_{n}$. Importantly, we still consider the action of $\tilde{\mathbb{T}}_{n}$ on \mathbb{U}_{n} by conjugation so that the orbits and stabilizers, such as $\operatorname{Orbit}\left(\xi_{j}\right)$, remain unchanged. This yields the following theorem.

Theorem 6.2.7. The virtual classes of the \mathbb{U}_{n}-character stacks of Σ_{g} in the Grothendieck ring of stacks for $n=2,3,4,5$ are given by

[^0](i) $\left[\mathfrak{X}_{\mathbb{U}_{2}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{2 g-1}$
(ii) $\left[\mathfrak{X}_{\mathbb{U}_{3}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{4 g-4}(\mathbb{L}-1)+\mathbb{L}^{6 g-4}$
(iii) $\left[\mathfrak{X}_{\mathbb{U}_{4}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{8 g-7}(\mathbb{L}-1)+\mathbb{L}^{10 g-9}(\mathbb{L}-1)(\mathbb{L}+1)+\mathbb{L}^{12 g-9}$
(iv) $\left[\mathfrak{X}_{\mathbb{U}_{5}}\left(\Sigma_{g}\right)\right]=\mathbb{L}^{12 g-12}(\mathbb{L}-1)^{2}+\mathbb{L}^{14 g-13}(\mathbb{L}-1)(2 \mathbb{L}-1)+$ $\mathbb{L}^{16 g-15}(\mathbb{L}-1)(\mathbb{L}+1)(2 \mathbb{L}-1)+\mathbb{L}^{18 g-16}(\mathbb{L}-1)(2 \mathbb{L}+1)+\mathbb{L}^{20 g-16}$.

6.3 Arithmetic method

Let us now consider the arithmetic side of the same story, applying the theory of Section 4.5. That is, we will study the representation theory of the groups \mathbb{T}_{n} and \mathbb{U}_{n} over finite fields \mathbb{F}_{q}, and, in particular, we want to determine the dimensions of the irreducible representations of these finite groups G. We will encode these values in the representation zeta function

$$
\zeta_{G}(s)=\sum_{\chi \in \hat{G}} \chi(1)^{-s}
$$

where \hat{G} denotes the set of irreducible complex characters of G. Theorem 4.5.3 shows that $\zeta_{G}(s)$ contains precisely enough information about the point count of the G-character groupoid of Σ_{g}, since the given equation can be rewritten to

$$
\begin{equation*}
\left|\mathfrak{X}_{G}\left(\Sigma_{g}\right)\right|=|G|^{-\chi\left(\Sigma_{g}\right)} \zeta_{G}\left(-\chi\left(\Sigma_{g}\right)\right), \tag{6.3}
\end{equation*}
$$

where $\chi\left(\Sigma_{g}\right)=2-2 g$ denotes the Euler characteristic of Σ_{g}. Finally, these point counts will turn out to be polynomial in q, so that by Katz' theorem 4.6.1, these polynomials determine the E-polynomials of the character stacks.
The representation zeta functions of these finite groups will be computed algorithmically. Roughly speaking, the algorithm, which we describe below, computes representation zeta functions recursively by decomposing subgroups of \mathbb{T}_{n} as semidirect subgroups $N \rtimes H$ with $H \subseteq \mathbb{T}_{n-1}$ and $N \subseteq \mathbb{G}_{a}^{n-1}$. Hence, let us recall how the representation theory of semidirect products is related to that of its factors.

Semidirect products

Consider a finite group $G=N \rtimes H$, with $N \subseteq G$ an abelian normal subgroup. Following [Ser77, Section 8.2], we describe how the representation theory of G is related to that of N and H. As N is abelian, its irreducible representations are one-dimensional and given by $X=\operatorname{Hom}\left(N, \mathbb{C}^{\times}\right)$. The group H acts on X via

$$
(h \cdot \chi)(n)=\chi\left(h^{-1} n h\right) \quad \text { for all } \chi \in X, h \in H \text { and } n \in N
$$

Let $\left(\chi_{i}\right)_{i \in X / H}$ be a collection of representatives for the orbits in X under H. For each $i \in X / H$, let $H_{i}=\left\{h \in H \mid h \cdot \chi_{i}=\chi_{i}\right\}$ denote the stabilizer of χ_{i}, and let $G_{i}=N \rtimes H_{i} \subseteq G$ be the corresponding subgroup of G. We can extend χ_{i} to G_{i} by setting

$$
\chi_{i}((n, h))=\chi_{i}(n) \quad \text { for all } n \in N \text { and } h \in H_{i}
$$

Indeed, this defines a (1-dimensional) character of G_{i} as

$$
\begin{aligned}
& \chi_{i}\left(\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)\right)=\chi_{i}\left(\left(n_{1}\left(h_{1} n_{2} h_{1}^{-1}\right), h_{1} h_{2}\right)\right) \\
& =\chi_{i}\left(n_{1} h_{1} n_{2} h_{1}^{-1}\right)=\chi_{i}\left(n_{1}\right) \chi_{i}\left(n_{2}\right)=\chi_{i}\left(\left(n_{1}, h_{1}\right)\right) \chi_{i}\left(\left(n_{2}, h_{2}\right)\right)
\end{aligned}
$$

for all $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H_{i}$. Now, any irreducible representation ρ of H_{i} induces a representation $\tilde{\rho}$ of G_{i} by composing with the projection $G_{i} \rightarrow G_{i} / N=$ H_{i}, and we define

$$
\theta_{i, \rho}=\operatorname{Ind}_{G_{i}}^{G}\left(\chi_{i} \otimes \tilde{\rho}\right) .
$$

It turns out that these are precisely all the irreducible representations of G.
Proposition 6.3.1 ([Ser77, Proposition 25]). (i) $\theta_{i, \rho}$ is irreducible.
(ii) If $\theta_{i, \rho}$ is isomorphic to $\theta_{i^{\prime}, \rho^{\prime}}$, then $i=i^{\prime}$ and ρ is isomorphic to ρ^{\prime}.
(iii) Every irreducible representation of G is isomorphic to some $\theta_{i, \rho}$.

In terms of representation zeta functions, this proposition translates to the following corollary, using the fact that $\operatorname{dim}\left(\operatorname{Ind}_{H}^{G}(\rho)\right)=\operatorname{dim}(\rho)[G: H]$.

Corollary 6.3.2. The representation zeta function of G is given by

$$
\zeta_{G}(s)=\sum_{i \in X / H} \zeta_{H_{i}}(s)\left[G: G_{i}\right]^{-s}=\sum_{i \in X / H} \zeta_{H_{i}}(s)\left[H: H_{i}\right]^{-s} .
$$

Decomposing triangles

Consider the group $\mathbb{U}_{n}\left(\mathbb{F}_{q}\right)=\left\{A \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right) \mid A_{i i}=1\right.$ and $A_{i j}=0$ for $\left.i>j\right\}$ of $n \times n$ unipotent upper triangular matrices over a finite field \mathbb{F}_{q}. Let N be the kernel of

$$
\mathbb{U}_{n}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{U}_{n-1}\left(\mathbb{F}_{q}\right), \quad A \mapsto\left(A_{i j}\right)_{i, j=1}^{n-1},
$$

so that the quotient $\mathbb{U}_{n}\left(\mathbb{F}_{q}\right) / N$ is isomorphic to $\mathbb{U}_{n-1}\left(\mathbb{F}_{q}\right)$. Now we have a split exact sequence

$$
1 \longrightarrow N \longrightarrow \mathbb{U}_{n}\left(\mathbb{F}_{q}\right) \longleftrightarrow \mathbb{U}_{n-1}\left(\mathbb{F}_{q}\right) \longrightarrow 1
$$

which yields a semidirect decomposition $\mathbb{U}_{n}\left(\mathbb{F}_{q}\right)=N \rtimes \mathbb{U}_{n-1}\left(\mathbb{F}_{q}\right)$, where N is abelian. Moreover, for any unipotent subgroup $U \subseteq \mathbb{U}_{n}\left(\mathbb{F}_{q}\right)$, the above exact sequence can be intersected with U to obtain

$$
1 \longrightarrow U \cap N \longrightarrow U \longleftrightarrow \mathbb{U}_{n-1}\left(\mathbb{F}_{q}\right) \longrightarrow 1
$$

yielding a semidirect decomposition $U=(U \cap N) \rtimes\left(U \cap \mathbb{U}_{n-1}\left(\mathbb{F}_{q}\right)\right)$.
We identify $N \cong \mathbb{G}_{a}^{n-1}\left(\mathbb{F}_{q}\right)=\mathbb{F}_{q}^{n-1}$, where \mathbb{F}_{q} as additive group is equal to $(\mathbb{Z} / p \mathbb{Z})^{m}$ for $q=p^{m}$. The irreducible characters $\chi_{\alpha} \in X=\operatorname{Hom}\left(N, \mathbb{C}^{\times}\right)$of N can now also be identified with vectors $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{F}_{q}^{n-1}$, via

$$
\chi_{\alpha}(x)=\zeta_{p}^{\langle\alpha, x\rangle} \quad \text { for all } x \in N
$$

where ζ_{p} is a primitive $p^{\text {th }}$ root of unity, and $\langle-,-\rangle$ denotes the trace form given by $\langle\alpha, x\rangle=\sum_{i=1}^{n-1} \operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}\left(\alpha_{i} x_{i}\right) \in \mathbb{F}_{p}$, which is a non-degenerate bilinear form. Since $\mathbb{U}_{n-1}\left(\mathbb{F}_{q}\right)$ acts on $N \cong \mathbb{F}_{q}^{n-1}$ by left multiplication, it acts on $X \cong \mathbb{F}_{q}^{n-1}$ by right multiplication, because $\langle\alpha A, x\rangle=\langle\alpha, A x\rangle$ for all $\alpha, x \in \mathbb{F}_{q}^{n-1}$ and $A \in$ $\mathrm{GL}_{n-1}\left(\mathbb{F}_{q}\right)$.
From now on, to unclutter the notation, we will omit the field \mathbb{F}_{q} from the group, simply writing G instead of $G\left(\mathbb{F}_{q}\right)$, and \mathbb{U}_{n} instead of $\mathbb{U}_{n}\left(\mathbb{F}_{q}\right)$, etc.

Example 6.3.3. Consider the group $\mathbb{U}_{3} \cong \mathbb{G}_{a}^{2} \rtimes \mathbb{U}_{2}$. As discussed above, $H=\mathbb{U}_{2}$ acts on $X=\operatorname{Hom}\left(\mathbb{G}_{a}^{2}, \mathbb{C}^{\times}\right) \cong \mathbb{G}_{a}^{2}$ by right-multiplication, that is,

$$
\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta+a \alpha
\end{array}\right) \quad \text { for all }\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \in H \text { and }\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right) \in X
$$

Hence, the orbits in X under H are given by $\left\{(\alpha \beta): \beta \in \mathbb{F}_{q}\right\}$ for all $\alpha \in \mathbb{F}_{q}^{\times}$ and $\left\{\left(\begin{array}{ll}0 & \beta\end{array}\right)\right\}$ for all $\beta \in \mathbb{F}_{q}$. We choose the following representatives:

- $\chi_{\alpha}=\left(\begin{array}{ll}\alpha & 0\end{array}\right)$, for which $H_{\alpha}=\{1\}$, so the contribution to the zeta function is

$$
(q-1) \zeta_{\{1\}}(s)\left[H: H_{\alpha}\right]^{-s}=(q-1) q^{-s}
$$

- $\chi_{\beta}=\left(\begin{array}{ll}0 & \beta\end{array}\right)$, for which $H_{\beta}=\mathbb{U}_{2}$, so the contribution to the zeta function is

$$
q \zeta_{\mathbb{U}_{2}}(s)\left[H: H_{\beta}\right]^{-s}=q^{2} .
$$

Adding up the contributions, it follows from Corollary 6.3.2 that $\zeta_{\mathbb{U}_{3}}(s)=q^{2}+$ $(q-1) q^{-s}$.

Example 6.3.4. Consider $\mathbb{U}_{4} \cong \mathbb{G}_{a}^{3} \rtimes \mathbb{U}_{3}$, for which $X=\operatorname{Hom}\left(\mathbb{G}_{a}^{3}, \mathbb{C}^{\times}\right) \cong \mathbb{G}_{a}^{3}$, and $H=\mathbb{U}_{3}$ acts on $\left(\begin{array}{lll}\alpha & \beta & \gamma\end{array}\right) \in X$ by right-multiplication, that is,

$$
\left(\begin{array}{lll}
\alpha & \beta & \gamma
\end{array}\right)\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
\alpha & \beta+a \alpha & \gamma+b \alpha+c \beta
\end{array}\right)
$$

Hence, the orbits in X under H are given by $\left.\left\{\begin{array}{lll}\alpha & \beta & \gamma\end{array}\right): \beta, \gamma \in \mathbb{F}_{q}\right\}$ for all $\alpha \in \mathbb{F}_{q}^{\times},\left\{\left(\begin{array}{lll}0 & \beta & \gamma\end{array}\right): \gamma \in \mathbb{F}_{q}\right\}$ for all $\beta \in \mathbb{F}_{q}^{\times}$, and $\left\{\left(\begin{array}{lll}0 & 0 & \gamma\end{array}\right)\right\}$ for all $\gamma \in \mathbb{F}_{q}$. We choose the following representatives:

- $\chi_{\alpha}=\left(\begin{array}{lll}\alpha & 0 & 0\end{array}\right)$ with $H_{\alpha} \cong \mathbb{G}_{a}$, contributing

$$
(q-1) \zeta_{\mathbb{G}_{\alpha}}(s)\left[H: H_{\alpha}\right]^{-s}=q^{1-2 s}(q-1) .
$$

- $\chi_{\beta}=\left(\begin{array}{lll}0 & \beta & 0\end{array}\right)$ with $H_{\beta} \cong \mathbb{G}_{a}^{2}$, contributing

$$
(q-1) \zeta_{\mathbb{G}_{a}^{2}}(s)\left[H: H_{\beta}\right]^{-s}=q^{2-s}(q-1)
$$

- $\chi_{\gamma}=\left(\begin{array}{lll}0 & 0 & \gamma\end{array}\right)$ with $H_{\gamma}=\mathbb{U}_{3}$, contributing

$$
q \zeta_{\mathbb{U}_{3}}(s)\left[H: H_{\gamma}\right]^{-s}=q^{3}+(q-1) q^{1-s} .
$$

In total, $\zeta_{\mathbb{U}_{4}}(s)=q^{3}+q^{1-s}(q-1)(q+1)+q^{1-2 s}(q-1)$.
The construction as described above can be applied more generally to any connected algebraic subgroup $G \subseteq \mathbb{T}_{n}$ as follows. Let G^{\prime} be the image of the map $G \rightarrow \tilde{\mathbb{T}}_{n}$ given by $A \mapsto A / A_{n n}$. Then either $G \cong G^{\prime}$ or $G \cong \mathbb{G}_{m} \times G^{\prime}$, because the only connected subgroups of \mathbb{G}_{m} are $\{1\}$ and \mathbb{G}_{m} itself. Since $\zeta_{\mathbb{G}_{m}}(s)=q-1$ is known, we may assume $G \subseteq \tilde{\mathbb{T}}_{n}$. The group $\tilde{\mathbb{T}}_{n}$ can be decomposed, similar to \mathbb{U}_{n}, as

$$
1 \longrightarrow \mathbb{G}_{a}^{n-1} \longrightarrow \tilde{\mathbb{T}}_{n} \longleftrightarrow \mathbb{T}_{n-1} \longrightarrow 1,
$$

where the map $\tilde{\mathbb{T}}_{n} \rightarrow \mathbb{T}_{n-1}$ is given by $A \mapsto\left(A_{i j}\right)_{i, j=1}^{n-1}$. Intersecting with G, we obtain $G=N \rtimes H$ with $N=G \cap \mathbb{G}_{a}^{n-1}$ abelian and $H=G \cap \mathbb{T}_{n-1}$, to which we can apply Corollary 6.3.2.

Example 6.3.5. Consider $G=\mathbb{T}_{2} \cong \mathbb{G}_{m} \times \tilde{\mathbb{T}}_{2}$ with $\tilde{\mathbb{T}}_{2} \cong \mathbb{G}_{a} \rtimes \mathbb{G}_{m}$, for which $X=\operatorname{Hom}\left(\mathbb{G}_{a}, \mathbb{C}^{\times}\right) \cong \mathbb{G}_{a}$ and $H=\mathbb{G}_{m}$ acts on $\alpha \in X$ by multiplication. Hence, the orbits in X under H are given by $\{0\}$ and $\left\{\alpha: \alpha \in \mathbb{F}_{q}^{\times}\right\}$. We choose the following representatives:

- $\chi_{0}=0$ yields $H_{0}=\mathbb{G}_{m}$, contributing $\zeta_{\mathbb{G}_{m}}(s)=q-1$,
- $\chi_{1}=1$ yields $H_{1}=\{1\}$, contributing $(q-1)^{-s}$.

In total,

$$
\zeta_{\mathbb{T}_{2}}(s)=\zeta_{\mathbb{G}_{m}}(s) \zeta_{\tilde{\mathbb{T}}_{2}}(s)=(q-1)\left((q-1)+(q-1)^{-s}\right)=(q-1)^{2}+(q-1)^{1-s} .
$$

These examples illustrate how one computes the representation zeta function in a recursive manner using Proposition 6.3.1. Note that in all examples, the stabilizers H_{α} of χ_{α} are independent of α (and similarly for $H_{\beta}, H_{\gamma}, \ldots$). However, the following example shows that this need not always be the case: we obtain a family of stabilizers $H_{\alpha, \beta}$ which depend explicitly on the parameters α and β.
Example 6.3.6. Consider $G=\mathbb{G}_{a}^{3} \rtimes H$ with $H=\left\{\left(\begin{array}{ccc}1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right)\right\}$ acting naturally on \mathbb{G}_{a}^{3}. Then H acts on $X=\operatorname{Hom}\left(\mathbb{G}_{a}^{3}, \mathbb{C}^{\times}\right) \cong \mathbb{G}_{a}^{3}$ by

$$
\left(\begin{array}{lll}
\alpha & \beta & \gamma
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
\alpha & \beta & \gamma+a \alpha+b \beta
\end{array}\right)
$$

Hence, the orbits in X under H are given by $\left\{\left(\begin{array}{lll}0 & 0 & \gamma\end{array}\right)\right\}$ for all $\gamma \in \mathbb{F}_{q}$ and $\left\{\left(\begin{array}{lll}\alpha & \beta & \gamma\end{array}\right): \gamma \in \mathbb{F}_{q}\right\}$ for all $\alpha, \beta \in \mathbb{F}_{q}$ with $(\alpha, \beta) \neq(0,0)$. We choose the following representatives:

- $\chi_{\gamma}=\left(\begin{array}{lll}0 & 0 & \gamma\end{array}\right)$ with $H_{\gamma}=H$, contributing $q \zeta_{H}(s)=q^{3}$,
- $\chi_{\alpha, \beta}=\left(\begin{array}{lll}\alpha & \beta & 0\end{array}\right)$ with $H_{\alpha, \beta}=\left\{\left(\begin{array}{ccc}1 & 0 & x \beta \\ 0 & 1 & -x \alpha \\ 0 & 0 & 1\end{array}\right): x \in \mathbb{F}_{q}\right\}$. Note that $H_{\alpha, \beta}$ depends explicitly on α and β, even though $H_{\alpha, \beta} \cong \mathbb{G}_{a}$ for all α and β. These representatives contribute

$$
\left(q^{2}-1\right) \zeta_{\mathbb{G}_{a}}(s)\left[H: H_{\alpha, \beta}\right]^{-s}=q^{1-s}(q-1)(q+1)
$$

In total, $\zeta_{G}(s)=q^{3}+q^{1-s}(q-1)(q+1)$.

Algorithmically computing $\zeta_{G}(s)$

Now we will describe an algorithm to compute $\zeta_{G}(s)$ for connected algebraic groups $G \subseteq \mathbb{T}_{n}$, in the style of examples 6.3.3, 6.3.4 and 6.3.6. An implementation of this algorithm can be found at [Vog22], together with the code for computing $\zeta_{\mathbb{U}_{n}}(s)$ and $\zeta_{\mathbb{T}_{n}}(s)$ for $n=1, \ldots, 10$. The resulting zeta functions are given in Theorem 6.3.11 and Theorem 6.3.10.
Before discussing the algorithm, let us give some remarks.
The algorithm is divided into two parts. The main part, Algorithm 6.3.7, finds a semidirect decomposition $G \cong N \rtimes H$ and applies Corollary 6.3.2 in order to
compute $\zeta_{G}(s)$. Finding representatives for the orbits in X under H is a more intricate step, and is described separately in Algorithm 6.3.8.
As highlighted in Example 6.3.6, it is possible for the stabilizers H_{α} to depend explicitly on the parameter α. Therefore, in order for the algorithm to work recursively, we allow the input of the algorithm to be a family G of algebraic groups $G_{t} \subseteq \mathbb{T}_{n}$ parametrized by a variety T over \mathbb{F}_{q}, that is, a subgroup $G \subseteq$ $\mathbb{T}_{n} \times T$ over T. We then understand the representation zeta function of G to be

$$
\zeta_{G}(s)=\sum_{t \in T\left(\mathbb{F}_{q}\right)} \zeta_{G_{t}}(s)
$$

As we want the computations to hold over general a ground field \mathbb{F}_{q}, we will in practice work over \mathbb{Z}. Then $\left|T\left(\mathbb{F}_{q}\right)\right|$ can be computed as a polynomial in q whenever $[T] \in \mathrm{K}_{0}\left(\operatorname{Var}_{\mathbb{Z}}\right)$ can be computed as a polynomial in $q=\left[\mathbb{A}_{\mathbb{Z}}^{1}\right]$ using Algorithm 3.4.3.
There are steps in the algorithm containing conditions that depend on the value of $t \in T$. At such steps, we stratify T into the stratum where the condition holds and the stratum where it does not hold, and continue the algorithm on both strata separately.

Algorithm 6.3.7. Input: A family of connected algebraic groups $G \subseteq \mathbb{T}_{n} \times T$ over a variety T.

Output: The representation zeta function $\zeta_{G}(s)$ as a polynomial in q, q^{-s} and $(q-1)^{-s}$.

1. If $n=0$, then G is trivial, so that $\zeta_{G}(s)=\left|T\left(\mathbb{F}_{q}\right)\right|$. Hence, we can assume $n \geq 1$.
2. Since G is connected, the image of the map $G \rightarrow \mathbb{G}_{m}^{n} \times T$ given by $(A, t) \mapsto$ $\left(\left(A_{i i}\right)_{i=1}^{n}, t\right)$ is isomorphic to $\mathbb{G}_{m}^{d} \times T$ for some $0 \leq d \leq n$, at least locally on T, so after stratifying T we can assume this to be the case. If $d=n$, then there is an isomorphism $G \cong \mathbb{G}_{m} \times G^{\prime}$ with $G^{\prime} \subseteq \tilde{\mathbb{T}}_{n} \times T$ given by $(A, t) \mapsto\left(A_{n n},\left(A / A_{n n}, t\right)\right)$, so that $\zeta_{G}(s)=(q-1) \zeta_{G^{\prime}}(s)$. If $d<n$, then $G \cong G^{\prime} \subseteq \tilde{\mathbb{T}}_{n}$ via the map $A \mapsto A / A_{n n}$. Either way, we can assume $G \subseteq$ $\tilde{\mathbb{T}}_{n} \times T$.
3. Write $G=N \rtimes H$ as discussed above. The group $H \subseteq \mathbb{T}_{n-1} \times T$ can be obtained as the group of minors $H=\left\{\left(\left(A_{i j}\right)_{i, j=1}^{n-1}, t\right):(A, t) \in G\right\}$, and N can be obtained as the closed subgroup of G given by $A_{i j}=0$ for $1 \leq i<$ $j \leq n-1$ and $A_{i i}=1$ for $1 \leq i \leq n-1$.
4. Identify $N \cong \mathbb{G}_{a}^{r} \times T$ for some $0 \leq r \leq n-1$, possibly after stratifying T. Consider induced action of H on the space of characters $X=\operatorname{Hom}_{T}\left(N, \mathbb{G}_{m} \times\right.$ $T) \cong \mathbb{G}_{a}^{r} \times T$.
5. Use Algorithm 6.3 .8 to find families of representatives $\chi_{i}: T_{i} \rightarrow X$, parametrized by varieties T_{i} over T, for the orbits in X under H, together with their stabilizer $H_{i} \subseteq H \times_{T} T_{i}$ over T_{i} and index $\left[H \times_{T} T_{i}: H_{i}\right]$.
6. Repeat the algorithm to compute $\zeta_{H_{i}}(s)$ for all i, from which $\zeta_{G}(s)$ can be computed using Corollary 6.3.2.

Algorithm 6.3.8. Input: A family of connected algebraic groups $H \subseteq \mathbb{T}_{n} \times T$ over a variety T, acting linearly on a subvariety $X \subseteq \mathbb{G}_{a}^{r} \times T$ over T. Write $\alpha_{1}, \ldots, \alpha_{r}$ for the coordinates on \mathbb{G}_{a}^{r}.
Output: A stratification of X by H-invariant locally closed subvarieties X_{i}; families of representatives $\chi_{i}: T_{i} \rightarrow X_{i}$ with T_{i} varieties over T; the stabilizers $H_{i} \subseteq H \times_{T} T_{i}$ of the χ_{i}; such that the index [$H \times_{T} T_{i}: H_{i}$] is polynomial in q.

1. Repeat steps 2 and 3 until H acts trivially on X. Then $\chi:=\operatorname{id}_{X}: X \rightarrow X$ is a family of representatives, with stabilizer $H \times_{T} X$ and index [$H \times_{T} X$: $\left.H \times_{T} X\right]=1$. If both step 2 and 3 do not apply, fail.
2. If $\alpha_{i} \stackrel{H}{\mapsto} a \alpha_{i}$ for some coordinate a on H, then a must be a diagonal entry of H. Stratify X based on α_{i} :
(i) Case $\alpha_{i}=0$. Continue with the action of H restricted to the closed subvariety $X^{\prime}=X \cap\left\{\alpha_{i}=0\right\}$.
(ii) Case $\alpha_{i} \neq 0$. By choosing representatives with $\alpha_{i}=1$, we can replace X by $X^{\prime}=X \cap\left\{\alpha_{i}=1\right\}$ and H by $H^{\prime}=H \cap\{a=1\}$. Continue with the action of H^{\prime} on X^{\prime}, and keep track of the index $\left[H: H^{\prime}\right]=q-1$. In the end, compose the families of representatives $\chi_{i}^{\prime}: T_{i} \rightarrow X_{i}^{\prime}$ with the inclusion $X_{i}^{\prime} \rightarrow X_{i}=H \cdot X_{i}^{\prime}$.
3. Write $\alpha_{i} \stackrel{H}{\mapsto} \sum_{j} a_{j} f_{j}$, where a_{j} are coordinates on H and f_{j} are functions on X which are not identically zero. If some f_{ℓ} is invariant under the action of H, then stratify X based on f_{ℓ} :
(i) Case $f_{\ell}=0$. Continue with the action of H restricted to the closed subvariety $X^{\prime}=X \cap\left\{f_{\ell}=0\right\}$.
(ii) Case $f_{\ell} \neq 0$. By choosing representatives with $\alpha_{i}=0$, we can replace X by $X^{\prime}=X \cap\left\{\alpha_{i}=0, f_{\ell} \neq 0\right\}$ and H by $H^{\prime}=H \cap\left\{a_{\ell}=\right.$ $\left.-f_{\ell}^{-1} \sum_{j \neq \ell} a_{j} f_{j}\right\}$. Continue with the action of H^{\prime} on X^{\prime}, and keep
track of the index $\left[H: H^{\prime}\right]=q-1$. In the end, compose the families of representatives $\chi_{i}^{\prime}: T_{i} \rightarrow X_{i}^{\prime}$ with the inclusion $X_{i}^{\prime} \rightarrow X_{i}=H \cdot X_{i}^{\prime}$.

Remark 6.3.9. Unfortunately, this algorithm might possibly fail. In fact, if this algorithm were to never fail, then the representation zeta function $\zeta_{G}(s)$ is always a polynomial in q, q^{-s} and $(q-1)^{-s}$. Then, evaluating at $s=0$, this would imply that the number of conjugacy classes of G is a polynomial in q. In particular, this would imply Higman's Conjecture [PS15, Conjecture 1.1]. For us, the algorithm does not fail when applied to $G=\mathbb{U}_{n}$ or $G=\mathbb{T}_{n}$ for $n=1, \ldots, 10$.

Results

The representation zeta functions of \mathbb{U}_{n} and \mathbb{T}_{n} were computed using Algorithm 6.3.7, and are presented in Theorem 6.3.10 and Theorem 6.3.11 below. One can evaluate these zeta functions at $s=0$ in order to obtain the number of conjugacy classes of the groups over finite fields \mathbb{F}_{q}. For $G=\mathbb{U}_{n}$, the resulting polynomials in q can be seen to agree with [PS15, Appendix A], where $t=q-1$. In this sense, these zeta functions are a generalization of the polynomials $k\left(\mathbb{U}_{n}\left(\mathbb{F}_{q}\right)\right)$ as in [PS15]. Furthermore, the E-polynomials of $R_{\mathbb{U}_{n}}\left(\Sigma_{g}\right)$ and $R_{\mathbb{T}_{n}}\left(\Sigma_{g}\right)$ over $k=\mathbb{C}$ can be obtained through Theorem 4.6.1 and (6.3). Indeed, one can verify that for $1 \leq n \leq 5$ these E-polynomials agree with the virtual classes as given by Theorem 6.2.6 and Theorem 6.2.7, via the map (3.6).

Theorem 6.3.10. The representation zeta functions $\zeta_{\mathbb{U}_{n}}(s)$ for $n=1, \ldots, 10$ are given by
(i) $\zeta_{\mathbb{U}_{1}}(s)=1$
(ii) $\zeta_{\mathrm{U}_{2}}(s)=q$
(iii) $\zeta_{\mathbb{U}_{3}}(s)=q^{-s}(q-1)+q^{2}$
(iv) $\zeta_{\mathbb{U}_{4}}(s)=q^{1-s}(q-1)(q+1)+q^{1-2 s}(q-1)+q^{3}$
(v) $\zeta_{\mathrm{U}_{5}}(s)=q^{1-2 s}(q-1)(q+1)(2 q-1)+q^{2-s}(q-1)(2 q+1)+q^{1-3 s}(q-1)(2 q-1)+q^{-4 s}(q-$ 1) ${ }^{2}+q^{4}$
(vi) $\zeta_{\mathbb{U}_{6}}(s)=q^{2-2 s}(q-1)(q+2)\left(q^{2}+q-1\right)+q^{2-3 s}(q-1)(q+1)(4 q-3)+q^{-4 s}(q-1)\left(2 q^{2}-\right.$ 1) $\left(q^{2}+q-1\right)+q^{3-s}(q-1)(3 q+1)+q^{1-5 s}(q-1)^{2}(2 q+1)+q^{1-6 s}(q-1)^{2}+q^{5}$
(vii) $\zeta_{\mathbb{U}_{7}}(s)=q^{3-2 s}(q-1)(q+1)\left(2 q^{2}+3 q-3\right)+q^{1-4 s}(q-1)(2 q-1)\left(q^{4}+5 q^{3}-3 q-1\right)+$ $q^{4-s}(q-1)(4 q+1)+q^{2-3 s}(q-1)\left(3 q^{4}+6 q^{3}-2 q^{2}-5 q+1\right)+q^{1-5 s}(q-1)\left(q^{5}+7 q^{4}-\right.$ $\left.2 q^{3}-9 q^{2}+3 q+1\right)+q^{1-6 s}(q-1)^{2}\left(4 q^{3}+7 q^{2}-3 q-1\right)+q^{1-8 s}(q-1)^{2}(3 q-2)+q^{-7 s}(q-$ $1)^{2}\left(5 q^{3}-3 q+1\right)+q^{-9 s}(q-1)^{3}+q^{6}$
(viii) $\zeta_{\mathbb{U}_{8}}(s)=q^{4-2 s}(q-1)(3 q+2)\left(q^{2}+2 q-2\right)+q^{5-s}(q-1)(5 q+1)+q^{3-3 s}(q-1)\left(q^{5}+\right.$ $\left.5 q^{4}+10 q^{3}-7 q^{2}-8 q+3\right)+q^{3-6 s}(q-1)\left(q^{5}+7 q^{4}+16 q^{3}-24 q^{2}-14 q+15\right)+q^{2-4 s}(q-$ 1) $\left(12 q^{5}+9 q^{4}-16 q^{3}-9 q^{2}+6 q+1\right)+q^{1-5 s}(q-1)\left(2 q^{7}+8 q^{6}+13 q^{5}-23 q^{4}-9 q^{3}+12 q^{2}-\right.$ 1) $+q^{1-7 s}(q-1)^{2}\left(6 q^{5}+18 q^{4}+4 q^{3}-19 q^{2}+q+3\right)+q^{1-8 s}(q-1)^{2}\left(q^{5}+13 q^{4}+8 q^{3}-\right.$ $\left.14 q^{2}-4 q+3\right)+q^{1-11 s}(q-1)^{3}(3 q+1)+q^{-9 s}(q-1)^{2}\left(4 q^{5}+10 q^{4}-7 q^{3}-8 q^{2}+3 q+1\right)+$ $q^{-10 s}(q-1)^{2}\left(5 q^{4}+q^{3}-6 q^{2}+1\right)+q^{1-12 s}(q-1)^{3}+q^{7}$
(ix) $\quad \zeta_{\mathbb{U}_{9}}(s)=q^{5-2 s}(q-1)(2 q+1)\left(2 q^{2}+5 q-5\right)+q^{6-s}(q-1)(6 q+1)+q^{4-3 s}(q-1)\left(2 q^{5}+9 q^{4}+\right.$ $\left.14 q^{3}-15 q^{2}-11 q+6\right)+q^{4-4 s}(q-1)\left(4 q^{5}+19 q^{4}+11 q^{3}-34 q^{2}-10 q+14\right)+q^{2-5 s}(q-1)\left(q^{8}+\right.$ $\left.5 q^{7}+29 q^{6}+q^{5}-53 q^{4}-2 q^{3}+27 q^{2}-3 q-2\right)+q^{2-6 s}(q-1)\left(10 q^{7}+33 q^{6}-9 q^{5}-68 q^{4}+10 q^{3}+\right.$ $\left.38 q^{2}-11 q-1\right)+q^{1-7 s}(q-1)\left(2 q^{9}+8 q^{8}+27 q^{7}+2 q^{6}-87 q^{5}+20 q^{4}+46 q^{3}-15 q^{2}-3 q+\right.$ 1) $+q^{1-8 s}(q-1)^{2}\left(9 q^{7}+33 q^{6}+40 q^{5}-45 q^{4}-40 q^{3}+21 q^{2}+5 q-1\right)+q^{1-9 s}(q-1)^{2}\left(2 q^{7}+\right.$ $\left.30 q^{6}+42 q^{5}-44 q^{4}-48 q^{3}+25 q^{2}+7 q-1\right)+q^{1-11 s}(q-1)^{2}\left(4 q^{6}+25 q^{5}+5 q^{4}-48 q^{3}+\right.$ $\left.7 q^{2}+9 q+1\right)+q^{1-12 s}(q-1)^{2}\left(10 q^{5}+18 q^{4}-32 q^{3}-10 q^{2}+18 q-3\right)+q^{1-15 s}(q-1)^{3}(4 q-$ $3)+q^{-10 s}(q-1)^{2}\left(2 q^{8}+13 q^{7}+38 q^{6}-24 q^{5}-49 q^{4}+20 q^{3}+11 q^{2}-3 q-1\right)+q^{-13 s}(q-$ $1)^{3}\left(12 q^{4}+10 q^{3}-13 q^{2}+q+1\right)+q^{-14 s}(q-1)^{3}\left(9 q^{3}-2 q^{2}-5 q+2\right)+q^{-16 s}(q-1)^{4}+q^{8}$
(x) $\zeta_{\mathbb{U}_{10}}(s)=q^{6-2 s}(q-1)(5 q+2)\left(q^{2}+3 q-3\right)+q^{7-s}(q-1)(7 q+1)+q^{5-3 s}(q-1)\left(3 q^{5}+15 q^{4}+\right.$ $\left.19 q^{3}-28 q^{2}-13 q+10\right)+q^{4-4 s}(q-1)\left(q^{7}+7 q^{6}+32 q^{5}+12 q^{4}-65 q^{3}-6 q^{2}+27 q-3\right)+$ $q^{3-5 s}(q-1)\left(2 q^{8}+21 q^{7}+42 q^{6}-16 q^{5}-103 q^{4}+24 q^{3}+50 q^{2}-13 q-3\right)+q^{2-6 s}(q-1)\left(6 q^{9}+\right.$ $\left.27 q^{8}+64 q^{7}-73 q^{6}-118 q^{5}+64 q^{4}+70 q^{3}-39 q^{2}+q+1\right)+q^{2-7 s}(q-1)\left(2 q^{10}+5 q^{9}+39 q^{8}+\right.$ $\left.74 q^{7}-130 q^{6}-133 q^{5}+128 q^{4}+74 q^{3}-60 q^{2}+2 q+1\right)+q^{2-8 s}(q-1)\left(q^{10}+12 q^{9}+39 q^{8}+\right.$ $\left.67 q^{7}-137 q^{6}-172 q^{5}+200 q^{4}+63 q^{3}-80 q^{2}+2 q+6\right)+q^{2-9 s}(q-1)^{2}\left(10 q^{8}+65 q^{7}+117 q^{6}-\right.$ $\left.36 q^{5}-221 q^{4}+18 q^{3}+98 q^{2}-11 q-6\right)+q^{1-11 s}(q-1)^{2}\left(6 q^{9}+31 q^{8}+109 q^{7}+8 q^{6}-240 q^{5}-\right.$ $\left.10 q^{4}+135 q^{3}-17 q^{2}-8 q-1\right)+q^{1-12 s}(q-1)^{2}\left(2 q^{9}+22 q^{8}+77 q^{7}+46 q^{6}-217 q^{5}-48 q^{4}+\right.$ $\left.156 q^{3}-12 q^{2}-20 q+1\right)+q^{1-13 s}(q-1)^{2}\left(10 q^{8}+50 q^{7}+60 q^{6}-138 q^{5}-110 q^{4}+146 q^{3}+8 q^{2}-\right.$ $25 q+2)+q^{1-15 s}(q-1)^{3}\left(4 q^{6}+42 q^{5}+46 q^{4}-51 q^{3}-44 q^{2}+23 q+5\right)+q^{1-19 s}(q-1)^{4}(4 q+$ $1)+q^{-10 s}(q-1)^{2}\left(2 q^{11}+8 q^{10}+50 q^{9}+112 q^{8}-29 q^{7}-227 q^{6}+17 q^{5}+123 q^{4}-24 q^{3}-\right.$ $\left.12 q^{2}+q+1\right)+q^{-14 s}(q-1)^{2}\left(2 q^{9}+24 q^{8}+53 q^{7}-52 q^{6}-127 q^{5}+84 q^{4}+49 q^{3}-32 q^{2}-3 q+\right.$ $3)+q^{-16 s}(q-1)^{3}\left(10 q^{6}+37 q^{5}-9 q^{4}-42 q^{3}+6 q^{2}+10 q-1\right)+q^{-17 s}(q-1)^{3}\left(12 q^{5}+14 q^{4}-\right.$ $\left.21 q^{3}-8 q^{2}+6 q+1\right)+q^{-18 s}(q-1)^{3}\left(9 q^{4}-q^{3}-9 q^{2}+q+1\right)+q^{1-20 s}(q-1)^{4}+q^{9}$.

Theorem 6.3.11. The representation zeta functions $\zeta_{\mathbb{T}_{n}}(s)$ for $n=1, \ldots, 10$ are given by
(i) $\zeta_{\mathbb{T}_{1}}(s)=q-1$
(ii) $\zeta_{\mathbb{T}_{2}}(s)=(q-1)^{1-s}+(q-1)^{2}$
(iii) $\zeta_{\mathbb{T}_{3}}(s)=q^{-s}(q-1)^{2-s}+2(q-1)^{2-s}+(q-1)^{1-2 s}+(q-1)^{3}$
(iv) $\zeta_{\mathbb{T}_{4}}(s)=3 q^{-s}(q-1)^{2-2 s}+2 q^{-s}(q-1)^{3-s}+q^{-2 s}(q-1)^{3-s}+q^{-2 s}(q-1)^{2-2 s}+q^{-s}(q-$ $1)^{1-3 s}+3(q-1)^{3-s}+3(q-1)^{2-2 s}+(q-1)^{1-3 s}+(q-1)^{4}$
(v) $\zeta_{\mathbb{T}_{5}}(s)=8 q^{-s}(q-1)^{3-2 s}+7 q^{-2 s}(q-1)^{3-2 s}+7 q^{-2 s}(q-1)^{2-3 s}+7 q^{-s}(q-1)^{2-3 s}+$ $3 q^{-3 s}(q-1)^{3-2 s}+3 q^{-s}(q-1)^{4-s}+2 q^{-2 s}(q-1)^{4-s}+2 q^{-2 s}(q-1)^{1-4 s}+2 q^{-3 s}(q-$ $1)^{2-3 s}+2 q^{-s}(q-1)^{1-4 s}+q^{-3 s}(q-1)^{4-s}+q^{-4 s}(q-1)^{3-2 s}+6(q-1)^{3-2 s}+4(q-$ 1) $)^{4-s}+4(q-1)^{2-3 s}+(q-1)^{1-4 s}+(q-1)^{5}$
(vi) $\zeta_{\mathbb{T}_{6}}(s)=q^{-2 s}(q-1)^{1-5 s}(q+7)+29 q^{-2 s}(q-1)^{3-3 s}+24 q^{-3 s}(q-1)^{3-3 s}+23 q^{-2 s}(q-$ $1)^{2-4 s}+21 q^{-s}(q-1)^{3-3 s}+17 q^{-3 s}(q-1)^{2-4 s}+16 q^{-2 s}(q-1)^{4-2 s}+15 q^{-4 s}(q-1)^{3-3 s}+$ $15 q^{-s}(q-1)^{4-2 s}+13 q^{-3 s}(q-1)^{4-2 s}+13 q^{-s}(q-1)^{2-4 s}+10 q^{-4 s}(q-1)^{2-4 s}+7 q^{-4 s}(q-$ $1)^{4-2 s}+5 q^{-5 s}(q-1)^{3-3 s}+4 q^{-3 s}(q-1)^{1-5 s}+4 q^{-s}(q-1)^{5-s}+3 q^{-2 s}(q-1)^{5-s}+$ $3 q^{-5 s}(q-1)^{4-2 s}+3 q^{-s}(q-1)^{1-5 s}+2 q^{-3 s}(q-1)^{5-s}+2 q^{-4 s}(q-1)^{1-5 s}+2 q^{-5 s}(q-$ $1)^{2-4 s}+q^{-4 s}(q-1)^{5-s}+q^{-6 s}(q-1)^{4-2 s}+q^{-6 s}(q-1)^{3-3 s}+10(q-1)^{4-2 s}+10(q-$ $1)^{3-3 s}+5(q-1)^{5-s}+5(q-1)^{2-4 s}+(q-1)^{1-5 s}+(q-1)^{6}$
(vii) $\zeta_{\mathbb{T}_{7}}(s)=2 q^{-4 s}(q-1)^{1-6 s}(q+8)+q^{-2 s}(q-1)^{2-5 s}(2 q+53)+q^{-2 s}(q-1)^{1-6 s}(2 q+13)+$ $q^{-3 s}(q-1)^{2-5 s}(2 q+71)+q^{-3 s}(q-1)^{1-6 s}(3 q+19)+q^{-4 s}(q-1)^{2-5 s}(3 q+67)+q^{-5 s}(q-$ $1)^{1-6 s}(q+12)+107 q^{-3 s}(q-1)^{3-4 s}+104 q^{-4 s}(q-1)^{3-4 s}+87 q^{-2 s}(q-1)^{3-4 s}+79 q^{-3 s}(q-$ $1)^{4-3 s}+73 q^{-4 s}(q-1)^{4-3 s}+73 q^{-5 s}(q-1)^{3-4 s}+71 q^{-2 s}(q-1)^{4-3 s}+49 q^{-5 s}(q-1)^{4-3 s}+$ $48 q^{-5 s}(q-1)^{2-5 s}+46 q^{-s}(q-1)^{4-3 s}+44 q^{-s}(q-1)^{3-4 s}+42 q^{-6 s}(q-1)^{3-4 s}+30 q^{-6 s}(q-$ $1)^{4-3 s}+28 q^{-2 s}(q-1)^{5-2 s}+27 q^{-3 s}(q-1)^{5-2 s}+24 q^{-s}(q-1)^{5-2 s}+23 q^{-6 s}(q-1)^{2-5 s}+$ $22 q^{-4 s}(q-1)^{5-2 s}+21 q^{-s}(q-1)^{2-5 s}+15 q^{-7 s}(q-1)^{3-4 s}+13 q^{-5 s}(q-1)^{5-2 s}+12 q^{-7 s}(q-$ $1)^{4-3 s}+7 q^{-6 s}(q-1)^{5-2 s}+5 q^{-7 s}(q-1)^{2-5 s}+5 q^{-s}(q-1)^{6-s}+4 q^{-2 s}(q-1)^{6-s}+4 q^{-6 s}(q-$ $1)^{1-6 s}+4 q^{-8 s}(q-1)^{4-3 s}+4 q^{-s}(q-1)^{1-6 s}+3 q^{-3 s}(q-1)^{6-s}+3 q^{-7 s}(q-1)^{5-2 s}+3 q^{-8 s}(q-$ $1)^{3-4 s}+2 q^{-4 s}(q-1)^{6-s}+q^{-5 s}(q-1)^{6-s}+q^{-8 s}(q-1)^{5-2 s}+q^{-9 s}(q-1)^{4-3 s}+20(q-$ $1)^{4-3 s}+15(q-1)^{5-2 s}+15(q-1)^{3-4 s}+6(q-1)^{6-s}+6(q-1)^{2-5 s}+(q-1)^{1-6 s}+(q-1)^{7}$
(viii) $\zeta_{\mathbb{T}_{8}}(s)=14 q^{-3 s}(q-1)^{2-6 s}(q+14)+6 q^{-7 s}(q-1)^{1-7 s}(q+7)+4 q^{-3 s}(q-1)^{3-5 s}(q+87)+$ $2 q^{-2 s}(q-1)^{2-6 s}(3 q+50)+2 q^{-7 s}(q-1)^{2-6 s}(3 q+89)+q^{-2 s}(q-1)^{3-5 s}(3 q+208)+q^{-2 s}(q-$ $1)^{1-7 s}(3 q+20)+q^{-3 s}(q-1)^{1-7 s}\left(q^{2}+11 q+47\right)+q^{-4 s}(q-1)^{3-5 s}(9 q+457)+q^{-4 s}(q-$ $1)^{2-6 s}(20 q+261)+q^{-4 s}(q-1)^{1-7 s}(12 q+61)+q^{-5 s}(q-1)^{3-5 s}(6 q+485)+q^{-5 s}(q-$ $1)^{2-6 s}(24 q+305)+q^{-5 s}(q-1)^{1-7 s}\left(2 q^{2}+20 q+79\right)+q^{-6 s}(q-1)^{3-5 s}(6 q+415)+q^{-6 s}(q-$ $1)^{2-6 s}(19 q+250)+q^{-6 s}(q-1)^{1-7 s}\left(q^{2}+13 q+60\right)+q^{-8 s}(q-1)^{2-6 s}(3 q+85)+q^{-8 s}(q-$ $1)^{1-7 s}(q+15)+410 q^{-4 s}(q-1)^{4-4 s}+398 q^{-5 s}(q-1)^{4-4 s}+340 q^{-6 s}(q-1)^{4-4 s}+332 q^{-3 s}(q-$ $1)^{4-4 s}+297 q^{-7 s}(q-1)^{3-5 s}+238 q^{-7 s}(q-1)^{4-4 s}+229 q^{-2 s}(q-1)^{4-4 s}+192 q^{-4 s}(q-$ $1)^{5-3 s}+174 q^{-3 s}(q-1)^{5-3 s}+171 q^{-5 s}(q-1)^{5-3 s}+168 q^{-8 s}(q-1)^{3-5 s}+147 q^{-8 s}(q-$ $1)^{4-4 s}+139 q^{-2 s}(q-1)^{5-3 s}+136 q^{-6 s}(q-1)^{5-3 s}+110 q^{-s}(q-1)^{4-4 s}+90 q^{-7 s}(q-1)^{5-3 s}+$ $85 q^{-s}(q-1)^{5-3 s}+80 q^{-s}(q-1)^{3-5 s}+73 q^{-9 s}(q-1)^{3-5 s}+71 q^{-9 s}(q-1)^{4-4 s}+56 q^{-8 s}(q-$ $1)^{5-3 s}+45 q^{-3 s}(q-1)^{6-2 s}+43 q^{-2 s}(q-1)^{6-2 s}+42 q^{-4 s}(q-1)^{6-2 s}+35 q^{-s}(q-1)^{6-2 s}+$ $34 q^{-5 s}(q-1)^{6-2 s}+31 q^{-s}(q-1)^{2-6 s}+30 q^{-9 s}(q-1)^{2-6 s}+27 q^{-10 s}(q-1)^{4-4 s}+26 q^{-9 s}(q-$ $1)^{5-3 s}+22 q^{-6 s}(q-1)^{6-2 s}+21 q^{-10 s}(q-1)^{3-5 s}+13 q^{-7 s}(q-1)^{6-2 s}+11 q^{-10 s}(q-1)^{5-3 s}+$ $7 q^{-8 s}(q-1)^{6-2 s}+7 q^{-11 s}(q-1)^{4-4 s}+6 q^{-s}(q-1)^{7-s}+5 q^{-2 s}(q-1)^{7-s}+5 q^{-10 s}(q-$ $1)^{2-6 s}+5 q^{-s}(q-1)^{1-7 s}+4 q^{-3 s}(q-1)^{7-s}+4 q^{-9 s}(q-1)^{1-7 s}+4 q^{-11 s}(q-1)^{5-3 s}+$ $3 q^{-4 s}(q-1)^{7-s}+3 q^{-9 s}(q-1)^{6-2 s}+3 q^{-11 s}(q-1)^{3-5 s}+2 q^{-5 s}(q-1)^{7-s}+q^{-6 s}(q-$
$1)^{7-s}+q^{-10 s}(q-1)^{6-2 s}+q^{-12 s}(q-1)^{5-3 s}+q^{-12 s}(q-1)^{4-4 s}+35(q-1)^{5-3 s}+35(q-$ $1)^{4-4 s}+21(q-1)^{6-2 s}+21(q-1)^{3-5 s}+7(q-1)^{7-s}+7(q-1)^{2-6 s}+(q-1)^{1-7 s}+(q-1)^{8}$
(ix) $\zeta_{\mathbb{T}_{9}}(s)=10 q^{-8 s}(q-1)^{4-5 s}(q+186)+10 q^{-8 s}(q-1)^{3-6 s}(7 q+204)+6 q^{-3 s}(q-1)^{4-5 s}(q+$ $182)+6 q^{-11 s}(q-1)^{3-6 s}(q+81)+4 q^{-2 s}(q-1)^{4-5 s}(q+149)+4 q^{-2 s}(q-1)^{1-8 s}(q+7)+$ $4 q^{-6 s}(q-1)^{3-6 s}(27 q+598)+4 q^{-9 s}(q-1)^{3-6 s}(11 q+377)+3 q^{-7 s}(q-1)^{4-5 s}(4 q+739)+$ $2 q^{-3 s}(q-1)^{2-7 s}\left(q^{2}+23 q+212\right)+2 q^{-4 s}(q-1)^{3-6 s}(31 q+754)+2 q^{-7 s}(q-1)^{2-7 s}\left(4 q^{2}+\right.$ $103 q+730)+2 q^{-8 s}(q-1)^{2-7 s}\left(3 q^{2}+72 q+586\right)+2 q^{-10 s}(q-1)^{3-6 s}(7 q+491)+2 q^{-11 s}(q-$ $1)^{1-8 s}(2 q+19)+2 q^{-12 s}(q-1)^{2-7 s}(q+38)+q^{-2 s}(q-1)^{3-6 s}(12 q+425)+q^{-2 s}(q-$ $1)^{2-7 s}(12 q+167)+q^{-3 s}(q-1)^{3-6 s}(31 q+912)+q^{-3 s}(q-1)^{1-8 s}\left(2 q^{2}+21 q+85\right)+q^{-4 s}(q-$ $1)^{4-5 s}(15 q+1658)+q^{-4 s}(q-1)^{2-7 s}\left(2 q^{2}+89 q+758\right)+q^{-4 s}(q-1)^{1-8 s}\left(4 q^{2}+45 q+165\right)+$ $q^{-5 s}(q-1)^{4-5 s}(16 q+2111)+q^{-5 s}(q-1)^{3-6 s}(92 q+2099)+q^{-5 s}(q-1)^{2-7 s}\left(9 q^{2}+157 q+\right.$ $1138)+q^{-5 s}(q-1)^{1-8 s}\left(q^{3}+12 q^{2}+83 q+262\right)+q^{-6 s}(q-1)^{4-5 s}(21 q+2302)+q^{-6 s}(q-$ $1)^{2-7 s}\left(6 q^{2}+180 q+1339\right)+q^{-6 s}(q-1)^{1-8 s}\left(10 q^{2}+97 q+316\right)+q^{-7 s}(q-1)^{3-6 s}(101 q+$ $2451)+q^{-7 s}(q-1)^{1-8 s}\left(2 q^{3}+22 q^{2}+131 q+369\right)+q^{-8 s}(q-1)^{1-8 s}\left(9 q^{2}+81 q+277\right)+$ $q^{-9 s}(q-1)^{2-7 s}\left(3 q^{2}+80 q+823\right)+q^{-9 s}(q-1)^{1-8 s}\left(2 q^{2}+39 q+181\right)+q^{-10 s}(q-1)^{2-7 s}(39 q+$ $536)+q^{-10 s}(q-1)^{1-8 s}\left(2 q^{2}+25 q+119\right)+q^{-11 s}(q-1)^{2-7 s}(11 q+222)+1395 q^{-9 s}(q-$ $1)^{4-5 s}+1254 q^{-6 s}(q-1)^{5-4 s}+1224 q^{-5 s}(q-1)^{5-4 s}+1123 q^{-7 s}(q-1)^{5-4 s}+1061 q^{-4 s}(q-$ $1)^{5-4 s}+923 q^{-8 s}(q-1)^{5-4 s}+911 q^{-10 s}(q-1)^{4-5 s}+776 q^{-3 s}(q-1)^{5-4 s}+670 q^{-9 s}(q-$ $1)^{5-4 s}+505 q^{-11 s}(q-1)^{4-5 s}+494 q^{-2 s}(q-1)^{5-4 s}+436 q^{-10 s}(q-1)^{5-4 s}+394 q^{-5 s}(q-$ $1)^{6-3 s}+381 q^{-4 s}(q-1)^{6-3 s}+369 q^{-6 s}(q-1)^{6-3 s}+319 q^{-3 s}(q-1)^{6-3 s}+299 q^{-7 s}(q-$ $1)^{6-3 s}+251 q^{-11 s}(q-1)^{5-4 s}+242 q^{-12 s}(q-1)^{4-5 s}+239 q^{-2 s}(q-1)^{6-3 s}+230 q^{-8 s}(q-$ $1)^{6-3 s}+230 q^{-s}(q-1)^{5-4 s}+225 q^{-s}(q-1)^{4-5 s}+208 q^{-12 s}(q-1)^{3-6 s}+154 q^{-9 s}(q-$ $1)^{6-3 s}+141 q^{-s}(q-1)^{6-3 s}+132 q^{-s}(q-1)^{3-6 s}+126 q^{-12 s}(q-1)^{5-4 s}+98 q^{-10 s}(q-$ $1)^{6-3 s}+89 q^{-13 s}(q-1)^{4-5 s}+67 q^{-3 s}(q-1)^{7-2 s}+67 q^{-4 s}(q-1)^{7-2 s}+61 q^{-2 s}(q-1)^{7-2 s}+$ $61 q^{-5 s}(q-1)^{7-2 s}+58 q^{-13 s}(q-1)^{3-6 s}+53 q^{-13 s}(q-1)^{5-4 s}+51 q^{-11 s}(q-1)^{6-3 s}+$ $50 q^{-6 s}(q-1)^{7-2 s}+48 q^{-s}(q-1)^{7-2 s}+43 q^{-s}(q-1)^{2-7 s}+34 q^{-7 s}(q-1)^{7-2 s}+25 q^{-12 s}(q-$ $1)^{6-3 s}+25 q^{-14 s}(q-1)^{4-5 s}+22 q^{-8 s}(q-1)^{7-2 s}+18 q^{-14 s}(q-1)^{5-4 s}+13 q^{-9 s}(q-1)^{7-2 s}+$ $12 q^{-13 s}(q-1)^{2-7 s}+11 q^{-13 s}(q-1)^{6-3 s}+9 q^{-14 s}(q-1)^{3-6 s}+8 q^{-12 s}(q-1)^{1-8 s}+$ $7 q^{-10 s}(q-1)^{7-2 s}+7 q^{-s}(q-1)^{8-s}+6 q^{-2 s}(q-1)^{8-s}+6 q^{-s}(q-1)^{1-8 s}+5 q^{-3 s}(q-$ $1)^{8-s}+5 q^{-15 s}(q-1)^{5-4 s}+4 q^{-4 s}(q-1)^{8-s}+4 q^{-14 s}(q-1)^{6-3 s}+4 q^{-15 s}(q-1)^{4-5 s}+$ $3 q^{-5 s}(q-1)^{8-s}+3 q^{-11 s}(q-1)^{7-2 s}+2 q^{-6 s}(q-1)^{8-s}+q^{-7 s}(q-1)^{8-s}+q^{-12 s}(q-$ $1)^{7-2 s}+q^{-15 s}(q-1)^{6-3 s}+q^{-16 s}(q-1)^{5-4 s}+70(q-1)^{5-4 s}+56(q-1)^{6-3 s}+56(q-$ $1)^{4-5 s}+28(q-1)^{7-2 s}+28(q-1)^{3-6 s}+8(q-1)^{8-s}+8(q-1)^{2-7 s}+(q-1)^{1-8 s}+(q-1)^{9}$
(x) $\zeta_{\mathbb{T}_{10}}(s)=q^{-6 s}(q-1)^{1-9 s}(3 q+17)\left(2 q^{2}+13 q+63\right)+12 q^{-13 s}(q-1)^{3-7 s}(14 q+349)+$ $10 q^{-14 s}(q-1)^{3-7 s}(7 q+219)+7 q^{-5 s}(q-1)^{4-6 s}(30 q+1201)+7 q^{-12 s}(q-1)^{4-6 s}(12 q+$ $967)+5 q^{-2 s}(q-1)^{5-5 s}(q+282)+5 q^{-10 s}(q-1)^{5-5 s}(3 q+1366)+4 q^{-2 s}(q-1)^{4-6 s}(5 q+$ $333)+4 q^{-15 s}(q-1)^{1-9 s}(q+11)+3 q^{-2 s}(q-1)^{3-7 s}(10 q+259)+3 q^{-7 s}(q-1)^{4-6 s}(118 q+$ $4475)+3 q^{-8 s}(q-1)^{3-7 s}\left(9 q^{2}+385 q+4636\right)+3 q^{-11 s}(q-1)^{3-7 s}\left(4 q^{2}+205 q+3159\right)+$ $2 q^{-3 s}(q-1)^{4-6 s}(27 q+1496)+2 q^{-4 s}(q-1)^{2-8 s}\left(8 q^{2}+139 q+889\right)+2 q^{-5 s}(q-1)^{5-5 s}(13 q+$
$3104)+2 q^{-5 s}(q-1)^{2-8 s}\left(q^{3}+25 q^{2}+293 q+1620\right)+2 q^{-8 s}(q-1)^{5-5 s}(19 q+4337)+$ $2 q^{-12 s}(q-1)^{3-7 s}\left(3 q^{2}+176 q+3381\right)+2 q^{-13 s}(q-1)^{4-6 s}(13 q+2180)+2 q^{-14 s}(q-$ $1)^{4-6 s}(5 q+1223)+2 q^{-15 s}(q-1)^{2-8 s}(11 q+170)+2 q^{-16 s}(q-1)^{3-7 s}(2 q+161)+q^{-2 s}(q-$ $1)^{2-8 s}(20 q+257)+q^{-2 s}(q-1)^{1-9 s}(5 q+37)+q^{-3 s}(q-1)^{5-5 s}(8 q+2717)+q^{-3 s}(q-$ $1)^{3-7 s}\left(3 q^{2}+117 q+2039\right)+q^{-3 s}(q-1)^{2-8 s}\left(6 q^{2}+104 q+791\right)+q^{-3 s}(q-1)^{1-9 s}\left(3 q^{2}+33 q+\right.$ $134)+q^{-4 s}(q-1)^{5-5 s}(21 q+4418)+q^{-4 s}(q-1)^{4-6 s}(122 q+5413)+q^{-4 s}(q-1)^{3-7 s}\left(4 q^{2}+\right.$ $273 q+4096)+q^{-4 s}(q-1)^{1-9 s}\left(q^{3}+15 q^{2}+108 q+342\right)+q^{-5 s}(q-1)^{3-7 s}\left(19 q^{2}+545 q+\right.$ $6943)+q^{-5 s}(q-1)^{1-9 s}\left(2 q^{3}+35 q^{2}+230 q+659\right)+q^{-6 s}(q-1)^{5-5 s}(41 q+7704)+q^{-6 s}(q-$ $1)^{4-6 s}(299 q+11188)+q^{-6 s}(q-1)^{3-7 s}\left(21 q^{2}+809 q+9883\right)+q^{-6 s}(q-1)^{2-8 s}\left(2 q^{3}+\right.$ $\left.84 q^{2}+953 q+4932\right)+q^{-7 s}(q-1)^{5-5 s}(36 q+8593)+q^{-7 s}(q-1)^{3-7 s}\left(37 q^{2}+1103 q+\right.$ $12627)+q^{-7 s}(q-1)^{2-8 s}\left(8 q^{3}+144 q^{2}+1413 q+6663\right)+q^{-7 s}(q-1)^{1-9 s}\left(2 q^{4}+21 q^{3}+\right.$ $\left.143 q^{2}+654 q+1524\right)+q^{-8 s}(q-1)^{4-6 s}(356 q+14191)+q^{-8 s}(q-1)^{2-8 s}\left(6 q^{3}+135 q^{2}+\right.$ $1587 q+7639)+q^{-8 s}(q-1)^{1-9 s}\left(q^{4}+20 q^{3}+165 q^{2}+790 q+1818\right)+q^{-9 s}(q-1)^{5-5 s}(20 q+$ $8073)+q^{-9 s}(q-1)^{4-6 s}(322 q+13751)+q^{-9 s}(q-1)^{3-7 s}\left(30 q^{2}+1125 q+13721\right)+q^{-9 s}(q-$ $1)^{2-8 s}\left(4 q^{3}+125 q^{2}+1513 q+7536\right)+q^{-9 s}(q-1)^{1-9 s}\left(10 q^{3}+131 q^{2}+723 q+1771\right)+q^{-10 s}(q-$ $1)^{4-6 s}(227 q+12026)+q^{-10 s}(q-1)^{3-7 s}\left(21 q^{2}+934 q+12376\right)+q^{-10 s}(q-1)^{2-8 s}\left(8 q^{3}+\right.$ $\left.142 q^{2}+1407 q+6977\right)+q^{-10 s}(q-1)^{1-9 s}\left(2 q^{4}+22 q^{3}+154 q^{2}+704 q+1669\right)+q^{-11 s}(q-$ $1)^{4-6 s}(136 q+9425)+q^{-11 s}(q-1)^{2-8 s}\left(61 q^{2}+889 q+5143\right)+q^{-11 s}(q-1)^{1-9 s}\left(6 q^{3}+73 q^{2}+\right.$ $433 q+1181)+q^{-12 s}(q-1)^{2-8 s}\left(32 q^{2}+526 q+3607\right)+q^{-12 s}(q-1)^{1-9 s}\left(2 q^{3}+36 q^{2}+255 q+\right.$ 805) $+q^{-13 s}(q-1)^{2-8 s}\left(10 q^{2}+249 q+2095\right)+q^{-13 s}(q-1)^{1-9 s}\left(10 q^{2}+110 q+431\right)+q^{-14 s}(q-$ $1)^{2-8 s}\left(5 q^{2}+101 q+983\right)+q^{-14 s}(q-1)^{1-9 s}\left(2 q^{2}+33 q+171\right)+q^{-15 s}(q-1)^{3-7 s}(20 q+$ $929)+q^{-16 s}(q-1)^{2-8 s}(2 q+91)+5331 q^{-11 s}(q-1)^{5-5 s}+3802 q^{-12 s}(q-1)^{5-5 s}+$ $3288 q^{-7 s}(q-1)^{6-4 s}+3213 q^{-6 s}(q-1)^{6-4 s}+3128 q^{-8 s}(q-1)^{6-4 s}+2802 q^{-5 s}(q-1)^{6-4 s}+$ $2724 q^{-9 s}(q-1)^{6-4 s}+2472 q^{-13 s}(q-1)^{5-5 s}+2228 q^{-4 s}(q-1)^{6-4 s}+2216 q^{-10 s}(q-1)^{6-4 s}+$ $1657 q^{-11 s}(q-1)^{6-4 s}+1544 q^{-3 s}(q-1)^{6-4 s}+1442 q^{-14 s}(q-1)^{5-5 s}+1192 q^{-15 s}(q-$ $1)^{4-6 s}+1149 q^{-12 s}(q-1)^{6-4 s}+937 q^{-2 s}(q-1)^{6-4 s}+759 q^{-15 s}(q-1)^{5-5 s}+757 q^{-6 s}(q-$ $1)^{7-3 s}+729 q^{-5 s}(q-1)^{7-3 s}+725 q^{-13 s}(q-1)^{6-4 s}+700 q^{-7 s}(q-1)^{7-3 s}+655 q^{-4 s}(q-$ $1)^{7-3 s}+607 q^{-8 s}(q-1)^{7-3 s}+525 q^{-s}(q-1)^{5-5 s}+524 q^{-3 s}(q-1)^{7-3 s}+492 q^{-16 s}(q-$ $1)^{4-6 s}+480 q^{-9 s}(q-1)^{7-3 s}+427 q^{-s}(q-1)^{6-4 s}+426 q^{-14 s}(q-1)^{6-4 s}+413 q^{-s}(q-$ $1)^{4-6 s}+377 q^{-2 s}(q-1)^{7-3 s}+365 q^{-10 s}(q-1)^{7-3 s}+346 q^{-16 s}(q-1)^{5-5 s}+249 q^{-11 s}(q-$ $1)^{7-3 s}+225 q^{-15 s}(q-1)^{6-4 s}+217 q^{-s}(q-1)^{7-3 s}+203 q^{-s}(q-1)^{3-7 s}+163 q^{-12 s}(q-$ $1)^{7-3 s}+155 q^{-17 s}(q-1)^{4-6 s}+133 q^{-17 s}(q-1)^{5-5 s}+105 q^{-16 s}(q-1)^{6-4 s}+97 q^{-4 s}(q-$ $1)^{8-2 s}+94 q^{-5 s}(q-1)^{8-2 s}+93 q^{-3 s}(q-1)^{8-2 s}+92 q^{-13 s}(q-1)^{7-3 s}+85 q^{-6 s}(q-1)^{8-2 s}+$ $82 q^{-2 s}(q-1)^{8-2 s}+74 q^{-17 s}(q-1)^{3-7 s}+70 q^{-7 s}(q-1)^{8-2 s}+63 q^{-s}(q-1)^{8-2 s}+57 q^{-s}(q-$ $1)^{2-8 s}+50 q^{-8 s}(q-1)^{8-2 s}+50 q^{-14 s}(q-1)^{7-3 s}+43 q^{-17 s}(q-1)^{6-4 s}+42 q^{-18 s}(q-$ $1)^{5-5 s}+35 q^{-18 s}(q-1)^{4-6 s}+34 q^{-9 s}(q-1)^{8-2 s}+25 q^{-15 s}(q-1)^{7-3 s}+22 q^{-10 s}(q-1)^{8-2 s}+$ $16 q^{-18 s}(q-1)^{6-4 s}+13 q^{-11 s}(q-1)^{8-2 s}+12 q^{-17 s}(q-1)^{2-8 s}+11 q^{-16 s}(q-1)^{7-3 s}+$ $9 q^{-18 s}(q-1)^{3-7 s}+9 q^{-19 s}(q-1)^{5-5 s}+8 q^{-16 s}(q-1)^{1-9 s}+8 q^{-s}(q-1)^{9-s}+7 q^{-2 s}(q-$ $1)^{9-s}+7 q^{-12 s}(q-1)^{8-2 s}+7 q^{-s}(q-1)^{1-9 s}+6 q^{-3 s}(q-1)^{9-s}+5 q^{-4 s}(q-1)^{9-s}+5 q^{-19 s}(q-$ $1)^{6-4 s}+4 q^{-5 s}(q-1)^{9-s}+4 q^{-17 s}(q-1)^{7-3 s}+4 q^{-19 s}(q-1)^{4-6 s}+3 q^{-6 s}(q-1)^{9-s}+$

$$
\begin{aligned}
& 3 q^{-13 s}(q-1)^{8-2 s}+2 q^{-7 s}(q-1)^{9-s}+q^{-8 s}(q-1)^{9-s}+q^{-14 s}(q-1)^{8-2 s}+q^{-18 s}(q-1)^{7-3 s}+ \\
& q^{-20 s}(q-1)^{6-4 s}+q^{-20 s}(q-1)^{5-5 s}+126(q-1)^{6-4 s}+126(q-1)^{5-5 s}+84(q-1)^{7-3 s}+84(q- \\
& 1)^{4-6 s}+36(q-1)^{8-2 s}+36(q-1)^{3-7 s}+9(q-1)^{9-s}+9(q-1)^{2-8 s}+(q-1)^{1-9 s}+(q-1)^{10}
\end{aligned}
$$

The computation times ${ }^{2}$ for the representation zeta functions $\zeta_{\mathbb{U}_{n}}(s)$ are given by

n	2	3	4	5	6	7	8	9	10
time	0.01 s	0.08 s	0.25 s	0.77 s	2.41 s	8.18 s	27.43 s	1 m 44 s	6 m 52 s

and those for the representation zeta functions $\zeta_{\mathbb{T}_{n}}(s)$ are given by

n	2	3	4	5	6	7	8	9	10
time	0.03 s	0.15 s	0.51 s	1.81 s	6.32 s	26.16 s	1 m 53 s	6 m 39 s	55 m 46 s

6.4 Arithmetic-geometric correspondence

In this section, we give some more insight into the correspondence between the arithmetic and geometric method. In one direction, Theorem 4.10.6 shows how information on the geometric side can be translated to the arithmetic side. More precisely, the eigenvalues and eigenvectors of the geometric TQFT Z_{G} partially describe the character tables of the finite groups $G\left(\mathbb{F}_{q}\right)$. Let us illustrate how, in the other direction, the arithmetic information provides geometric insight into the Z_{G}. In particular, we will show how the representation theory of the groups $\mathbb{U}_{n}\left(\mathbb{F}_{q}\right)$ of unipotent upper triangular matrices over \mathbb{F}_{q} can be used to simplify the corresponding geometric TQFT Z_{G}. This yields a new smaller set of generators for this TQFT motivated by the arithmetic side. More precisely, we obtain this new generating set by canonically lifting the sums of equidimensional characters to the Grothendieck ring of varieties. These generators will be given by virtual classes of locally closed subvarieties of G.

Unipotent 3×3 matrices. Consider the group $\mathbb{U}_{3}\left(\mathbb{F}_{q}\right)$ of unipotent upper triangular matrices of rank 3 over a finite field \mathbb{F}_{q},

$$
\mathbb{U}_{3}\left(\mathbb{F}_{q}\right)=\left\{\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{F}_{q}\right\} .
$$

The irreducible complex characters of $\mathbb{U}_{3}\left(\mathbb{F}_{q}\right)$ are of dimension 1 or q. Denote the set of 1-dimensional characters by X_{1} and of the q-dimensional characters by

[^1]X_{q}. Summing the 1-dimensional characters, we find that $v_{1}=\sum_{\chi \in X_{1}} \chi$ is given by
\[

v_{1}\left($$
\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}
$$\right)= $$
\begin{cases}q & \text { if } x=z=0 \\
0 & \text { otherwise }\end{cases}
$$
\]

Summing the q-dimensional characters, we find that $v_{2}=\sum_{\chi \in X_{q}} \chi$ is given by

$$
v_{2}\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)= \begin{cases}-q & \text { if } x=z=0 \text { and } y \neq 0 \\
q(q-1) & \text { if } x=y=z=0 \\
0 & \text { otherwise }\end{cases}
$$

Now, since the eigenvectors v_{1} and v_{2} are 'polynomial in q '-valued on locally closed subsets of $G=\mathbb{U}_{3}$, we can naturally lift these eigenvectors along the morphism $\mu_{[G / G]}: \mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right) \rightarrow \mathbb{C}^{[G / G]\left(\mathbb{F}_{q}\right)}=R_{\mathbb{C}}\left(G\left(\mathbb{F}_{q}\right)\right)$ of Definition 4.10.1, replacing q by \mathbb{L} to obtain

$$
\mathbb{L}[\{x=z=0\}] \text { and }-\mathbb{L}[\{x=z=0, y \neq 0\}]+\mathbb{L}(\mathbb{L}-1)[\{x=y=z=0\}]
$$

respectively, expressed in terms of the virtual classes of G-equivariant subvarieties of \mathbb{U}_{3}. Indeed, from the computations of Section 6.2 , whose results can be found in Appendix A, it can be seen that these elements are eigenvectors of Z_{G}, with eigenvalues \mathbb{L}^{6} and \mathbb{L}^{4}, respectively. In fact, the submodule of $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ generated by these two eigenvectors contains $Z_{G}(D)(1)$ and is invariant under $Z_{G}(\Omega)$, and is therefore a simplification of the $M=5$ generators as used in Section 6.2.

Unipotent 4×4 matrices. Consider the group $\mathbb{U}_{4}\left(\mathbb{F}_{q}\right)$ of unipotent upper triangular matrices of rank 4 over a finite field \mathbb{F}_{q},

$$
\mathbb{U}_{4}\left(\mathbb{F}_{q}\right)=\left\{\left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right): a, b, c, d, e, f \in \mathbb{F}_{q}\right\}
$$

This group has three families of irreducible complex characters: the 1-dimensional characters X_{1}, the q-dimensional characters X_{q} and the q^{2}-dimensional
characters $X_{q^{2}}$. Summing equidimensional characters, we find

$$
\begin{aligned}
\sum_{\chi \in X_{1}} \chi\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right) & = \begin{cases}q^{2} & \text { if } a=d=f=0 \\
0 & \text { otherwise },\end{cases} \\
\sum_{\chi \in X_{q}} \chi\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right) & = \begin{cases}q^{4} & \text { if } a=b=d=e=f=0 \\
-q^{2} & \text { if } a=d=f \\
0 & \text { otherwise, }\end{cases} \\
\sum_{\chi \in X_{q^{2}}} \chi\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right) & = \begin{cases}q^{3}(q-1) & \text { if } a=b=c=d=e=f=0, \\
-q^{3} & \text { if } a=b=d=e=f=0 \text { and } c \neq 0 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

We lift these to elements in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$, for $G=\mathbb{U}_{4}$, given by

$$
\begin{aligned}
& \mathbb{L}^{2}[\{a=d=f=0\}] \\
& \mathbb{L}^{4}[\{a=b=d=e=f=0\}]-\mathbb{L}^{2}[\{a=d=f=0\}], \text { and } \\
& \mathbb{L}^{3}(\mathbb{L}-1)[\{a=b=c=d=e=f=0\}]-\mathbb{L}^{3}[\{a=b=d=e=f=0, c \neq 0\}] .
\end{aligned}
$$

Again, the computations of Section 6.2, whose results can be found in Appendix A, show that these elements are eigenvectors of Z_{G}, with eigenvalues $\mathbb{L}^{12}, \mathbb{L}^{10}$ and \mathbb{L}^{8}, respectively. These three elements to generate a submodule of $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ which can replace the one from Section 6.2 with $M=16$ generators, a significant simplification.

Remark 6.4.1. During the algorithmic computations of Section 6.3, it is, in principle, possible to keep track of the irreducible characters of $\mathbb{U}_{n}\left(\mathbb{F}_{q}\right)$ and $\mathbb{T}_{n}\left(\mathbb{F}_{q}\right)$ for $6 \leq n \leq 10$. Then, as in the above examples, the sums of equidimensional characters can be lifted to elements in $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ for $G=\mathbb{U}_{n}$ or $G=\mathbb{T}_{n}$, respectively. While we have not attempted this, these lifts would generate a submodule of $\mathrm{K}_{0}\left(\mathbf{S t c k}_{[G / G]}\right)$ which, one could hopefully show, is invariant under $Z_{G}(\Omega)$. This would provide a way to extend the geometric method to groups of upper triangular matrices of rank ≥ 6, even though there are infinitely many conjugacy classes.

Chapter 7

Motivic stability

Let Γ_{n} be a sequence of finitely generated groups, and let G be an algebraic group over a field k. One can wonder whether the invariants of the corresponding sequence of character stacks $\mathfrak{X}_{G}\left(\Gamma_{n}\right)$ are related. We will mainly focus on the sequence $\Gamma_{n}=\mathbb{Z}^{n}$ of free abelian groups and the sequence $\Gamma_{n}=F_{n}$ of free groups, for which the character stacks parametrize (commuting) tuples of elements in G up to conjugation.

Geometric invariants of these and related spaces have been studied extensively [Bai07, AC07, PS13, FL14]. For X_{n} the sequence of G-representation varieties or G-character varieties of \mathbb{Z}^{n}, the homology groups $H_{k}\left(X_{n}\right)$ were computed in [RS19], and their mixed Hodge structures in [FS21]. A pattern emerged: fixing n and varying G through sequences G_{r} of classical groups (such as GL_{r} or U_{r}), the homology groups $H_{k}\left(X_{n}\right)$ remain constant for sufficiently large r, that is, they stabilize. This pattern was proved in [RS21], as well as for fixed G and increasing n, and for many related sequences X_{n}. Moreover, taking into account the action of the symmetric group S_{n} on \mathbb{Z}^{n} by permutation, inducing an action of S_{n} on X_{n} and in turn on $H_{k}\left(X_{n}\right)$, they showed the homology groups stabilize as S_{n}-representations. This type of stability, called representation stability, was formulated in [CF13]: a sequence V_{n} of S_{n}-representations is representation stable, roughly speaking, if the multiplicities of the irreducible representations V_{λ}, corresponding to the partitions λ of n, stabilize. Partitions for n and $n+1$ are related by increasing the first number.
In this chapter, we combine the notion of representation stability with that of motivic stability. Completing the Grothendieck ring of varieties, one can study the convergence of a sequence of virtual classes. Such convergence was studied in [VW15] for sequences of symmetric powers $\mathrm{Sym}^{n} X$ (as an algebraic analogue of the Dold-Thom theorem) and sequences of configuration spaces Conf ${ }^{n} X$.

Using the theory of Section 3.6, we will generalize the notion of motivic stability, and introduce the concept of motivic representation stability. As an application, we will show that the sequence of GL_{r}-character stacks $\mathfrak{X}_{\mathrm{GL}_{r}}\left(\mathbb{Z}^{n}\right)$, with the action of S_{n}, is motivically representation stable.

7.1 Motivic stability

Motivic stability is a property of a sequence of varieties, which amounts to the convergence (in some sense) of their virtual classes in the topological ring $\widehat{\mathcal{M}_{\mathbb{L}}}$, which is the completion of the localization $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)\left[\mathbb{L}^{-1}\right]$ of the Grothendieck ring of varieties. This topological ring was originally constructed by Kontsevich in the context of motivic integration [Kon95]. For more information on this object, we refer to [Bou11, Loo02, VW15].

For our applications, we adapt the standard definitions to the equivariant setting. Throughout, fix an algebraic group G over k, and denote by \mathbb{L} the class $\left[\mathbb{A}_{k}^{1}\right] \in$ $\mathrm{K}_{0}\left(\operatorname{Var}_{k}^{G}\right)$ of \mathbb{A}_{k}^{1} on which G acts trivially.
Definition 7.1.1. Write $\mathcal{M}_{\mathbb{L}}^{G}$ for the localization $\mathrm{K}_{0}\left(\operatorname{Var}_{k}^{G}\right)\left[\mathbb{L}^{-1}\right]$. Consider the increasing filtration on $\mathcal{M}_{\mathbb{L}}^{G}$,

$$
0 \subseteq \cdots \subseteq F_{n} \mathcal{M}_{\mathbb{L}}^{G} \subseteq F_{n+1} \mathcal{M}_{\mathbb{L}}^{G} \subseteq \cdots \subseteq \mathcal{M}_{\mathbb{L}}^{G}
$$

where $F_{n} \mathcal{M}_{\mathbb{L}}^{G}$ is the subgroup of $\mathcal{M}_{\mathbb{L}}^{G}$ generated by all elements of the form $[X] / \mathbb{L}^{m}$ with $\operatorname{dim} X-m \leq n$. Note that $\bigcup_{n \in \mathbb{Z}} F_{n} \widehat{\mathcal{M}_{\mathbb{L}}}=\mathcal{M}_{\mathbb{L}}^{G}$. The completion with respect to this filtration is denoted

$$
\widehat{\mathcal{M}_{\mathbb{L}}^{G}}={\underset{\gtrless}{n}}_{\lim _{n}} \mathcal{M}_{\mathbb{L}}^{G} / F_{n} \mathcal{M}_{\mathbb{L}}^{G} .
$$

An element $x \in \widehat{\mathcal{M}_{\mathbb{L}}^{G}}$ can be represented as a tuple $\left(x_{n}\right) \in \prod_{n \in \mathbb{Z}} \mathcal{M}_{\mathbb{L}}^{G} / F_{n} \mathcal{M}_{\mathbb{L}}^{G}$ such that $x_{n} \equiv x_{m} \bmod F_{n} \mathcal{M}_{\mathbb{L}}^{G}$ for all $m \leq n$.

The completion $\widehat{\mathcal{M}_{\mathbb{L}}^{G}}$ inherits, a priori, only the group structure from $\mathcal{M}_{\mathbb{L}}^{G} \cdot$ Multiplication is defined as follows. Let $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ be elements of $\widehat{\mathcal{M}_{\mathbb{L}}}$. Note that there exists a sufficiently large N such that $x_{n}=y_{n}=0$ for all $n \geq N$. Now define $x y$ by $(x y)_{n}=x_{n-N}^{\prime} y_{n-N}^{\prime} \bmod F_{n} \mathcal{M}_{\mathbb{L}}^{G}$, where $x_{n-N}^{\prime}, y_{n-N}^{\prime} \in \mathcal{M}_{\mathbb{L}}^{G}$ are lifts x_{n-N} and y_{n-N}, respectively. This is independent of the choice of lift since, for any other lift $x_{n-N}^{\prime \prime}$, we have $x_{n-N}^{\prime \prime} y_{n-N}^{\prime}-x_{n-N}^{\prime} y_{n-N}^{\prime}=\left(x_{n-N}^{\prime \prime}-\right.$ $\left.x_{n-N}^{\prime}\right) y_{n-N}^{\prime} \in F_{n-N} \mathcal{M}_{\mathbb{L}}^{G} \cdot F_{N} \mathcal{M}_{\mathbb{L}}^{G} \subseteq F_{n} \mathcal{M}_{\mathbb{L}}^{G}$. Similarly, it is independent of the choice of lift y_{n-M}^{\prime}. This gives $\widehat{\mathcal{M}_{\mathbb{L}}^{G}}$ a ring structure.

Definition 7.1.2. Let X be a G-variety over k. For any $n \geq 0$, the n-th G symmetric power of X, denoted $\operatorname{Sym}_{G}^{n} X$, is the G-variety given by the ordinary
symmetric power $\operatorname{Sym}^{n} X=X^{n} / / S_{n}$ with the action of G induced by the diagonal action on X^{n}.

Definition 7.1.3. Let X be a G-variety over k. The symmetric powers $\operatorname{Sym}_{G}^{n} X$ of X are called motivically stable if the limit

$$
\lim _{n \rightarrow \infty} \frac{\left[\operatorname{Sym}_{G}^{n} X\right]}{\mathbb{L}^{n \operatorname{dim} X}}
$$

exists in $\widehat{\mathcal{M}_{\mathbb{L}}^{G}}$. More generally, a sequence X_{n} of G-varieties over k is motivically stable if the limit

$$
\lim _{n \rightarrow \infty} \frac{\left[X_{n}\right]}{\mathbb{L}^{\operatorname{dim} X_{n}}}
$$

exists in $\widehat{\mathcal{M}_{\mathbb{L}}^{G}}$.
Example 7.1.4. When $G=1$ is the trivial group, we simply write $\widehat{\mathcal{M}_{\mathbb{L}}}$ instead of $\widehat{\mathcal{M}_{\mathbb{L}}^{G}}$. In this case, the following sequences are motivically stable.

- From Example 3.3.5, we see that the sequence $X_{n}=\mathrm{GL}_{n}$ is motivically stable, with limit $\lim _{n \rightarrow \infty}\left[\mathrm{GL}_{n}\right] / \mathbb{L}^{n^{2}}=\prod_{i \geq 1}\left(1-\mathbb{L}^{-i}\right)$.
- Similarly, $X_{n}=\mathrm{SL}_{n}$ is motivically stable with limit $\lim _{n \rightarrow \infty}\left[\mathrm{SL}_{n}\right] / \mathbb{L}^{n^{2}-1}=$ $\prod_{i \geq 2}\left(1-\mathbb{L}^{-i}\right)$. Since $\left[\mathrm{PGL}_{n}\right]=\left[\mathrm{SL}_{n}\right]$, the sequence $X_{n}=\mathrm{PGL}_{n}$ is also motivically stable, with the same limit.
- It is still an open conjecture [VW15, Conjecture 1.25] whether the symmetric powers of all geometrically irreducible varieties are motivically stable. However, some evidence has been presented against it [Lit14].

Example 7.1.5. Let us give some intuition for what motivic stabilization implies about the cohomology of X_{n}. Suppose X_{n} is a sequence of varieties over $k=\mathbb{C}$. Note that the E-polynomial descends to a continuous morphism

$$
e: \widehat{\mathcal{M}_{\mathbb{L}}^{G}} \rightarrow \mathbb{Z}[u, v] \llbracket(u v)^{-1} \rrbracket
$$

where the target is equipped with the $(u v)^{-1}$-adic topology. Since

$$
e\left(\left[X_{n}\right] / \mathbb{L}^{\operatorname{dim} X_{n}}\right)=\sum_{k, p, q \in \mathbb{Z}}(-1)^{k} h_{c}^{k ; p, q}\left(X_{n}\right) u^{p-\operatorname{dim} X_{n}} v^{q-\operatorname{dim} X_{n}},
$$

it follows, if the sequence X_{n} motivically stabilizes, that, for all p and q, the numbers $h_{c}^{k ; \operatorname{dim} X_{n}-p, \operatorname{dim} X_{n}-q}\left(X_{n}\right)$ are eventually constant as $n \rightarrow \infty$. If the X_{n} are smooth projective, then evaluating in $u=v=t$, it also follows that the dimensions $\operatorname{dim}_{\mathbb{C}} H_{c}^{\operatorname{dim} X_{n}-k}\left(X_{n} ; \mathbb{C}\right)$ are eventually constant as $n \rightarrow \infty$, as well as the dimensions $\operatorname{dim}_{\mathbb{C}} H_{k}\left(X_{n} ; \mathbb{C}\right)$ by Poincaré duality.

In the context of motivic stability, an important source of sequences of varieties are the symmetric powers of a variety X. In order to keep track of the virtual classes of these symmetric powers, we collect them as the coefficients of a power series, as first done by [Kap00].

Definition 7.1.6. Let X be a G-variety over k. The motivic zeta function of X is

$$
Z_{G}(X, t)=\sum_{n \geq 0}\left[\operatorname{Sym}_{G}^{n} X\right] t^{n} \in 1+t \cdot \mathrm{~K}_{0}\left(\operatorname{Var}_{k}^{G}\right) \llbracket t \rrbracket
$$

Lemma 7.1.7. Let X be a G-variety over k, and $Y \subseteq X$ a G-invariant closed subvariety with open complement U. Then $Z_{G}(X, t)=Z_{G}(Y, t) Z_{G}(U, t)$, and hence $Z_{G}(-, t)$ descends to a group morphism

$$
Z_{G}(-, t): \mathrm{K}_{0}\left(\mathbf{V a r}_{k}^{G}\right) \rightarrow 1+t \cdot \mathrm{~K}_{0}\left(\mathbf{V a r}_{k}^{G}\right) \llbracket t \rrbracket
$$

with the multiplicative group structure on the right. In particular, $\operatorname{Sym}_{G}^{n}$ descends to a map

$$
\operatorname{Sym}_{G}^{n}: \mathrm{K}_{0}\left(\operatorname{Var}_{k}^{G}\right) \rightarrow \mathrm{K}_{0}\left(\operatorname{Var}_{k}^{G}\right)
$$

Proof. From

$$
\begin{aligned}
{\left[\operatorname{Sym}_{G}^{n} X\right] } & =\left[X^{n} / / S_{n}\right]=\sum_{i+j=n}\left[\left(S_{n} \cdot\left(Y^{i} \times U^{j}\right)\right) / / S_{n}\right] \\
& =\sum_{i+j=n}\left[\left(Y^{i} / / S_{i}\right) \times\left(U^{j} / / S_{j}\right)\right]=\sum_{i+j=n}\left[\operatorname{Sym}_{G}^{i} Y\right]\left[\operatorname{Sym}_{G}^{j} U\right]
\end{aligned}
$$

follows that

$$
Z_{G}(X, t)=\sum_{\substack{n \geq 0 \\ i+j=n}}\left[\operatorname{Sym}_{G}^{i} Y\right]\left[\operatorname{Sym}_{G}^{j} U\right] t^{n}=Z_{G}(Y, t) Z_{G}(U, t)
$$

The following lemma is a variation of [Göt01, Lemma 4.4], adapted to the equivariant setting.

Proposition 7.1.8. Let G be a finite group, and let X be a G-variety over k. For any $r \geq 0$, we have

$$
Z_{G}\left(\mathbb{L}^{r}[X], t\right)=Z_{G}\left([X], \mathbb{L}^{r} t\right)
$$

Proof. It suffices to treat the case $r=1$. Denote by $\pi: \operatorname{Sym}^{n}\left(X \times \mathbb{A}_{k}^{1}\right) \rightarrow \operatorname{Sym}^{n} X$ the obvious projection. Note that $\operatorname{Sym}^{n} X$ is naturally stratified by locally closed
subvarieties $\left(\operatorname{Sym}^{n} X\right)_{\lambda}$ according to the partitions λ of n. For every such partition λ, we consider the cartesian diagram

where $a_{i}(\lambda)$ denotes the number of times i appears in λ, and $X_{*}^{\ell(\lambda)}$ the space of $\ell(\lambda)=\sum_{i} a_{i}(\lambda)$ distinct ordered points of X. Since $\prod_{i=1}^{n}\left(\mathbb{A}_{k}^{i} / / S_{i}\right)^{a_{i}(\lambda)} \cong \mathbb{A}_{k}^{n}$, the diagram defines an étale trivialization of π_{λ}. The transition functions are given by the action of the group $S_{a_{1}(\lambda)} \times \cdots \times S_{a_{n}(\lambda)}$, which acts linearly. Hence, π_{λ} is a vector bundle which is étale-locally trivial, so by Hilbert's Theorem 90 [Ser58, Theorem 2] also Zariski-locally trivial. However, note that a stratification of $\left(\operatorname{Sym}^{n} X\right)_{\lambda}$ trivializing π_{λ} need not necessarily be G-invariant. Nevertheless, using that G is finite, any such stratification can be intersected with all of its translations by $g \in G$, in order to obtain a G-invariant stratification. Hence, we conclude that $\left[\operatorname{Sym}_{G}^{n}\left(X \times \mathbb{A}_{k}^{1}\right)\right]=\mathbb{L}^{n}\left[\operatorname{Sym}_{G}^{n} X\right]$.

From the Chevalley-Shephard-Todd theorem [Che55], it is easy to see that $\operatorname{Sym}^{n} \mathbb{A}_{k}^{r}$ is not isomorphic to $\mathbb{A}_{k}^{n r}$ for $n, r>1$. Nevertheless, the above proposition yields the following corollary.

Corollary 7.1.9. For any $n, r \geq 0$, we have $\operatorname{Sym}^{n} \mathbb{L}^{r}=\mathbb{L}^{n r}$. In particular, $Z_{G}\left(\mathbb{L}^{r}, t\right)=1 /\left(1-\mathbb{L}^{r} t\right)$.

Lemma 7.1.10. Let X be a d-dimensional G-variety over k, and suppose that the symmetric powers $\operatorname{Sym}_{G}^{n} X$ are motivically stable. Then

$$
\lim _{n \rightarrow \infty} \frac{\left[\operatorname{Sym}_{G}^{n} X\right]}{\mathbb{L}^{n d}}=\left[(1-t) Z_{G}\left(X, t / \mathbb{L}^{d}\right)\right]_{t=1}
$$

Proof. As

$$
\left[(1-t) Z_{G}\left(X, t / \mathbb{L}^{d}\right)\right]_{t=1}=\left[1+\sum_{n \geq 1}\left(\frac{\left[\operatorname{Sym}_{G}^{n} X\right]}{\mathbb{L}^{n d}}-\frac{\left[\operatorname{Sym}_{G}^{n-1} X\right]}{\mathbb{L}^{(n-1) d}}\right) t^{n}\right]_{t=1}
$$

evaluates to a telescoping series, it is equal to $\lim _{n \rightarrow \infty}\left[\operatorname{Sym}_{G}^{n} X\right] / \mathbb{L}^{n d}$.
Example 7.1.11. Let X be a variety over k such that $[X] \in \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$ is a polynomial in \mathbb{L}. Then the sequence of symmetric powers $X_{n}=\operatorname{Sym}^{n} X$ is motivically stable if and only if $[X]$ is monic in \mathbb{L}. Namely, writing $[X]=\sum_{i=0}^{d} a_{i} \mathbb{L}^{i}$
with $a_{d} \neq 0$, it follows from Lemma 7.1.7 and Corollary 7.1.9 that

$$
Z_{G}([X], t)=\prod_{i=0}^{d}\left(\frac{1}{1-\mathbb{L}^{i} t}\right)^{a_{i}}
$$

Hence, $\left[\operatorname{Sym}^{n} X\right] / \mathbb{L}^{n d}$ is the n-th coefficient of

$$
Z_{G}\left(X, t / \mathbb{L}^{d}\right)=\prod_{i=0}^{d}\left(\frac{1}{1-\mathbb{L}^{i-d} t}\right)^{a_{i}}
$$

Therefore, for $a_{d}=1$, we find that

$$
\lim _{n \rightarrow \infty} \frac{\left[\operatorname{Sym}^{n} X\right]}{\mathbb{L}^{n d}}=\left[(1-t) Z_{G}\left(X, t / \mathbb{L}^{d}\right)\right]_{t=1}=\prod_{i=0}^{d-1}\left(\frac{1}{1-\mathbb{L}^{i-d}}\right)^{a_{i}}
$$

and for $a_{d}>1$, the limit is easily seen to not exist.
Proposition 7.1.12 ([VW15, Proposition 4.2]). Let X be a G-variety over k, and $Y \subseteq X$ a G-invariant closed subvariety of dimension $\operatorname{dim} Y<\operatorname{dim} X$, with open complement $U=X \backslash Y$. Then the symmetric powers $\operatorname{Sym}_{G}^{n} X$ are motivically stable if and only if the symmetric powers $\operatorname{Sym}_{G}^{n} U$ are motivically stable, and in this case

$$
\lim _{n \rightarrow \infty} \frac{\left[\operatorname{Sym}_{G}^{n} X\right]}{\mathbb{L}^{n \operatorname{dim} X}}=Z_{G}\left(Y, \mathbb{L}^{-\operatorname{dim} X}\right) \lim _{n \rightarrow \infty} \frac{\left[\operatorname{Sym}_{G}^{n} U\right]}{\mathbb{L}^{n \operatorname{dim} X}}
$$

Proof. Let us prove the result modulo $F_{-m} \mathcal{M}_{\mathbb{L}}^{G}$ for all $m \geq 0$, by induction on m. The case $m=0$ is trivial as $\left[\operatorname{Sym}_{G}^{n} X\right] / \mathbb{L}^{n \operatorname{dim} X} \equiv 0 \bmod F_{0} \mathcal{M}_{\mathbb{L}}^{G}$, and similarly for U. For $m>0$ we find, as in Lemma 7.1.7, that, for all $n \geq 1$,

$$
\begin{equation*}
\frac{\left[\operatorname{Sym}_{G}^{n} X\right]}{\mathbb{L}^{n \operatorname{dim} X}} \equiv \sum_{i=0}^{m-1} \frac{\left[\operatorname{Sym}_{G}^{n-i} U\right]}{\mathbb{L}(n-i) \operatorname{dim} X} \frac{\left[\operatorname{Sym}_{G}^{i} Y\right]}{\mathbb{L}^{i \operatorname{dim} X}} \bmod F_{-m} \mathcal{M}_{\mathbb{L}}^{G} \tag{*}
\end{equation*}
$$

since $\left[\operatorname{Sym}_{G}^{n-i} U\right]\left[\operatorname{Sym}_{G}^{i} Y\right] / \mathbb{L}^{n \operatorname{dim} X} \in F_{-m} \mathcal{M}_{\mathbb{L}}^{G}$ for $i \geq m$ as $\operatorname{dim} Y<\operatorname{dim} X$. Now, if the symmetric powers of U stabilize modulo $F_{-m} \mathcal{M}_{\mathbb{L}}^{G}$, say to $\ell=$ $\lim _{n \rightarrow \infty}\left[\operatorname{Sym}_{G}^{n} U\right] / \mathbb{L}^{\operatorname{dim} X}$, then the right-hand side of equation $(*)$ stabilizes modulo $F_{-m} \mathcal{M}_{\mathbb{L}}^{G}$ to $\ell Z_{G}\left(Y, \mathbb{L}^{-\operatorname{dim} X}\right)$. Conversely, if the symmetric powers of X stabilize modulo $F_{-m} \mathcal{M}_{\mathbb{L}}^{G}$, then the symmetric powers of U stabilize modulo $F_{-m+1} \mathcal{M}_{\mathbb{L}}^{G}$ (by the induction hypothesis), so every term on the right-hand side of $(*)$ with $i \geq 1$ stabilizes modulo $F_{-m} \mathcal{M}_{\mathbb{L}}^{G}$. But then also the term with $i=0$ must stabilize, which shows that the symmetric powers of U stabilize modulo $F_{-m} \mathcal{M}_{\mathbb{L}}^{G}$.

Remark 7.1.13. Suppose G is the trivial group, and write $Z(-, t)$ for $Z_{G}(-, t)$. The definition of $Z(-, t)$ can be extended to the Grothendieck ring of stacks
$\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)$. Since $\mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right) \cong \mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)\left[\mathbb{L}^{-1},\left(\mathbb{L}^{n}-1\right)^{-1}\right]$ by Theorem 3.5.7, it suffices to recursively define $Z(x / \mathbb{L}, t)$ and $Z\left(x /\left(\mathbb{L}^{n}-1\right), t\right)$ in terms of $Z(x, t)$ for all elements $x \in \mathrm{~K}_{0}\left(\mathbf{S t c k}_{k}\right)$, using that $Z(x, t)$ is determined for $x \in \mathrm{~K}_{0}\left(\mathbf{V a r}_{k}\right)$. This is done as follows.

$$
\begin{aligned}
Z(x / \mathbb{L}, t) & =Z\left(x, \mathbb{L}^{-1} t\right) \\
Z\left(x /\left(\mathbb{L}^{n}-1\right), t\right) & =\prod_{i \geq 0} Z\left(x, \mathbb{L}^{i n} t\right)^{-1}
\end{aligned}
$$

Note that this gives a well-defined map

$$
Z(-, t): \mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right) \rightarrow 1+t \cdot \mathrm{~K}_{0}\left(\mathbf{S t c k}_{k}\right) \llbracket t \rrbracket
$$

since

$$
\begin{aligned}
& Z(x \mathbb{L} / \mathbb{L}, t)=Z(x, t) \quad \text { and } \\
Z\left(x\left(\mathbb{L}^{n}-1\right) /\left(\mathbb{L}^{n}-1\right)\right)= & \prod_{k \geq 0} Z\left(x\left(\mathbb{L}^{n}-1\right), \mathbb{L}^{k n} t\right)=\prod_{k \geq 0} \frac{Z\left(x, \mathbb{L}^{k n} t\right)}{Z\left(x, \mathbb{L}^{(k+1) n} t\right)}=Z(x, t)
\end{aligned}
$$

which is easily seen to still be group morphism. In particular, looking at the n-th coefficient of $Z(-, t)$, we find that Sym^{n} descends to a map

$$
\operatorname{Sym}^{n}: \mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right) \rightarrow \mathrm{K}_{0}\left(\mathbf{S t c k}_{k}\right)
$$

The definition of symmetric powers does not naturally extend from varieties to stacks. However, as shown in [Eke09b], the class $\operatorname{Sym}^{n}[\mathfrak{X}]$ coincides with the virtual class of the stacky symmetric power $\left[\mathfrak{X}^{n} / S_{n}\right]$ for objects \mathfrak{X} of $\mathbf{S t c k}_{k}$ when $\operatorname{char}(k)=0$ and $\operatorname{char}(k)>n$.

7.2 Equivariant stability

In this section we will show various stability results, for non-trivial algebraic groups G. Let us start by considering one of the simplest actions.

Proposition 7.2.1. Let $G=\mathbb{G}_{m}$ act on \mathbb{A}_{k}^{1} via $\alpha \cdot x=\alpha x$. Then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Sym}_{G}^{n}\left[\mathbb{A}_{k}^{1}\right]}{\mathbb{L}^{n}}=\frac{\left[\mathbb{G}_{m}\right]}{\mathbb{L}-1}
$$

in $\widehat{\mathcal{M}_{\mathbb{L}}^{G}}$, where on the right \mathbb{G}_{m} acts transitively on itself.
Proof. Write $X=\left[\mathbb{A}_{k}^{1}\right]$ for the described action of \mathbb{G}_{m} on \mathbb{A}_{k}^{1}. Since Sym ${ }^{n} \mathbb{A}_{k}^{1} \cong$ \mathbb{A}_{k}^{n} has basis of coordinates given by the elementary symmetric polynomials, we have

$$
\operatorname{Sym}_{G}^{n} X=\prod_{i=1}^{n}\left[\mathbb{A}_{k}^{1}\right]=\prod_{i=1}^{n}\left(1+Y_{i}\right)
$$

where, for any $i \geq 1$, we denote $Y_{i}=\left[\mathbb{G}_{m}\right]$ for the action $\alpha \cdot x=\alpha^{i} x$. Note that $Y_{i} Y_{j}=(\mathbb{L}-1) Y_{\operatorname{gcd}(i, j)}$ for any $i, j \geq 1$. Indeed, there exist $a, b \in \mathbb{Z}$ such that $a i+b j=d:=\operatorname{gcd}(i, j)$, so the equality follows from the isomorphism

$$
\begin{aligned}
\mathbb{G}_{m} \times \mathbb{G}_{m} & \cong \mathbb{G}_{m} \times \mathbb{G}_{m} \\
(x, y) & \mapsto\left(x^{a} y^{b}, x^{j / \operatorname{gcd}(i, j)} y^{-i / d}\right) \\
\left(z^{i / d} w^{b}, z^{j / d} w^{-a}\right) & \mapsto(z, w),
\end{aligned}
$$

where $\alpha \cdot(x, y, z, w)=\left(\alpha^{i} x, \alpha^{j} y, \alpha^{d} z, w\right)$. Now, it follows that

$$
\operatorname{Sym}_{G}^{n} X=1+\sum_{i \geq 1} a_{n, i} Y_{i} \quad \text { with } \quad a_{n, i}=\sum_{S}(\mathbb{L}-1)^{|S|-1}
$$

where the latter sum runs over all non-empty subsets $S \subseteq\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(S)=i$. Now, for any $i \geq 2$, we see that any S appearing in this sum must have $|S| \leq n / i$, so that $\operatorname{deg}_{\mathbb{L}}\left(a_{n, i}\right) \leq n / i-1$. In particular,

$$
\lim _{n \rightarrow \infty} \frac{a_{n, i}}{\mathbb{L}^{n}}=0
$$

for $i \geq 2$. Furthermore, from the equality $1+\sum_{i=1}^{n} a_{n, i}(\mathbb{L}-1)=\mathbb{L}^{n}$ follows that

$$
\lim _{n \rightarrow \infty} \frac{a_{n, 1}}{\mathbb{L}^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\mathbb{L}^{n}}\left(\frac{\mathbb{L}^{n}-1}{\mathbb{L}-1}-\sum_{i=2}^{n} a_{n, i}\right)=\frac{1}{\mathbb{L}-1}
$$

and therefore

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Sym}_{G}^{n} X}{\mathbb{L}^{n}}=\frac{1}{\mathbb{L}-1} Y_{1}
$$

Corollary 7.2.2. The action of $G=\mathbb{G}_{m}$ on \mathbb{A}_{k}^{1} given by $\alpha \cdot x=\alpha x$ extends to \mathbb{P}_{k}^{1} and restricts to \mathbb{G}_{m}. The symmetric powers of \mathbb{P}_{k}^{1} and \mathbb{G}_{m} are motivically stable with limits

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\operatorname{Sym}_{G}^{n}\left[\mathbb{P}^{1}\right]}{\mathbb{L}^{n}} & =\frac{\mathbb{L}}{(\mathbb{L}-1)^{2}}\left[\mathbb{G}_{m}\right] \\
\lim _{n \rightarrow \infty} \frac{\operatorname{Sym}_{G}^{n}\left[\mathbb{G}_{m}\right]}{\mathbb{L}^{n}} & =\frac{1}{\mathbb{L}}\left[\mathbb{G}_{m}\right] .
\end{aligned}
$$

Proof. This follows from Proposition 7.2.1 together with Proposition 7.1.12 and the fact that $Z_{G}(1, t)=1 /(1-t)$.

Next, we will generalize this result to the groups $G=\mathrm{GL}_{r}$ acting on affine space. In doing so, the following definition will be useful.

Definition 7.2.3. Let X_{n} be a sequence of G-varieties over k. A family of G invariant subvarieties $Y_{n} \subseteq X_{n}$ is negligible if $\lim _{n \rightarrow \infty} \operatorname{dim} X_{n}-\operatorname{dim} Y_{n}=\infty$. In particular, X_{n} is motivically stable with limit $\ell=\lim _{n \rightarrow \infty}\left[X_{n}\right] / \mathbb{L}^{\operatorname{dim} X_{n}}$ if and only if $Z_{n}=X_{n} \backslash Y_{n}$ is motivically stable with the same limit.

Proposition 7.2.4. Let $G=\mathrm{GL}_{r}$ act naturally on \mathbb{A}_{k}^{r} for some $r \geq 1$. Then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Sym}_{G}^{n}\left[\mathbb{A}_{k}^{r}\right]}{\mathbb{L}^{n r}}=\frac{\left[\mathrm{GL}_{r}\right]}{\prod_{i=1}^{r}\left(\mathbb{L}^{r}-\mathbb{L}^{i-1}\right)}=\prod_{i=1}^{r} \frac{\left[\mathbb{A}_{k}^{r}\right]-\mathbb{L}^{i-1}}{\mathbb{L}^{r}-\mathbb{L}^{i-1}}
$$

with GL_{r} acting transitively on itself.
Proof. Let $X_{n} \subseteq \operatorname{Sym}_{G}^{n} \mathbb{A}_{k}^{r}$ be the strata where GL_{r} acts freely, that is, the strata of points whose stabilizer is trivial. Then $X_{n} \rightarrow X_{n} / / \mathrm{GL}_{r}$ is a GL_{r}-torsor, so $\left[X_{n}\right]=\left[X_{n} / / \mathrm{GL}_{r}\right]\left[\mathrm{GL}_{r}\right]$ since GL_{r} is a special group. In particular, if we show that the complement $Y_{n}=\left(\operatorname{Sym}_{G}^{n} \mathbb{A}_{k}^{r}\right) \backslash X_{n}$ of points with non-trivial stabilizer is negligible, then the result follows as

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Sym}_{G}^{n}\left[\mathbb{A}_{k}^{r}\right]}{\mathbb{L}^{n r}}=\lim _{n \rightarrow \infty} \frac{\left[X_{n}\right]}{\mathbb{L}^{n r}}=\lim _{n \rightarrow \infty} \frac{\left[X_{n} / / \mathrm{GL}_{r}\right]}{\mathbb{L}^{n r}}\left[\mathrm{GL}_{r}\right]
$$

where

$$
\lim _{n \rightarrow \infty} \frac{\left[X_{n} / / \mathrm{GL}_{r}\right]}{\mathbb{L}^{n r}}=\lim _{n \rightarrow \infty} \frac{\left[X_{n}\right]}{\mathbb{L}^{n r}}\left[\mathrm{GL}_{r}\right]^{-1}=\left[\mathrm{GL}_{r}\right]^{-1}=\frac{1}{\prod_{i=1}^{r}\left(\mathbb{L}^{r}-\mathbb{L}^{i-1}\right)}
$$

To show that Y_{n} is negligible, suppose $\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{A}_{k}^{r}\right)^{n}$ is a point which (in passing to the quotient by S_{n}) is stabilized by some non-trivial $A \in \mathrm{GL}_{r}$. Then there is a permutation $\sigma \in S_{n}$ such that $A x_{i}=x_{\sigma(i)}$ for all $i=1, \ldots, n$. Hence, there is a surjection

$$
\bigsqcup_{\sigma \in S_{n}} Z_{\sigma} \rightarrow Y_{n}
$$

with $Z_{\sigma}=\left\{\left(A, x_{1}, \ldots, x_{n}\right) \in\left(\mathrm{GL}_{r} \backslash\{1\}\right) \times\left(\mathbb{A}_{k}^{r}\right)^{n} \mid A x_{i}=x_{\sigma(i)}\right\}$. We claim that $\operatorname{dim} Z_{\sigma} \leq \operatorname{dim} \mathrm{GL}_{r}+n r-n$ for all $\sigma \in S_{n}$, from which it follows that $\operatorname{dim} Y_{n} \leq$ $\operatorname{dim} \mathrm{GL}_{r}+n r-n$, which in turn implies Y_{n} is negligible. To prove this claim, fix some $\sigma \in S_{n}$ and write $\sigma=\tau_{1} \tau_{2} \ldots \tau_{s}$ in canonical cycle notation (in particular, we do not omit 1 -cycles $)$. Then for every cycle $\tau=\left(i_{1} i_{2} \ldots i_{m}\right)$, let

$$
Z_{\tau}=\left\{\left(A, x_{i_{1}}, \ldots, x_{i_{m}}\right) \mid A x_{i_{j}}=x_{\tau\left(i_{j}\right)}\right\} .
$$

If τ is a 1-cycle, then $\operatorname{dim} Z_{\tau} \leq \operatorname{dim} \mathrm{GL}_{r}+r-1$ since A is non-trivial. If τ is an ($m \geq 2$)-cycle, then $\operatorname{dim} Z_{\tau} \leq \operatorname{dim} \mathrm{GL}_{r}+r$. Simple combinatorics now yields

$$
\operatorname{dim} Z_{\sigma}=\operatorname{dim}\left(Z_{\tau_{1}} \times_{\mathrm{GL}_{r} \backslash\{1\}} \cdots \times_{\mathrm{GL}_{r} \backslash\{1\}} Z_{\tau_{s}}\right) \leq \operatorname{dim} \mathrm{GL}_{r}+n r-n .
$$

Remark 7.2.5. Note that Proposition 7.2 .1 is a special case of this proposition, but with an alternative proof.

Finally, we want to extend this result to any linear algebraic group G acting linearly on affine space. In order to relate $\widehat{\mathcal{M}_{\mathbb{L}}^{G}}$ for various G, consider the following lemma.

Lemma 7.2.6. Let G be an algebraic group over k with subgroup $H \subseteq G$. The morphisms $\operatorname{Res}_{H}^{G}$ and $\operatorname{Ind}_{H}^{G}$ of Definition 3.6.5 extend to continuous morphisms

$$
\operatorname{Res}_{H}^{G}: \widehat{\mathcal{M}_{\mathbb{L}}^{G}} \rightarrow \widehat{\mathcal{M}_{\mathbb{L}}^{H}} \quad \text { and } \quad \operatorname{Ind}_{H}^{G}: \widehat{\mathcal{M}_{\mathbb{L}}^{H}} \rightarrow \widehat{\mathcal{M}_{\mathbb{L}}^{G}}
$$

In fact, $\operatorname{Res}_{H}^{G}$ is defined for any morphism $H \rightarrow G$ of algebraic groups over k.
Proof. Since $\operatorname{Res}_{H}^{G}\left(F_{m} \mathcal{M}_{\mathbb{L}}^{G}\right) \subseteq F_{m} \mathcal{M}_{\mathbb{L}}^{H}$ and $\operatorname{Ind}_{H}^{G}\left(F_{m} \mathcal{M}_{\mathbb{L}}^{H}\right) \subseteq F_{m^{\prime}} \mathcal{M}_{\mathbb{L}}^{G}$, with $m^{\prime}=m+\operatorname{dim} G-\operatorname{dim} H$, both $\operatorname{Ind}_{H}^{G}$ and $\operatorname{Res}_{H}^{G}$ extend to the completions.

Corollary 7.2.7. Let G be an algebraic group over k acting on \mathbb{A}_{k}^{r} via some morphism $\rho: G \rightarrow \mathrm{GL}_{r}$ of algebraic groups. Then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Sym}_{G}^{n}\left[\mathbb{A}_{k}^{r}\right]}{\mathbb{L}^{n r}}=\frac{\left[\mathrm{GL}_{r}\right]}{\prod_{i=1}^{r}\left(\mathbb{L}^{r}-\mathbb{L}^{i-1}\right)}
$$

where G acts on GL_{r} by multiplication via ρ.
Proof. Use Proposition 7.2.4 and that $\operatorname{Res}_{G}^{\mathrm{GL}_{r}} \circ \operatorname{Sym}_{\mathrm{GL}_{r}}^{n}=\operatorname{Sym}_{G}^{n} \circ \operatorname{Res}_{G}^{\mathrm{GL}_{r}}$.

7.3 Motivic representation stability

In the context of motivic stability, it is typical to consider a sequence of symmetric powers $\operatorname{Sym}^{n} X=X^{n} / / S_{n}$ of a variety X over k. However, one can more generally consider the whole X^{n} together with the action of S_{n} by permutation. One can then attempt to study the stability of the S_{n}-virtual class of X^{n}, as in Definition 3.6.12.
However, two problems arise. First of all, the group S_{n} depends on n, so to talk about stability, we must identify the irreducible representations of S_{n} for varying n. Recall that the irreducible representations of S_{n} are parametrized by the partitions of n [FH91]. Write V_{λ} for the irreducible representation of S_{n} corresponding to a partition λ of n. For any partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and any integer $n \geq|\lambda|+\lambda_{1}$, denote by $\lambda[n]$ the partition of n given by

$$
\lambda[n]=\left(n-|\lambda|, \lambda_{1}, \lambda_{2}, \ldots\right) .
$$

Then, we think of the family $V_{\lambda[n]}$ of irreducible representations of S_{n} as corresponding to each other.
The second problem is that the S_{n}-virtual class depends on the choice of a set \mathcal{H} of subgroups of S_{n}. One could, as in Example 3.6.15, take set of Young subgroups

$$
\begin{equation*}
\mathcal{H}=\left\{S_{\lambda_{1}} \times \cdots \times S_{\lambda_{k}} \mid \lambda \text { is a partition of } n\right\} . \tag{7.1}
\end{equation*}
$$

This idea will give rise to Definition 7.3.4. However, to get rid of the choice, we will first consider invariants in $\mathrm{K}_{0}(\mathcal{A})$ instead of $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$ for some suitable category \mathcal{A} and functor $\mathcal{X}: \operatorname{Var}_{k} \rightarrow \mathcal{A}$. We will assume the following:

- \mathcal{A} is a K-linear idempotent complete tensor triangulated category, with K a field of characteristic zero.
- The functor \mathcal{X} induces a ring morphism $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right) \rightarrow \mathrm{K}_{0}(\mathcal{A})$. For any element $x \in \mathrm{~K}_{0}\left(\operatorname{Var}_{k}\right)$, we will denote its image in $\mathrm{K}_{0}(\mathcal{A})$ also by x.
- For any finite group G and G-variety X over k, the coefficient of $[\mathcal{X}(X)]^{G} \in$ $\mathrm{K}_{0}(\mathcal{A}) \otimes R_{K}(G)$ corresponding to the trivial representation equals $[\mathcal{X}(X / / G)]$.

Inspired by [CF13, Definition 2.3], we introduce the following definition.
Definition 7.3.1. Let X_{n} be a sequence of varieties over k with an action of S_{n}. The sequence is \mathcal{A}-representation stable if, writing

$$
\left[X_{n}\right]^{S_{n}}=\sum_{\lambda[n]}\left[X_{n}\right]_{\lambda[n]} \otimes\left[V_{\lambda[n]}\right] \in \mathrm{K}_{0}(\mathcal{A}) \otimes R_{\mathbb{Q}}\left(S_{n}\right),
$$

the coefficients $\left[X_{n}\right]_{\lambda[n]} / \mathbb{L}^{\operatorname{dim} X_{n}}$ are eventually independent of n.
One way to compute the coefficients $\left[X_{n}\right]_{\mu}$, for partitions μ of n, is to look at the virtual classes of the quotients $X_{n} / / S_{\lambda}$ with $S_{\lambda} \in \mathcal{H}$. This way, one inevitably encounters the Kostka numbers $K_{\mu \lambda}$. We will need the following lemma.

Lemma 7.3.2. Let λ and μ be partitions. The Kostka number $K_{\mu[n] \lambda[n]}$ is independent of n for $n \geq|\lambda|+\mu_{1}$.

Proof. Recall that $K_{\mu \lambda}$ is equal to the number of ways to fill the Young diagram of μ with $\lambda_{1} 1$'s, λ_{2} 2's, etc., such that the resulting tableau is non-decreasing along rows and strictly increasing along columns [FH91]. Denote by $A_{\mu \lambda}$ the set of such tableaux. In particular, $K_{\mu \lambda}=\left|A_{\mu \lambda}\right|$.

For $|\mu|>|\lambda|$, we have $\mu[n]<\lambda[n]$, and hence $K_{\mu[n] \lambda[n]}=0$. Now suppose $|\mu| \leq|\lambda|$. Considering $A_{\mu[n] \lambda[n]}$, note that all $(n-|\lambda|)$ 1's must be placed on the first row of the Young diagram of $\mu[n]$. Therefore, any Young tableau in $A_{\mu[n] \lambda[n]}$ is completely determined by the second through last rows and the last $|\lambda|-|\mu|$ entries of the first row. Note that, for $n \geq|\lambda|+\mu_{1}$, these last $|\lambda|-|\mu|$ entries do not put any restrictions on the entries of the second through last rows. Hence, we obtain a bijection between $A_{\mu[n] \lambda[n]}$ and $A_{\mu\left[n^{\prime}\right], \lambda\left[n^{\prime}\right]}$ for all $n, n^{\prime} \geq|\lambda|+\mu_{1}$, which shows that $K_{\mu[n] \lambda[n]}=K_{\mu\left[n^{\prime}\right] \lambda\left[n^{\prime}\right]}$.

Proposition 7.3.3. Suppose the sequences $\left[X_{n} / / S_{\lambda[n]}\right] / \mathbb{L}^{\operatorname{dim} X_{n}} \in \mathrm{~K}_{0}(\mathcal{A})$ stabilize for all partitions λ. Then, the sequence X_{n} is \mathcal{A}-representation stable.

Proof. Write $\left[X_{n}\right]^{S_{n}}=\sum_{\lambda[n]}\left[X_{n}\right]_{\lambda[n]} \otimes\left[V_{\lambda[n]}\right]$. For any λ, we have, similar to Example 3.6.15,

$$
\begin{aligned}
{\left[X_{n} / / S_{\lambda[n]}\right] } & =\left\langle T_{S_{\lambda[n]}}, \operatorname{Res}_{S_{\lambda[n]}}^{S_{n}}\left[X_{n}\right]^{S_{n}}\right\rangle \\
& =\left\langle\operatorname{Ind}_{S_{\lambda[n]}^{S_{n}}}^{\left.S_{S_{\lambda[n]}},\left[X_{n}\right]^{S_{n}}\right\rangle}\right. \\
& =\sum_{\mu[n] \geq \lambda[n]} K_{\mu[n] \lambda[n]}\left[X_{n}\right]^{\mu[n]}
\end{aligned}
$$

Note that there are, independent of n, only finitely many partitions μ such that $\mu[n] \geq \lambda[n]:$ those μ with $|\mu|<|\lambda|$, and those with $|\mu|=|\lambda|$ and $\mu>\lambda$.
By Lemma 7.3.2, the numbers $K_{\mu[n] \lambda[n]}$ are, for sufficiently large n, independent of n. Hence, $\left[X_{n}\right]_{\lambda[n]}$ can be expressed as a linear combination of $\left[X / / S_{\mu[n]}\right]$ with $\mu[n] \geq \lambda[n]$, where the coefficients do not change for sufficiently large $n \geq 2|\lambda| \geq$ $|\lambda|+\mu_{1}$.

This motivates the following definition. Also agrees with stabilization of G-virtual class with \mathcal{H} given by (7.1).

Definition 7.3.4. Let X_{n} be a sequence of varieties over k with an action of S_{n}. The sequence is said to be motivically representation stable if the sequences [$X_{n} / / S_{\lambda[n]}$] are motivically stable for all partitions λ. In particular, this implies X_{n} is \mathcal{A}-representation stable for all \mathcal{A} and $\mathcal{X}: \operatorname{Var}_{k} \rightarrow \mathcal{A}$ as above. Also, in particular, the sequence $\left[X_{n} / / S_{n}\right]$ is motivically stable.
More generally, a sequence X_{n} of $\left(G \times S_{n}\right)$-varieties over k is motivically representation stable if the sequences $\left[X_{n} / / S_{\lambda[n]}\right]$ are motivically stable, as sequences of G-varieties, for all partitions λ.

Example 7.3.5. Let X be a variety over k whose sequence of symmetric powers $\operatorname{Sym}^{n} X$ is motivically stable, and let $X_{n}=X^{n}$ with S_{n} acting by permutation. Then, for any partition λ, the sequence

$$
\left[X_{n} / / S_{\lambda[n]}\right]=\operatorname{Sym}^{n-|\lambda|} X \times \prod_{i \geq 1} \operatorname{Sym}^{\lambda_{i}} X
$$

is motivically stable. In particular, X_{n} is motivically representation stable.

7.4 GL_{r}-character stacks

The goal of this section is to show the sequences of character stacks

$$
\mathfrak{X}_{n}=\mathfrak{X}_{G}\left(\Gamma_{n}\right)=\left[R_{G}\left(\Gamma_{n}\right) / G\right]
$$

of the free groups $\Gamma_{n}=F_{n}$ and the free abelian groups $\Gamma_{n}=\mathbb{Z}^{n}$ are motivic representation stable for the general linear groups $G=\mathrm{GL}_{r}$ of any rank $r \geq 0$ over a field k, where the action of S_{n} is induced from the action of S_{n} on Γ_{n} by permutation. However, since the notion of motivic representation stability is only defined for (G-)varieties, we will instead prove that the sequences of representation varieties $X_{n}=R_{G}\left(\Gamma_{n}\right)$ are motivically representation stable as sequences of G-varieties. Indeed, note that the action of G by conjugation and the action of S_{n} by permutation commute.

The case of $\Gamma_{n}=F_{n}$ turns out to be a quick consequence of the theory developed in the previous sections.

Theorem 7.4.1. For every $r \geq 0$, the sequence of GL_{r}-representation varieties

$$
X_{n}=R_{\mathrm{GL}_{r}}\left(F_{n}\right)
$$

with the action of GL_{r} by conjugation, and the action of S_{n} by permutation, is motivically representation stable.

Proof. For any $n \geq 1$, write $X_{n}=R_{\mathrm{GL}_{r}}\left(F_{n}\right)=\left(\mathrm{GL}_{r}\right)^{n}$. Given any partition λ, we find

$$
X_{n} / / S_{\lambda[n]}=\operatorname{Sym}_{\mathrm{GL}_{r}}^{n-|\lambda|} \mathrm{GL}_{r} \times \prod_{i \geq 1} \operatorname{Sym}_{\mathrm{GL}_{r}}^{\lambda_{i}} \mathrm{GL}_{r}
$$

where GL_{r} acts on itself by conjugation. Viewing GL_{r} as a dense open subset of $\mathbb{A}_{k}^{r^{2}}$, the action of GL_{r} on itself is linear, and hence the sequence $X_{n} / / S_{\lambda[n]}$ is motivically stable by Corollary 7.2.7 and Proposition 7.1.12.

For the remainder of this section, we will focus on the case $\Gamma_{n}=\mathbb{Z}^{n}$, and assume that k is algebraically closed.

Theorem 7.4.2. For every $r \geq 0$, the sequence of GL_{r}-representation varieties

$$
X_{n}=R_{\mathrm{GL}_{r}}\left(\mathbb{Z}^{n}\right)
$$

with the action of GL_{r} by conjugation, and the action of S_{n} by permutation, is motivically representation stable.

Notation-wise, we will use the following presentation of X_{n}, as the closed subvariety of $\left(\mathrm{GL}_{r}\right)^{n}$ given by commuting tuples of elements $A_{i} \in \mathrm{GL}_{r}$.

$$
X_{n}=\left\{\left(A_{1}, \ldots, A_{n}\right) \in\left(\mathrm{GL}_{r}\right)^{n} \mid \text { all } A_{i} \text { commute }\right\}
$$

Interestingly, it turns out the cases $r \leq 3$ should be treated differently from the general case $r>3$. We will first treat the cases $r=2,3$.

Proposition 7.4.3. The GL_{2}-representation varieties $X_{n}=R_{\mathrm{GL}_{2}}\left(\mathbb{Z}^{n}\right)$ are motivically representation stable.

Proof. Consider the possible Jordan normal forms of an element $A \in \mathrm{GL}_{2}$.

$$
\begin{gathered}
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right) \\
\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \quad\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)
\end{gathered}
$$

In particular, note that a matrix of the form $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$, with $\lambda \neq \mu$, only commutes with diagonal matrices, and that a matrix of the form $\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ only commutes with matrices of the form $\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right)$. Therefore, X_{n} can be stratified by the subvarieties

$$
\begin{aligned}
Y_{n} & =\left\{A \in X_{n} \mid \text { all } A_{i} \text { are scalar }\right\}, \\
J_{n} & =\left\{A \in X_{n} \mid \text { some } A_{i} \text { is conjugate to }\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\right\} \\
\text { and } \quad M_{n} & =\left\{A \in X_{n} \mid \text { some } A_{i} \text { is conjugate to }\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)\right\} .
\end{aligned}
$$

Simultaneously conjugating the A_{i} into normal form, we can express J_{n} as

$$
J_{n}=\operatorname{Ind}_{H}^{\mathrm{GL}_{2}}\left(J^{n} \backslash Y_{n}\right)
$$

where $J=\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right) \right\rvert\, x \neq 0\right\}$ and $H=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, c \neq 0\right\}$ the stabilizer of J. Similarly, we have

$$
M_{n}=\operatorname{Ind}_{K}^{\mathrm{GL}_{2}}\left(M^{n} \backslash Y_{n}\right)
$$

where $M=\left\{\left.\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \right\rvert\, x, y \neq 0\right\}$ and $K=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \left.\left(\begin{array}{cc}0 & a \\ b & 0\end{array}\right) \right\rvert\, a, b \neq 0\right\}$ the stabilizer of M. Clearly $\operatorname{dim} Y_{n}=n$ while $\operatorname{dim} J_{n}$, $\operatorname{dim} M_{n} \geq 2 n$, implying $Y_{n} \subseteq X_{n}$ is negligible. Hence, it suffices to show that the sequences J_{n}^{\prime} and M_{n}^{\prime}, given by

$$
J_{n}^{\prime}=\operatorname{Ind}_{H}^{\mathrm{GL}_{2}}\left(J^{n}\right) \quad \text { and } \quad M_{n}^{\prime}=\operatorname{Ind}_{K}^{\mathrm{GL}_{2}}\left(M^{n}\right)
$$

are motivically representation stable.
First we consider J_{n}^{\prime}. Note that, for any partition λ, the actions of $S_{\lambda[n]}$ and GL_{2} on J^{n} commute, so that

$$
J_{n}^{\prime} / / S_{\lambda[n]}=\operatorname{Ind}_{H}^{\mathrm{GL}_{2}}\left(\operatorname{Sym}_{H}^{n-|\lambda|} J \times \prod_{i \geq 1} \operatorname{Sym}_{H}^{\lambda_{i}} J\right)
$$

Note that the action of H on J is linear, viewing J as an open dense subvariety of \mathbb{A}_{k}^{2}. Hence, the sequence $J_{n}^{\prime} / / S_{\lambda[n]}$ is motivically stable as a result of Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6.
The argument regarding M_{n} is analogous: for any partition λ, we have

$$
M_{n}^{\prime} / / S_{\lambda[n]}=\operatorname{Ind}_{K}^{\mathrm{GL}_{2}}\left(\operatorname{Sym}_{K}^{n-|\lambda|} M \times \prod_{i \geq 1} \operatorname{Sym}_{K}^{\lambda_{i}} M\right)
$$

Again, the action of K on $M \subseteq \mathbb{A}_{k}^{2}$ is linear, so the sequence $M_{n}^{\prime} / / S_{\lambda[n]}$ is also motivically stable.

Proposition 7.4.4. The GL_{3}-representation varieties $X_{n}=R_{\mathrm{GL}_{3}}\left(\mathbb{Z}^{n}\right)$ are motivically stable.

Proof. The proof is very similar to that of Proposition 7.4.3. Consider the possible Jordan normal forms of an element $A \in \mathrm{GL}_{3}$.

$$
\begin{aligned}
& \left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \\
& \left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \quad\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \mu
\end{array}\right) \\
& \left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right) \quad\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \mu
\end{array}\right) \quad\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & \rho
\end{array}\right)
\end{aligned}
$$

Having analyzed which matrices commute with each Jordan type, we stratify X_{n} by the subvarieties

$$
\begin{aligned}
& Y_{n}^{0}=\left\{A \in X_{n} \mid \text { all } A_{i} \text { are conjugate to }\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right),\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \text { or }\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \mu
\end{array}\right)\right\}, \\
& Y_{n}^{1}=\left\{A \in X_{n} \mid \text { some } A_{i} \text { is conjugate to }\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)\right\}, \\
& Y_{n}^{2}=\left\{A \in X_{n} \mid \text { some } A_{i} \text { is conjugate to }\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mu
\end{array}\right)\right\}, \\
& Y_{n}^{3}=\left\{A \in X_{n} \mid \text { some } A_{i} \text { is conjugate to }\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & \rho
\end{array}\right)\right\} .
\end{aligned}
$$

Note that the sequences Y_{n}^{1}, Y_{n}^{2} and Y_{n}^{3} do not intersect since matrices that have different Jordan type in the bottom row never commute. As in the proof of Proposition 7.4.3, to show motivic representation stability of the strata Y_{n}^{i}, it suffices to show motivic representation stability of the sequences

$$
Y_{n}^{\prime i}=\operatorname{Ind}_{H_{i}}^{\mathrm{GL}_{3}}\left(J_{i}^{n}\right) \quad \text { for } i=1,2,3,
$$

where

$$
\begin{aligned}
& J_{1}=\left\{\left.\left(\begin{array}{ccc}
x & y & z \\
0 & x & y \\
0 & 0 & x
\end{array}\right) \right\rvert\, x \neq 0\right\} \quad H_{1}=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & 1 & d \\
0 & 0 & 1 / a
\end{array}\right) \right\rvert\, a \neq 0\right\} \\
& J_{2}=\left\{\left.\left(\begin{array}{ccc}
x & y & 0 \\
0 & x & 0 \\
0 & 0 & z
\end{array}\right) \right\rvert\, x, z \neq 0\right\} \quad H_{2}=\left\{\left.\left(\begin{array}{ccc}
a & b & 0 \\
0 & c & 0 \\
0 & 0 & d
\end{array}\right) \right\rvert\, a, c, d \neq 0\right\} \\
& J_{3}=\left\{\left.\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right) \right\rvert\, x, y, z \neq 0\right\} \quad H_{3}=\mathbb{G}_{m}^{3} \rtimes S_{3} \text {. }
\end{aligned}
$$

More precisely, $H_{3} \subseteq \mathrm{GL}_{r}$ is the subgroup generated by the diagonal matrices and the permutation matrices.

Now, for any partition λ, we find

$$
Y_{n}^{\prime i} / / S_{\lambda[n]}=\operatorname{Ind}_{H_{i}}^{\mathrm{GL}_{3}}\left(\operatorname{Sym}_{H_{i}}^{n-|\lambda|} J_{i} \times \prod_{j \geq 1} \operatorname{Sym}_{H_{i}}^{\lambda_{j}} J_{i}\right)
$$

For all i, the group H_{i} acts linearly on J_{i}, a dense open of \mathbb{A}_{k}^{3}, so it follows from Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6 that the limits $\lim _{n \rightarrow \infty} Y_{n}^{i} / \mathbb{L}^{3 n}$ exist. Knowing that $\operatorname{dim} X_{n} \geq 3 n$, we see that $Y_{n}^{0} \subseteq X_{n}$ is negligible, and the result follows.

Looking at the proofs of Proposition 7.4.3 and Proposition 7.4.4, it might be tempting to think that in the general case the non-negligible strata are those containing matrices with maximal Jordan type. However, this turns out to be the case only for $r \leq 3$.
For the general case we use a result initially proved by Schur [Sch05], and later reproved by Jacobson [Jac44], about the maximum number of linearly independent commuting matrices. This leads to the idea of stratifying the representation varieties $R_{\mathrm{GL}_{r}}\left(\mathbb{Z}^{n}\right)$ by the dimension of the linear subspace inside $\mathrm{Mat}_{r \times r}$ spanned by the matrices A_{i}.

Proof of Theorem 7.4.2. The case $r=0$ is obvious, and the case $r=1$ follows from motivic representation stability of \mathbb{G}_{m}^{n}, see Example 7.1.11 and Example 7.3.5. The cases $r=2$ and $r=3$ were treated in Proposition 7.4.3 and Proposition 7.4.4, so we can assume $r>3$.
As usual, write $X_{n}=R_{\mathrm{GL}_{r}}\left(\mathbb{Z}^{n}\right)$ for all $n \geq 1$. For any point $A \in X_{n}$ corresponding to a tuple $\left(A_{1}, \ldots, A_{n}\right)$ of commuting elements in GL_{r}, define

$$
d_{A}=\operatorname{dim}_{k}\left\langle A_{1}, \ldots, A_{n}\right\rangle
$$

to be the dimension of the linear subspace of $\operatorname{Mat}_{r \times r}(k)$ spanned by the A_{i}. By [Jac44, Theorem 1], we have $d_{A} \leq m$ with

$$
m=\left\{\begin{array}{cc}
r^{2} / 4+1 & \text { if } r \text { is even } \\
\left(r^{2}-1\right) / 4+1 & \text { if } r \text { is odd }
\end{array}\right.
$$

Note that d_{A} is invariant under the actions of S_{n} and GL_{r}, so X_{n} can be stratified equivariantly by

$$
X_{n, d}=\left\{A \in X_{n} \mid d_{A}=d\right\} \quad \text { for } 1 \leq d \leq m
$$

Now, we will show that $X_{n, d} \subseteq X_{n}$ is negligible for $d<m$, so that we solely need to focus on $X_{n, m}$. Note that the dimension of X_{n} is at least $n m$, as it contains
the family of commuting matrices given by

$$
A_{1}=\left(\begin{array}{c|c}
\lambda_{1} I & M_{1} \tag{*}\\
\hline 0 & \lambda_{1} I
\end{array}\right), \ldots, A_{n}=\left(\begin{array}{c|c}
\lambda_{n} I & M_{n} \\
\hline 0 & \lambda_{n} I
\end{array}\right)
$$

with $\lambda_{i} \neq 0, M_{i} \in \operatorname{Mat} \frac{r}{2} \times \frac{r}{2}$ if r is even, and $M_{i} \in \operatorname{Mat}_{\frac{r+1}{2} \times \frac{r-1}{2}}$ if r is odd. To see why the strata $X_{n, d}$ with $d<m$ are negligible, observe that $X_{n, d}$ can be covered by a dense open of $X_{d} \times\left(\mathbb{A}_{k}^{d}\right)^{n}$, that is, there is a surjective morphism from a dense open $Y_{n, d} \subseteq X_{d} \times\left(\mathbb{A}_{k}^{d}\right)^{n}$ given by

$$
Y_{n, d} \rightarrow X_{n, d}, \quad\left(\left(A_{i}\right)_{i=1}^{d},\left(\alpha_{i j}\right)_{i, j=1}^{n, d}\right) \mapsto\left(\sum_{j=1}^{d} \alpha_{i j} A_{j}\right)_{i=1}^{n} .
$$

In particular, $\operatorname{dim} X_{n, d} \leq \operatorname{dim} Y_{n, d} \leq r^{2} d+n d$, and hence $\lim _{n \rightarrow \infty} \operatorname{dim} X_{n}-$ $\operatorname{dim} X_{n, d}=\infty$ for $d<m$, so it follows that $X_{n, d} \subseteq X_{n}$ is negligible.
By [Jac44, Theorem 3], every $A \in X_{n, m}$ can be conjugated to a tuple of the form $(*)$. Hence, to show motivic representation stability of $X_{n, m}$ it suffices to show motivic representation stability of

$$
X_{n, m}^{\prime}=\operatorname{Ind}_{H}^{\mathrm{GL}_{r}}\left(J^{n}\right) \quad \text { with } \quad J=\left\{\left(\begin{array}{c|c}
\lambda I & M \\
\hline 0 & \lambda I
\end{array}\right) \left\lvert\, \begin{array}{c}
\lambda \neq 0 \text { and } \\
M \in \operatorname{Mat}_{\left\lceil\frac{r}{2}\right\rceil \times\left\lfloor\frac{r}{2}\right\rfloor}
\end{array}\right.\right\}
$$

where the stabilizer

$$
H=\left\{\left(\begin{array}{c|c}
A & B \\
\hline 0 & C
\end{array}\right)\right\} \subseteq \mathrm{GL}_{r}
$$

acts trivially on λ, and acts on M via the linear action

$$
\left(\begin{array}{c|c}
A & B \\
\hline 0 & C
\end{array}\right) \cdot M=A M C^{-1}
$$

Now, from Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6, it follows that $\lim _{n \rightarrow \infty}\left[X_{n, m}\right] / \mathbb{L}^{\operatorname{dim} X_{n, m}}$ exists. Moreover, as all $X_{n, d}$ with $d<m$ are negligible, this limit is equal to $\lim _{n \rightarrow \infty}\left[X_{n}\right] / \mathbb{L}^{\operatorname{dim} X_{n}}$.

Bibliography

[Abr96] L. Abrams. "Two-dimensional topological quantum field theories and Frobenius algebras". J. Knot Theory Ramifications 5.5 (1996), pp. 569587.
[AL94] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases. Vol. 3. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1994, pp. xiv+289.
[AC07] A. Adem and F. R. Cohen. "Commuting elements and spaces of homomorphisms". Math. Ann. 338.3 (2007), pp. 587-626.
[Art74] M. Artin. "Versal deformations and algebraic stacks". Invent. Math. 27 (1974), pp. 165-189.
[Ati88] M. Atiyah. "Topological quantum field theories". Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175-186 (1989).
[BN96] J. C. Baez and M. Neuchl. "Higher-dimensional algebra. I. Braided monoidal 2-categories". Adv. Math. 121.2 (1996), pp. 196-244.
[Bai07] T. J. Baird. "Cohomology of the space of commuting n-tuples in a compact Lie group". Algebr. Geom. Topol. 7 (2007), pp. 737-754.
[BH17] D. Baraglia and P. Hekmati. "Arithmetic of singular character varieties and their E-polynomials". Proc. Lond. Math. Soc. (3) 114.2 (2017), pp. 293-332.
[Beh14] K. Behrend. "Introduction to algebraic stacks". Moduli spaces. Vol. 411. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2014, pp. 1-131.
[BD07] K. Behrend and A. Dhillon. "On the motivic class of the stack of bundles". Adv. Math. 212.2 (2007), pp. 617-644.
[Beĭ86] A. A. Beĭlinson. "Notes on absolute Hodge cohomology". Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983). Vol. 55. Contemp. Math. Amer. Math. Soc., Providence, RI, 1986, pp. 35-68.
[BD96] A. A. Beйlinson and V. G. Drinfeld. "Quantization of Hitchin's fibration and Langlands' program". Algebraic and geometric methods in mathematical physics (Kaciveli, 1993). Vol. 19. Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht, 1996, pp. 3-7.
[BN18] D. Ben-Zvi and D. Nadler. "Betti geometric Langlands". Algebraic geometry: Salt Lake City 2015. Vol. 97. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 2018, pp. 3-41.
[Bén63] J. Bénabou. "Catégories avec multiplication". C. R. Acad. Sci. Paris 256 (1963), pp. 1887-1890.
[Bou11] D. Bourqui. Asymptotic behaviour of rational curves. 2011. arXiv: 1107.3824 [math.AG].
[Bri12] T. Bridgeland. "An introduction to motivic Hall algebras". Adv. Math. 229.1 (2012), pp. 102-138.
[BK22] N. Bridger and M. Kamgarpour. Character stacks are PORC count. 2022. arXiv: 2203.04521 [math.RT].
[Bro67] R. Brown. "Groupoids and van Kampen's theorem". Proc. London Math. Soc. 17.3 (1967), pp. 385-401.
[Cam17] V. Cambò. "On the E-polynomial of a family of parabolic $\mathrm{Sp}_{2 n}{ }^{-}$ character varieties". PhD thesis. International School for Advanced Studies of Trieste, 2017.
[CHM12] M. A. A. de Cataldo, T. Hausel, and L. Migliorini. "Topology of Hitchin systems and Hodge theory of character varieties: the case A_{1} ". Ann. of Math. (2) 175.3 (2012), pp. 1329-1407.
[Che55] C. Chevalley. "Invariants of finite groups generated by reflections". Amer. J. Math. 77 (1955), pp. 778-782.
[CF13] T. Church and B. Farb. "Representation theory and homological stability". Adv. Math. 245 (2013), pp. 250-314.
[CS01] P. Colmez and J.-P. Serre, eds. Correspondance Grothendieck-Serre. Vol. 2. Documents Mathématiques (Paris) [Mathematical Documents (Paris)]. Société Mathématique de France, Paris, 2001, pp. xii+288.
[Cor88] K. Corlette. "Flat G-bundles with canonical metrics". J. Differential Geom. 28.3 (1988), pp. 361-382.
[DK86] V. I. Danilov and A. G. Khovanskǐ. "Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers". Izv. Akad. Nauk SSSR Ser. Mat. 50.5 (1986), pp. 925-945.
[DM69] P. Deligne and D. Mumford. "The irreducibility of the space of curves of given genus". Inst. Hautes Études Sci. Publ. Math. 36 (1969), pp. 75-109.
[Del71a] P. Deligne. "Théorie de Hodge. I". Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1. Gauthier-Villars, Paris, 1971, pp. 425-430.
[Del71b] P. Deligne. "Théorie de Hodge. II". Inst. Hautes Études Sci. Publ. Math. 40 (1971), pp. 5-57.
[Del74] P. Deligne. "Théorie de Hodge. III". Inst. Hautes Études Sci. Publ. Math. 44 (1974), pp. 5-77.
[Dij89] R. Dijkgraaf. "A geometric approach to two-dimensional conformal field theory". PhD thesis. University of Utrecht, 1989.
[DW90] R. Dijkgraaf and E. Witten. "Topological gauge theories and group cohomology". Comm. Math. Phys. 129.2 (1990), pp. 393-429.
[Don87] S. K. Donaldson. "Twisted harmonic maps and the self-duality equations". Proc. London Math. Soc. (3) 55.1 (1987), pp. 127-131.
[Dré04] J.-M. Drézet. "Luna's slice theorem and applications". Algebraic group actions and quotients. Hindawi Publ. Corp., Cairo, 2004, pp. 39-89.
[Eke09a] T. Ekedahl. The Grothendieck group of algebraic stacks. 2009. arXiv: 0903.3143 [math.AG].
[Eke09b] T. Ekedahl. A geometric invariant of a finite group. 2009. arXiv: 0903.3148 [math.AG].
[Fan01] B. Fantechi. "Stacks for everybody". European Congress of Mathematics, Vol. I (Barcelona, 2000). Vol. 201. Progr. Math. Birkhäuser, Basel, 2001, pp. 349-359.
[FL11] C. Florentino and S. Lawton. Singularities of free group character varieties. 2011. arXiv: 0907.4720v3 [math.AG].
[FL14] C. Florentino and S. Lawton. "Topology of character varieties of Abelian groups". Topology Appl. 173 (2014), pp. 32-58.
[FS21] C. Florentino and J. Silva. "Hodge-Deligne polynomials of character varieties of free abelian groups". Open Math. 19.1 (2021), pp. 338362.
[FS06] G. Frobenius and I. Schur. "Über die reellen darstellungen der endlichen gruppen". Sitzungsberichte der königlich preussischen Akademie der Wissenschaften (1906), pp. 186-208.
[FH91] W. Fulton and J. Harris. Representation theory. Vol. 129. Graduate Texts in Mathematics. A first course, Readings in Mathematics. Springer-Verlag, New York, 1991, pp. xvi +551.
[Gon20] Á. González-Prieto. "Virtual Classes of Parabolic $\mathrm{SL}_{2}(\mathbb{C})$-Character Varieties". Adv. Math. 368 (2020), pp. 107-148.
[GLM20] Á. González-Prieto, M. Logares, and V. Muñoz. "A Lax Monoidal Topological Quantum Field Theory For Representation Varieties". B. Sci. Math. 161 (2020). 102871.
[GHV23] Á. González-Prieto, M. Hablicsek, and J. T. Vogel. Arithmetic-Geometric Correspondence of Character Stacks via Topological Quantum Field Theory. 2023. arXiv: 2309.15331 [math.AG].
[Göt01] L. Göttsche. "On the motive of the Hilbert scheme of points on a surface". Math. Res. Lett. 8.5-6 (2001), pp. 613-627.
[GN02] F. Guillén and V. Navarro Aznar. "Un critère d'extension des foncteurs définis sur les schémas lisses". Publ. Math. Inst. Hautes Études Sci. 95 (2002), pp. 1-91.
[HV22] M. Hablicsek and J. T. Vogel. "Virtual Classes of Representation Varieties of Upper Triangular Matrices via Topological Quantum Field Theories". Symmetry, Integrability and Geometry: Methods and Applications 18.095 (2022).
[HR08] T. Hausel and F. Rodriguez-Villegas. "Mixed Hodge polynomials of character varieties". Invent. Math. 174.3 (2008), pp. 555-624.
[HLR11] T. Hausel, E. Letellier, and F. Rodriguez-Villegas. "Arithmetic harmonic analysis on character and quiver varieties". Duke Math. J. 160.2 (2011), pp. 323-400.
[Hau+22] T. Hausel et al. $P=W$ via H_{2}. 2022. arXiv: 2209.05429 [math. AG].
[Isa76] I. M. Isaacs. Character theory of finite groups. Pure and Applied Mathematics, No. 69. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976, pp. xii +303 .
[Jac44] N. Jacobson. "Schur's theorems on commutative matrices". Bull. Amer. Math. Soc. 50 (1944), pp. 431-436.
[Joy07] D. Joyce. "Motivic invariants of Artin stacks and 'stack functions"". Q. J. Math. 58.3 (2007), pp. 345-392.
[Kap00] M. Kapranov. The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups. 2000. arXiv: 0001005 [math. AG].
[KV94] M. M. Kapranov and V. A. Voevodsky. "2-categories and Zamolodchikov tetrahedra equations". Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991). Vol. 56. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1994, pp. 177-259.
[Kob05] D. Kobal. "Belitskii's canonical form for 5×5 upper triangular matrices under upper triangular similarity". Linear Algebra Appl. 403 (2005), pp. 178-182.
[Koc04] J. Kock. Frobenius algebras and 2D topological quantum field theories. Vol. 59. London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2004.
[Kon95] M. Kontsevich. String Cohomology. Lecture at Orsay. 1995.
[Kre99] A. Kresch. "Cycle groups for Artin stacks". Invent. Math. 138.3 (1999), pp. 495-536.
[Lan56] S. Lang. "Algebraic groups over finite fields". Amer. J. Math. 78 (1956), pp. 555-563.
[LL03] M. Larsen and V. A. Lunts. "Motivic measures and stable birational geometry". Mosc. Math. J. 3.1 (2003), pp. 85-95, 259.
[LM00] G. Laumon and L. Moret-Bailly. Champs algébriques. Vol. 39. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000, pp. xii +208 .
[LR22] E. Letellier and F. Rodriguez-Villegas. "E-series of character varieties of non-orientable surfaces". en. Online first. 2022.
[Let15] E. Letellier. "Character varieties with Zariski closures of GL_{n}-conjugacy classes at punctures". Selecta Math. (N.S.) 21.1 (2015), pp. 293-344.
[Lit14] D. Litt. "Symmetric powers do not stabilize". Proc. Amer. Math. Soc. 142.12 (2014), pp. 4079-4094.
[LMN13] M. Logares, V. Muñoz, and P. E. Newstead. "Hodge polynomials of $\operatorname{SL}(2, \mathbb{C})$-character varieties for curves of small genus". Rev. Mat. Complut. 26.2 (2013), pp. 635-703.
[Loo02] E. Looijenga. "Motivic measures". Astérisque 276 (2002). Séminaire Bourbaki, Vol. 1999/2000, pp. 267-297.
[LM85] A. Lubotzky and A. R. Magid. "Varieties of representations of finitely generated groups". Mem. Amer. Math. Soc. 58.336 (1985), pp. xi+117.
[Mac63] S. Mac Lane. "Natural associativity and commutativity". Rice Univ. Stud. 49.4 (1963), pp. 28-46.
[MM16] J. Martínez and V. Muñoz. "E-polynomials of the SL(2, © $)$-character varieties of surface groups". Int. Math. Res. Not. IMRN 3 (2016), pp. 926-961.
[MS22] D. Maulik and J. Shen. The $P=W$ conjecture for GL_{n}. 2022. arXiv: 2209.02568 [math.AG].
[Mer15] M. Mereb. "On the E-polynomials of a family of SL_{n}-character varieties". Math. Ann. 363.3-4 (2015), pp. 857-892.
[Mil15] J. S. Milne. Algebraic Groups (v2.00). Available at www.jmilne. org/math/. 2015.
[Mil80] J. S. Milne. Etale Cohomology (PMS-33). Princeton: Princeton University Press, 1980.
[Mil65] J. Milnor. Lectures on the h-cobordism theorem. 1965.
[Mon80] S. Montgomery. Fixed rings of finite automorphism groups of associative rings. Vol. 818. Lecture Notes in Mathematics. Springer, Berlin, 1980, pp. vii +126 .
[MR15] S. Mozgovoy and M. Reineke. "Arithmetic of character varieties of free groups". Internat. J. Math. 26.12 (2015), pp. 1550100, 19.
[Mum65] D. Mumford. Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34. Springer-Verlag, BerlinNew York, 1965, pp. vi+145.
[MOV09] V. Muñoz, D. Ortega, and M.-J. Vázquez-Gallo. "Hodge polynomials of the moduli spaces of triples of $\operatorname{rank}(2,2) "$. Q. J. Math. 60.2 (2009), pp. 235-272.
[Nag64] M. Nagata. "Invariants of a group in an affine ring". J. Math. Kyoto Univ. 3 (1964), pp. 369-377.
[Nag59] M. Nagata. "On the 14-th problem of Hilbert". Amer. J. Math. 81 (1959), pp. 766-772.
[Ols16] M. Olsson. Algebraic spaces and stacks. Vol. 62. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2016, pp. xi +298.
[PS15] I. Pak and A. Soffer. On Higman's $k\left(U_{n}(q)\right)$ conjecture. 2015. arXiv: 1507.00411 [math.C0].
[PS08] C. A. M. Peters and J. H. M. Steenbrink. Mixed Hodge structures. Vol. 52. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2008, pp. xiv+470.
[PS13] A. Pettet and J. Souto. "Commuting tuples in reductive groups and their maximal compact subgroups". Geom. Topol. 17.5 (2013), pp. 2513-2593.
[PS14] K. Ponto and M. Shulman. "Traces in symmetric monoidal categories". Expo. Math. 32.3 (2014), pp. 248-273.
[Poo02] B. Poonen. "The Grothendieck ring of varieties is not a domain". Math. Res. Lett. 9.4 (2002), pp. 493-497.
[PV89] V. L. Popov and È. B. Vinberg. "Invariant theory". Algebraic geometry, 4 (Russian). Itogi Nauki i Tekhniki. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137-314, 315.
[Pro76] C. Procesi. "The invariants of $n \times n$ matrices". Bull. Amer. Math. Soc. 82.6 (1976), pp. 891-892.
[RS19] D. A. Ramras and M. Stafa. "Hilbert-Poincaré series for spaces of commuting elements in Lie groups". Math. Z. 292.1-2 (2019), pp. 591610.
[RS21] D. A. Ramras and M. Stafa. "Homological stability for spaces of commuting elements in Lie groups". Int. Math. Res. Not. IMRN 5 (2021), pp. 3927-4002.
[Saw22] W. Sawin. Representation-induced relations in the Grothendieck of varieties. MathOverflow. 2022. eprint: https://mathoverflow.net/ q/424700.
[Sch05] J. Schur. "Zur Theorie der vertauschbaren Matrizen". J. Reine Angew. Math. 130 (1905), pp. 66-76.
[Ser58] J.-P. Serre. "Espaces fibrés algébriques". fr. Séminaire Claude Chevalley 3 (1958).
[Ser77] J.-P. Serre. Linear representations of finite groups. Graduate Texts in Mathematics, Vol. 42. Translated from the second French edition by Leonard L. Scott. Springer-Verlag, New York-Heidelberg, 1977, pp. $\mathrm{x}+170$.
[Sik13] A. S. Sikora. "Generating sets for coordinate rings of character varieties". J. Pure Appl. Algebra 217.11 (2013), pp. 2076-2087.
[Sim94] C. T. Simpson. "Moduli of representations of the fundamental group of a smooth projective variety I". Inst. Hautes Études Sci. Publ. Math 79 (1994), pp. 47-129.
[Sim91] C. T. Simpson. "Nonabelian Hodge theory". Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990). Math. Soc. Japan, Tokyo, 1991, pp. 747-756.
[Stacks] T. Stacks Project Authors. Stacks Project. https://stacks.math. columbia.edu. 2018.
[Sza09] T. Szamuely. Galois groups and fundamental groups. Vol. 117. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2009, pp. x+270.
[Toë05] B. Toën. Anneaux de Grothendieck des n-champs d'Artin. 2005. arXiv: 0509098 [math.AG].
[VW15] R. Vakil and M. M. Wood. "Discriminants in the Grothendieck ring". Duke Math. J. 164.6 (2015), pp. 1139-1185.
[Vog22] J. T. Vogel. Math Code. Available at https://github.com/jessetvogel/ math-code. 2022.
[Vog24] J. Vogel. "On the motivic Higman conjecture". Journal of Algebra 651 (2024), pp. 19-69.
[Whi40] J. H. C. Whitehead. "On C^{1}-complexes". Ann. of Math. (2) 41 (1940), pp. 809-824.
[Wit89] E. Witten. "Quantum field theory and the Jones polynomial". Comm. Math. Phys. 121.3 (1989), pp. 351-399.

Appendix A

TQFT for upper triangular

matrices

The following pages describe the $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-module morphism $Z_{G}^{\mathrm{rep}}(\Omega)$ for the groups $G=\mathbb{U}_{n}$ and $G=\mathbb{T}_{n}$ over $k=\mathbb{C}$ for $2 \leq n \leq 5$. We restrict these maps to the $\mathrm{K}_{0}\left(\operatorname{Var}_{k}\right)$-submodule of $\mathrm{K}_{0}\left(\operatorname{Var}_{G}\right)$ generated by the elements $\mathbf{1}_{\mathcal{U}_{1}}, \ldots, \mathbf{1}_{\mathcal{U}_{M}} \in \mathrm{~K}_{0}\left(\operatorname{Var}_{G}\right)$, corresponding to the inclusions of the unipotent conjugacy classes $\mathcal{U}_{i} \rightarrow G$, and express them as matrices with respect to these generators.
For every $2 \leq n \leq 5$, representatives for these unipotent conjugacy classes are, in order, given by:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$,
$\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, $\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$,

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Case $G=\mathbb{U}_{2}$. The matrix associated to $Z_{\mathbb{U}_{2}}^{\mathrm{rep}}(\sigma)$ is given by

$$
\left[\begin{array}{cc}
\mathbb{L}^{2} & 0 \\
0 & \mathbb{L}^{2}
\end{array}\right]
$$

for which both $\mathbf{1}_{\mathcal{U}_{1}}$ and $\mathbf{1}_{\mathcal{U}_{2}}$ are eigenvectors with eigenvalue \mathbb{L}^{2}.

Case $G=\mathbb{T}_{2}$. The matrix associated to $Z_{\mathbb{T}_{2}}^{\text {rep }}(\sigma)$ is given by

$$
\left[\begin{array}{ll}
\mathbb{L}^{2}(\mathbb{L}-1) & \mathbb{L}^{2}(\mathbb{L}-2)(\mathbb{L}-1) \\
\mathbb{L}^{2}(\mathbb{L}-2) & \mathbb{L}^{2}\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right)
\end{array}\right]
$$

whose eigenvalues are \mathbb{L}^{2} and $\mathbb{L}^{2}(\mathbb{L}-1)^{2}$ with respective eigenvectors

$$
\left[\begin{array}{c}
1-\mathbb{L} \\
1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Case $G=\mathbb{U}_{3}$. The matrix associated to $Z_{\mathbb{U}_{3}}^{\text {rep }}(\sigma)$) is given by

$$
\left[\begin{array}{ccccc}
\mathbb{L}^{3}\left(\mathbb{L}^{2}+\mathbb{L}-1\right) & 0 & \mathbb{L}^{3}(\mathbb{L}-1)^{2}(\mathbb{L}+1) & 0 & 0 \\
0 & \mathbb{L}^{6} & 0 & 0 & 0 \\
\mathbb{L}^{3}(\mathbb{L}-1)(\mathbb{L}+1) & 0 & \mathbb{L}^{3}\left(\mathbb{L}^{3}-\mathbb{L}^{2}+1\right) & 0 & 0 \\
0 & 0 & 0 & \mathbb{L}^{6} & 0 \\
0 & 0 & 0 & 0 & \mathbb{L}^{6}
\end{array}\right],
$$

whose eigenvalues are \mathbb{L}^{4} and \mathbb{L}^{6} (with multiplicity 4), with respective eigenvectors

$$
\left[\begin{array}{c}
1-\mathbb{L} \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Case $G=\mathbb{T}_{3}$. The matrix associated to $Z_{\mathbb{T}_{3}}^{\text {rep }}(\sigma)$ is given by

$$
\left[\begin{array}{ccc}
\mathbb{L}^{3}(\mathbb{L}-1)^{2}\left(\mathbb{L}^{2}+\mathbb{L}-1\right) & \mathbb{L}^{6}(\mathbb{L}-2)(\mathbb{L}-1)^{2} & \mathbb{L}^{3}(\mathbb{L}-1)^{4}(\mathbb{L}+1) \\
\mathbb{L}^{5}(\mathbb{L}-2)(\mathbb{L}-1) & \mathbb{L}^{6}(\mathbb{L}-1)\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right) & \mathbb{L}^{5}(\mathbb{L}-2)(\mathbb{L}-1)^{2} \\
\mathbb{L}^{3}(\mathbb{L}-1)^{3}(\mathbb{L}+1) & \mathbb{L}^{6}(\mathbb{L}-2)(\mathbb{L}-1)^{2} & \mathbb{L}^{3}(\mathbb{L}-1)^{2}\left(\mathbb{L}^{3}-\mathbb{L}^{2}+1\right) \\
\mathbb{L}^{5}(\mathbb{L}-2)(\mathbb{L}-1) & \mathbb{L}^{6}(\mathbb{L}-2)^{2}(\mathbb{L}-1) & \mathbb{L}^{5}(\mathbb{L}-2)(\mathbb{L}-1)^{2} \\
\mathbb{L}^{5}(\mathbb{L}-2)^{2} & \mathbb{L}^{6}(\mathbb{L}-2)\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right) & \mathbb{L}^{5}(\mathbb{L}-2)^{2}(\mathbb{L}-1) \\
\mathbb{L}^{6}(\mathbb{L}-2)(\mathbb{L}-1)^{2} & \mathbb{L}^{6}(\mathbb{L}-2)^{2}(\mathbb{L}-1)^{2} \\
\mathbb{L}^{6}(\mathbb{L}-2)^{2}(\mathbb{L}-1) & \mathbb{L}^{6}(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right) \\
\mathbb{L}^{6}(\mathbb{L}-2)(\mathbb{L}-1)^{2} & \mathbb{L}^{6}(\mathbb{L}-2)^{2}(\mathbb{L}-1)^{2} \\
\mathbb{L}^{6}(\mathbb{L}-1)\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right) & \mathbb{L}^{6}(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right) \\
\mathbb{L}^{6}(\mathbb{L}-2)\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right) & \mathbb{L}^{6}\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right)^{2}
\end{array}\right],
$$

whose eigenvalues are

$$
\mathbb{L}^{6}, \quad \mathbb{L}^{4}(\mathbb{L}-1)^{2}, \quad \mathbb{L}^{6}(\mathbb{L}-1)^{2}, \quad \mathbb{L}^{6}(\mathbb{L}-1)^{2}, \quad \mathbb{L}^{6}(\mathbb{L}-1)^{4}
$$

with respective eigenvectors

$$
\left[\begin{array}{c}
\mathbb{L}^{2}-2 \mathbb{L}+1 \\
1-\mathbb{L} \\
\mathbb{L}^{2}-2 \mathbb{L}+1 \\
1-\mathbb{L} \\
1
\end{array}\right], \quad\left[\begin{array}{c}
1-\mathbb{L} \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
1-\mathbb{L} \\
2-\mathbb{L} \\
1-\mathbb{L} \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Case $G=\mathbb{U}_{4}$. The matrix associated to $Z_{\mathbb{U}_{4}}^{\text {rep }}(\sigma)$) (which we do not print due to its size) has eigenvalues, with multiplicity, given by

$$
\mathbb{L}^{8}(\text { mult. } 2), \quad \mathbb{L}^{10}(\text { mult. } 6), \quad \mathbb{L}^{12} \text { (mult. 8) }
$$

with respective eigenvectors

- $\mathbf{1}_{\mathcal{U}_{4}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{1}}$
- $\mathbf{1}_{\mathcal{U}_{14}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{5}}$
- $\mathbf{1}_{\mathcal{U}_{3}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}\right)$
- $\mathbf{1}_{\mathcal{U}_{3}}-\mathbf{1}_{\mathcal{U}_{6}}$
- $\mathbf{1}_{\mathcal{U}_{9}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{2}}$
- $\mathbf{1}_{\mathcal{U}_{11}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{3}}$
- $\mathbf{1}_{\mathcal{U}_{12}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{7}}$
- $\mathbf{1}_{\mathcal{U}_{16}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{10}}$
- $\mathbf{1}_{\mathcal{U}_{8}}$
- $\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{9}}$
- $\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{11}}$
- $\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{12}}$
- $\mathbf{1}_{\mathcal{U}_{13}}$
- $\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}$
- $\mathbf{1}_{\mathcal{U}_{15}}$
- $\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{16}}$.

Case $G=\mathbb{T}_{4} . \quad$ The matrix associated to $Z_{\mathbb{T}_{4}}^{\text {rep }}(\sigma)$ has eigenvalues, with multiplicity, given by

$$
\begin{array}{llll}
\mathbb{L}^{10}, & \mathbb{L}^{12}, & \mathbb{L}^{8}(\mathbb{L}-1)^{2}, & \mathbb{L}^{10}(\mathbb{L}-1)^{2}(\text { mult. 3), } \\
\mathbb{L}^{12}(\mathbb{L}-1)^{2}(\text { mult. 3) }, \\
\mathbb{L}^{8}(\mathbb{L}-1)^{4}, & \mathbb{L}^{10}(\mathbb{L}-1)^{4}(\text { mult. 2), } & \mathbb{L}^{12}(\mathbb{L}-1)^{4}\left(\text { mult. 3), } \quad \mathbb{L}^{12}(\mathbb{L}-1)^{6}\right.
\end{array}
$$

with respective eigenvectors

- $\mathbf{1}_{\mathcal{U}_{16}}+(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}\right)-(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{6}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{10}}-\mathbf{1}_{\mathcal{U}_{11}}\right)$
- $\mathbf{1}_{\mathcal{U}_{15}}-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{11}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{7}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{14}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{16}}\right)$
- $\mathbf{1}_{\mathcal{U}_{14}}+\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{1}}-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{4}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{5}}$
- $\mathbf{1}_{\mathcal{U}_{9}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{11}}\right)$
- $\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{12}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}-\mathbf{1}_{\mathcal{U}_{7}}\right)+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{3}}-\mathbf{1}_{\mathcal{U}_{6}}\right)$
- $\mathbf{1}_{\mathcal{U}_{9}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{16}}\right)-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{6}}+(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{10}}$
- $\mathbf{1}_{\mathcal{U}_{8}}-\mathbf{1}_{\mathcal{U}_{13}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}-\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{12}}\right)$
- $\mathbf{1}_{\mathcal{U}_{15}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{6}}-\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{11}}-\mathbf{1}_{\mathcal{U}_{12}}\right)+(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{14}}\right)-(2 \mathbb{L}-3) \mathbf{1}_{\mathcal{U}_{8}}$
- $\mathbf{1}_{\mathcal{U}_{8}}-\mathbf{1}_{\mathcal{U}_{10}}-\mathbf{1}_{\mathcal{U}_{16}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{5}}-\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{14}}\right)$
- $\mathbf{1}_{\mathcal{U}_{14}}-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{1}}+\mathbb{L} \mathbf{1}_{\mathcal{U}_{4}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{5}}$
- $\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}\right)$
- $\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{12}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}-\mathbf{1}_{\mathcal{U}_{7}}\right)-\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{3}}-\mathbf{1}_{\mathcal{U}_{6}}\right)$
- $\mathbf{1}_{\mathcal{U}_{2}}-\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{12}}-\mathbf{1}_{\mathcal{U}_{13}}$
- $\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{12}}-\mathbf{1}_{\mathcal{U}_{15}}+(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{11}}\right)+(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{5}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{14}}\right)+(\mathbb{L}-3) \mathbf{1}_{\mathcal{U}_{8}}$
- $\mathbf{1}_{\mathcal{U}_{5}}-\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}-\mathbf{1}_{\mathcal{U}_{10}}-\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{14}}-\mathbf{1}_{\mathcal{U}_{16}}$
- $\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{12}}+$ $\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{16}}$.

Case $G=\mathbb{U}_{5}$. The matrix associated to $Z_{\mathbb{U}_{5}}^{\text {rep }}(\sigma)$) has eigenvalues, with multiplicity, given by
$\mathbb{L}^{12}, \quad \mathbb{L}^{14}$ (mult. 6), $\quad \mathbb{L}^{16}$ (mult. 18), $\quad \mathbb{L}^{18}$ (mult. 20), $\quad \mathbb{L}^{20}$ (mult. 16)
with respective eigenvectors

- $\mathbf{1}_{\mathcal{U}_{36}}+\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{1}}-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{5}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{7}}$
- $\mathbf{1}_{\mathcal{U}_{23}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{9}}$
- $\mathbf{1}_{\mathcal{U}_{28}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{6}}$
- $\mathbf{1}_{\mathcal{U}_{32}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{8}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{1}}+\mathbb{L} \mathbf{1}_{\mathcal{U}_{5}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{7}}$
- $\mathbf{1}_{\mathcal{U}_{46}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{15}}$
- $\mathbf{1}_{\mathcal{U}_{53}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{19}}$
- $\mathbf{1}_{\mathcal{U}_{4}}-\mathbf{1}_{\mathcal{U}_{8}}$
- $\mathbf{1}_{\mathcal{U}_{17}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{11}}$
- $\mathbf{1}_{\mathcal{U}_{22}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{10}}$
- $\mathbf{1}_{\mathcal{U}_{18}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{23}}\right)$
- $\mathbf{1}_{\mathcal{U}_{26}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}\right)-\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{10}}\right)$
- $\mathbf{1}_{\mathcal{U}_{27}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{28}}\right)$
- $\mathbf{1}_{\mathcal{U}_{32}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}\right)-(\mathbb{L}-2) \mathbf{1}_{\mathcal{U}_{4}}$
- $\mathbf{1}_{\mathcal{U}_{34}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{3}}$
- $\mathbf{1}_{\mathcal{U}_{35}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{2}}$
- $\mathbf{1}_{\mathcal{U}_{42}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{13}}$
- $\mathbf{1}_{\mathcal{U}_{47}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{16}}$
- $\mathbf{1}_{\mathcal{U}_{48}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{20}}$
- $\mathbf{1}_{\mathcal{U}_{50}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{21}}$
- $\mathbf{1}_{\mathcal{U}_{52}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{29}}$
- $\mathbf{1}_{\mathcal{U}_{55}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{36}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{31}}\right)$
- $\mathbf{1}_{\mathcal{U}_{56}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{25}}$
- $\mathbf{1}_{\mathcal{U}_{60}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{41}}$
- $\mathbf{1}_{\mathcal{U}_{61}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{51}}$
- $\mathbf{1}_{\mathcal{U}_{14}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{17}}\right)$
- $\mathbf{1}_{\mathcal{U}_{24}}-\mathbf{1}_{\mathcal{U}_{31}}$
. $\mathbf{1}_{\mathcal{U}_{26}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{32}}\right)-(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{22}}\right)$
- $\mathbf{1}_{\mathcal{U}_{3}}-\mathbf{1}_{\mathcal{U}_{10}}-\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{34}}$
- $\mathbf{1}_{\mathcal{U}_{33}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{35}}\right)$
- $\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{10}}-\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{24}}-\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{36}}$
- $\mathbf{1}_{\mathcal{U}_{38}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{33}}$
- $\mathbf{1}_{\mathcal{U}_{40}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{12}}$
- $\mathbf{1}_{\mathcal{U}_{45}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{14}}$
- $\mathbf{1}_{\mathcal{U}_{44}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{46}}\right)$
- $\mathbf{1}_{\mathcal{U}_{14}}-\mathbf{1}_{\mathcal{U}_{16}}-\mathbf{1}_{\mathcal{U}_{47}}$
- $\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{50}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{23}}\right)$
- $\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{52}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{28}}\right)$
- $\mathbf{1}_{\mathcal{U}_{54}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{30}}$
- $\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{55}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}\right)$
- $\mathbf{1}_{\mathcal{U}_{25}}-\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{56}}$
- $\mathbf{1}_{\mathcal{U}_{58}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{39}}$
- $\mathbf{1}_{\mathcal{U}_{59}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{43}}$
- $\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{60}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{42}}\right)$
- $\mathbf{1}_{\mathcal{U}_{51}}+\mathbf{1}_{\mathcal{U}_{61}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{48}}\right)$
- $\mathbf{1}_{\mathcal{U}_{37}}$
- $\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{40}}$
- $\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{44}}+\mathbf{1}_{\mathcal{U}_{46}}$
- $\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{45}}+\mathbf{1}_{\mathcal{U}_{47}}$
- $\mathbf{1}_{\mathcal{U}_{49}}$
- $\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{50}}$
- $\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{52}}$
- $\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{53}}$
- $\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{54}}$
- $\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{32}}+$ $\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{55}}$
- $\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{56}}$
- $\mathbf{1}_{\mathcal{U}_{57}}$
- $\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{58}}$
- $\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{59}}$
- $\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{42}}+\mathbf{1}_{\mathcal{U}_{60}}$
- $\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{51}}+\mathbf{1}_{\mathcal{U}_{61}}$.

Case $G=\mathbb{T}_{5}$. The matrix associated to $Z_{\mathbb{T}_{5}}^{\text {rep }}(\sigma)$ has eigenvalues, with multiplicity, given by

$$
\begin{aligned}
& \mathbb{L}^{12}(\mathbb{L}-1)^{4}, \mathbb{L}^{14}(\mathbb{L}-1)^{2} \text { (mult. 2), } \mathbb{L}^{16}\left(\text { mult. 2), } \mathbb{L}^{14}(\mathbb{L}-1)^{4}(\text { mult. 3), }\right. \\
& \mathbb{L}^{16}(\mathbb{L}-1)^{2}(\text { mult. } 7), \mathbb{L}^{18} \text { (mult. 2), } \mathbb{L}^{14}(\mathbb{L}-1)^{6}, \mathbb{L}^{16}(\mathbb{L}-1)^{4} \text { (mult. 7), } \\
& \mathbb{L}^{18}(\mathbb{L}-1)^{2}(\text { mult. } 7), \mathbb{L}^{20}, \mathbb{L}^{16}(\mathbb{L}-1)^{6}\left(\text { mult. 2), } \mathbb{L}^{18}(\mathbb{L}-1)^{4}\right. \text { (mult. 8), }
\end{aligned}
$$

$\mathbb{L}^{20}(\mathbb{L}-1)^{2}$ (mult. 4), $\mathbb{L}^{18}(\mathbb{L}-1)^{6}($ mult. 3$), \mathbb{L}^{20}(\mathbb{L}-1)^{4}$ (mult. 6),

$$
\mathbb{L}^{20}(\mathbb{L}-1)^{6}(\text { mult. } 4), \mathbb{L}^{20}(\mathbb{L}-1)^{8}
$$

with respective eigenvectors

- $\mathbf{1}_{\mathcal{U}_{13}}+\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{1}}-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{5}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{10}}$
- $\mathbf{1}_{\mathcal{U}_{25}}-\mathbb{L}^{2}(\mathbb{L}-1)^{3} \mathbf{1}_{\mathcal{U}_{1}}+\mathbb{L}^{2}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{5}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{18}}\right)-$ $\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{22}}\right)-\mathbb{L}(\mathbb{L}-1)^{3} \mathbf{1}_{\mathcal{U}_{10}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{23}}$
- $\mathbf{1}_{\mathcal{U}_{45}}+\mathbb{L}(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}\right)-\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{14}}\right)+\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{17}}-(\mathbb{L}-$ 1) $\mathbf{1}_{\mathcal{U}_{42}}$
- $\mathbf{1}_{\mathcal{U}_{29}}+\mathbb{L}(\mathbb{L}-1)^{4}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}\right)-\mathbb{L}(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{17}}\right)+$ $\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{16}}-\mathbf{1}_{\mathcal{U}_{31}}\right)-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{22}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{26}}\right)-$ $(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{28}}\right)+\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{33}}$
- $\mathbf{1}_{\mathcal{U}_{55}}+\mathbb{L}(\mathbb{L}-1)^{4}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}\right)-\mathbb{L}(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{30}}\right)-$ $(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{9}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{47}}\right)+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{34}}-\mathbf{1}_{\mathcal{U}_{43}}\right)-$ $(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{49}}+\mathbf{1}_{\mathcal{U}_{53}}\right)+\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{46}}$
- $\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{22}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}-\mathbf{1}_{\mathcal{U}_{18}}\right)$
- $\mathbf{1}_{\mathcal{U}_{25}}+\mathbb{L}^{2}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{1}}-\mathbb{L}^{2}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{5}}+\mathbb{L}(\mathbb{L}-2)(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{6}}-\mathbb{L}(\mathbb{L}-2) \mathbf{1}_{\mathcal{U}_{9}}+$ $\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{10}}-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{13}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{23}}$
- $\mathbf{1}_{\mathcal{U}_{45}}-\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}\right)+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{14}}\right)-\mathbb{L} \mathbf{1}_{\mathcal{U}_{17}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{42}}$
- $\mathbf{1}_{\mathcal{U}_{28}}-\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{2}}+\mathbb{L}^{2}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{3}}+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{19}}\right)-$ $\mathbb{L}^{2}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{16}}-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{22}}\right)-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{20}}+(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{26}}-\mathbb{L} \mathbf{1}_{\mathcal{U}_{27}}$
- $\mathbf{1}_{\mathcal{U}_{29}}-\mathbb{L}(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{16}}\right)-\mathbb{L}(\mathbb{L}-2)(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{18}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{22}}\right)+\mathbb{L}(\mathbb{L}-1)^{4} \mathbf{1}_{\mathcal{U}_{3}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{17}}\right)+\mathbb{L}(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{15}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{26}}\right)+(\mathbb{L}-1)\left(\mathbb{L}^{2}-\mathbb{L}-1\right) \mathbf{1}_{\mathcal{U}_{19}}-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{21}}-\left(\mathbb{L}^{2}-\mathbb{L}-1\right) \mathbf{1}_{\mathcal{U}_{27}}$
- $\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{33}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{22}}\right)-\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{3}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{15}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{31}}\right)+\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{16}}$
- $\mathbf{1}_{\mathcal{U}_{40}}-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{17}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{13}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{34}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{38}}\right)$
- $\mathbf{1}_{\mathcal{U}_{37}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{9}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{35}}\right)-\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{43}}+\mathbb{L} \mathbf{1}_{\mathcal{U}_{46}}$
- $\mathbf{1}_{\mathcal{U}_{37}}-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{9}}\right)+(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{8}}+\mathbb{L}^{2}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{30}}-\mathbb{L}^{2}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{34}}-$ $(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{35}}-\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{41}}+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{44}}+\mathbf{1}_{\mathcal{U}_{47}}\right)-\mathbb{L} \mathbf{1}_{\mathcal{U}_{49}}$
- $\mathbb{L}^{2}(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}\right)-\mathbb{L}^{2}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{17}}\right)-(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{6}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{9}}\right)+(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{8}}+\mathbb{L}^{2}(\mathbb{L}-2)(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{30}}-\mathbb{L}^{2}(\mathbb{L}-2)(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{34}}-$ $(\mathbb{L}-1)\left(\mathbb{L}^{2}-\mathbb{L}-1\right) \mathbf{1}_{\mathcal{U}_{35}}+\left(\mathbb{L}^{2}-\mathbb{L}-1\right) \mathbf{1}_{\mathcal{U}_{37}}-\mathbb{L}(\mathbb{L}-1)^{3} \mathbf{1}_{\mathcal{U}_{41}}+\mathbb{L}(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{44}}+$ $\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{53}}-\mathbb{L} \mathbf{1}_{\mathcal{U}_{55}}$
- $\mathbf{1}_{\mathcal{U}_{54}}-(\mathbb{L}-1)^{4}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}\right)+(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{2}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{34}}\right)-(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{40}}-\mathbf{1}_{\mathcal{U}_{47}}-\mathbf{1}_{\mathcal{U}_{49}}\right)+(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{39}}-\mathbf{1}_{\mathcal{U}_{48}}-\mathbf{1}_{\mathcal{U}_{53}}-\mathbf{1}_{\mathcal{U}_{55}}\right)$
- $\mathbf{1}_{\mathcal{U}_{59}}-(\mathbb{L}-1)^{4}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{34}}\right)+(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{3}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{44}}\right)-(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{12}}-\mathbf{1}_{\mathcal{U}_{19}}-\mathbf{1}_{\mathcal{U}_{27}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{40}}+\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{46}}+\mathbf{1}_{\mathcal{U}_{50}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{29}}-\mathbf{1}_{\mathcal{U}_{52}}+\mathbf{1}_{\mathcal{U}_{57}}\right)$
- $\mathbf{1}_{\mathcal{U}_{25}}-\mathbb{L}^{2}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{1}}+\mathbb{L}^{2} \mathbf{1}_{\mathcal{U}_{5}}-\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{18}}\right)+\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{13}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{22}}\right)-(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{23}}$
- $\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{28}}+\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{2}}-\mathbb{L} \mathbf{1}_{\mathcal{U}_{15}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{22}}\right)$
- $\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}\right)+\mathbb{L}(\mathbb{L}-2)(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{2}}-$ $\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{12}}\right)-\mathbb{L}(\mathbb{L}-2) \mathbf{1}_{\mathcal{U}_{15}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}\right)$
- $\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{33}}+(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{2}}+\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{3}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{19}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{31}}\right)-\mathbb{L} \mathbf{1}_{\mathcal{U}_{16}}$
- $\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{40}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{17}}\right)-(\mathbb{L}-$ 1) $\left(\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{38}}\right)$
- $\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{37}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{35}}\right)+\mathbb{L}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{41}}-\mathbb{L} \mathbf{1}_{\mathcal{U}_{44}}$
- $\mathbf{1}_{\mathcal{U}_{8}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{37}}\right)+\mathbb{L}^{2}(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{30}}-\mathbb{L}^{2} \mathbf{1}_{\mathcal{U}_{34}}+(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{35}}-$ $\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{47}}\right)+\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{46}}+\mathbf{1}_{\mathcal{U}_{49}}\right)$
- $\mathbb{L}^{2}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}\right)-\mathbb{L}^{2}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{17}}\right)+(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{6}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{9}}\right)-(\mathbb{L}-1)^{2} \mathbf{1}_{\mathcal{U}_{8}}+\mathbb{L}^{2}(\mathbb{L}-2)(\mathbb{L}-1) \mathbf{1}_{\mathcal{U}_{30}}-\mathbb{L}^{2}(\mathbb{L}-2) \mathbf{1}_{\mathcal{U}_{34}}+$ $(\mathbb{L}-1)\left(\mathbb{L}^{2}-3 \mathbb{L}+1\right) \mathbf{1}_{\mathcal{U}_{35}}-\left(\mathbb{L}^{2}-3 \mathbb{L}+1\right) \mathbf{1}_{\mathcal{U}_{37}}+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{43}}-\mathbf{1}_{\mathcal{U}_{53}}\right)-$ $\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{55}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{17}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{34}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{40}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{39}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{51}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{27}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{21}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}\right)-\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}-\mathbf{1}_{\mathcal{U}_{30}}-\mathbf{1}_{\mathcal{U}_{32}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{44}}\right)+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{11}}-\mathbf{1}_{\mathcal{U}_{31}}-\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{50}}\right)$
- $\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{52}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{46}}+\mathbf{1}_{\mathcal{U}_{50}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{44}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-\mathbb{L}(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}\right)-$ $(\mathbb{L}-1)^{2}\left(\mathbb{L}^{2}-3 \mathbb{L}+1\right)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{15}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{48}}\right)-$ $(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{54}}\right)+(\mathbb{L}-1)^{3} \mathbf{1}_{\mathcal{U}_{11}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{34}}\right)+(\mathbb{L}-1)\left(\mathbb{L}^{2}-3 \mathbb{L}+1\right)\left(\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}\right)$
- $\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{53}}+\mathbf{1}_{\mathcal{U}_{55}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{15}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{47}}+\mathbf{1}_{\mathcal{U}_{49}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{58}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}-\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{19}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{22}}-\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{27}}\right)-\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{16}}-\mathbf{1}_{\mathcal{U}_{30}}-\mathbf{1}_{\mathcal{U}_{34}}-\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{41}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{44}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{21}}-\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{39}}-\mathbf{1}_{\mathcal{U}_{56}}\right)+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{46}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-\mathbb{L}(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{17}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{6}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{57}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{59}}\right)-\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{12}}-\mathbf{1}_{\mathcal{U}_{32}}-\mathbf{1}_{\mathcal{U}_{38}}\right)-(\mathbb{L}-2)(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{27}}\right)+$ $(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{29}}\right)-\mathbb{L}(\mathbb{L}-2)(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{34}}\right)$
- $\mathbf{1}_{\mathcal{U}_{61}}+(\mathbb{L}-1)^{4}{ }_{\left(\mathbf{1}_{\mathcal{U}_{1}}\right.}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+$ $\left.\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{40}}\right)-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\right.$ $\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+$ $\left.\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{44}}+\mathbf{1}_{\mathcal{U}_{46}}+\mathbf{1}_{\mathcal{U}_{50}}+\mathbf{1}_{\mathcal{U}_{52}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}+\right.$ $\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{42}}+\mathbf{1}_{\mathcal{U}_{45}}+\mathbf{1}_{\mathcal{U}_{47}}+\mathbf{1}_{\mathcal{U}_{49}}+\mathbf{1}_{\mathcal{U}_{51}}+\mathbf{1}_{\mathcal{U}_{53}}+$ $\left.\mathbf{1}_{\mathcal{U}_{55}}+\mathbf{1}_{\mathcal{U}_{56}}+\mathbf{1}_{\mathcal{U}_{58}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{54}}+\mathbf{1}_{\mathcal{U}_{57}}+\mathbf{1}_{\mathcal{U}_{59}}+\mathbf{1}_{\mathcal{U}_{60}}\right)$
- $\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{29}}-\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}\right)+\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{14}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{22}}\right)$
- $\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{49}}+\mathbf{1}_{\mathcal{U}_{55}}-\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{41}}\right)+\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{4}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{44}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{47}}+\mathbf{1}_{\mathcal{U}_{53}}\right)$
- $\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}-\mathbf{1}_{\mathcal{U}_{35}}-\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{39}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}-\mathbf{1}_{\mathcal{U}_{6}}-\mathbf{1}_{\mathcal{U}_{8}}-\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}+(\mathbb{L}-1)^{2}{ }_{\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\right.}^{\mathcal{U}_{\mathcal{U}^{2}}}$ $\left.\mathbf{1}_{\mathcal{U}_{17}}\right)+(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{34}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{40}}\right)-(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}\right)$
- $\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{28}}-\mathbf{1}_{\mathcal{U}_{35}}-\mathbf{1}_{\mathcal{U}_{37}}+(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{18}}-\mathbf{1}_{\mathcal{U}_{22}}-\mathbf{1}_{\mathcal{U}_{26}}\right)-$ $\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{11}}-\mathbf{1}_{\mathcal{U}_{31}}-\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{51}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}\right)+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}-\mathbf{1}_{\mathcal{U}_{30}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{32}}-\mathbf{1}_{\mathcal{U}_{34}}\right)+\mathbb{L}(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{11}}-\mathbf{1}_{\mathcal{U}_{31}}-\mathbf{1}_{\mathcal{U}_{33}}\right)$
- $\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{28}}-(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}\right)+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{11}}-\mathbf{1}_{\mathcal{U}_{31}}-\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{41}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{44}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}-\mathbf{1}_{\mathcal{U}_{35}}-\mathbf{1}_{\mathcal{U}_{37}}\right)+\mathbb{L}(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{46}}\right)-\mathbb{L} \mathbf{1}_{\mathcal{U}_{52}}$
- $\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{16}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{17}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{53}}+\mathbf{1}_{\mathcal{U}_{54}}+\mathbf{1}_{\mathcal{U}_{55}}\right)-\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{30}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{34}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{47}}+\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{49}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{58}}+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{16}}-\mathbf{1}_{\mathcal{U}_{30}}-\mathbf{1}_{\mathcal{U}_{34}}-\mathbf{1}_{\mathcal{U}_{38}}\right)+$ $(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{18}}-\mathbf{1}_{\mathcal{U}_{22}}-\mathbf{1}_{\mathcal{U}_{26}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{56}}\right)+$ $(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{28}}-\mathbf{1}_{\mathcal{U}_{35}}-\mathbf{1}_{\mathcal{U}_{37}}\right)$
- $\mathbf{1}_{\mathcal{U}_{36}}+\mathbb{L}(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{44}}\right)+$ $(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{21}}-\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{29}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{59}}\right)+\mathbb{L}(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{12}}-\mathbf{1}_{\mathcal{U}_{32}}-\mathbf{1}_{\mathcal{U}_{38}}-\mathbf{1}_{\mathcal{U}_{43}}-\mathbf{1}_{\mathcal{U}_{46}}\right)-(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{18}}-\mathbf{1}_{\mathcal{U}_{19}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}-\mathbf{1}_{\mathcal{U}_{27}}-\mathbf{1}_{\mathcal{U}_{57}}\right)+\mathbb{L}(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{34}}\right)-(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}\right)$
- $\mathbf{1}_{\mathcal{U}_{24}}-\mathbf{1}_{\mathcal{U}_{48}}-\mathbf{1}_{\mathcal{U}_{54}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{28}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{43}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{52}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{47}}-\mathbf{1}_{\mathcal{U}_{49}}-\mathbf{1}_{\mathcal{U}_{51}}-\mathbf{1}_{\mathcal{U}_{53}}-\mathbf{1}_{\mathcal{U}_{55}}\right)$
- $\mathbf{1}_{\mathcal{U}_{24}}-\mathbf{1}_{\mathcal{U}_{57}}-\mathbf{1}_{\mathcal{U}_{59}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{43}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{52}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{51}}-\mathbf{1}_{\mathcal{U}_{56}}-\mathbf{1}_{\mathcal{U}_{58}}\right)$
- $\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{54}}-\mathbf{1}_{\mathcal{U}_{60}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}-\mathbf{1}_{\mathcal{U}_{18}}-\mathbf{1}_{\mathcal{U}_{20}}-\mathbf{1}_{\mathcal{U}_{22}}-\mathbf{1}_{\mathcal{U}_{26}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{39}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{23}}-\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{42}}+\mathbf{1}_{\mathcal{U}_{45}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{51}}-\mathbf{1}_{\mathcal{U}_{56}}-\mathbf{1}_{\mathcal{U}_{58}}\right)$
- $\mathbf{1}_{\mathcal{U}_{61}}-(\mathbb{L}-1)^{3}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\right.$ $\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{40}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{43}}-\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-$ $\left.\mathbf{1}_{\mathcal{U}_{52}}\right)-(\mathbb{L}-2)(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{39}}\right)+(\mathbb{L}-1)(2 \mathbb{L}-3)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{36}}\right)+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{20}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{28}}-\mathbf{1}_{\mathcal{U}_{56}}-\mathbf{1}_{\mathcal{U}_{58}}\right)+(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{25}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}\right)-(2 \mathbb{L}-3) \mathbf{1}_{\mathcal{U}_{24}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{54}}\right)$
- $\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{40}}-$ $(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{11}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}\right)$
- $\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{37}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{51}}-\mathbf{1}_{\mathcal{U}_{52}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}-\mathbf{1}_{\mathcal{U}_{41}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{43}}-\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{46}}\right)-\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}-\mathbf{1}_{\mathcal{U}_{30}}-\mathbf{1}_{\mathcal{U}_{31}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{32}}-\mathbf{1}_{\mathcal{U}_{33}}-\mathbf{1}_{\mathcal{U}_{34}}\right)$
- $\mathbf{1}_{\mathcal{U}_{11}}-\mathbf{1}_{\mathcal{U}_{20}}-\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{51}}-\mathbf{1}_{\mathcal{U}_{58}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{15}}-\mathbf{1}_{\mathcal{U}_{18}}-\mathbf{1}_{\mathcal{U}_{22}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{42}}+\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{56}}\right)-\mathbb{L}\left(\mathbf{1}_{\mathcal{U}_{3}}-\mathbf{1}_{\mathcal{U}_{10}}-\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{32}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}\right)$
- $\mathbf{1}_{\mathcal{U}_{24}}-\mathbf{1}_{\mathcal{U}_{48}}-\mathbf{1}_{\mathcal{U}_{54}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{28}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{43}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{52}}\right)-(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{51}}\right)$
- $\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}-\mathbf{1}_{\mathcal{U}_{23}}-\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}+\mathbf{1}_{\mathcal{U}_{47}}+\mathbf{1}_{\mathcal{U}_{49}}-\mathbf{1}_{\mathcal{U}_{51}}+\mathbf{1}_{\mathcal{U}_{53}}+\mathbf{1}_{\mathcal{U}_{55}}$
- $\mathbf{1}_{\mathcal{U}_{7}}-\mathbf{1}_{\mathcal{U}_{23}}-\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{51}}+\mathbf{1}_{\mathcal{U}_{56}}+\mathbf{1}_{\mathcal{U}_{58}}$
- $\mathbf{1}_{\mathcal{U}_{24}}-\mathbf{1}_{\mathcal{U}_{57}}-\mathbf{1}_{\mathcal{U}_{59}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{43}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{52}}\right)-(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{51}}\right)$
- $\mathbf{1}_{\mathcal{U}_{24}}-\mathbf{1}_{\mathcal{U}_{60}}-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{39}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{43}}-\right.$ $\left.\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{52}}\right)-(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}-\mathbf{1}_{\mathcal{U}_{23}}-\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{27}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{36}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{51}}\right)$
- $\mathbf{1}_{\mathcal{U}_{61}}+(\mathbb{L}-1)^{2}\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{40}}\right)+(\mathbb{L}-2)(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}+\right.$ $\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{39}}-\mathbf{1}_{\mathcal{U}_{41}}-$ $\left.\mathbf{1}_{\mathcal{U}_{43}}-\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{52}}\right)+(\mathbb{L}-2)^{2}\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{36}}\right)-(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{25}}\right)-2(\mathbb{L}-2) \mathbf{1}_{\mathcal{U}_{24}}-\left(\mathbb{L}^{2}-3 \mathbb{L}+3\right)\left(\mathbf{1}_{\mathcal{U}_{42}}+\mathbf{1}_{\mathcal{U}_{45}}+\mathbf{1}_{\mathcal{U}_{51}}\right)$
- $\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{28}}+$ $\mathbf{1}_{\mathcal{U}_{29}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{42}}-\mathbf{1}_{\mathcal{U}_{43}}-\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{47}}-\mathbf{1}_{\mathcal{U}_{48}}-\mathbf{1}_{\mathcal{U}_{49}}-\mathbf{1}_{\mathcal{U}_{50}}-$ $\mathbf{1}_{\mathcal{U}_{51}}-\mathbf{1}_{\mathcal{U}_{52}}-\mathbf{1}_{\mathcal{U}_{53}}-\mathbf{1}_{\mathcal{U}_{54}}-\mathbf{1}_{\mathcal{U}_{55}}$
- $\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{37}}-\mathbf{1}_{\mathcal{U}_{41}}-\mathbf{1}_{\mathcal{U}_{42}}-$ $\mathbf{1}_{\mathcal{U}_{43}}-\mathbf{1}_{\mathcal{U}_{44}}-\mathbf{1}_{\mathcal{U}_{45}}-\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{50}}-\mathbf{1}_{\mathcal{U}_{51}}-\mathbf{1}_{\mathcal{U}_{52}}-\mathbf{1}_{\mathcal{U}_{56}}-\mathbf{1}_{\mathcal{U}_{57}}-\mathbf{1}_{\mathcal{U}_{58}}-\mathbf{1}_{\mathcal{U}_{59}}$
- $\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}-\mathbf{1}_{\mathcal{U}_{18}}-\mathbf{1}_{\mathcal{U}_{20}}-\mathbf{1}_{\mathcal{U}_{22}}-\mathbf{1}_{\mathcal{U}_{23}}-\mathbf{1}_{\mathcal{U}_{25}}-\mathbf{1}_{\mathcal{U}_{26}}-\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{31}}+$ $\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{42}}+\mathbf{1}_{\mathcal{U}_{45}}+\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{51}}+\mathbf{1}_{\mathcal{U}_{54}}-\mathbf{1}_{\mathcal{U}_{56}}-\mathbf{1}_{\mathcal{U}_{58}}-\mathbf{1}_{\mathcal{U}_{60}}$
- $\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{44}}+\mathbf{1}_{\mathcal{U}_{46}}-\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{50}}+\mathbf{1}_{\mathcal{U}_{52}}-\mathbf{1}_{\mathcal{U}_{54}}+\mathbf{1}_{\mathcal{U}_{56}}+\mathbf{1}_{\mathcal{U}_{58}}-\mathbf{1}_{\mathcal{U}_{61}}+$ $(\mathbb{L}-1)\left(\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{18}}+\right.$ $\left.\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{40}}\right)+(\mathbb{L}-2)\left(\mathbf{1}_{\mathcal{U}_{2}}+\right.$ $\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{25}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{31}}+$ $\left.\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{37}}+\mathbf{1}_{\mathcal{U}_{39}}\right)+(\mathbb{L}-3)\left(\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{36}}\right)$
- $\mathbf{1}_{\mathcal{U}_{1}}+\mathbf{1}_{\mathcal{U}_{2}}+\mathbf{1}_{\mathcal{U}_{3}}+\mathbf{1}_{\mathcal{U}_{4}}+\mathbf{1}_{\mathcal{U}_{5}}+\mathbf{1}_{\mathcal{U}_{6}}+\mathbf{1}_{\mathcal{U}_{7}}+\mathbf{1}_{\mathcal{U}_{8}}+\mathbf{1}_{\mathcal{U}_{9}}+\mathbf{1}_{\mathcal{U}_{10}}+\mathbf{1}_{\mathcal{U}_{11}}+\mathbf{1}_{\mathcal{U}_{12}}+\mathbf{1}_{\mathcal{U}_{13}}+$ $\mathbf{1}_{\mathcal{U}_{14}}+\mathbf{1}_{\mathcal{U}_{15}}+\mathbf{1}_{\mathcal{U}_{16}}+\mathbf{1}_{\mathcal{U}_{17}}+\mathbf{1}_{\mathcal{U}_{18}}+\mathbf{1}_{\mathcal{U}_{19}}+\mathbf{1}_{\mathcal{U}_{20}}+\mathbf{1}_{\mathcal{U}_{21}}+\mathbf{1}_{\mathcal{U}_{22}}+\mathbf{1}_{\mathcal{U}_{23}}+\mathbf{1}_{\mathcal{U}_{24}}+\mathbf{1}_{\mathcal{U}_{25}}+$ $\mathbf{1}_{\mathcal{U}_{26}}+\mathbf{1}_{\mathcal{U}_{27}}+\mathbf{1}_{\mathcal{U}_{28}}+\mathbf{1}_{\mathcal{U}_{29}}+\mathbf{1}_{\mathcal{U}_{30}}+\mathbf{1}_{\mathcal{U}_{31}}+\mathbf{1}_{\mathcal{U}_{32}}+\mathbf{1}_{\mathcal{U}_{33}}+\mathbf{1}_{\mathcal{U}_{34}}+\mathbf{1}_{\mathcal{U}_{35}}+\mathbf{1}_{\mathcal{U}_{36}}+\mathbf{1}_{\mathcal{U}_{37}}+$ $\mathbf{1}_{\mathcal{U}_{38}}+\mathbf{1}_{\mathcal{U}_{39}}+\mathbf{1}_{\mathcal{U}_{40}}+\mathbf{1}_{\mathcal{U}_{41}}+\mathbf{1}_{\mathcal{U}_{42}}+\mathbf{1}_{\mathcal{U}_{43}}+\mathbf{1}_{\mathcal{U}_{44}}+\mathbf{1}_{\mathcal{U}_{45}}+\mathbf{1}_{\mathcal{U}_{46}}+\mathbf{1}_{\mathcal{U}_{47}}+\mathbf{1}_{\mathcal{U}_{48}}+\mathbf{1}_{\mathcal{U}_{49}}+$ $\mathbf{1}_{\mathcal{U}_{50}}+\mathbf{1}_{\mathcal{U}_{51}}+\mathbf{1}_{\mathcal{U}_{52}}+\mathbf{1}_{\mathcal{U}_{53}}+\mathbf{1}_{\mathcal{U}_{54}}+\mathbf{1}_{\mathcal{U}_{55}}+\mathbf{1}_{\mathcal{U}_{56}}+\mathbf{1}_{\mathcal{U}_{57}}+\mathbf{1}_{\mathcal{U}_{58}}+\mathbf{1}_{\mathcal{U}_{59}}+\mathbf{1}_{\mathcal{U}_{60}}+\mathbf{1}_{\mathcal{U}_{61}}$.

Summary

This thesis studies the geometry of representation varieties and character stacks. These are spaces that parametrize the representations of a finitely generated group Γ into an algebraic group G. More precisely, the representation variety parametrizes all such representations, whereas the character stack parametrizes them up to isomorphism. Usually, the finitely generated group Γ is the fundamental group of a compact manifold M, in which case the representation variety and character stack equivalently parametrize G-local systems on M. This thesis contains a number of methods to study these spaces through their invariants. Besides providing theoretical descriptions, another aim of this thesis is to explicitly compute these invariants in specific cases. Motivated by these applications, we develop a number of new computational tools.

In Chapter 1, we review the necessary background on groupoids and algebraic stacks, focusing in particular on quotient stacks and stabilizers. We use this theory in Chapter 2, where we give precise definitions of representation varieties and character stacks. Furthermore, we show that these spaces admit a number of functorial properties that are crucial for the later parts of the thesis.

In Chapter 3, we study motivic invariants, which are invariants χ of varieties that are additive and multiplicative in the sense that $\chi(X)=\chi(Z)+\chi(X \backslash Z)$ and $\chi(X \times Y)=\chi(X) \chi(Y)$ for all varieties X and Y and closed subvarieties $Z \subseteq X$. We discuss various motivic invariants and their properties, with a special focus on the universal motivic invariant, called the virtual class, which takes values in the Grothendieck ring of varieties. This Grothendieck ring has a natural generalization to algebraic stacks, allowing us to talk about the virtual class, and other motivic invariants, of character stacks. Furthermore, we develop tools for computing motivic invariants, such as an algorithm to compute virtual classes of certain varieties, and we study how motivic invariants behave with respect to finite group actions.

In Chapter 4, we describe two known methods for computing motivic invariants of representation varieties and character stacks. We show how both the arithmetic
method, which studies the character stacks of compact orientable surfaces through counting points over finite fields, and the geometric method, which studies the same character stacks using clever stratifications, can be expressed in terms of Topological Quantum Field Theories (TQFTs). Originating from physics, TQFTs are monoidal functors from the category of bordisms to the category of modules over a fixed commutative ring. The TQFTs associated to both methods can be expressed as the composite of a field theory and a quantization functor. Comparing the field theories and quantization functors of both methods, we show that the TQFTs of both methods can be related through natural transformations.
In Chapter 5 , we apply the theory of Chapter 4 to explicitly compute the virtual classes of the SL_{2}-character stacks of orientable and non-orientable surfaces. This results in many intricate computations. Even though similar computations already exist that compute the E-polynomial (an invariant coarser than the virtual class, reflecting the mixed Hodge structure) of these character stacks, adapting these computations to the Grothendieck ring of varieties introduces many subtle problems which we deal with.
In Chapter 6, we focus on the groups G of $n \times n$ upper triangular matrices and unipotent upper triangular matrices. By means of computer-assisted calculations, we compute the virtual classes of the G-character stacks of orientable surfaces for $n \leq 5$ through the geometric method, and their E-polynomials for $n \leq 10$ through the arithmetic method. This task, which is already difficult for small n, was made possible by introducing the notion of algebraic representatives, and using the theory of special algebraic groups. Comparing the arithmetic and geometric method, we show how the geometric method can be simplified significantly using the results from the arithmetic method, that is, using the representation theory of the groups of upper triangular matrices over finite fields.

Finally, in Chapter 7, we turn our attention to the representation varieties and character stacks of the free groups F_{n} and free abelian groups \mathbb{Z}^{n}. These spaces parametrize tuples (resp. commuting tuples) of elements of G. It is known that the homology of these spaces, and many variations thereof, stabilize as n tends to infinity, in a well-defined sense known as representation stability. Inspired by this notion, we define an analogous notion of motivic representation stability for stability in the Grothendieck ring of varieties. As an application, we show that the character stacks of F_{n} and \mathbb{Z}^{n} stabilize in this sense for the linear groups $G=\mathrm{GL}_{r}$.

Samenvatting

Dit proefschrift bestudeert de meetkunde van representatievariëteiten en karakterstacks. Dit zijn ruimtes die de representaties van een eindig voortgebrachte groep Γ naar een algebraïsche groep G parametriseren. Om precies te zijn, de representatievariëteit parametriseert al zulke representaties, en de karakterstack tot op isomorfie. De eindig voortgebrachte groep Γ is doorgaans de fundamentaalgroep van een compacte differentieerbare variëteit M, in welk geval de representatievariëteit en karakterstack ook wel G-lokale systemen op M parametriseren. Dit proefschrift bevat een aantal methodes om deze ruimtes te bestuderen aan de hand van hun invarianten. Naast het geven van theoretische beschrijvingen, beoogt dit proefschrift ook om deze invarianten expliciet te berekenen. Gemotiveerd door deze toepassingen, ontwikkelen we een aantal nieuwe computationele hulpmiddelen.

In Hoofdstuk 1 geven we de nodige voorkennis over groepoïden en algebraïsche stacks, waarbij de nadruk ligt op quotiëntstacks en stabilisatoren. Deze theorie gebruiken we in Hoofdstuk 2, waar we een precieze definitie geven van representatievariëteiten en karakterstacks. Verder laten we zien dat deze ruimtes een aantal functoriële eigenschappen bezitten die cruciaal zijn voor de latere delen van het proefschrift.

In Hoofdstuk 3 bestuderen we motivische invarianten, dat zijn invarianten χ van variëteiten die additief en multiplicatief zijn in de zin dat $\chi(X)=\chi(Z)+\chi(X \backslash Z)$ en $\chi(X \times Y)=\chi(X) \chi(Y)$ voor alle variëteiten X en Y en gesloten subvariëteiten $Z \subseteq X$. We bespreken verschillende motivische invarianten en hun eigenschappen, met een nadruk op de universele motivische invariant, de virtuele klasse, die waardes aanneemt in de Grothendieck-ring van variëteiten. Deze Grothendieckring heeft een natuurlijke generalisatie naar algebraïsche stacks, die ons in staat stelt te praten over de virtuele klasse, en andere motivische invarianten, van bijvoorbeeld karakterstacks. Verder ontwikkelen we hulpmiddelen om motivische invarianten te berekenen, zoals een algoritme om virtuele klassen te berekenen, en bestuderen we hoe motivische invarianten zich gedragen onder groepswerkingen van eindige groepen.

In Hoofdstuk 4 beschrijven we twee bekende methodes om motivische invarianten te berekenen van representatievariëteiten en karakterstacks. We laten zien dat zowel de arithmetische methode, die de karakterstacks van compacte oriënteerbare oppervlakten bestudeert door punten te tellen over eindige lichamen, en de meetkundige methode, die dezelfde karakterstacks bestudeert door deze slim te stratificeren, kunnen worden beschreven als topologische kwantumveldentheorie (TQFT). TQFTs vinden hun oorsprong in de natuurkunde, en zijn monoïdale functoren van de categorie van bordismen naar de categorie van modulen over een vaste commutatieve ring. De TQFTs van beide methodes kunnen worden uitgedrukt als samenstelling van een veldentheorie en een kwantisatiefunctor. Door de veldentheorieën en kwantisatiefunctoren te vergelijken, laten we zien dat de twee TQFTs zijn verbonden via een natuurlijke transformatie.

In Hoofdstuk 5 passen we de theorie van Hoofdstuk 4 toe om expliciet de virtuele klassen van de SL_{2}-karakterstacks van oriënteerbare en niet-oriënteerbare oppervlakken uit te rekenen, met complexe berekeningen tot gevolg. Ondanks dat er al vergelijkbare berekeningen bestaan die de E-polynomen bepalen (een grovere invariant dan de virtuele klasse, die de gemengde Hodgestructuur weerspiegelt) van deze karakterstacks, introduceert het tillen van deze berekeningen naar de Grothendieck-ring van variëteiten diverse subtiele problemen die we oplossen.

In Hoofdstuk 6 richten we ons op de groepen G van $n \times n$ bovendriehoeksmatrices en unipotente bovendriehoeksmatrices. Met behulp van de computer bepalen we de virtuele klassen van de karakterstacks van oriënteerbare oppervlakken voor $n \leq 5$ via de meetkundige methode, en hun E-polynomen voor $n \leq 10$ via de arithmetische methode. Deze berekeningen, al gecompliceerd voor kleine n, zijn mogelijk gemaakt door het introduceren van algebraïsche representanten en de theorie van speciale algebraïsche groepen. We vergelijken de arithmetische en meetkundige methode, en laten zien hoe de meetkundige methode significant vereenvoudigd kan worden door gebruik te maken van de resultaten van de arithmetische methode, dat wil zeggen, gebruikmakend van de representatietheorie van de groepen van bovendriehoeksmatrices over eindige lichamen.

Ten slotte, in Hoofdstuk 7, bestuderen we de representatievariëteiten en karakterstacks van de vrije groepen F_{n} en de vrije abelse groepen \mathbb{Z}^{n}. Deze ruimtes parametriseren tupels (resp. commuterende tupels) van elementen van G. Het is bekend dat de homologie van deze ruimtes, en variaties daarop, stabiliseert als n naar oneindig neigt, in een goed-gedefinieerde zin bekend als representatiestabiliteit. Geïnspireerd door dit begrip definiëren we een analoog begrip van motivische representatiestabiliteit voor stabiliteit in de Grothendieck-ring van variëteiten. Als toepassing laten we zien dat de karakterstacks van F_{n} en \mathbb{Z}^{n} stabiliseren in deze zin voor de algemene lineaire groepen $G=\mathrm{GL}_{r}$.

Acknowledgments

This thesis was created with the help and support of many people, for which I am very grateful.

First and foremost, I would like to thank my supervisor Marci. Thank you for all the interesting discussions, in which you were always happy to answer my questions. Your way of thinking has inspired me to come up with my own problems, and ways to solve them. It has been a great pleasure working with you.

I would like to thank my promotores, Bas and Ronald, for all of their help, and the doctorate committee, Gianne, David, Carlos, Vicente and Ángel, for their useful comments to improve the contents of this thesis. In particular, I would like to thank Ángel, whose research inspired my master's thesis, which evolved into this thesis. It has been a great pleasure collaborating with you.

I would like to thank my office mates, Daan, Georgios, Onno and Pim, for all the fun and interesting conversations, for thinking along on problems, and for their baked goods.

Finally, I want to thank my family and friends for their support and confidence, and for showing interest in my research. And most of all, I want to thank Joyce for her endless support and love, and for helping me to focus on things other than work.

Curriculum Vitae

Jesse Tijs Vogel was born on the 26th of January 1996 in Loppersum. From 2008 to 2014, he followed the bilingual vwo program at the Gomarus College in Groningen. He went on to study Mathematics and Physics at the University of Groningen. In 2018, he wrote his bachelor's thesis, titled "Generalized Geometry and Double Field Theory Applications to Closed String Theory", and obtained both his bachelor's degrees summa cum laude.

Afterwards, Jesse moved to Leiden to continue his studies. He followed the master Algebra, Geometry and Number Theory at Leiden University. In 2020, he defended his master's thesis, titled "Computing Virtual Classes of Representation Varieties using TQFTs", with which he obtained his master's degree summa cum laude.

During his studies, he has been teaching assistant for several courses, and was awarded Teaching Assistant of the Year in 2018.

After his studies, Jesse continued at Leiden University as a PhD candidate under the supervision of dr. Márton Hablicsek. This thesis is the result of the research he did from 2020 to 2024.

[^0]: ${ }^{1}$ As performed on an Intel $®$ Xeon $®$ CPU E5-4640 0 @ 2.40 GHz . Since the computations were performed in parallel (64 cores), both the world time and the CPU time were recorded.

[^1]: ${ }^{2}$ As performed on an Intel®Xeon $®$ CPU E5-4640 $0 @ 2.40 \mathrm{GHz}$.

