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Introduction

The theory of representations of groups is a rich and fascinating subject in math-

ematics. For certain classes of groups, the representation theory is fairly well

understood. For example, for finite groups, the representation theory is largely

described by their character table, and for connected compact Lie groups, the

representation theory is given by the theorem of the highest weight. However,

the representation theory of finitely generated groups, lying somewhere in be-

tween, is not so easily described. For a finitely generated group Γ, the set of

n-dimensional representations ρ : Γ→ GLn(C), denoted

Hom(Γ,GLn(C)),

defines a complex variety, called the representation variety of Γ. Recall that

two representations ρ, ρ′ : Γ → GLn(C) are isomorphic if ρ′(γ) = gρ(γ)g−1 for

some g ∈ GLn(C) and all γ ∈ Γ. In other words, the group GLn(C) acts by

conjugation on the representation variety Hom(Γ,GLn(C)), and the quotient

Hom(Γ,GLn(C))/GLn(C), known as the character variety of Γ, can be thought

of as a geometric analogue of the character table. A subtle point is that it is

not completely clear how to take this quotient. Using geometric invariant theory

[Mum65], one arrives at the classical definition of the character variety. Another

possibility is to enter the realm of algebraic stacks, to arrive at the quotient stack

[Hom(Γ,GLn(C))/GLn(C)],

known as the character stack of Γ, for which the character variety is a coarse

moduli space. More generally, one may replace C by any field k, and GLn by any

algebraic group G over k. As an example, when Γ = Z, a representation from Γ

into G is simply the choice of an element of G, so the representation variety is

isomorphic to G, and the character variety, or character stack, is the appropriate

quotient of G by the action of G by conjugation on itself. In general, the geometry

of these spaces can be quite complicated and is a wide field of study. The goal of

this thesis is to provide a better understanding of the geometry of these spaces.

v
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Many finitely generated groups arise as the fundamental group Γ = π1(M, ∗) of a
connected compact manifold M with a basepoint ∗. In this case, representations

of Γ into G correspond to G-local systems onM , and isomorphic representations

correspond to isomorphic local systems [Sza09, Corollary 2.6.2]. In this sense,

the character variety (or stack) of Γ can be seen as the moduli space of G-local

systems on M , and is in the literature also known as the Betti moduli space

of M . In the particular case that M is the underlying manifold of a complex

smooth projective curve C, this space appears in the geometric Langlands pro-

gram [BD96, BN18] and plays a major role in non-abelian Hodge theory [Cor88,

Don87, Sim91, Sim94], where it is strongly related to a moduli space of Higgs

bundles on C and a moduli space of flat connections on C. The study of these

moduli spaces motivated the P = W conjecture [CHM12], which was recently

proved [MS22, Hau+22]. The main focus of this thesis will be the case where M

has dimension 2. Such manifolds M are either orientable and classified by their

genus, or non-orientable and classified by their demigenus.

The geometry of the representation variety (and of its quotients) can be studied

in many ways, for instance by computing their invariants. When k is a finite

field, one could count the number of k-rational points, and when k = C, one
could compute the singular cohomology of the analytification. In this thesis,

we focus on invariants χ that are additive and multiplicative in the sense that

χ(X) = χ(Z) + χ(X \ Z) and χ(X × Y ) = χ(X)χ(Y ) whenever X and Y are

varieties over k and Z ⊆ X a closed subvariety. We call these motivic invariants,

and they include the point count when k is finite, and the Euler characteristic

of the analytification when k = C. Another such invariant for k = C, which is

central in this thesis, is the E-polynomial, a refinement of the Euler characteristic.

The E-polynomial of a complex variety is a polynomial in two variables whose

coefficients reflect the mixed Hodge structure on its cohomology. In this thesis

we discuss various such invariants, and develop tools for computing them. In

particular, we focus on the universal such invariant, called the virtual class,

which takes values in the Grothendieck ring of varieties.

The computation of motivic invariants for representation varieties of orientable

surfaces started with Hausel and Rodriguez-Villegas [HR08], who studied the

representation variety by counting the number of points over finite fields Fq.
They could express these counts in terms of the representation theory of the finite

groups G(Fq), and moreover, infer from these counts the E-polynomial of the

representation variety. This approach, which we will call the arithmetic method,

has led many to study the E-polynomials of character varieties for various Γ and

G [HLR11, Mer15, Let15, MR15, Cam17, BH17, LR22, BK22].

A few years later, Logares, Muñoz and Newstead [LMN13] initiated the geometric
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method : a geometric approach to compute the E-polynomial of the representa-

tion variety, making use of its additive and multiplicative property and clever

stratifications. González-Prieto, Logares and Muñoz [GLM20] showed that the

geometric method can be phrased in terms of a Topological Quantum Field The-

ory (TQFT), a concept originating from physics. In particular, an orientable

surface of genus g can be considered as a composite of manifolds with bound-

aries, known as bordisms, as follows:

Σg = ◦ ◦ · · · ◦︸ ︷︷ ︸
g times

◦

In short, a TQFT (over some commutative ring R) assigns to every boundary

(possibly empty) an R-module, and to every bordism between boundaries a linear

map between the corresponding modules, such that composition of bordisms

corresponds to composition of the linear maps. In other words, a TQFT is a

certain functor from the category of bordisms to the category of R-modules. Now,

the idea of the geometric method is that the E-polynomial of the representation

variety corresponds to the image of Σg under the TQFT, and so the computation

of this E-polynomial can be broken down into a simpler computation for each

bordism. It was shown later [Gon20] that the same construction can be used to

compute the virtual class of the representation variety in the Grothendieck ring

of varieties.

Both the arithmetic and geometric method are discussed in detail in Chapter 4.

One of the main results of this chapter, which is based on [GHV23], is that the two

methods can be unified into a single framework. In particular, we show how the

arithmetic method can be translated into the language of TQFTs, and moreover,

we show that the TQFTs, for the geometric and arithmetic method, are related

through natural transformations. As a consequence, we describe how parts of

the character tables of the finite groups G(Fq), specifically the dimensions of the

irreducible representations of G(Fq), are related to the eigenvalues of the image

of the bordism under the TQFT corresponding to the geometric method.

Another aim of this thesis, besides giving theoretical descriptions, is to apply the

above methods to explicitly compute invariants of the representation varieties

and character stacks of surfaces, for certain algebraic groups G. In Chapter 5 we

focus on the group G = SL2, generalizing the results of [LMN13, MM16, LR22]

where the E-polynomials of the representation varieties were computed. Lifting

these computations from E-polynomials to the Grothendieck ring of varieties in-

troduces many subtle problems that have to be dealt with. In Chapter 6, based on

[HV22, Vog24], we concentrate on the groups of n×n upper triangular matrices

and unipotent upper triangular matrices. By means of computer-assisted calcu-
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lations, we compute the virtual classes of the character stacks of Σg for n ≤ 5

through the geometric method, and their E-polynomials for n ≤ 10 through the

arithmetic method.

Finally, in Chapter 7, we turn our attention to the representation varieties and

character stacks of the free groups Fn and free abelian groups Zn. These spaces,

parametrizing tuples (resp. commuting tuples) of elements of G, have also been

widely studied [Bai07, AC07, FL11, PS13, FL14, RS19, FS21]. When consider-

ing the homology of these spaces, an interesting phenomenon emerges: as shown

in [RS21], the homology groups of these spaces (and many variations thereof)

stabilize as n tends to infinity, in a well-defined sense due to [CF13] known as rep-

resentation stability. In Chapter 7, we will combine the notion of representation

stability with that of motivic stability [VW15] to define an analogous notion of

motivic representation stability for stability in the Grothendieck ring of varieties.

As an application, we will show that the character stacks of Fn and Zn stabilize

in this sense for the linear groups G = GLr.

These explicit applications and computations have led to a number of new com-

putational techniques. For instance, the study of equivariant motivic invariants,

in Section 3.6, describes how motivic invariants, in particular the virtual class,

behave with respect to finite group actions. The results in this section are crucial

to the computations for the SL2-character stacks, and to the definition of mo-

tivic representation stability. Other new computational techniques include the

introduction of algebraic representatives, in Section 6.1, and the development of

an algorithm for computing virtual classes, in Section 3.4. Without these tech-

niques, the computations for the character stacks for upper triangular matrices

of high rank would not have been possible.



Chapter 1

Stacks

Algebraic stacks were first introduced by Deligne and Mumford to study the

moduli space of curves [DM69], and later their definition was generalized by

Artin [Art74]. Roughly speaking, an algebraic stack can be thought of as a gen-

eralization of a scheme. If we view a scheme as a functor of points, its points

form a set, whereas for an algebraic stack they form a groupoid. In other words,

the points of a stack are allowed to have automorphisms. The notion of a stack

is not specific to algebraic geometry, that is, stacks can also be defined in the

context of manifolds, analytic spaces, topological spaces, or, in general, for any

site, that is, category with a Grothendieck topology.

The goal of this chapter is to give a concise overview of (algebraic) stacks, with

a focus on quotient stacks, which should be sufficient to understand the later

chapters. For the curious reader who wishes to read more in-depth expositions

of (algebraic) stacks, we refer to [Fan01, Beh14, Ols16, LM00, Stacks], in order

from introductory and intuitive to detailed and rigorous.

1.1 Groupoids

Crucial to the subject of stacks is the concept of a groupoid, that is, a category

in which every morphism is an isomorphism.

Definition 1.1.1. A groupoid is finite if it has finitely many morphisms. A

groupoid is finitely generated if there exists a finite collection of morphisms,

called generators, such that every morphism of the groupoid can be written as

a composite of generators and inverses of generators. In particular, any finite or

finitely generated groupoid has finitely many objects, because every object has

at least an identity morphism. A groupoid is essentially finite if it is equivalent

1
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to a finite groupoid, and similarly, a groupoid is essentially finitely generated if

it is equivalent to a finitely generated groupoid.

Denote by Grpd the 2-category of groupoids, whose objects are groupoids, 1-

morphisms are functors, and 2-morphisms are natural transformations. Similarly,

denote by FinGrpd and FGGrpd the full sub-2-categories of essentially finite

groupoids and essentially finitely generated groupoids, respectively.

Definition 1.1.2. Let G be a group acting on a set X. The action groupoid,

denoted [X/G], is the groupoid whose objects are elements of X, morphisms

x→ y are given by elements g ∈ G such that y = g · x. Composition of g : x→ y

and h : y → z is given by hg : x→ z.

Definition 1.1.3. Let Γ be an essentially finite groupoid. The groupoid cardi-

nality of Γ is defined as

|Γ| =
∑

[x]∈Γ/∼

1

|Aut(x)|
∈ Q

where Γ/ ∼ denotes the set of isomorphism classes of Γ.

Example 1.1.4. Let G be a finite group acting on a finite set X. Then the

groupoid cardinality of the action groupoid Γ = [X/G] is |X|/|G|. Indeed, from
the orbit-stabilizer theorem it follows that

|Γ| =
∑

[x]∈[X/G]/∼

1

|Aut(x)|
=
∑
x∈X

1

|Gx|
1

|Aut(x)|
=
∑
x∈X

1

|G|
=
|X|
|G|

.

Definition 1.1.5. Let f : B → A and g : C → A be morphisms of groupoids. The

fiber product of B and C over A, denoted B×AC, is the groupoid whose objects

are triples (x, y, α) with x an object of B, y an object of C and α : f(x)→ g(y)

a morphism in A. A morphism from (x′, y′, α′) to (x, y, α) is given by a pair of

morphisms (β : x′ → x, γ : y′ → y) such that g(γ) ◦ α′ = α ◦ f(β).

Note that the diagram

B ×A C C

B A

πB

πC

g

f

with πB and πC the obvious projections, does not strictly commute whenever

there are non-trivial morphisms α : f(x) → g(y). However, there is a natural

isomorphism f ◦ πB ⇒ g ◦ πC , whose component at (x, y, α) is given by α. This

is the correct notion of commutativity for 2-categories, and we say this diagram

2-commutes.
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This also shows what the correct universal property of the fiber product is. For

every groupoid D with morphisms i : D → B and j : D → C such that f ◦ i is
naturally isomorphic to g ◦ j, there exists, up to a unique natural isomorphism,

a unique morphism h : D → B ×A C and natural isomorphisms πB ◦ h ∼= i and

πC ◦ h ∼= j. One can easily verify that the above definition of the fiber product

for groupoids satisfies this universal property.

Definition 1.1.6. Let f : A→ B be a functor between groupoids, and let b be

an object of B. The fiber of f over b is the groupoid

f−1(b) = A×B {b}

where {b} is the groupoid with a single object b and one (identity) morphism,

and {b} → B the natural map.

1.2 Categories fibered in groupoids

Throughout the following sections, let S be a site, that is, a category equipped

with a Grothendieck topology.

Definition 1.2.1. A category over S is a category X with a functor p : X→ S.

An object x of X is said to lie over an object S of S, or x is said to be a lift of

S, if p(x) = S, and similarly for morphisms. If S is an object of S, the fiber of

X over S, denoted XS , is the subcategory of X of objects over S and morphisms

over idS . A morphism of categories over S is a functor that respects the functor

to S. If p : X→ S and q : Y→ S are categories over S, and f and g morphisms

from X to Y, then a 2-morphism f → g is a natural transformation µ : f ⇒ g

such that all components µx : f(x)→ g(x) lie over idp(x). The categories over S

form a 2-category. An isomorphism of categories over S is a morphism which is

an equivalence of categories.

Definition 1.2.2. A category X over S is called a category fibered in groupoids

over S if for any morphism f : T → S in S and object x lying over S, there

exists a lift f : y → x of f which is unique up to unique isomorphism. That is,

for any other lift f
′
: y′ → x of f , there exists a unique isomorphism α : y′ → y

such that f
′
= f ◦ α.

y′

y x

T S

f
′

α
f

f

As a motivation for the terminology, consider the following lemma.
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Lemma 1.2.3. Let X be a category fibered in groupoids over S. Then every

morphism φ : y → x of X that lies over an isomorphism f : T → S of S, is

an isomorphism as well. In particular, for every object S of S the fiber XS is

groupoid.

Proof. Write g for the inverse of f , and choose a lift g : z → y of g. As φ◦g : z → x

lies over f ◦ g = idS , it is a lift of idS with target x. Since idx is so as well, there

exists a (unique) isomorphism α : z → x such that φ ◦ g = α. Now ψ = g ◦ α−1

is a right inverse of φ which lies over g. Repeating the argument, replacing φ by

ψ, one shows ψ also has a right inverse, which must be φ.

In particular, every 2-morphism between morphisms of categories over S is au-

tomatically an isomorphism.

Example 1.2.4. Any object X of S can be regarded as a category fibered in

groupoids p : X→ S where X is the slice category S/X and p simply forgets the

morphism to X. Indeed, for any f : T → S in S and x : S → X in X, there is a

unique lift of f , given by T
x◦f−−→ X. Hence, we can think of a category fibered in

groupoids (and as we shall see later, a stack) X over S as a generalization of an

object of S, and the fibers XS can be interpreted as the groupoid of S-points of

X.

For convenience, we usually assume that for every morphism f : T → S in S and

object x over S, we have chosen a lift f∗x→ x of f with target x. Depending on

the context, this can be done either by direct construction, or by using a suitable

version of the axiom of choice. Note that it is not required that g∗(f∗x) equals

(f ◦ g)∗x, but the two are naturally isomorphic. While such a choice of lifts is

not necessary, it makes it easier to write down the definition of a stack. We refer

to the object f∗x as the pullback of x along f . When the morphism f : T → S

is clear from context, we will also write x|T for f∗x.

Remark 1.2.5. Let α : x′ → x be a morphism in the fiber over some object S

of S (in particular, α is an isomorphism). Given a morphism f : T → S, there

exists a unique isomorphism f∗α : f∗x′ → f∗x such that the diagram

f∗x′ x′

f∗x x

f∗α α

commutes. Namely, f∗x′ → x′ → x is also a lift of f with target x. When the

morphism f is clear from context, we will also write α|T for f∗α.
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Notation 1.2.6. Let X and Y be two categories fibered in groupoids over S.

Note that the morphisms from X toY form a category, which we denote byY(X),

where morphisms between morphisms are given by 2-morphisms. Moreover, since

every 2-morphism is an isomorphism, this category is a groupoid. When X =

S/X for an objectX ofS, as in Example 1.2.4, this groupoid is in fact equivalent

to the fiber YX .

Definition 1.2.7. Let f : X → Z and g : Y → Z be morphisms of categories

fibered in groupoids over S. The fiber product of X and Y over Z is the following

category fibered in groupoids. Its objects over S are triples (x, y, α) with x an

object of XS , y an object of YS and α : f(x) → g(y) an isomorphism in the

fiber ZS . Given a morphism f : S′ → S, a morphism from (x′, y′, α′) to (x, y, α)

over f is given by a pair of morphisms (β : x′ → x, γ : y′ → y) over f such that

g(γ) ◦ α′ = α ◦ f(β). The induced diagram

X×Z Y Y

X Z

πX

πY

g

f

with πX and πY the projections, need not strictly commute, but it 2-commutes.

That is, the two composites X ×Z Y → Z are related by a natural 2-morphism.

Observe the similarity with Definition 1.1.5, the fiber product for groupoids.

1.3 Descent data and stacks

Informally speaking, a stack is a category fibered in groupoids where objects can

be glued uniquely from local data. Let {Si → S} be a covering of an object S ofS,

and let x be an object over S. Denote by xi the pullback of x to Si, and by Sij the

intersection Si×SSj , and similarly for Sijk. The object x cannot be reconstructed

solely from the xi, also the induced isomorphisms αij : xi|Sij
→ xj |Sij

, which

satisfy the cocycle condition on Sijk, are needed. In a stack, we want to be

able to glue the xi on the intersections via the αij . This motivates the following

definition.

Definition 1.3.1. Let X be a category fibered in groupoids over S. A descent

datum for X over an object S of S is given by

(i) a covering {Si → S},

(ii) for every i a lift xi of Si in X,

(iii) for every i and j an isomorphism αij : xi|Sij → xj |Sij in XSij , satisfying the

cocycle condition αik|Sijk
= αjk|Sijk

◦ αij |Sijk
in XSijk

.
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Such a descent datum is called effective if there exists a lift x of S in X together

with isomorphisms αi : x|Si
→ xi in XSi

such that αij = αj |Sij
◦ αi|−1

Sij
in XSij

.

In this case, one says that the xi over Si descend to x over S.

Furthermore, in a stack, we want such a gluing to be unique (up to unique

isomorphism). That is, for any other gluing (x′, α′
i) there should be a unique

isomorphism β : x′ → x such that α′
i = αi ◦ β|Si over Si. To have this property,

we will require that isomorphisms in fibers can be reconstructed uniquely from

local data. This idea is expressed in the following definition.

Definition 1.3.2. Let X be a category fibered in groupoids over S. We say

that isomorphisms are a sheaf for X if, for any object S of S, any objects x

and y in XS , every covering {Si → S} of S, and every collection of isomor-

phisms αi : x|Si
→ y|Si

in XSi
such that αi|Sij

= αj |Sij
, there exists a unique

isomorphism α : x→ y such that αi = α|Si .

Remark 1.3.3. Alternatively, the above definition can be expressed as follows.

For any two objects x and y in X lying over an object S in S, one can define a

presheaf

Isom(x, y) : (S/S)op → Set

on the slice category S/S, by assigning to f : T → S the set HomXT
(f∗x, f∗y)

of isomorphisms from f∗x to f∗y in XT , and to a morphism g : T ′ → T from

f ′ : T ′ → S to f : T → S the map that is given by pullback along g, that is,

HomXT
(f∗x, f∗y)→ HomXT ′ (g

∗f∗x, g∗f∗y) ∼= HomXT ′ ((f
′)∗x, (f ′)∗y),

where the latter isomorphism is induced by the natural isomorphisms g∗f∗x ∼=
(f ′)∗x and g∗f∗y ∼= (f ′)∗y. Now, saying that isomorphisms are a sheaf for X is

equivalent to saying that Isom(x, y) is a sheaf for all x, y and S. Note that, while

it looks as if Isom(x, y) depends on the choice of f∗x and f∗y, any other choice

would yield a presheaf that is naturally isomorphic.

Definition 1.3.4. A stack over S is a category fibered in groupoids X over S

such that every descent datum for X is effective and isomorphisms are a sheaf

for X. A morphism of stacks over S is simply a morphism of categories over S,

and similarly for 2-morphisms and isomorphisms. Fiber products of stacks can

be computed as fiber products of categories over groupoids.

Remark 1.3.5. As in Example 1.2.4, any object X of S can be considered a

category fibered in groupoids overS as the slice categoryS/X, whereS/X → S

forgets the morphism to X. Unfortunately, this does not always give a stack, it

depends on the topology on S. However, for most of the examples of interest it
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will give a stack and will be easy to prove, e.g. for schemes, manifolds, analytic

spaces, topological spaces, etc. with the usual topologies [Fan01].

Definition 1.3.6. A stack X over S is representable if it is isomorphic to the

stack S/X for some object X of S. A morphism of stacks X → Y is repre-

sentable if, for every morphism S → X with S in S, the fiber product S ×Y X is

representable.

Intuitively, this says that a morphism of stacks is representable if all of its fibers

are representable.

From now on, we will simply write X for the category S/X as well.

1.4 Algebraic stacks

An algebraic stack, over a fixed base scheme S, is a special type of stack over the

site S = SchS , where S is usually equipped with the étale or fppf topology. To

give a precise definition, one needs the notion of an algebraic space. Informally

speaking, whereas a scheme is locally an affine scheme in the Zariski topology, an

algebraic space is locally an affine scheme in the étale topology. For an in-depth

treatment on algebraic spaces, see [LM00, Ols16, Stacks]. For our purposes, it

suffices to think of an algebraic space as a geometric object slightly more general

than a scheme, and to know that, just as for schemes, any algebraic space over

S can naturally be considered as a category fibered in groupoids over S (recall

from Remark 1.3.5 that any scheme X over S can be identified with the slice

category S/X). A morphism f : X → Y is said to be representable by algebraic

spaces if for every scheme T and morphism T → Y, the fiber product T ×Y X is

representable by an algebraic space.

Before giving the definition of an algebraic stack, we first need to introduce some

properties of representable morphisms.

Definition 1.4.1. Let f : X→ Y be a morphism of categories fibered in groupoids

over S which is representable by algebraic spaces. Let P be a property of mor-

phisms of algebraic spaces which is stable under base change and fppf-local on the

base, such as being smooth, étale, unramified, flat, surjective, (quasi-)separated,

affine, proper, (locally) of finite type, (locally) of finite presentation, or an (open

or closed) immersion. Then f is said to have the property P if for every scheme

T over S and T → Y the base change T ×Y X→ T has the property P .

Definition 1.4.2. A stack X over S is an Artin stack (resp. Deligne–Mumford

stack) if the diagonal ∆X/S : X → X ×S X is representable by algebraic spaces

and there exists a smooth (resp. étale) and surjective morphism X → X for some

scheme X. Such a morphism X → X is called a presentation of X.
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An algebraic stack over S will simply be an Artin stack over S.

Remark 1.4.3. Note that, in Definition 1.4.2, ∆X/S being representable auto-

matically implies the morphism X → X is representable, so that it makes sense

to talk about this morphism being surjective, smooth or étale. Indeed, for every

scheme T and morphism T → X, we have that T ×X X ∼= X×X×SX (X ×S T ) is
representable by an algebraic space.

What follows now is a list of definitions of properties for algebraic stacks and for

morphisms thereof. The general philosophy is that the common properties for

schemes or algebraic spaces (and morphisms thereof) translate directly to the

setting of algebraic stacks by making use of some kind of representability and

the way these properties behave (e.g. often they are local on the source or target

in some topology). We adopt the definitions as used by [Stacks], as indicated in

the definitions. This list is by far not complete, but should cover all properties

that are needed in the later chapters. For a more elaborate discussion on these

properties, we refer to [Beh14, LM00, Ols16, Stacks].

Definition 1.4.4 ([Stacks, Tag 04YF]). Let P be a property of schemes which is

local in the smooth topology, such as being reduced, locally noetherian, normal or

regular. An algebraic stack X is said to have P if there exists a smooth surjective

morphism X → X with X a scheme having property P .

Definition 1.4.5 ([Stacks, Tag 04YC, Tag 050U]). An algebraic stack X is

quasi-compact if there exists a smooth and surjective morphism X → X with X

a quasi-compact scheme.

A morphism of algebraic stacks f : X → Y is quasi-compact if for every quasi-

compact algebraic stack Z and morphism Z → Y, the fiber product Z ×Y X is

quasi-compact.

Definition 1.4.6 ([Stacks, Tag 0CHQ, Tag 0CHU, Tag 04YL]). Let P be any

of the properties of being affine, finite, or an (open or closed) immersion. Then

a morphism of algebraic stacks f : X→ Y is said to have the property P if it is

representable and has property P in the sense of Definition 1.4.1.

Definition 1.4.7 ([Stacks, Tag 06FM, Tag 0CIF]). Let P be a property of

morphisms of algebraic spaces which is local on the source and target in the

smooth (resp. étale) topology, such as being locally of finite type, locally of finite

presentation, flat, or smooth (resp. or unramified or étale). Then a morphism

f : X → Y of algebraic stacks is said to have the property P if there exists a
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commutative diagram

U V

X Y

f ′

f

with U and V algebraic spaces such that the vertical morphisms are smooth,

U → X×Y V is smooth (resp. étale) and f ′ has the property P .

Definition 1.4.8 ([Stacks, Tag 04YW, Tag 06FS, Tag 06Q2]). A morphism of

algebraic stacks f : X→ Y is

■ separated if the diagonal is proper in the sense of Definition 1.4.1,

■ quasi-separated if the diagonal is quasi-compact and quasi-separated in the

sense of Definition 1.4.1,

■ of finite type if it is locally of finite type and quasi-compact,

■ of finite presentation if it is locally of finite presentation, quasi-compact and

quasi-separated.

1.5 Quotient stacks

A rich source of examples of algebraic stacks is given by quotients of schemes by

group actions. For example, many moduli spaces are constructed in this way: one

first describes a scheme X overparametrizing the objects of interest, and then

describes an equivalence relation on the objects via the action of a group G on

X. The moduli space should then be the quotient of X by G.

To get an intuition for what this quotient should look like, imagine a group

G acting on some kind of geometric object X (e.g. a manifold or topological

space). If the group action is sufficiently nice (i.e., free), the quotient X → X/G

is expected to be a G-torsor, also known as a principal G-bundle. In particular,

the pullback of X along any map T → X will be a G-torsor over T , and the

projection X×X/GT → X will be G-equivariant. Moreover, any G-torsor P → T

with an equivariant map to X conversely induces a map from T to the quotient

X/G. This motivates the following definition.

Definition 1.5.1. Let G be a smooth group scheme acting on a scheme X over

S. The quotient stack of X by G, denoted [X/G], is the category over S whose

objects over T are diagrams

P X

T

p

ϕ
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where P
p−→ T is a G-torsor and P

ϕ−→ X is a G-equivariant morphism. The

morphisms from T ′ p′←− P ′ ϕ′

−→ X to T
p←− P

ϕ−→ X over f : T ′ → T are G-

equivariant morphisms α : P ′ → P such that p ◦ α = f ◦ p′ and ϕ ◦ α = ϕ′. Since

G-torsors can be glued from local data, it is easy to verify that [X/G] is indeed

a stack over S. There is a natural quotient map π : X → [X/G] corresponding

to the diagram

G×X X

X

πX

σ

More generally, one can replace the scheme X by an algebraic stack X to define

the quotient stack [X/G].

Example 1.5.2. The quotient stack [S/G] corresponding to the trivial action

of G on S is also known as the classifying stack of G and is denoted BG.

Remark 1.5.3. For any morphism T
f−→ [X/G], the corresponding G-torsor

over T with G-equivariant map to X can be recovered via pullback along π, as

depicted in the following diagram.

P X

T [X/G]

p

ϕ

π

f

Indeed, by definition of the fiber product, the objects of T ×[X/G] X over T ′ are

triples of morphisms (f : T ′ → T, h : T ′ → X,α : G×T ′ → P ×T T ′) with α being

G-equivariant such that

G× T ′

T ′ X

P ×T T ′

α

σ◦(idG×h)

ϕ◦πP

commutes. Since α is G-equivariant, it must be of the form α(g, t′) = (g ·β(t′), t′)
for β : T ′ → P given by β(t′) = πP (α(1, t

′)). But then f = p ◦ β, h = ϕ ◦ β and

α can all be expressed in terms of β. Hence, (T ×[X/G] X)(T ′) = P (T ′) and this

provides a canonical isomorphism T ×[X/G] X ∼= P .

Remark 1.5.4. The above remark shows that the quotient stack [X/G] is an

Artin stack with presentation π : X → [X/G]. Indeed, the morphism π is smooth

and surjective since P
p−→ T is smooth and surjective, as G was assumed to be

smooth. Similarly, if G is a finite group, one shows that the quotient stack [X/G]
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is a Deligne–Mumford stack. For representability of the diagonal, see [Ols16,

Example 8.1.12].

Remark 1.5.5. The quotient stack [X/G] indeed satisfies the quotient property,

that is, for any G-invariant morphism f : X → Y there is an induced morphism

f : [X/G] → Y . Indeed, for any diagram T ← P
ϕ−→ X, the composite f ◦ ϕ is

G-invariant, so there is an induced morphism T → Y , which defines a T -point

of Y .

Remark 1.5.6. The quotient stack construction is functorial in the following

sense. Let G and H be smooth group schemes acting on schemes X and Y ,

respectively, over S. Suppose f : X → Y is a morphism of schemes over S, and

φ : G→ H a morphism of group schemes over S, such that f(g ·x) = φ(g) · f(x).
Then there is an induced morphism of quotient stacks f : [X/G] → [Y/H] such

that the diagram

X Y

[X/G] [Y/H]

f

f

2-commutes. The morphism f is given by sending a diagram T
p←− P ϕ−→ X to the

diagram T
p◦πP←−−− H ×G P

ψ−→ Y where ψ(h, p) = h · f(ϕ(p)). The commutativity

of the diagram follows from the natural isomorphism H ×G (G× T ) ∼= H × T of

H-torsors over T .

Lemma 1.5.7. Let G and H be smooth group schemes acting on schemes X and

Y , respectively, over S. Then there is a natural isomorphism [X/G] × [Y/H] ∼=
[X×Y/G×H] given by sending a pair of diagrams T ← P

ϕ−→ X and T ← Q
ψ−→ Y

to the diagram T ← P ×Q ϕ×ψ−−−→ X × Y .

Proof. The described map is clearly functorial. Conversely, for any (G × H)-

torsor R over T , the natural isomorphism R ∼= R/H ×T R/G of (G×H)-torsors

over T yields an inverse.

Lemma 1.5.8. If G acts freely on X, then [X/G] is representable by an algebraic

space.

Proof. To prove this, we will use the characterization of an algebraic space as

an algebraic stack whose objects all have trivial automorphism groups [Stacks,

Tag 03YR]. Any point of [X/G] over any T corresponds to a G-torsor over T

with an equivariant morphism ϕ : P → X. An automorphism of this point is an

automorphism α : P → P over T such that ϕ ◦ α = ϕ. Étale-locally, P ∼= G× T ,
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and ϕ is determined by its restriction ϕ′ : S × T → X along the unit e : S → G.

Furthermore, α : G × T → G × T is given by multiplication by some element

g ∈ G. Now g · ϕ′(t) = ϕ′(t) for all t ∈ T , and since G acts freely on X we have

g = 1, that is, α = idP . Since this holds étale-locally, we also have α = idP
globally, and thus this automorphism is trivial.

Remark 1.5.9. As is reflected in the notation, the quotient stack can be thought

of as a geometric analogue of the action groupoid. However, in general we have

[X/G](T ) ̸≃ [X(T )/G(T )].

For example, the classifying stack BG of G = Z/2Z has up to isomorphism

precisely two Fq-points: the trivial G-torsor Fq → (Fq)2 and the non-trivial G-

torsor Fq → Fq2 whose G-action is given by the Frobenius automorphism, both

having an automorphism group of Z/2Z. On the other side, the action groupoid

has only one object with automorphism group Z/2Z.

In special cases, this discrepancy can be resolved.

Proposition 1.5.10. Let G be an algebraic group acting on a scheme X over

a field k. If (i) k is separably closed, or (ii) k is finite and G is connected, then

there is an equivalence of groupoids

[X/G](k) ≃ [X(k)/G(k)].

Proof. In both cases, any G-torsor over Spec k is trivial. For (i) because Spec k

does not have a non-trivial étale cover, and for (ii) by Lang’s theorem [Lan56].

Hence, the objects of the groupoid [X/G](k) are G-equivariant morphisms G
ϕ−→

X, which are completely determined by the value ϕ(1) ∈ X(k), and morphisms

ϕ→ ϕ′ are given by an element g ∈ G(k) such that ϕ(1) = ϕ′(g) = g · ϕ′(1). But
this is precisely (equivalent to) [X(k)/G(k)].

1.6 Stabilizers

Definition 1.6.1. Let X be an algebraic stack over S, and x : SpecK → X a

K-point of X for some field K. The stabilizer of x is the fiber product

StabX(x) = SpecK ×X SpecK

as a group scheme (or more precisely, group algebraic space) over K. Indeed,

for any T → SpecK, the T -points of StabX(x) can be identified with the au-

tomorphism group in X of the T -point T → SpecK
x−→ X. We say X has affine

stabilizers if StabX(x) is an affine group scheme for every x. We say X has finite

stabilizers if StabX(x) is a finite group scheme for every x.
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Lemma 1.6.2. Let G be a smooth group scheme acting on a scheme X. The

quotient stack X = [X/G] has affine stabilizers (resp. finite stabilizers) if G is

affine (resp. finite).

Proof. A point x : SpecK → X corresponds to a G-torsor P
p−→ SpecK with

a G-equivariant map P
ϕ−→ X. As P is étale-locally trivial, we have P ×SpecK

SpecL ∼= G × SpecL for some finite separable field extension L/K. The G-

equivariant morphism G × SpecL
ψ−→ X induced by ϕ corresponds to a point

x′ = ψ(1) ∈ X(L). Now consider the base change StabX(x) ×SpecK SpecL. Its

T -points are given by G-equivariant isomorphisms α : G × T → G × T over T

such that ψ ◦ α = ψ. Hence, we obtain a fiber product:

StabX(x)×SpecK SpecL SpecL

G× SpecL X

x′

ψ

This shows that StabX(x)×SpecK SpecL is a subgroup of G× SpecL, which is,

just like G× SpecL, affine (resp. finite). Since being affine (resp. finite) is local

in the étale topology [Stacks, Tag 02L5, Tag 02LA], it follows that StabX(x) is

also affine (resp. finite).

Lemma 1.6.3. Let f : X → Z and g : Y → Z be morphisms between algebraic

stacks with affine (resp. finite) stabilizers. Then the fiber product X ×Z Y also

has affine (resp. finite) stabilizers.

Proof. Pick any point (x, y, α) ∈ (X ×Z Y)(K). An automorphism of (x, y, α)

consists of morphisms β : x → x and γ : y → y such that α ◦ f(β) = g(γ) ◦ α.
That is, the automorphism group of (x, y, α) is precisely the stabilizer of α for

the action of AutX(x) × AutY(y) on HomZ(f(x), g(y)), given by (β, γ) · α =

g(γ) ◦α ◦ f(β). Also note that HomZ(f(x), g(y)) ∼= AutZ(z) for any object z of Z

isomorphic to f(x) ∼= g(y). This reasoning shows that the stabilizer of (x, y, α)

can be identified as the fiber product in the following cartesian square

StabX×ZY(x, y, α) SpecK

StabX(x)× StabY(y) StabZ(z)

α

where z is again any object of Z isomorphic to f(x) ∼= g(y). By assumption, all

of StabX(x), StabY(y) and StabZ(z) are affine (resp. finite), and therefore, the

fiber product StabX×ZY(x, y, α) is also affine (resp. finite).
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Definition 1.6.4. Let S be an algebraic stack with affine stabilizers. Let StckS

be the full subcategory of algebraic stacks of finite type over S with affine sta-

bilizers. By Lemma 1.6.3, this category is closed under pullbacks.

The algebraic stacks that appear in this thesis all have affine stabilizers. The

following proposition shows that we can think of such algebraic stacks, at least

locally, as quotient stacks of quasi-projective schemes by linear groups.

Proposition 1.6.5 ([Kre99, Proposition 3.5.9]). Let X be a reduced Artin stack

of finite type over a field with affine stabilizers. Then X admits a stratification

by quotient stacks [Xi/GLni
] where Xi is a quasi-projective scheme.



Chapter 2

Character stacks

In this chapter we will define, and describe various properties of, character stacks,

which are the main objects of study in this thesis. Roughly speaking, they are

the moduli space of representations of a finitely generated group Γ into a lin-

ear algebraic group G. While Γ can be any finitely generated group, it most

commonly arises as the fundamental group π1(M, ∗) of a compact manifold M .

In fact, every finitely presented group arises in this way. In this case, it is well

known that representations π1(M, ∗) → G correspond to G-local systems on M

[Sza09, Corollary 2.6.2]. Moreover, isomorphic local systems correspond to con-

jugate representations. Therefore, one is interested in the quotient of the space

parametrizing all representations Γ → G (this space will be called the ‘repre-

sentation variety’), by the action of conjugation by G. This quotient will be the

G-character stack of Γ.

2.1 Representation varieties

Fix a base scheme S. Typically, S will be Spec k where k is a field or a finitely

generated Z-algebra. Let G be a linear algebraic group over S, by which we

understand a closed subgroup of the group scheme GLr over S for some r ≥ 0.

Definition 2.1.1. Let Γ be a finitely generated group. The G-representation

variety of Γ is the scheme RG(Γ) over S whose functor of points is given by

RG(Γ)(T ) = Hom(Γ, G(T )).

Let us explain why RG(Γ) is indeed representable. After choosing a presentation

Γ = ⟨γ1, . . . , γn | ri(γ1, . . . , γn) = 1 for i ∈ I⟩,

any representation ρ : Γ → G(T ) can be identified with the image of its gen-

erators, that is, the tuple (ρ(γ1), . . . , ρ(γn)) ∈ G(T )n. However, not all tuples

15
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in G(T )n define such a representation because of the relations ri between the

generators. Every such relation ri, which is a word in the symbols γi, defines

a morphism ri : G
n → G given on points by (g1, . . . , gn) 7→ ri(g1, . . . , gn), and

hence a closed subscheme Xi ⊆ Gn as in the pullback diagram

Xi Gn

S G

ri

e

where e is the unit of G, a closed immersion [Stacks, Tag 047G]. Now, the in-

tersection of all Xi over G
n realizes RG(Γ) as a closed subscheme of Gn. This

closed subscheme corresponds to the sheaf of ideals in OGn that is generated by

the sheaves of ideals Ii ⊆ OGn corresponding to the Xi. Indeed, we have

RG(Γ)(T ) =
⋂
i∈I

{
t ∈ G(T )n | ri(t) = 1

}
=
⋂
i∈I

Xi(T ) =
(⋂
i∈I

Xi

)
(T ).

Remark 2.1.2. The G-representation variety RG(Γ) will always be separated

and of finite type over S, as it is a closed subscheme of Gn, which itself is

separated and of finite type over S. Moreover, RG(Γ) is affine over S, as Gn

is affine over S. However, the G-representation variety may be non-reduced.

For example, it was shown in [LM85, (2.10.4)] that for the von Dyck group

Γ = ⟨a, b, c | a3 = b3 = c3 = abc = 1⟩ ∼= Z2 ⋊ S3 and G = GL2 over S = SpecC,
the G-representation variety RG(Γ) is non-reduced.

For us, the main example of a finitely generated group Γ is the fundamental

group of a compact manifold.

Proposition 2.1.3. Let M be a connected compact manifold with a basepoint

x. Then π1(M,x) is finitely presented.

Proof. Every compact manifoldM is homotopy equivalent to a finite CW-complex

[Whi40]. Since M is connected, this finite CW-complex can be chosen to consist

of a single 0-cell corresponding to x. It follows that the fundamental group of

M has a presentation with a generator for every 1-cell and a relation for every

2-cell, and is therefore finitely presented.

When M is a connected compact manifold, we will simply write RG(M) instead

of RG(π1(M,x)) and call it the G-representation variety of M . Note that this

scheme is, up to isomorphism, independent of the chosen basepoint x since the

fundamental group π1(M,x) is, up to isomorphism, independent of x.

Example 2.1.4. ■ The circle S1 has fundamental group π1(S
1, ∗) ∼= Z, from

which follows that RG(S
1) ∼= G.
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■ The fundamental group of a closed orientable surface Σg of genus g can be

presented as π1(Σg, ∗) = ⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1⟩, where

[ai, bi] = aibia
−1
i b−1

i denotes the commutator. Therefore, RG(Σg) is the closed

subscheme of G2g given by
∏g
i=1[Ai, Bi] = 1.

■ Let Nr be the connected sum of r projective planes, that is, the non-orientable

closed surface of demigenus r. Its fundamental group can be presented as

π1(Nr, ∗) = ⟨a1, . . . , ar | a21 · · · a2r = 1⟩. Hence, RG(Nr) is the closed subvariety

of Gr given by
∏r
i=1A

2
i = 1.

While the G-representation variety RG(Γ) is an interesting object on its own,

it cannot quite be regarded as the moduli space of representations of Γ into G.

Namely, two different points of RG(Γ) might represent isomorphic representa-

tions, that is, representations that are related through conjugation. Formulated

differently, the linear algebraic group G acts on the G-representation variety by

conjugation

(g · ρ)(γ) = gρ(γ)g−1

for all g ∈ G(T ) and γ ∈ RG(Γ)(T ). In this sense, the correct moduli space

should be the quotient of RG(Γ) by the action of G. Unfortunately, quotients are

famously hard in algebraic geometry, and it is not always clear which quotient

one wants to take.

One possibility is to take the Geometric Invariant Theory (GIT) quotient as

developed by Mumford [Mum65]. Given an affine variety X = SpecR over a

field k with an action of a linear algebraic group G over k, encoded by a ring

morphism σ̂ : R→ R⊗k OG(G), the (affine) GIT quotient of X by G is

X �G = SpecRG

where RG = {r ∈ R | σ̂(r) = r ⊗ 1} denotes the subring of invariants of R. The

projection X → X � G corresponds to the inclusion RG ⊆ R. Even though the

GIT quotient can be constructed as a scheme, it was shown by Nagata that in

general the resulting scheme need not be of finite type over k [Nag59]. However, he

also showed that if G is reductive, the ring of invariants will be finitely generated

over k [Nag64].

Definition 2.1.5. Let G be a reductive linear algebraic group over a field k, and

Γ a finitely generated group. The G-character variety of Γ is the GIT quotient

XG(Γ) = RG(Γ) �G.

Remark 2.1.6. In the literature, the term ‘G-character variety’ is also used for

a notion which is different, but related, to the above definition. Given a linear



18 CHAPTER 2. CHARACTER STACKS

algebraic group G ⊆ GLn over k = C, one defines

χG(Γ) = SpecC[τγ | γ ∈ Γ]

to be the spectrum of the complex algebra generated by the functions τγ : ρ 7→
tr(ρ(γ)) on RG(Γ). Since the functions τγ are invariant under the action of G,

there is a canonical morphism

XG(Γ)→ χG(Γ).

While this morphism is known to be an isomorphism for various G, such as SLn,

GLn, Sp2n and On, see [FL11, Theorem A.1] and [Pro76], it fails to be so for

other groups, such as SO2n [Sik13].

Besides the GIT quotient, there are other ways to construct quotients. In the

following sections we will apply the theory of quotient stacks, as encountered

in Section 1.5, to take the quotient in the category of stacks, defining the G-

character stack. One advantage to this approach is that the quotient remembers

the automorphisms of the representations. Another advantage is that we do not

need to assume that G is reductive.

2.2 Character groupoids

Before we properly introduce the G-character stack, we will first forget all ge-

ometry, and let G be an ordinary group. Furthermore, we will allow for a more

general setup, with Γ being a groupoid, rather than a group.

Definition 2.2.1. Let G be a group. For any groupoid Γ, the G-character

groupoid of Γ, denoted XG(Γ), is the groupoid whose objects are functors ρ : Γ→
G (where G is seen as a groupoid with a single object), and whose morphisms

ρ1 → ρ2 are given by natural transformations µ : ρ1 ⇒ ρ2.

The map XG can naturally be extended to a 2-functor XG : Grpd → Grpdop.

Explicitly:

■ For any functor f : Γ′ → Γ between groupoids, let XG(f) : XG(Γ) → XG(Γ
′)

be the functor given by precomposition XG(f)(ρ) = ρ ◦ f for any ρ ∈ XG(Γ),

and XG(f)(µ) = µf for any morphism µ : ρ1 → ρ2.

■ For any natural transformation η : f1 ⇒ f2 between functors f1, f2 : Γ
′ → Γ, let

XG(η) : XG(f1)⇒ XG(f2) be the natural transformation given by (XG(η)ρ)x′ =

ρ(ηx′) for all ρ ∈ XG(Γ) and x′ ∈ Γ′. Indeed, this defines a natural transfor-
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mation as the square

ρ(f1(x
′)) ρ(f2(x

′))

ρ(f1(y
′)) ρ(f2(y

′))

ρ(ηx′ )

ρ(f1(γ
′)) ρ(f2(γ

′))

ρ(ηy′ )

commutes for every γ′ : x′ → y′ in Γ′ by naturality of η, and this is natural in

ρ.

Note that XG strictly preserves composition of 1-morphisms and 2-morphisms,

and therefore defines a strict 2-functor.

Corollary 2.2.2. An equivalence between groupoids Γ and Γ′ naturally induces

an equivalence between the G-character groupoids XG(Γ) and XG(Γ
′).

Let us apply the above corollary as follows in the case that G is a finite group.

If Γ is a finitely generated groupoid, then it can easily be seen that the groupoid

XG(Γ) is finite. But now it follows from Corollary 2.2.2 that XG(Γ) is essentially

finite if Γ is essentially finitely generated. Therefore, for G finite, we can restrict

XG to a 2-functor

XG : FGGrpd→ FinGrpdop.

As before, the main example of a finitely generated groupoid Γ for us comes from

a compact manifold.

Definition 2.2.3. Let M be a compact manifold. The fundamental groupoid of

M is the groupoid Π(M) whose objects are the points of M , and morphisms

x→ y are given by homotopy classes of paths from x to y.

For any smooth map of manifolds f : M → N , there is an induced a functor

Π(f) : Π(M)→ Π(N). In particular, one can think of Π as a functor Π: Mnfd→
Grpd from the category of manifolds to the category of groupoids. Moreover,

Π can be promoted to a 2-functor if one considers Mnfd as a 2-category where

2-morphisms are given by smooth homotopies.

Note that the fundamental groupoid Π(M) is essentially finitely generated when

M is a compact manifold. Namely, choosing a basepoint x1, . . . , xn on each of

the finitely many connected component of M , we find that Π(M) is equivalent

to π1(M,x1) ⊔ · · · ⊔ π1(M,xn), which is finitely generated by Proposition 2.1.3.

Definition 2.2.4. Let G be a group and let M be a compact manifold. The

G-character groupoid of M , denoted XG(M), is defined as XG(Π(M)), where

Π(M) is the fundamental groupoid of M . In particular, if G is finite, XG(M) is

essentially finite.
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Let us elaborate a bit more on the groupoid XG(M). Its objects ρ : Π(M) → G

assign to every homotopy class of paths γ an element ρ(γ) of G. A morphism from

ρ1 to ρ2 is a natural transformation µ : ρ1 ⇒ ρ2. Such a natural transformation

can be thought of as a function µ : M → G such that ρ2(γ) = µ(y)ρ1(γ)µ(x)
−1

for any path γ : x → y in Π(M). Such transformations are known in physics as

local gauge transformations.

With this characterization, the G-character groupoid can be defined in an alter-

native way. Let GΓ =
∏
x∈ΓG be the group of local gauge transformations, which

acts on the set X = Hom(Γ, G) via

((gx)x∈Γ · ρ)(γ) = gyρ(γ)g
−1
x

for any ρ ∈ X and γ : x → y in Γ. Now, the G-character groupoid XG(Γ) is

equivalent to the action groupoid [X/GΓ]. This alternative description will be of

crucial importance in defining the G-character stacks.

2.3 Character stacks

The G-character stack will be defined as the geometric analogue of the G-char-

acter groupoid, replacing the action groupoid by the quotient stack. Fix a base

scheme S and let G be a linear algebraic group over S.

Definition 2.3.1. Let Γ be a finitely generated groupoid. The G-representation

variety of Γ is the scheme over S whose functor of points is given by

RG(Γ)(T ) = Hom(Γ, G(T )),

where G(T ) is seen as a groupoid with a single object. Completely analogous

to the discussion below Definition 2.1.1, the G-representation variety is repre-

sentable by a closed subscheme of Gn for some n.

Importantly, note that RG(Γ) is not well-defined up to equivalence of Γ. That is,

RG(Γ) need not be isomorphic to RG(Γ
′) even when Γ is equivalent to Γ′. This

problem will be fixed once we pass to the G-character stack.

Analogous to the previous section, for a finitely generated groupoid Γ, we define

the group of local gauge transformations to be the group scheme

GΓ =
∏
x∈Γ

G

which, as a finite product of linear algebraic groups, is again a linear algebraic

group over S. It acts naturally on RG(Γ), and the action is pointwise given by

((gx)x∈Γ · ρ)(γ) = gyρ(γ)g
−1
x



2.3. CHARACTER STACKS 21

for all (gx)x∈Γ ∈ GΓ(T ) and ρ ∈ RG(Γ)(T ) and γ : x→ y in Γ.

Definition 2.3.2. Let Γ be a finitely generated groupoid. The G-character stack

of Γ is the quotient stack

XG(Γ) = [RG(Γ)/GΓ] .

As for the G-character groupoids, we want to extend XG(−) to essentially finitely

generated groupoids, and promote it to a 2-functor FGGrpd→ Stckop
S , where

StckS is the category of algebraic stacks of finite type over S with affine stabi-

lizers, as defined in Definition 1.6.4.

Let f : Γ′ → Γ be a functor between finitely generated groupoids. Such a functor

induces a morphism between the representation varieties, given by pullback

f∗ : RG(Γ)→ RG(Γ
′), ρ 7→ ρ ◦ f for all ρ ∈ RG(Γ)(T ),

and also a morphism of algebraic groups

Gf : GΓ → GΓ′ , (gx)x∈Γ 7→ (gf(x′))x′∈Γ′ .

In particular, as described in Remark 1.5.6, there is an induced map on charac-

ter stacks XG(f) : XG(Γ) → XG(Γ
′) that sends a GΓ-torsor P to the GΓ′ -torsor

GΓ′ ×GΓ P . Note that this construction is functorial in f .

Next, let η : f1 ⇒ f2 be a natural transformation between functors f1, f2 : Γ
′ → Γ.

We want to assign a 2-morphism XG(η) : XG(f1)⇒ XG(f2) to this natural trans-

formation, which amounts to, for every GΓ-torsor P over T with GΓ-equivariant
map ρ : P → RG(Γ), a morphism of GΓ′ -torsors (as indicated by the dashed

arrow) such that the diagram

GΓ′ ×GΓ
P

RG(Γ
′)

GΓ′ ×GΓ
P

(g′,p)7→g′·f∗
1 (ρ(p))

(g′,p)7→g′·f∗
2 (ρ(p))

commutes. Analogous to the case for G-character groupoids, this morphism is

given by (g′, p) 7→ (g′ρ(p)(ηx′), p). One easily sees that this map is well-defined,

that is, respects the GΓ-action on both sides.

Corollary 2.3.3. Any equivalence between finitely generated groupoids Γ and

Γ′ naturally induces an isomorphism between the G-character stacks XG(Γ) and

XG(Γ
′).
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This corollary allows us to extend the definition of the G-character stack to

groupoids Γ which are only essentially finitely generated, but only up to a natural

isomorphism. In particular, we obtain a 2-functor

XG(−) : FGGrpd→ Stckop
S .

We are now able to define the G-character stack of a compact manifold.

Definition 2.3.4. Let M be a compact manifold (possibly with boundary). It

was shown that the fundamental groupoid Π(M) of M is essentially finitely gen-

erated, that is, is equivalent to a finitely generated groupoid Γ. The G-character

stack of M is defined as

XG(M) = XG(Γ).

This definition is, up to isomorphism, independent of the choice of Γ by the above

corollary.

Remark 2.3.5. It might be tempting to define the G-character stack of Γ,

similar to the G-representation variety, as the category fibered in groupoids over

S = SchS whose fiber over an object T is the G-character groupoid XG(T )(Γ).

However, these groupoids are different as explained in Remark 1.5.9.

Lemma 2.3.6. XG(−) sends finite colimits in FGGrpd to limits in StckS.

Proof. Let Γ = colimi∈I Γi be a colimit in FGGrpd. Up to equivalence, we can

assume all Γi and Γ are finitely generated groupoids. A T -point of limi∈I XG(Γi)

is a collection of GΓi
-torsors Pi over T with GΓi

-equivariant morphisms ρi : Pi →
RG(Γi), which are compatible in the sense that there are natural isomorphisms

GΓi
×GΓj

Pj ∼= Pi in XG(Γi) for every i→ j in I. On the other hand, a T -point of

XG(Γ) is a GΓ-torsor P over T with a GΓ-equivariant morphism ρ : P → RG(Γ).

Note that ρ, on T ′-points, is given by

ρ : P (T ′)→ RG(Γ)(T
′) = Hom(colim

i∈I
Γi, G(T

′)) = lim
i∈I

Hom(Γi, G(T
′))

so ρ is equivalently described by compatible morphisms ρi : P → RG(Γi) which

are GΓi
-equivariant, where GΓi

acts on P via GΓ.

These two descriptions are related as follows. From the GΓ-torsor P , one con-

structs the GΓi
-torsors Pi = GΓi

×GΓ
P , which are naturally compatible. Con-

versely, from the Pi one constructs limi∈I Pi, where the limit is taken as schemes

over T , which naturally comes with the structure of a (limi∈I GΓi)-torsor, and

one puts P = GΓ ×(limi∈I GΓi)
limi∈I Pi. This induces the desired isomorphism

between limi∈I XG(Γi) and XG(Γ).



Chapter 3

Motivic invariants

When studying a geometric object, say a compact manifold X, one can try to

understand X by means of its invariants. One of the simplest invariants is the

Euler characteristic of X, a topological invariant, which is an integer χ(X) ∈ Z
given by the alternating sum of its Betti numbers

χ(X) =
∑
k≥0

(−1)k dimCH
k(X;C).

There are many ways in which the Euler characteristic can be refined. For in-

stance, when X is (the analytification of) a smooth projective complex variety,

the cohomology groups Hk(X;C) admit a Hodge structure by the Hodge decom-

position theorem [PS08, Theorem 1.8]. The Hodge polynomial of X,

PHodge(X) =
∑
p,q≥0

dimCH
p,q(X)upvq ∈ Z[u, v] (3.1)

specializes to the Euler characteristic for u = v = −1. One may replaceHk(X;C)
by the compactly supported cohomology groups Hk

c (X;C) in order to extend the

Euler characteristic to non-compact X. Analogously, as explained in Section 3.1,

by work of Deligne [Del71b, Del74] the Hodge polynomial can be extended to

an invariant for all complex varieties, possibly non-smooth and non-projective,

called the E-polynomial e(X) ∈ Z[u, v], also known as the Hodge–Deligne poly-

nomial or Serre polynomial. This invariant is additive and multiplicative in the

sense that e(X) = e(Z) + e(X \ Z) and e(X × Y ) = e(X) e(Y ) for all complex

varieties X and Y and closed subvarieties Z ⊆ X.

The goal of this chapter is to discuss various such invariants, and to give tools

for computing them. Our main focus will be on the invariant that takes values

in the Grothendieck ring of varieties, defined in Section 3.2, which is universal

among all additive and multiplicative invariants.

23
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3.1 Mixed Hodge structures

Let X be a complex variety. It was shown by Deligne [Del71a, Del71b] that the

singular cohomology groups with compact supportHk
c (X;Q) naturally admit the

structure of a mixed Hodge structure. Let us recall the definition of a (mixed)

Hodge structure.

Definition 3.1.1. A Hodge structure of weight k ∈ Z is a pair (H,F •H) con-

sisting of a finite-dimensional rational vector space H and a decreasing filtration

F •H on HC = H ⊗Q C,

HC ⊇ · · · ⊇ F pH ⊇ F p+1H ⊇ · · · ⊇ 0,

such that HC = F p⊕F q for p+q = k+1. A morphism of Hodge structures of the

same weight (H,F •H)→ (H ′, F •H ′) is a linear map f : H → H ′ which preserves

the filtration, that is, fC(F
pH) ⊆ F pH ′ for all p. A mixed Hodge structure is a

triple (H,W•H,F
•H) consisting of a finite-dimensional rational vector space H,

an increasing filtration W•H on H, called the weight filtration,

0 ⊆ · · · ⊆WkH ⊆Wk+1H ⊆ · · · ⊆ H,

and a decreasing filtration F •H on HC,

HC ⊇ · · · ⊇ F pH ⊇ F p+1H ⊇ · · · ⊇ 0,

such that the induced filtration of F •H on the graded pieces (GrWk H) ⊗Q C =

(WkH/Wk+1H) ⊗Q C are Hodge structures of weight k. A morphism of mixed

Hodge structures is a linear map which preserves both the increasing and decreas-

ing filtration. The categories of Hodge structures and of mixed Hodge structures

are denoted by HS and MHS, respectively.

Now, more precisely, Deligne showed that the cohomology groups Hk
c (X;Q) and

their complexification Hk
c (X;Q) ⊗Q C = Hk

c (X;C) can naturally be equipped

with weight filtrations W• and decreasing filtrations F •, respectively, such that

the triples Hk
c (X) = (Hk

c (X;Q),W•, F
•) are mixed Hodge structures. Moreover,

the construction is functorial in X, agrees with the usual Hodge decomposition

when X is smooth and projective, and is compatible with various classical exact

sequences in cohomology. For the explicit construction and more details, we refer

to [Del71b, Del74, PS08].

There is an exact functor from the category of mixed Hodge structures to the

category of finite-dimensional bigraded complex vector spaces [Del71b, Theorem

1.2.10]:

Gr∗F GrW∗ : MHS→ (VectZ×Z
C )fin, H 7→

⊕
p,q∈Z

GrpF GrWp+qHC (3.2)
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In the case of a mixed Hodge structure on Hk
c (X;Q), we denote its bigraded

pieces by

Hk;p,q
c (X) = GrpF GrWp+qH

k
c (X;C).

In fact, Hk;p,q
c (X) is non-zero only if p, q ≥ 0. The dimensions of these vector

spaces can be collected as the coefficients of a polynomial. This way we obtain

the following definition, as first introduced in [DK86].

Definition 3.1.2. Let X be a complex variety. The E-polynomial of X (also

known as the Hodge–Deligne polynomial or the Serre polynomial) is the polyno-

mial e(X) ∈ Z[u, v] given by

e(X) =
∑

k,p,q∈Z
(−1)k dimCH

k;p,q
c (X)upvq.

In particular, whenX is smooth and projective, the E-polynomial e(X) coincides

with the Hodge polynomial (3.1), up to the change of signs induced by u 7→ −u
and v 7→ −v.

Amazingly, the E-polynomial is additive and multiplicative, in the sense that

e(X) = e(Z) + e(X \ Z) and e(X × Y ) = e(X) e(Y ) (3.3)

for complex varieties X and Y , and Z ⊆ X a closed subvariety. These properties

follow from the long exact sequence

· · · → Hk
c (X \ Z;C)→ Hk

c (X;C)→ Hk
c (Z;C)→ Hk+1

c (X \ Z;C)→ · · · (3.4)

of mixed Hodge structures [PS08, p.138], and the Künneth formula [Del74,

Proposition 8.2.10], respectively, together with the fact that (3.2) is exact.

3.2 Grothendieck ring of varieties

As seen in the previous section, the E-polynomial is an additive and multi-

plicative invariant (3.3). In this section, we will define the Grothendieck ring of

varieties: the ring in which the universal invariant, among all additive and multi-

plicative invariants, takes values. This means, in particular, that when computing

the E-polynomial of some complex variety using only these properties, one might

as well compute the invariant in the Grothendieck ring of varieties, to obtain a

more refined invariant. One of the advantages to the Grothendieck ring of vari-

eties is that, as opposed to other invariants, it can be defined for varieties over

any field k, and also more generally in the relative setting for varieties over a

base variety S.
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The Grothendieck ring of varieties K0(Vark) was originally introduced in a letter

from Grothendieck to Serre [CS01, 16 Aug. 1964], and came with a hypothetical

morphism

K0(Vark)→ K0(M(k)) (3.5)

to the ‘Grothendieck group of the abelian category of motives’. For this reason,

we refer to these invariants as motivic invariants. To gain some understanding

about this morphism, we first introduce the Grothendieck group of an abelian or

triangulated category.

Definition 3.2.1. The Grothendieck group of an abelian category A, denoted
K0(A), is the free abelian group on isomorphism classes [A] of objects A of A,
modulo the relations

[B] = [A] + [C]

for all short exact sequences 0 → A → B → C → 0 in A. Similarly, the

Grothendieck group of a triangulated category A, also denoted K0(A), is the

free abelian group on isomorphism classes [A] of objects A of A, modulo the

relations

[B] = [A] + [C]

for all distinguished triangles A→ B → C → A[1] in A. When A is a tensor tri-

angulated category, the tensor product ⊗ induces the structure of a commutative

ring on K0(A) given on generators by

[A][B] = [A⊗B].

Remark 3.2.2. The Grothendieck group of an abelian category A is naturally

isomorphic to that of its derived category Db(A) as triangulated category. In

particular, the functor A → Db(A), which assigns to any object A the complex

with A concentrated in degree 0, induces a morphism K0(A) → K0(D
b(A)). It

is an easy exercise in homological algebra to show that an inverse is given by

[A•] 7→
∑
i∈Z(−1)i[Hi(A•)].

Even though the category of varieties is neither abelian nor triangulated (not

even additive), the Grothendieck ring of varieties is defined similarly, where exact

sequences are replaced by closed immersions with open complements. For many

invariants, these notions can be related through a long exact sequence such as

(3.4).

Definition 3.2.3. Let S be a variety over a field k. The Grothendieck ring of

varieties over S, denoted K0(VarS), is the free abelian group on isomorphism

classes [X] of varieties X over S, modulo the relations

[X] = [Z] + [X \ Z]
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for all closed immersions Z → X of varieties over S. It admits the structure of a

commutative ring, where multiplication is given on generators by

[X][Y ] = [(X ×S Y )red].

In particular, the classes [∅] and [S] are the zero and unit of this ring, respectively.

For any variety X over S, the element [X] in K0(VarS) is also known as the

virtual class of X.

Remark 3.2.4. Although the Grothendieck ring is generated by isomorphism

classes of varieties X, one could allow for X to be non-reduced without affecting

the ring. Indeed, Xred ⊆ X is a closed subscheme with complement ∅, so that

[Xred] = [X]. Also, in this case, one can define multiplication simply by [X][Y ] =

[X ×S Y ]. Similarly, we can omit the condition that X be separated since any

scheme X of finite type over S can be partitioned into finitely many separated

subschemes X1, . . . , Xn, so that [X] = [X1] + · · · + [Xn]. However, we cannot

permit any X which is not quasi-compact over S. For example, if X =
⊔

Z S and

Z = S, then X \ Z ∼= X which would imply 1 = [Z] = 0, collapsing the ring

to the trivial ring. Indeed, Grothendieck originally defined his ring allowing for

isomorphism classes of all schemes X of finite type over S [CS01, 16 Aug. 1964].

Notation 3.2.5. To distinguish between virtual classes over different bases, we

sometimes write [X]S to emphasize the virtual class lives in K0(VarS). When

the base S is clear from context, or when S = Spec k, we simply write [X].

Definition 3.2.6. The virtual class of the affine line A1
S over S in K0(VarS) is

called Lefschetz class and is denoted by L.

Example 3.2.7. ■ The virtual class of affine n-space is [AnS ]S = Ln for any

n ≥ 0.

■ Since PnS \ P
n−1
S
∼= AnS , it follows by induction on n that [PnS ]S = Ln +Ln−1 +

· · ·+ 1 for all n ≥ 0.

Example 3.2.8. The following invariants are additive and multiplicative, and

hence factor through the Grothendieck ring of varieties.

■ For S = SpecC, the E-polynomial (see Definition 3.1.2) factors through

K0(VarC), which gives a ring morphism

e : K0(VarC)→ Z[u, v], [X] 7→ e(X). (3.6)

■ For any point SpecFq → S, one can count Fq-rational points

#Fq
: Ob(VarS)→ Z, X 7→ |X(Fq)|.

This map, being additive and multiplicative, factors through K0(VarS).



28 CHAPTER 3. MOTIVIC INVARIANTS

■ Let S = Spec k for a field k with char(k) = 0. Then there is a ring morphism

K0(Vark)→ K0(DMeff
gm(k,Q))

to the Grothendieck group of the Q-linearization of Voevodsky’s triangulated

category of effective geometric motives [BD07, Appendix A]. This morphism

sends the virtual class [X] of a variety X over k to the class [M c
gm(X)] of its

motive with compact support. Viewing DMeff
gm(k,Q) as a substitute for the

derived category of the ‘abelian category of motives’, this map would be the

morphism (3.5) that Grothendieck had in mind in his letter.

■ Again, let S = Spec k for a field k with char(k) = 0. Then there is a ring

morphism

K0(Vark)→ K0(CHMotk)

to the Grothendieck group of the category of Chow motives over k with rational

coefficients [GN02, (5.5)].

Let us describe some formal and functorial properties of the Grothendieck ring

of varieties. Given a morphism f : X → Y of varieties over S, there is an induced

ring morphism

f∗ : K0(VarY )→ K0(VarX), [W ]Y 7→ [W ×Y X]X .

Indeed, this map is well-defined since, for any variety W over Y and closed

subvariety Z ⊆W , we have [W×YX]X = [Z×YX]X+[(W \Z)×YX]X . Similarly,

f∗ respects multiplication as (W ×Y W ′) ×Y X ∼= (W ×Y X) ×X (W ′ ×Y X)

for any varieties W and W ′ over Y . The morphism f∗ turns K0(VarX) into a

K0(VarY )-algebra, and in particular K0(VarX) is a K0(VarS)-algebra for every

variety X over S. Moreover, f∗ is a morphism of K0(VarS)-algebras.

Similarly, the morphism f : X → Y induces a map

f! : K0(VarX)→ K0(VarY ), [W ]X 7→ [W ]Y

which is a morphism of K0(VarS)-modules. However, note that f! is generally

not a morphism of rings.

Remark 3.2.9. The maps f∗ and f! can more generally be seen as functors

VarX VarY
f!

f∗

given by pulling back along f and post-composing with f , respectively, forming

an adjoint pair f! ⊣ f∗. Indeed, for any varieties U over X and V over Y there

is a natural bijection

HomY (U, V ) ∼= HomX(U, V ×Y X).
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Example 3.2.10. Let X and Y be varieties over S. There is a natural morphism

of K0(VarS)-algebras

K0(VarX)⊗K0(VarS) K0(VarY )→ K0(VarX×SY )

given, on generators, by [U ]X ⊗ [V ]Y 7→ [U ×S V ]X×SY for all varieties U over

X and V over Y . This map is generally not surjective. For example, let X =

Y = A1
k over S = Spec k for a finite field k = Fq. Consider the class [∆A1

k
] of the

diagonal in X×Y = A2
k, and suppose [∆A1

k
] is equal to the image of

∑n
i=1 ui⊗vi

under this map for some ui, vi ∈ K0(VarA1
k
). Note that every Fqm-rational point

x ∈ A1
k(Fqm) induces a ring morphism

#x : K0(VarA1
k
)→ Z, [U

f−→ A1
k] 7→ |f−1(x)|

counting the number of Fqm-rational points in the fiber over x. The same con-

struction works for A2
k, and together they induce the following commutative

diagram.

K0(VarA1
k
)⊗K0(Vark) K0(VarA1

k
) K0(VarA2

k
)

(∏
x∈A1

k(Fqm ) Z
)
⊗
(∏

x∈A1
k(Fqm ) Z

) ∏
x∈A2

k(Fqm ) Z

Zqm ⊗ Zqm Zqm×qm∼

Now, the image of [∆A1
k
] in Zqm×qm corresponds to the qm× qm identity matrix,

which has rank qm, while the image of
∑n
i=1 ui ⊗ vi has rank at most n. This

yields a contradiction for sufficiently large m.

3.3 Stratifications and fibrations

Let S be a variety over a field k.

Definition 3.3.1. Let X be a variety over S. A stratification of X is a collection

of disjoint locally closed subvarieties {Xi}i∈I of X such that X =
⋃
i∈I Xi.

Lemma 3.3.2 ([Bri12, Lemma 2.2]). Let X be a variety over S and {Xi}i∈I
a stratification of X. Then only finitely many of the Xi are non-empty and

[X] =
∑
i∈I [Xi] in K0(VarS).

Proof. Proof by induction on the dimension of X. If dimX = 0, then X is a

finite set of points, and the result is clear. Now assume that dimX > 0 and that

the result holds for all varieties of dimension less than dimX.
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We prove the result for X by induction on the number of irreducible components

of X. If this number is 1, that is, X is irreducible, then some U = Xi contains

the generic point of X and is therefore open. The complement Z = X \ U is of

smaller dimension than X and is stratified by the other Xi. Since [X] = [Z]+[U ],

the result follows from the induction hypothesis (on dimX).

Now suppose that X is reducible. Take an irreducible component and remove the

intersections with the other irreducible components, which gives an irreducible

open subset U ⊆ X. The complement Z = X \ U is a closed subvariety with

fewer irreducible components than X. Note that {Z ∩Xi}i∈I and {U ∩Xi}i∈I
are stratifications of Z and U , respectively, so only finitely many strata are non-

empty, and we have

[U ] =
∑
i∈I

[U ∩Xi] and [Z] =
∑
i∈I

[Z ∩Xi].

This follows, if dimZ (resp. dimU) is less than dimX, from the induction hy-

pothesis on the dimension, or, if dimZ (resp. dimU) is equal to dimX, from

the induction hypothesis on the number of irreducible components. Finally,

[Xi] = [U ∩Xi] + [Z ∩Xi] implies that [X] = [U ] + [Z] =
∑
i∈I [Xi].

Lemma 3.3.3. Let f : Y → X be a fiber bundle of varieties over S with fiber F

which is locally trivial in the Zariski topology. That is, there exists an open cover

Y = ∪i∈IUi such that f−1(Ui) is isomorphic to F × Ui over Ui for each i ∈ I.
Then [Y ]S = [F ] · [X]S in K0(VarS).

Proof. From the given open cover, we construct a stratification of Y as follows.

Let Z0 = Y and inductively construct Zj+1 for j ≥ 0: if Zj ̸= ∅, there exists

some i ∈ I such that Zj ∩ Ui ̸= ∅, and set Zj+1 = Zj \ (Zj ∩ Ui). As Y is

noetherian, this results in a finite descending chain of closed sets

Y = Z0 ⊋ Z1 ⊋ . . . ⊋ Zn ⊋ Zn+1 = ∅

and the locally closed sets Yj = Zj \Zj+1 for j = 0, 1, . . . , n form a stratification

of Y . Moreover, since Yj ⊆ Ui for some i by construction, f is trivial over each

Yj , that is, f
−1(Yj) ∼= F × Yj . Using Lemma 3.3.2 we conclude

[X]S =

n∑
j=0

[
f−1(Yj)

]
S
=

n∑
j=0

[F ] · [Yj ]S = [F ] · [Y ]S .

Example 3.3.4. For any n ≥ 0, the natural morphism An+1
S \ {0} → PnS is a

fiber bundle with fiber Gm which is locally trivial in the Zariski topology. Indeed,

we have

[Gm] · [PnS ]S = (L− 1)(Ln + · · ·+ L+ 1) = Ln+1 − 1 = [An+1
S \ {0}]S .
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Example 3.3.5. Consider the general linear group GLn of rank n over a field

k. The morphism GLn → Spec k factors as

GLn = Yn → Yn−1 → · · · → Y0 = Spec k

where Ym ⊆ Matn×m denotes the locally closed subvariety ofm-linearly indepen-

dent vectors over k, and the morphisms are given by forgetting the last vector.

Now, for any m = 1, . . . , n, the variety Ym can be regarded as the open com-

plement in Ym−1 × Ank of the closed subvariety Ym−1 × Am−1
k . In particular,

[Ym] = (Ln − Lm−1)[Ym−1]. Therefore, by induction on m, we obtain

[GLn] =

n∏
m=1

(Ln − Lm−1).

Proposition 3.3.6. Let S be a variety with stratification {Si}i∈I and write

fi : Si → S for the immersion of Si into S. Then the map

K0(VarS)→
⊕
i∈I

K0(VarSi
), X 7→ (f∗i X)i∈I

is an isomorphism of K0(Vark)-algebras.

Proof. Every f∗i is a morphism of K0(Vark)-algebras, so this map is as well. Its

inverse is given by (Xi)i∈I 7→
∑
i∈I(fi)!Xi, which is well-defined because only

finitely many Si are non-empty by Lemma 3.3.2. Indeed, it is a right inverse to

the given map because

f∗i (fj)! =

{
idK0(VarSi

) if i = j,

0 if i ̸= j.

It is a left inverse because any variety T over S is stratified by {T ×S Si}i∈I , so
that

[T ]S =
∑
i∈I

[T ×S Si]S =
∑
i∈I

(fi)!f
∗
i [T ]S .

Notation 3.3.7. For any X ∈ K0(VarS), we will write X|Si
∈ K0(VarSi

) for

the components of the image of X under this isomorphism.

Inclusion-exclusion matrix

Let X be a variety over S with stratification {Xi}i∈I and let Y be a variety over

X. The goal of this subsection is to show that, in order to compute the virtual

classes [Y ×X Xi] in K0(VarS) for all i, it is sufficient to compute the virtual

classes [Y ×X Xi] for all i instead, where Xi denotes the Zariski closure of Xi in

X, making use of an inclusion-exclusion principle.
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Example 3.3.8. Suppose X is stratified by a closed subvariety X0 ⊆ X and its

open complementX1 = X\X0. If we were to compute [X0] and [X1] in K0(VarS),

computing the latter would likely result in the computation [X]−[X0], so that the

result of the computation of [X0] can be reused. Therefore, instead of computing

[X0] and [X1], one can compute [X0] = [X0] and [X1] = [X], from which formally

follows that [X1] = [X1]− [X0].

Lemma 3.3.9. Let X be a variety over S with stratification {Xi ̸= ∅}i∈I . Then
Xi = Xj if and only if i = j.

Proof. For each i ∈ I, write Xi = Zi ∩ Ui for some closed Zi ⊆ X and open

Ui ⊆ X. Without loss of generality, we may assume Zi = Xi. Now, if Xi = Xj

for some i, j ∈ I, then both Xi and Xj are open and dense in Xi = Xj ̸= ∅,

so they must intersect. But this contradicts the assumption that Xi and Xj are

disjoint, since they are part of the stratification.

Definition 3.3.10. Let X be a variety over S with a finite stratification {Xi ̸=
∅}i∈I . Put a partial order on I where i ≤ j if and only if Xi ⊆ Xj . Reflexivity

and transitivity are clear, and anti-symmetry follows from the above lemma. The

virtual classes [Xi] and [Xi] in K0(VarS) are now linearly related through

[Xi] =
∑
j∈I

Aij [Xj ]

where Aij = 1 for j ≤ i and Aij = 0 for i < j. Hence, the Aij define a linear map

A : ZI → ZI with determinant 1. The inverse C = A−1 is called the inclusion-

exclusion matrix of the stratification, and satisfies

[Xi] =
∑
j∈I

Cij [Xj ].

Corollary 3.3.11. Let X be a variety over S with finite stratification {Xi}i∈I
and corresponding inclusion-exclusion matrix C. Then for any variety Y over

X, we have

[Y ×X Xi]S =
∑
j∈I

Cij [Y ×X Xj ]S .

Special algebraic groups

Special algebraic groups were first introduced by Serre [Ser58]. In this section, we

describe some basic properties of these groups, and show why they are extremely

useful in the context of computing virtual classes.

Definition 3.3.12. An algebraic group G over a field k is special if any G-torsor

in the étale topology is locally trivial in the Zariski topology.
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Lemma 3.3.13. Let G be a special algebraic group. Then for every G-torsor

of varieties P → X in the étale topology over S, we have [P ]S = [G] · [X]S in

K0(VarS).

Proof. The G-torsor P → X is Zariski-locally trivial, so the result follows from

Lemma 3.3.3.

Example 3.3.14. In general, the equality [P ]S = [G] · [X]S fails to hold when G

is not special. Consider for instance the cyclic group G = Z/nZ and the G-torsor

P = A1
C \ {0} → A1

C \ {0} = X given by x 7→ xn. Then [P ] = L− 1 ̸= n(L− 1) =

[G][X] for n ≥ 2, showing Z/nZ is not special for n ≥ 2.

Corollary 3.3.15 (Motivic orbit-stabilizer theorem). Let G be an algebraic

group over k acting on a variety X. For any point ξ ∈ X(k), if the stabilizer

Stab(ξ) is special, then

[G] = [Stab(ξ)][Orbit(ξ)]

in K0(Vark).

Proof. Since the map G → Orbit(ξ) given by g 7→ g · ξ is a Stab(ξ)-torsor, the

result follows from Lemma 3.3.13.

Proposition 3.3.16. Let 1 → N ↪→ G
π→ H → 1 be an exact sequence of

algebraic groups.

(i) If N and H are special, then so is G.

(ii) If the sequence splits and G is special, then so is H.

(iii) If the sequence splits and G is special, then so is N .

Proof. (i) Any G-torsor X → S can be written as the composite of the N -torsor

X → X/N and the H-torsor X/N → X/G ∼= S. As H is special, there exist

opens Si ⊆ S such that (X/N) ×S Si ∼= H × Si. Pulling back the N -torsor

X ×S Si → H × Si along Si
(1,id)−−−→ H × Si gives an N -torsor Yi → Si, which is

also Zariski-locally trivial as N is special. Hence, there exist opens Sij ⊆ Si such
that Yi×Si

Sij ∼= N ×Sij . There is now a natural morphism G×Sij → X×S Sij
of G-torsors over Sij , which must be an isomorphism. Therefore, X → S is

Zariski-locally trivial.

(ii) As sequence splits, there exists a section σ : H → G to π, i.e., π◦σ = idH . Let

X → S be an H-torsor, and consider the G-torsor G×H X := (G×X)/H → S,

where H acts on G × X via h · (g, x) = (gσ(h)−1, h · x). This G-torsor factors
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through the N -torsor G ×H X → X given by (g, x) 7→ π(g) · x. Hence, any

trivialization of G×H X induces a trivialization of X, and such a trivialization

exists as G is special.

(iii) Let X → S be an N -torsor, and consider the G-torsor G ×N X := (G ×
X)/N → S, where N acts on G×X via n · (g, x) = (gn−1, n ·x). As G is special,

there exist opens Si ⊆ S and G-equivariant isomorphism φi : (G×N X)×S Si →
G × Si. These induce N -equivariant isomorphisms X ×S Si → N × Si given

by (x, s) 7→ (g σ(π(g−1)), s), where (g, s) = φi((1, x), s), showing the Si also

trivialize X.

Example 3.3.17. ■ By Hilbert’s Theorem 90, the general linear groups GLn
are special over any field k [Mil80, Proposition III.4.9, Lemma III.4.10].

■ The exact sequence 1 → SLn → GLn
det−−→ Gm → 1 splits, so it follows from

Proposition 3.3.16 (iii) that SLn is also special over any field k.

■ The additive group Ga is special over any field k [Mil80, Proposition III.3.7].

■ The projective linear group PGLn is not special for n ≥ 2. In fact, the PGLn-

torsors over a variety X which are not Zariski-locally trivial are classified by

the Brauer group of X, which is in general non-trivial [Mil80, IV §2].

3.4 Algorithmic computations

Let k be a field. In this section, we describe, from a practical and computational

point of view, various strategies for computing the virtual class of varieties in

K0(Vark), in terms of the classes of some simple varieties, such as L = [A1
k].

These strategies are combined in a recursive algorithm, Algorithm 3.4.3. We

remark already that the algorithm will not be a general recipe for computing

virtual classes in K0(Vark): it is allowed to fail. In fact, whenever the algorithm

does not fail, it will return the virtual class of the given variety as a polynomial

in L. Of course, there exist varieties whose virtual class is not of this form, but it

turns out that this algorithm is sufficiently general for the purposes of the later

chapters.

In order to algorithmically manipulate varieties, we will encode them as follows.

While not all varieties can be encoded in such a way, this should not be too much

of a restriction since any variety can be stratified into varieties of this form.

Notation 3.4.1. Let A = {x1, . . . , xn} be a finite set, and let F and G be finite

subsets of k[A]. Then we write

X(A,F,G)
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for the reduced locally closed subvariety of Ank = Spec k[x1, . . . , xn] given by

f = 0 for all f ∈ F and g ̸= 0 for all g ∈ G.

Furthermore, we will introduce a notation for the evaluation of polynomials.

Notation 3.4.2. Given an element x ∈ A and polynomials f ∈ k[A] and u ∈
k[A \ {x}], denote by evalxu(f) the evaluation of f in x = u. For polynomials

u, v ∈ k[A \ {x}], write evalxu/v(f) for the evaluation of f in x = u/v multiplied

by vdegx(f), so that evalxu/v(f) ∈ k[A\{x}]. Similarly, for subsets F ⊆ k[A], write
evalxu(F ) = {eval

x
u(f) : f ∈ F} and evalxu/v(F ) = {eval

x
u/v(f) : f ∈ F}.

An implementation of this algorithm can be found at [Vog22].

Algorithm 3.4.3. Input: Finite sets A,F and G as in Notation 3.4.1.

Output: The virtual class [X] ∈ K0(Vark) of X = X(A,F,G) as a polynomial

in L = [A1
k].

1. If F contains a non-zero constant or if 0 ∈ G, thenX = ∅, so return [X] = 0.

2. If F = G = ∅ or A = ∅, then X = A|A|
k , so return [X] = L|A|.

3. If F,G ⊆ k[A \ {x}] for some x ∈ A, then X ∼= A1
k × X ′ with X ′ =

X(A \ {x}, F,G), so return [X] = L [X ′].

4. If f = un (with n > 1) for some f ∈ F and u ∈ k[A], then we replace f with

u without changing X, that is, X = X(A, (F \ {f}) ∪ {u}, G). Similarly, if

g = un (with n > 1) for some g ∈ G and u ∈ k[A], then X = X(S, F, (G \
{g}) ∪ {u}). Continue with this new presentation.

5. If f ∈ k[x] for some f ∈ F and x ∈ A, and if f factors as f = c(x −
a1) · · · (x − am) for some c ∈ k× and ai ∈ k, then return [X] =

∑m
i=1[Xi]

with

Xi = X
(
A \ {x}, evalxai(F \ {f}), eval

x
ai(G)

)
.

6. Suppose f = uv for some f ∈ F and non-constant u, v ∈ k[A]. Then X is

stratified by its closed subvariety given by u = 0 and its open complement

given by u ̸= 0 and v = 0. Hence, return [X] = [X1] + [X2] with

X1 = X(A, (F \ {f}) ∪ {u}, G),
X2 = X(A, (F \ {f}) ∪ {v}, G ∪ {u}).

7. Suppose f = ux + v for some element x ∈ A and polynomials f ∈ F

and u, v ∈ k[A \ {x}], with u non-zero. Then X is stratified by its closed
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subvariety given by u = v = 0 and its open complement given by u ̸= 0 and

a = −v/u. Hence, return [X] = [X1] + [X2] with

X1 = X(A, (F \ {f}) ∪ {u, v}, G),
X2 = X(A, evala(F \ {f},−v/u), evala(G,−v/u) ∪ {u}).

8. Suppose char(k) ̸= 2 and f = ux2 + vx + w for some element x ∈ A and

polynomials f ∈ F and u, v, w ∈ k[A \ {a}] with u non-zero. Moreover,

suppose that the discriminant D = v2− 4uw is a square, that is, D = d2 for

some d ∈ k[A \ {a}]. Then return [X] = [X1] + [X2] + [X3] + [X4], where X

is stratified by the following varieties:

X1 = X(A, (F \ {f}) ∪ {u, vx+ w}, G),
X2 = X(A, evalx−v/2u(F \ {f}) ∪ {d}, eval

x
−v/2u(G) ∪ {u}),

X3 = X(A, evalx(−v−d)/2u(F \ {f}), eval
x
(−v−d)/2u(G) ∪ {u, d}),

X4 = X(A, evalx(−v+d)/2u(F \ {f}), eval
x
(−v+d)/2u(G) ∪ {u, d}).

9. If G ̸= ∅, pick any g ∈ G, and return [X] = [X1]− [X2] with

X1 = X(A,F,G \ {g}),
X2 = X(A,F ∪ {g}, G).

10. If none of the above rules apply, fail.

Remark 3.4.4. Of course, it is possible to replace Step 10 with:

10’. If none of the above rules apply, create a new symbol for the varietyX(A,F,G)

and return that.

However, this raises the question of what it means to ‘compute the virtual class’

of a variety. For the purpose of computing motivic invariants, an expression for

the virtual class of a variety in terms of the classes of other varieties is only

useful if the motivic invariants of those other varieties are known. As far as the

applications in this thesis go, the varieties to which this algorithm will be applied

all have a virtual class that is a polynomial in L.

3.5 Grothendieck ring of stacks

In order to study motivic invariants of stacks, we would like to have an analogue

of the Grothendieck ring of varieties for stacks. A number of constructions have

been proposed by various authors, such as in [Joy07, Toë05, BD07]. We will
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follow the construction by Ekedahl as in [Eke09a, Eke09b], since its definition

is closest to Definition 3.2.3. As in Definition 1.6.4, we will restrict to algebraic

(Artin) stacks which are of finite type over a field with affine stabilizers.

Definition 3.5.1. Let S be an algebraic stack of finite type over a field k with

affine stabilizers. The Grothendieck ring of stacks over S, denoted K0(StckS),

is the free abelian group on isomorphism classes of algebraic stacks of finite type

over S with affine stabilizers, modulo the relations

(1) [X] = [Z] + [X \ Z] for all closed immersions Z→ X over S,

(2) [E] = Ln[X] for any vector bundle E over X of rank n, where L = [A1
S].

Multiplication is given on generators by [X][Y] = [X×S Y].

Remark 3.5.2. If S is a variety over k, then the inclusion VarS → StckS
induces a ring morphism

K0(VarS)→ K0(StckS).

In particular, any relation that holds in K0(VarS) also holds in K0(StckS).

Example 3.5.3. Consider the classifying stack BGm = [Spec(k)/Gm] over a

field k. The natural morphism [A1
k/Gm]→ BGm is a vector bundle of rank one,

so [A1
k/Gm] = L[BGm] in K0(Stckk). On the other hand, the closed subscheme

BGm ⊆ [A1
k/Gm], given by the origin, yields the relation [A1

k/Gm] = [BGm] +

[Gm/Gm] = [BGm]+1. Therefore, (L−1)[BGm] = 1 and hence [BGm] is invertible

with inverse (L− 1) = [Gm].

The above example can be generalized to other algebraic groups, and more gen-

eral quotient stacks. The following proposition treats the case G = GLn.

Proposition 3.5.4. For any n ≥ 0, the element [GLn] in K0(Stckk) is invert-

ible, and [X/GLn]S = [GLn]
−1 · [X]S in K0(StckS) for any algebraic stack X

over S in StckS with an action of GLn such that the map X→ S is G-invariant.

Proof. As in Example 3.3.5, for any 0 ≤ m ≤ n, let Ym ⊆ Matn×m be the

subscheme of m-linearly independent vectors. The group GLn acts naturally on

each Ym, and we construct Ym = [(Ym × X)/GLn]. Now, the quotient X →
[X/GLn] factors as

X = Yn → Yn−1 → · · · → Y0 = [X/GLn].

For any 1 ≤ m ≤ n, the scheme Ym can be identified with the open complement

of Ym−1×Am−1
k inside Ym−1×Ank . Hence, [Ym]S = (Ln−Lm−1)[Ym−1]S for all
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1 ≤ m ≤ n, and thus [X]S =
(∏n−1

m=0(Ln − Lm)
)
[X/GLn]S = [GLn] · [X/GLn]S.

Specializing to the case X = S = Spec k, we find that [GLn] is invertible with

inverse [BGLn]. Therefore, [X/GLn]S = [GLn]
−1 · [X]S.

Proposition 3.5.5. Let G be a special algebraic group over a field k. Then [G]

is invertible in K0(Stckk), and for any G-torsor of P → X in StckS, one has

[X]S = [G]−1 · [P]S in K0(StckS).

Proof. Using Proposition 1.6.5, we can reduce to the case where X = [X/GLn]

for a quasi-projective scheme X. Now form the following cartesian diagram.

P X

P [X/GLn]

Then P is a GLn-torsor over P, as described in Section 1.5, and a G-torsor over

X. By Proposition 3.5.4 and Lemma 3.3.13, we have [GLn] · [P]S = [P ]S =

[G] · [X]S = [G][GLn] · [X]S, and hence [P]S = [G] · [X]S. In the special case that

P = S = Spec k and X = BG, we find that [G] is invertible with inverse [BG]

and thus [X]S = [G]−1 · [P]S.

Example 3.5.6. In general, it need not be the case that [BG] = [G]−1. For

example, consider the group G = µn of n-th roots of unity. The morphism

Gm → Bµn, corresponding to the µn-torsor Gm → Gm given by x 7→ xn, is a

Gm-torsor itself, so it follows that [Bµn] = [Gm]/[Gm] = 1. It was shown by

Ekedahl that also [BSn] = 1 for the symmetric groups Sn for all n ≥ 0 [Eke09b].

He also showed that there are finite groups G for which [BG] ̸= 1.

From Proposition 3.5.4 and the expression of [GLn] in terms of L, see Exam-

ple 3.3.5, it follows that the elements L and Ln− 1 for all n ≥ 1 are invertible in

K0(StckS). Hence, if S = S is a variety over k, there is a natural map from the

localization K0(VarS)[L−1, (Ln− 1)−1 : n ≥ 1] (where we adjoined inverses of L
and Ln − 1 for all n ≥ 1) to K0(StckS). In fact, this map is an isomorphism.

Theorem 3.5.7 ([Eke09a, Theorem 1.2]). The map K0(VarS)[L−1, (Ln−1)−1 :

n ≥ 1]→ K0(StckS) is an isomorphism of rings.

Remark 3.5.8. The isomorphism of Theorem 3.5.7 allows us to extend any

invariant χ : K0(VarS) → R to K0(StckS), possibly after inverting χ(L) and

χ(Ln − 1) in R, for all n ≥ 1, provided they are not zero-divisors in R. In

particular, this extends the E-polynomial to all algebraic stacks X of finite type

over C with affine stabilizers,

e : K0(StckC)→ ZJu, vK[u−1, v−1]. (3.7)
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This approach is taken for example in [Joy07, Theorem 4.10]. Alternatively, given

a presentation X → X, one can construct a simplicial scheme X• resolving X,

given by Xn = X×X · · ·×XX (n+1 times). Now, Deligne’s construction applies

in fact to simplicial schemes [Del74], so that the cohomology groups Hk
c (X,C)

of the geometric realization of the analytification of X• admit a mixed Hodge

structure, which can be shown to be independent of the presentation X. The

corresponding E-polynomial e(X) agrees with (3.7). For details, see [BD07] or

[Toë05]. In the particular case of a quotient stack X = [X/G] with G a connected

group, one has e(X) = e(X)/e(G).

3.6 Equivariant motivic invariants

Let G be a finite group acting on a complex variety X. The action of G turns the

cohomology groups Hk
c (X;C) into representations of G, by functoriality of co-

homology. Moreover, the action of G, being algebraic, respects the mixed Hodge

structure [PS08, FS21], so the graded pieces Hk;p,q
c (X) = GrpF GrWp+qH

k
c (X;C),

see (3.2), turn into representations of G as well. From this, one constructs the

G-equivariant E-polynomial

eG(X) =
∑
k,p,q

(−1)kupvq ⊗ [Hk;p,q
c (X)] ∈ Z[u, v]⊗RC(G),

whereRC(G) denotes the representation ring ofG. TheG-equivariant E-polynomial

is still additive and multiplicative, that is,

eG(X) = eG(Z) + eG(X \ Z) and eG(X × Y ) = eG(X) eG(Y )

for complex varieties X and Y with a G-action, and Z ⊆ X a G-invariant closed

subvariety [FS21]. The original E-polynomial e(X) can be obtained from eG(X)

via the map dim: RC(G)→ Z.

In this section, we investigate to which extent other invariants can be made G-

equivariant, with a special focus on the virtual class in the Grothendieck ring of

varieties.

Definition 3.6.1. Let G be an algebraic group over a field k, and S a variety

over k. A G-variety over S is a variety X over S with an action of G such that

X → S is G-invariant and X admits a cover by G-invariant affine opens. Denote

by VarGS the category of G-varieties over S and G-equivariant morphisms over S

between them. The Grothendieck ring of G-varieties over S, denoted K0(VarGS ),

is defined, analogous to Definition 3.2.3, as the free abelian group on isomorphism

classes [X] of G-varieties X over S modulo the relations [X] = [Z] + [X \ Z] for
all G-invariant closed subvarieties Z ⊆ X. Multiplication is given on generators

by [X][Y ] = [X ×S Y ], where G acts diagonally on X ×S Y .
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Now, more precisely, we investigate whether an invariant χ : Ob(Vark) → R,

for some commutative ring R, can be promoted to some χG : Ob(VarGk ) →
R⊗RC(G) such that χ is obtained from χG via the map dim: RC(G)→ Z, while
remaining additive or multiplicative. We show this is possible in many cases,

such as for R = K0(MHS) or R = K0(DMeff
gm(k,C)). However, we also show this

is not possible for R = K0(Vark). Nevertheless, under certain assumptions on

G, we will provide a construction which, although far from ideal, provides a new

tool for computations in K0(Vark).

Let us start with a positive result.

Proposition 3.6.2. Let G be a finite group with splitting field K. Let A be an

idempotent complete K-linear tensor category, whose unit object is denoted by

K. Suppose G acts on an object X of A. Then X decomposes in A as

X ∼=
⊕
ρ

Xρ ⊗ [ρ],

for some objects Xρ of A, where ρ ranges over the irreducible representations of

G, and [ρ] := K⊕ dim ρ. Moreover, the isomorphism is G-equivariant when G acts

trivially on Xρ and via ρ on [ρ], and the objects Xρ are uniquely determined up

to isomorphism.

Proof. Denote by ρ1, . . . , ρn the irreducible representations of G over K. The

Artin–Wedderburn theorem gives an isomorphism K[G] ∼=
∏n
i=1 Matdi×di(K),

where di = dim ρi, given by g 7→ (ρi(g))
n
i=1 [Ser77, Proposition 10]. This de-

composition corresponds to a sequence e1, . . . , en ∈ K[G] of pairwise orthogonal

central idempotents such that
∑n
i=1 ei = 1. For every i = 1, . . . , n, the idem-

potents ei induce idempotent morphisms X
ei−→ X which, by assumption, split

as X
ri−→ Yi

si−→ X with si ◦ ri = ei and ri ◦ si = idYi
. Orthogonality of the

idempotents implies, for i ̸= j, that si ◦ ri ◦ sj ◦ rj = 0 and hence ri ◦ sj = 0.

Therefore, we have an isomorphism

⊕n
i=1 Yj X.

∐
i si

∼∏
i ri

Since the ei are central in K[G], the action of G restricts to Yi for every i.

Every idempotent ei corresponds to a factor Matdi×di(K). Write Ejk for the

di×di matrix which is zero everywhere, except at position (j, k), where the entry

is one. Then ei =
∑di
j=1 eij for the pairwise orthogonal idempotents eij = Ejj .

As above, this yields a decomposition

Yi ∼=
di⊕
j=1

Zij .
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Moreover, the Zij are isomorphic for all j since Ejk defines an isomorphism from

Zik to Zij , with inverse Ekj , so Yi ∼= Zi ⊗ K⊕di . Under this isomorphism, G

acts trivially on Zi and on K⊕di via ρi, because of the isomorphism K[G] ∼=∏n
i=1 Matdi×di(K). Therefore, Yi ∼= Zi⊗ [ρi]. Finally, the Xρi := Zi are uniquely

determined up to isomorphism, as they correspond to the idempotents eij .

Remark 3.6.3. Suppose G acts on objectsX and Y in A as in Proposition 3.6.2.

Then it follows from the uniqueness statement that

(X ⊗ Y )ρk
∼=

n⊕
i,j=1

(Xρi ⊗ Yρj )⊕a
k
ij ,

where akij ∈ Z≥0 are the Clebsch–Gordan series, given by ρi ⊗ ρj ∼=
⊕n

k=1 ρ
⊕akij
k .

Now, let A be as in Proposition 3.6.2, and suppose we are given a functor

X : Vark → A. If A is an abelian or triangulated category, we obtain an in-

variant χ : Ob(Vark) → K0(A) which, using Proposition 3.6.2, promotes to an

invariant

χG : Ob(VarGk )→ K0(A)⊗RK(G)

where X (X) ∼=
⊕

ρXρ ⊗ [ρ] is sent to
∑
ρ[Xρ]⊗ [ρ]. One can obtain χ from χG

via dim: RK(G)→ Z as the image of [ρ] = K⊕ dim ρ in K0(A) equals dim ρ.

Furthermore, if G-invariant closed subvarieties Z ⊆ X induce exact sequences

0 → X (X \ Z) → X (X) → X (Z) → 0 (when A is abelian) or distinguished

triangles X (X \ Z) → X (X) → X (Z) → X (X \ Z)[1] (when A is triangulated)

with G-equivariant maps in A, then χG will also be additive, that is, χG(X) =

χG(Z) + χG(X \ Z). In this case, χG descends to a group morphism

χG : K0(VarGk )→ K0(A)⊗RK(G). (3.8)

Moreover, when A is tensor triangulated and there are natural isomorphisms

X (X×Y ) ∼= X (X)⊗X (Y ) for all G-varieties X and Y , where G acts diagonally

on X×Y , it follows from Remark 3.6.3 that χG is multiplicative, that is, χG(X×
Y ) = χG(X)χG(Y ). In this case, (3.8) is a ring morphism.

Example 3.6.4. ■ Let A = Db(MHS) be the derived category of mixed Hodge

structures. The assignment of the mixed Hodge structuresHk
c (X) to a complex

variety X can be promoted to a functor X = RΓ(−,Q) : VarC → A such

that Hk
c (X) is the k-th cohomology group of X (X) [Bĕı86]. The resulting G-

equivariant invariant χG is additive by the G-equivariant long exact sequence

(3.4). It is also multiplicative by the Künneth formula, and hence induces a

ring morphism

χG : K0(VarGC )→ K0(MHS)⊗RC(G).



42 CHAPTER 3. MOTIVIC INVARIANTS

■ Extending the previous example, note that the exact functor Gr∗F GrW∗ in (3.2)

induces an exact functor Db(MHS) → Db((VectZ×Z
C )fin), and let X be the

composite

VarC
RΓ(−,Q)−−−−−→ Db(MHS)

Gr∗F GrW∗−−−−−−→ Db((VectZ×Z
C )fin).

The induced invariant χG is still additive and multiplicative, and hence induces

ring morphism

χG : K0(VarGC )→ K0((VectZ×Z
C )fin)⊗RC(G) ∼= Z[u±1, v±1]⊗RC(G)

which is precisely the G-equivariant E-polynomial.

■ Let A = DMeff
gm(k,K) be the K-linearization of Voevodsky’s triangulated cate-

gory of effective geometric motives, with k a field of characteristic zero, and let

X : Vark → A be the motive Mgm or the motive with compact support M c
gm.

The induced invariant χG is multiplicative, and if X =M c
gm also additive.

Grothendieck ring of varieties

Unfortunately, the Grothendieck ring of varieties K0(Vark) is not given by the

Grothendieck group of an abelian (or triangulated) category A. To get an idea of

how an analogous construction could work for K0(Vark), we first consider some

properties of the G-equivariant E-polynomial.

Let G be a finite group and H ⊆ G a subgroup. Denote by

ResGH : RC(G)→ RC(H) and IndGH : RC(H)→ RC(G)

the restriction and induction maps [Ser77, p.28]. Using the same symbols, we

define restriction and induction for G-varieties.

Definition 3.6.5. Let G be an algebraic group over k with a subgroup H ⊆ G,
and S a variety over k. Define the functors

ResGH : VarGS → VarHS and IndGH : VarHS → VarGS

where ResGH restricts the action from G to H (in fact, ResGH is defined for any

morphism H → G of algebraic groups), and IndGH(Y ) = (G× Y ) �H, where H

acts on G× Y via h · (g, y) = (gh−1, h · y) and G acts on the resulting quotient

by left multiplication on the factor of G. Note that, by [PV89, Theorem 4.19],

the quotient (G× Y ) �H is a variety, even when H is non-reductive. It is easy

to see that these functors descend to the Grothendieck ring of varieties

ResGH : K0(VarGS )→ K0(VarHS ) and IndGH : K0(VarHS )→ K0(VarGS ).

When G and H are finite, the underlying variety of IndGH(Y ) is simply
⊔
G/H Y .
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Lemma 3.6.6. Let G be a finite group and H ⊆ G a subgroup.

(i) eH(ResGH(X)) = ResGH(eG(X)) for all objects X of VarGk ,

(ii) eG(IndGH(Y )) = IndGH(eH(Y )) for all objects Y of VarHk ,

(iii) e(X � G) = ⟨T, eG(X)⟩, where T ∈ RC(G) corresponds to the trivial repre-

sentation, and ⟨−,−⟩ denotes the inner product of characters.

Proof. (i) and (ii) directly follow from the definitions of ResGH and IndGH for

representations and varieties. (iii) follows from [FS21, Proposition 4.3].

The following example shows how these properties can be used to compute the

G-equivariant E-polynomials in some simple cases.

Example 3.6.7. Consider G = Z/2Z and denote by T,N ∈ RC(G) the trivial

and non-trivial character of G. For any G-variety X, we have

eG(X) = α⊗ T + β ⊗N

for some α, β ∈ Z[u, v]. The properties of Lemma 3.6.6 imply that e(X �G) = α

and e(X) = ResG1 (e
G(X)) = α+ β. Therefore,

eG(X) = e(X �G)⊗ T + (e(X)− e(X �G))⊗N.

Example 3.6.8. Consider G = S3 and denote by T, S,D ∈ RC(G) the trivial,

sign and standard representation. For any G-variety X, we have

eG(X) = α⊗ T + β ⊗ S + γ ⊗D

for some α, β, γ ∈ Z[u, v]. For τ = (1 2) and ρ = (1 2 3) in S3, we find

e(X) = α+ β + 2γ, e(X � ⟨τ⟩) = α+ γ, e(X � ⟨ρ⟩) = α+ β, e(X �G) = α.

In particular, it follows that

α = e(X �G), β = e(X)− 2 · e(X � ⟨τ⟩)+ e(X �G), γ = e(X � ⟨τ⟩)− e(X �G).

Note that, since there are more subgroups than irreducible representations, the

relation

e(X)− 2 · e(X � ⟨τ⟩)− e(X � ⟨ρ⟩) + 2 · e(X �G) = 0 (3.9)

will always hold.
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Let us return to the Grothendieck ring of varieties. Given a G-variety X, we

want to define [X]G ∈ K0(Vark)⊗RC(G) such that

⟨TH ,ResGH [X]G⟩ = [X �H] (3.10)

for every subgroup H ⊆ G. Unfortunately, here we run into trouble trying to

define [X]G. The following example shows that the analogue of (3.9) need not

hold in K0(Vark) in general.

Example 3.6.9 ([Saw22]). Let G = S3 and let X be a complex smooth pro-

jective curve of genus 6g + 1 for some g ≥ 1 with a free action of S3. By the

Riemann–Hurwitz formula, the quotients X�⟨τ⟩, X�⟨ρ⟩ and X�S3 have genera

3g+1, 2g+1 and g+1, respectively. Hence, none of these quotients are stably bi-

rational to X or to each other. Now, the isomorphism K0(VarC)/(L) ∼= Z[SBC]

by Larsen and Lunts [LL03] shows there is no Z-linear relation between their

classes in K0(VarC).

It seems that having too many subgroups results in [X]G being ill-defined. A

possible remedy could be to fix a set of subgroups of G. On the other hand,

having too few subgroups could also be a problem, e.g. for G = Z/3Z, which
has 3 irreducible representations but only 2 subgroups. For this reason, we will

focus only on rational representations of G. This makes sense in analogy with

the G-equivariant E-polynomial, since Hk
c (X;C) = Hk

c (X;Q)⊗QC. Finally, note
that the quotient X �H only depends on the conjugacy class of H.

Definition 3.6.10. Let G be a finite group, and let H be a set of conjugacy

classes of subgroups of G. Define the map

ΨH
G : RQ(G)→

⊕
[H]∈H

Z, V 7→
(
⟨TH ,ResGH V ⟩

)
[H]∈H .

Lemma 3.6.11. If H contains the conjugacy classes of all subgroups of G, then

ΨH
G is injective.

Proof. Take any V ∈ RQ(G) such that ⟨TH ,ResGH V ⟩ = 0 for all H. By Frobenius

reciprocity, this is the same as ⟨IndGH TH , V ⟩ = 0 for all H. Now, by [Ser77,

Theorem 30], the elements IndGH TH generate RQ(G), so V = 0.

Shrinking H appropriately, the map ΨH
G will still be injective, and its image

will have rank equal to |H|. In particular, ΨH
G ⊗ Q will be an isomorphism,

so further tensoring with K0(Vark) shows the existence and uniqueness of an

element [X]G ∈ K0(Vark)⊗RQ(G)⊗Q satisfying (3.10) for all [H] ∈ H. We end

up with the following definition.
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Definition 3.6.12. Let G be a finite group and H a set of conjugacy classes of

subgroups of G such that

ΨH
G ⊗Q : RQ(G)⊗Q→

⊕
H∈H

Q (3.11)

is an isomorphism. In this case we say that H is a good set of conjugacy classes

of subgroups of G. Then for any G-variety X over S, the G-virtual class of X is

the unique element [X]G ∈ K0(VarS)⊗RQ(G)⊗Q such that

⟨TH ,ResGH [X]G⟩ = [X �H]

in K0(VarS) for all [H] ∈ H.

Remark 3.6.13. The G-virtual class is clearly additive, that is, [X]G = [Z]G+

[X \Z]G for all G-invariant closed subvarieties Z ⊆ X. Hence, it induces a group

morphism

[−]G : K0(VarGS )→ K0(VarS)⊗RQ(G)⊗Q.

Example 3.6.14. Let G = Z/nZ for some n ≥ 1 and let H be the set of conju-

gacy classes of all subgroups of G. Then ΨH
G ⊗ Q is injective by Lemma 3.6.11,

and an isomorphism because |H| equals the number of divisors of n, which is

equal to the rank of RQ(G).

Example 3.6.15. Consider the symmetric group G = Sn with the set H =

{Sλ1 × · · · × Sλk
: λ a partition of n} of Young subgroups. From the representa-

tion theory of Sn [FH91, Lecture 4] it can be shown that (3.11) is an isomorphism.

In particular, the irreducible representations of Sn are parametrized by the par-

titions λ of n. Denote by Vλ the irreducible representation of Sn corresponding

to such a partition λ. Now, for any V =
∑
λ aλ[Vλ] ∈ RQ(Sn), we find that

ΨH
G(V ) =

(〈
TSλ

,ResSn

Sλ
V
〉)

Sλ∈H

=
(〈

IndSn

Sλ
TSλ

, V
〉)

Sλ∈H

=
(∑

µ aµKµλ

)
Sλ∈H

whereKµλ are the Kostka numbers, by Young’s rule [FH91, Corollary 4.39]. Since

Kλλ = 1 and Kµλ = 0 for µ < λ (for the lexicographical order on partitions), it

follows that ΨH
G is invertible.

Example 3.6.16. Suppose G1 and G2 are finite groups with good sets of con-

jugacy classes of subgroups H1 and H2, respectively. Then

H = {[H1 ×H2] : [H1] ∈ H1 and [H2] ∈ H2}
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is a good set of conjugacy classes of subgroups of G1 ×G2 if RQ(G1) = RC(G1)

or RQ(G2) = RC(G2). In particular, this provides good sets of conjugacy classes

of subgroups for all Young subgroups Sλ1 × · · · × Sλk
.

Even though the G-virtual class is additive, the following example shows that in

general, already for G = Z/2Z, the G-virtual class is not multiplicative.

Example 3.6.17. Let G = Z/2Z and take A and B elliptic curves over k = C
with [A] ̸= [B] and A × A ∼= B × B as abelian varieties, as in [Poo02, Lemma

3]. Equip the elliptic curves A and B with the G-action of negation, P 7→ −P .
Now suppose that the G-virtual class is multiplicative. Then, using the notation

[X]G = [X]+ ⊗ T + [X]− ⊗N with [X]+ = [X �G] and [X]− = [X]− [X �G],

we find that

[A×A]+ = [A]2+ + [A]2− = [P1
k]

2 + ([A]− [P1
k])

2 = [A]2 + 2[P1
k]

2 − 2[A][P1
k]

[B ×B]+ = [B]2+ + [B]2− = [P1
k]

2 + ([B]− [P1
k])

2 = [B]2 + 2[P1
k]

2 − 2[B][P1
k]

where A � G ∼= B � G ∼= P1
k. Since the isomorphism A × A ∼= B × B is G-

equivariant, we have [A × A]+ = [B × B]+, and hence ([A] − [B])[P1
k] = 0

in K0(Vark). However, the Albanese map K0(Vark) → Z[AVk], described in

[Poo02, Section 4], from the Grothendieck ring of varieties to the monoid ring of

abelian varieties over k sends ([A] − [B])[P1
k] to [A] − [B], which is non-zero in

Z[AVk]. Therefore, the G-virtual class cannot be multiplicative.

Nevertheless, we present the following construction, to measure to which extent

the G-virtual class is multiplicative.

Lemma 3.6.18. Let G be a finite group and H a good set of conjugacy classes

of subgroups of G. Let VH
G ⊆ K0(VarGS ) be the subset of elements X such that

[XY ]G = [X]G[Y ]G for all Y ∈ K0(VarGS ). Then VH
G is a K0(VarS)-subalgebra

of K0(VarGS ).

Proof. Note that VH
G is the left radical of the K0(VarS)-bilinear form

K0(VarGS )×K0(VarGS )→ K0(VarS)⊗RQ(G)⊗Q

(X,Y ) 7→ [XY ]G − [X]G[Y ]G

and is therefore a subgroup of K0(VarS). Furthermore, VH
G is closed under mul-

tiplication, because for all X,Y ∈ VH
G and Z ∈ K0(VarGS ) we have

[(XY )Z]G = [X(Y Z)]G = [X]G[Y Z]G = [X]G[Y ]G[Z]G = [XY ]G[Z]G.

Theorem 3.6.19. Let G be a finite group, H a good set of conjugacy classes of

subgroups of G, and suppose that k is a splitting field for G.
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(i) If G acts linearly on A1
k, then VH

G contains [A1
k].

(ii) If G acts diagonally on Ank , then VH
G contains [Ank ].

(iii) If G acts diagonally on Pnk , then VH
G contains [Pnk ].

(iv) Let [H] ∈ H be such that [H ′ ∩ gHg−1] ∈ H for all [H ′] ∈ H and g ∈ G.
Then the set G/H of cosets with the natural action of G lies in VH

G .

Proof. (i) As [A1
k � H] = L for any finite group H acting linearly on A1

k, we

have [A1
k]
G = L⊗ T where T ∈ RQ(G) corresponds to the trivial representation.

Hence, it suffices to show that [(A1
k × Y ) �H]S = L[Y �H]S for all Y ∈ VarGS

and [H] ∈ H. Take such Y and H, write τ : H → GL1(k) for the representation

via which H acts on A1
k, and let N = ker τ . Since

(A1
k × Y ) �H = (A1

k × (Y �N)) � (H/N)

we may, replacing H by H/N and Y by Y �N , assume that H is a finite cyclic

group, that is, H = Z/nZ for some n ≥ 1.

Also, we may assume Y = SpecR is affine. Write RH ⊆ R for the subring of

H-invariants. Then R is finitely generated as RH -module [Mon80, Corollary 5.9],

so it can be written as

R = RH⟨σ1,1, . . . , σ1,m1
⟩ ⊕ · · · ⊕RH⟨σn−1,1, . . . , σn−1,mn−1

⟩

for some σi,j ∈ R such that H acts via (a mod n) · σi,j 7→ ζain σi,j , where ζn ∈ k
is a primitive n-th root of unity. Note that, for any 1 ≤ i ≤ n − 1, we have

σni,1 = r for some r ∈ RH , and for any 2 ≤ j ≤ mi, we have σn−1
i,1 σi,j = s for

some s ∈ RH . But then, over the closed subvariety of Y given by r = 0, we have

σni,1 = r = 0, so we can omit σi,1 from the generators. Similarly, over the open

complement where r is invertible (so σi,1 is invertible as well), we can remove

σi,j = s
rσi,1 from the generators. Hence, after sufficiently many stratifications,

we may reduce to the case that

R = RH ⊕RH⟨σd⟩ ⊕RH⟨σ2d⟩ ⊕ · · · ⊕RH⟨σn−d⟩

for some d ≥ 1 dividing n, and some σi ∈ R×, such that H acts via (a mod n) ·
σi = ζain · σi. In particular, for any 1 ≤ m ≤ n/d, we have σmd = rmσmd for some

rm ∈ (RH)×, that is, σmd = σmd /rm, and hence

R = RH [σ]/(σn/d − r)

with σ = σd and r = rn/d.
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Note that τ : H → GL1(k) must be of the form τ(a mod n) = ζacn for some

0 ≤ c ≤ n− 1. Stratifying A1
k as {0} ⊔ (A1

k \ {0}), we find that

({0} × Y ) �H = Y �H

and

((A1
k \ {0})× Y ) �H ∼= SpecR[x±1]H

∼= Spec
(
RH [σ, x±1]/(σn/d − r)

)H
∼= SpecRH

〈
xiσj : (i, j) ∈ L

〉
,

where L =
{
(i, j) ∈ Z2 | ci+ dj ≡ 0 mod n

}
is a lattice. Take some (i0, j0) ∈ L

such that i0 > 0 is minimal, and write w = xi0σj0 . Then, for any other (i, j) ∈ L,
we must have i = mi0 for some m ∈ Z, and hence (xiσj)/wm is an element of

RH . Therefore,

((A1
k \ {0})× Y ) �H ∼= SpecRH [w±1] ∼=

(
A1
k \ {0}

)
× (Y �H).

Finally, we find that

[(A1
k × Y ) �H]S = [({0} × Y ) �H]S + [((A1

k \ {0})× Y ) �H]S

= [Y �H]S + (L− 1)[Y �H]S

= L[Y �H]S

as desired.

Since VH
G is closed under multiplication, (ii) follows from (i). For (iii), stratify

PnS as AnS ⊔ Pn−1
S , so that the result follows from (i) and by induction on n.

For (iv), note that [G/H]G = 1⊗ IndGH(TH), where TH ∈ RQ(H) corresponds to

the trivial representation. Now, for any [H ′] ∈ H, we can choose representatives

gH for the points of the quotient (G/H)�H ′. Note that the stabilizer of gH for

the action of H ′ is H ′ ∩ gHg−1, and therefore

((G/H)× Y ) �H ′ =
⊔

[gH]∈(G/H)�H′

Y � (H ′ ∩ gHg−1).

Since [H ′∩gHg−1] ∈ H by assumption, it follows that the coefficients of [(G/H)×
Y ]GS can be written naturally in terms of the coefficients of [Y ]GS , and therefore

[G/H] must be contained in VH
G .

Remark 3.6.20. The condition in (iv) of the above theorem is trivially satisfied

when H contains the conjugacy classes of all subgroups of G. Also, it is satisfied

in the case of Example 3.6.15 with G = Sn. That is, the intersection of conjugates

of Young subgroups is again the conjugate of a Young subgroup.
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We conclude this section with two examples, both for the group G = Z/2Z. Let
T,N ∈ RQ(G) correspond to the trivial and non-trivial irreducible representa-

tion of G, respectively. For any G-variety X, the G-virtual class is, similar to

Example 3.6.7, given by

[X]Z/2Z = [X � (Z/2Z)]⊗ T + ([X]− [X � (Z/2Z)])⊗N. (3.12)

Example 3.6.21. Let k be an algebraically closed field with char(k) ̸= 2. Con-

sider the subvarietyM = {A ∈ SL2 | trA ̸= ±2} of SL2, over k, of diagonalizable

non-scalar matrices. Note that we have a cartesian diagram

GL/D × (A1
k \ {0,±1}) M

A1
k \ {0,±1} A1

k \ {±2}

tr

where D ⊆ GL2 is the subgroup of diagonal matrices, and GL2/D the left coset

space. The bottom morphism is given by λ 7→ λ + λ−1, and the top morphism

by (P, λ) 7→ P
(
λ 0
0 λ−1

)
P−1. The group G = Z/2Z acts both on GL2/D and

A1
k \ {0,±1}, via P 7→ P ( 0 1

1 0 ) and λ 7→ λ−1, respectively, and we can identify

M with (GL2/D × (A1
k \ {0,±1})) � G. Since A1

k \ {0,±1} is a projective line

minus some points, its class lies in VH
G using Theorem 3.6.19, so we can compute

[M ] ∈ K0(Vark) from the G-virtual classes [GL2/D]G and [A1
k \{0,±1}]G. Using

(A1
k \ {0,±1}) �G ∼= A1

k \ {±2} and (3.12), we find that

[A1
k \ {0,±1}]G = (L− 2)⊗ T − 1⊗N.

Similarly, from [(GL2/D) �G] = L2 follows that

[GL2/D]G = L2 ⊗ T + L⊗N

and hence

[GL2/D × (A1
k \ {0,±1})]G = (L3 − 2L2 + L)⊗ T + (2L2 − 2L)⊗N.

Therefore, [M ] = L3 − 2L2 + L.

Example 3.6.22. Consider G = Z/2Z acting on X = Gm via x 7→ x−1, over

any field k. As [X] = L− 1 and [X �G] = L, we obtain [X]G = L⊗ T − 1⊗N .

Since X can be seen as a projective line minus two points, its class lies in VH
G ,

so we find that

[Xn �G] =
(
1 0

)( L −1
−1 L

)n(
1

0

)
=

(L− 1)n + (L+ 1)n

2
.





Chapter 4

Topological Quantum Field

Theories

The aim of this chapter is to study motivic invariants of character stacks asso-

ciated to closed manifolds. One of the first approaches in this direction was

by Hausel and Rodriguez-Villegas [HR08], whose idea was to study the G-

representation variety by counting the number of points over finite fields Fq.
They could express these counts in terms of the representation theory of the fi-

nite groups G(Fq), and moreover, determine from these counts the E-polynomial

of the G-representation variety. We call this approach the arithmetic method.

A few years later, Logares, Muñoz and Newstead [LMN13] initiated the geometric

method, a geometric approach to compute the same invariant, making use of

clever stratifications of the G-representation variety. González-Prieto, Logares

and Muñoz [GLM20] showed that the geometric method can be phrased in terms

of a Topological Quantum Field Theory (TQFT).

TQFTs, originating from physics, describe the topological aspects of a quantum

field theory. Atiyah [Ati88] was the first to mathematically axiomatize the notion

of a TQFT, defining a TQFT as a monoidal functor from the category of bordisms

to the category of vector spaces. The idea that TQFTs can be used to compute

invariants of geometric objects is not a new idea. For instance, Witten, in his

seminal paper [Wit89], constructed a TQFT that computes the Jones polynomial

of knots.

In this chapter, we will describe both the arithmetic and geometric method, and

show how they can be unified using the framework of TQFTs. Specifically, we will

show that both methods can be formulated as TQFTs, and that these TQFTs

can be related through natural transformations.

51
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4.1 Monoidal categories

Central to the theory of TQFTs is the notion of a monoidal category. Monoidal

categories were defined by Mac Lane [Mac63] under the name ‘bicategory’, and

by Bénabou [Bén63] under the name ‘categories with multiplication’.

Definition 4.1.1. Amonoidal category is a category C with a functor⊗ : C×C →
C, called the tensor product, an object 1 in C, called the unit object, and natural

isomorphisms

α : −⊗ (−⊗−)⇒ (−⊗−)⊗− λ : 1⊗− ⇒ idC ρ : −⊗ 1⇒ idC

(the associator) (the left unitor) (the right unitor)

such that the triangle

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

αX,1,Y

ρX⊗idY idX⊗λY

and the pentagon

(X ⊗ Y )⊗ (Z ⊗W )

((X ⊗ Y )⊗ Z)⊗W X ⊗ (Y ⊗ (Z ⊗W ))

(X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W )

αX,Y,Z⊗WαX⊗Y,Z,W

αX,Y,Z⊗idW

αX,Y ⊗Z,W

idX⊗αY,Z,W

commute for all objects X,Y, Z and W in C. A symmetric monoidal category is

a monoidal category C together with natural isomorphisms

τX,Y : X ⊗ Y → Y ⊗X

such that

τY,X ◦ τX,Y = idX⊗Y

and the diagrams

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)Y Y ⊗ (Z ⊗X)

αX,Y,Z

τX,Y ⊗idZ

τX,Y ⊗Z

αY,Z,X

αY,X,Z idY ⊗τX,Z

and

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y

α−1
X,Y,Z

idX⊗τY,Z

τX⊗Y,Z

α−1
Z,X,Y

α−1
X,Z,Y τX,Z⊗idY

commute for all X,Y and Z in C.
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Example 4.1.2. A basic example of a monoidal category is the category Set

with tensor product × and unit object {1}. More generally, any category C with

finite products can naturally be promoted to a monoidal category with tensor

product × and unit object a terminal object. Such a monoidal category is called

a cartesian monoidal category. Dually, a category with finite coproducts can be

promoted to a monoidal category with tensor product ⊔ and unit object an initial

object, which is called a cocartesian monoidal category. For example, Set with ⊔
and ∅, or the category of R-algebras AlgR with ⊗R and R, for a commutative

ring R. Another typical example of a monoidal category is the category of R-

modules ModR with tensor product ⊗R and unit object R. All of these examples

are naturally also symmetric monoidal categories.

Definition 4.1.3. A monoidal functor is a functor F : C → D between monoidal

categories together with a natural isomorphism

µ : F (−)⊗D F (−)⇒ F (−⊗C −)

and an isomorphism ε : 1D → F (1C), such that the diagrams

(F (X)⊗D F (Y ))⊗D F (Z) F (X)⊗D (F (Y )⊗D F (Z))

F (X ⊗C Y )⊗D F (Z) F (X)⊗D F (Y ⊗C Z)

F ((X ⊗C Y )⊗C Z) F (X ⊗C (Y ⊗C Z))

αD
F (X),F (Y ),F (Z)

µX,Y ⊗idF (Z) idF (X)⊗µY,Z

µX⊗CY,Z µX,Y ⊗CZ

F (αC
X,Y,Z)

1D ⊗D F (X) F (1C)⊗D F (X)

F (X) F (1C ⊗C X)

ε⊗idF (X)

λD
F (X) µ1C ,X

F(λC
X)

F (X)⊗D 1D F (X)⊗D F (1C)

F (X) F (X ⊗C 1C)

idF (X)⊗ε

ρDF (X) µX,1C

F(ρCX)

commute for all objects X,Y and Z in C. If µ is only a natural transformation,

and ε only a morphism, then such a functor is called a lax monoidal functor.

A (lax) monoidal functor between symmetric monoidal categories is said to be

symmetric if it respects the symmetric structure, that is, the diagram

F (X)⊗D F (Y ) F (Y )⊗D F (X)

F (X ⊗C Y ) F (Y ⊗C X)

τD
F (X),F (Y )

µX,Y µY,X

F (τC
X,Y )

commutes for all X and Y in C.
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4.2 Bordisms

The monoidal category that is central in the theory of TQFTs is the category of

bordisms. By convention, we consider all manifolds to be smooth.

Definition 4.2.1. Let n ≥ 1. Given two closed (n − 1)-dimensional manifolds

M1 and M2, a bordism from M1 to M2 is a compact n-dimensional manifold W

with boundary ∂W together with inclusions

M2
i2−→W

i1←−M1

such that ∂W = i1(M1) ⊔ i2(M2).

Definition 4.2.2. The category of n-bordisms, denoted Bordn, is the category

defined as follows.

■ Its objects are closed (n− 1)-dimensional manifolds.

■ A morphism M1 → M2 is an equivalence class of bordisms from M1 to M2,

where two such bordisms W and W ′ are called equivalent if there is a diffeo-

morphism f : W →W ′ such that the diagram

W

M2 M1

W ′

f

i2

i′2

i1

i′1

(4.1)

commutes. We will also refer to such equivalences classes as bordisms, with the

understanding that it is only up to diffeomorphism.

■ The composite of morphisms W : M1 → M2 and W ′ : M2 → M3 is given by

W ⊔M2 W
′ : M1 → M3. While this operation is not well-defined on bordisms

(there can be multiple manifold structures on W ⊔M2
W ′ such that the inclu-

sions of W and W ′ are smooth), such a structure is unique up to diffeomor-

phism, making it a well-defined operation on equivalence classes of bordisms

[Mil65].

■ For any closed (n− 1)-dimensional manifold M , the identity on M is given by

(the equivalence class of) the cylinderM×[0, 1], with the inclusionsM×{0} →
M × [0, 1]←M × {1}.

The category Bordn naturally carries the structure of a symmetric monoidal

category, whose tensor product is the disjoint union operator and whose unital

object is the empty manifold ∅.



4.2. BORDISMS 55

Definition 4.2.3. Let R be a commutative ring. An n-dimensional Topological

Quantum Field Theory (TQFT) over R is a monoidal functor

Z : Bordn →ModR

where ModR is monoidal with tensor product ⊗R and unit object R. If such a

functor is only lax monoidal it is called a lax n-dimensional TQFT, and similarly

if it is symmetric.

Interestingly, observe that Z(∅) is by definition naturally isomorphic to R for

any TQFT Z : Bordn →ModR. Hence, any closed n-dimensional manifold W ,

viewed as a bordism W : ∅ → ∅, induces a morphism Z(W ) : R → R that is

multiplication by Z(W )(1) ∈ R. The element Z(W )(1) is an invariant associated

to W , that is, it is the same for all W ′ diffeomorphic to W .

Definition 4.2.4. Let χ be an R-valued invariant of closed n-dimensional man-

ifolds. An n-dimensional TQFT Z is said to quantize χ if Z(W )(1) = χ(W ) for

all closed n-dimensional manifolds W .

There are many variations on the category of bordisms, by equipping the mani-

folds with extra data. One common is to equip them with an orientation.

Definition 4.2.5. Let i : M → ∂W be an embedding of a closed oriented (n−1)-
dimensional manifold M into the boundary of a compact oriented n-dimensional

manifold W . Then i is said to be an in-boundary (resp. out-boundary) if for all

x ∈M , positively oriented bases v1, . . . , vn−1 for TxM , and w ∈ Ti(x)W pointing

inwards (resp. outwards) compared to W , the basis dix(v1), . . . , dix(vn−1), w for

Ti(x)W is positively oriented.

Given two closed oriented (n−1)-dimensional manifoldsM1 andM2, an oriented

bordism from M1 to M2 is a bordism

M2
i2−→W

i1←−M1

with an orientation on W such that i1 an in-boundary and i2 is an out-boundary.

The category of oriented n-bordisms, denoted Bordor
n , is the category whose

objects are closed oriented (n − 1)-dimensional manifolds, and morphisms are

equivalence classes of oriented bordisms, with composition given as for Bordn.

Finally, an n-dimensional oriented TQFT over R is a monoidal functor

Z : Bordor
n →ModR.

While any TQFT induces an oriented TQFT, simply by forgetting the orienta-

tion, not every oriented TQFT can be extended to a TQFT, as will be shown in

Section 4.4.
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Remark 4.2.6. Although in Definition 4.2.2 the category of bordisms Bordn
was defined as a 1-category, it can naturally be promoted to a 2-category: the

objects still being closed (n − 1)-dimensional manifolds, a 1-morphism being

a bordism (rather than an equivalence class of bordisms), and a 2-morphism

between bordisms being an equivalence as in (4.1). Now, if we view Bordn
as a 2-category, it is only natural to promote ModR to a 2-category as well

and require a TQFT to be a 2-functor. We will promote ModR in the trivial

way, where the only 2-morphisms are identity morphisms. Note that, in essence,

this does not change the definition of a TQFT, since two bordisms which are

equivalent must be sent to the same R-linear map. Therefore, in the context of

TQFTs as in Definition 4.2.3, it does not matter whether we view Bordn as a

2-category or simply as a 1-category.

For the correct notions of monoidal categories and monoidal functors in the

context of 2-categories, see [KV94, BN96].

4.3 Physical interpretation

As mentioned, the notion of a TQFT originates from physics, and was first

mathematically axiomatized by Atiyah [Ati88]. While not strictly necessary, we

believe it is helpful to discuss the physical interpretation of these objects for a

better intuition of the remainder of this chapter.

A TQFT describes a quantum mechanical system, specifically a quantum field

theory. Space, at some point in time, is represented by a closed manifold, that

is, an object of Bordn. A morphism in this category, a bordism connecting such

manifolds, represents a part of spacetime, where the extra dimension corresponds

to the dimension of time.

space

time

Figure 4.1: A bordism connecting two boundaries, representing a part of

spacetime connecting space at two points in time.
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For simplicity, let us take R = C. Then a TQFT assigns to a space M a com-

plex vector space H = Z(M) and to a spacetime W : M1 → M2 a linear map

Z(W ) : H1 → H2. We can think of the vector space H as the Hilbert space asso-

ciated to M , that is, the vector space of all quantum states on this space. The

linear map Z(W ) describes the time-evolution of the system.

What makes a TQFT ‘topological ’, is that the system it describes has no actual

dynamics. That is, the Hamiltonian of the system is zero, and only topological

effects come into play. For instance, the cylinder M × [0, 1], being topologically

trivial, induces the identity on H, and hence does not change the state of the

system.

It is not uncommon for Hilbert spaces to be infinite-dimensional, and in this

case the tensor product of Hilbert spaces is not simply the tensor product of the

underlying vector spaces: it should be completed. For this reason, the Hilbert

space H associated to a disjoint union M1⊔M2 is not necessarily expected to be

equal to the tensor product (as vector spaces) of the Hilbert spaces associated

to M1 and M2, but at least there should be a natural morphism H1 ⊗C H2 →
H. Although this might be an indication that the category of vector spaces is

not quite the correct target for a TQFT, we will take it as motivation for the

definition of a lax TQFT.

A common way to construct a TQFT is as the composite of two functors, a field

theory and a quantization functor. This corresponds to describing a classical

field theory, followed by a quantization procedure. The field theory F assigns to

a manifoldM a phase space F(M): a geometric object parametrizing all possible

classical states, or field configuration, of the system onM . For simplicity, we can

think of such a state or field as a vector bundle or a local system on M . Note

that, given a bordism W : M1 → M2, a field over W can be restricted to a field

over any of the boundaries. In particular, we obtain the following diagram.

F(W )

F(M1) F(M2)

i∗1 i∗2

Such a diagram is known as a correspondence from F(M1) to F(M2). The field

theory F should therefore be a functor from Bordn to the category of correspon-

dences, whose objects are some kind of geometric objects and whose morphisms

are correspondences between them. Now, let us consider what happens to a com-

posite of bordisms. Two bordisms W : M1 →M2 and W ′ :M2 →M3 induce the
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following diagram.

F(W ⊔M2
W ′)

F(W ) F(W ′)

F(M1) F(M2) F(M3)

A field over W ⊔M2 W
′ is essentially the same as a field over W and a field over

W ′ that agree over M2, so the middle square will be cartesian. This is precisely

how the composition of correspondences is defined, so F will indeed be a functor.

Next, let us consider the quantization functor Q. This functor assigns to the

phase space F(M) a complex vector space, its Hilbert space, whose vectors rep-

resent the quantum states of the system on M . For simplicity, we can think

of a quantum state as a complex-valued function (a wave function) on F(M),

which describes a distribution or superposition of classical states. Furthermore,

on correspondences, Q is commonly given by a ‘pull-push’ construction. Given

a quantum state ψ1 ∈ Q(F(M1)), that is, a complex-valued function on F(M1),

one can pull back ψ1 along i∗1 to obtain Ψ = ψ1 ◦ i∗1 ∈ Q(F(W )), a complex-

valued function on F(W ). Next, one can push forward Ψ along i∗2, by integrating

along fibers, to obtain ψ2 ∈ Q(F(M2)) given by

ψ2(y) =

∫
(i∗2)

−1(y)

Ψ(x) dx,

provided such an integral exists. The resulting map Q(F(M1)) → Q(F(M2))

corresponds, roughly speaking, to a (Feynman) path integral. That is, the ampli-

tude corresponding to state y is determined by considering all possible paths to

state y (points on F(W ) over y), and their amplitudes are added.

More generally, one could replace the above integral by a weighted integral with

weight eiS(x), where S is a function on F(W ) called the action. For TQFTs there

is no such weighting, since only the topology of the bordisms is considered, and

no other extra data. However, equipping the bordisms with extra data can result

in QFTs with non-trivial actions. For example, one obtains a conformal field

theory by equipping the bordisms with a conformal structure.

4.4 Low-dimensional TQFTs

Let us discuss some properties of an oriented TQFT Z : Bordor
n → ModR.

Given a closed oriented (n− 1)-dimensional manifold M , denote by M the same

manifold but with opposite orientation, and by UM : ∅→M ⊔M and U†
M : M ⊔

M → ∅ be the bordisms with underlying manifold M × [0, 1]. Note that the
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map Z(UM ) : R → Z(M) ⊗R Z(M) is completely determined by the element

Z(UM )(1) =
∑m
i=1 vi ⊗ vi with vi ∈ Z(M) and vi ∈ Z(M). From the equality

(U†
M ⊔ idM ) ◦ (idM ⊔ τM,M ) ◦ (idM ⊔ UM ) = idM , depicted pictorially as

=

it follows that

v =

m∑
i=1

Z(U†
M )(v ⊗ vi) vi

for all v ∈ Z(M). In particular, Z(M) is generated by v1, . . . , vm. Similarly, from

the equality (U†
M ⊔ idM ) ◦ (τM,M ⊔ idM ) ◦ (idM ⊔ UM ) = idM it follows that

v =

m∑
i=1

Z(U†
M )(vi ⊗ v) vi

for all v ∈ Z(M), so Z(M) is generated by v1, . . . , vm. This shows that Z(M) is

a dualizable object with dual Z(M), unit Z(UM ) and counit Z(U†
M ).

Remark 4.4.1. If Z is only a lax TQFT, the image of Z(UM ) need not necessar-

ily lie in the tensor product Z(M)⊗Z(M), and consequently, the module Z(M)

need not be finitely generated. This will be the case for the TQFT constructed

in Section 4.7.

In the category of R-modules, the dualizable objects are precisely the finitely

generated projective modules [PS14]. In dimension n = 1, this completely char-

acterizes the TQFT.

Proposition 4.4.2. Let R be a commutative ring. There is an equivalence of

categories

1-TQFTor
R ≃ FGProjModR

between the category of 1-dimensional oriented TQFTs over R and the category

of finitely generated projective R-modules, which assigns to a TQFT Z the R-

module Z(p), where p is the point with orientation +1.

Proof. As shown above, an oriented 1-TQFT Z over R determines a dualizable

(that is, finitely generated projective) R-module M = Z(p). From a morphism

between such TQFTs (a natural transformation) we obtain a morphism between

the corresponding modules. This gives a functor 1-TQFTor
R → FGProjModR.
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Conversely, let M be a dualizable R-module. The objects of Bordor
1 are finite

disjoint unions of p and p. As shown above, Z(p) is dual to Z(p), so by monoidal-

ity, specifying Z(p) = M determines Z on objects, with Z(p) = HomR(M,R).

The only connected bordisms in Bordor
1 are

idp : p→ p, idp : p→ p

Up : ∅→ p ⊔ p, U†
p : p ⊔ p→ ∅

and S1 = U†
p ◦Up : ∅→ ∅, all of whose image under Z is canonically determined

by the unit and counit of the dualizable module M . This construction, being

natural in M , defines a functor FGProjModR → 1-TQFTor
R .

These functors are easily seen to be pseudo-inverses of each other, establishing

the equivalence of categories.

A similar characterization of oriented TQFTs can be given in dimension n = 2.

The objects of Bordor
2 are disjoint unions of S1, the circle, where we fix an

orientation of S1. Using the classification of oriented surfaces, one can show the

morphisms in Bordor
2 are ‘generated’ by the following bordisms:

: S1 → S1, : S1 ⊔ S1 → S1, : S1 → S1 ⊔ S1,

: S1 → ∅, : ∅→ S1 and : S1 ⊔ S1 → S1 ⊔ S1.
(4.2)

That is, any bordism in Bordor
2 is isomorphic to a composite of disjoint unions

of these bordisms [Koc04, Proposition 1.4.13]. Hence, we expect 2-dimensional

oriented TQFTs to correspond to dualizable modules with some extra algebraic

structure. For R = k a field, the correct algebraic structure turns out to be that

of a Frobenius algebra.

Definition 4.4.3. A Frobenius algebra over a field k is an algebra A over k,

whose multiplication and unit we denote by µ : A ⊗k A → A and η : k → A,

equipped with a bilinear form β : A⊗k A→ k, which is

■ associative, that is, β(µ(a⊗ b)⊗ c) = β(a⊗ µ(b⊗ c)) for all a, b, c ∈ A,

■ non-degenerate, that is, there exists a k-linear map γ : k → A⊗k A such that

(β ⊗ idA)(a⊗ γ(1)) = a = (idA ⊗ β)(γ(1)⊗ a) for all a ∈ A.

Remark 4.4.4. For any Frobenius algebra A, writing γ(1) =
∑
i ai ⊗ bi for

some ai, bi ∈ A, we find that a = (idA ⊗ β)(
∑
i ai ⊗ bi ⊗ a) =

∑
i ai β(bi ⊗ a) for

all a ∈ A. In particular, A is finite-dimensional and generated by the ai. This

equality also shows that β is non-degenerate in the usual sense: if β(b ⊗ a) = 0

for all b ∈ A, then a = 0. Similarly, one shows non-degeneracy in the other
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argument. Furthermore, this implies γ must be unique. Namely, if γ and γ′ both

satisfy the condition, then write γ(1)−γ′(1) =
∑
i ai⊗ bi with ai, bi ∈ A and the

ai are linearly independent. Since 0 = (idA⊗β)(
∑
i ai⊗ bi⊗a) =

∑
i ai β(bi⊗a)

for all a ∈ A, it follows that bi = 0 for all i, so γ(1) = γ′(1).

A Frobenius algebra naturally carries the structure of a k-coalgebra, see [Koc04,

Section 2.3], where the comultiplication δ and counit ε are given by

δ = (µ⊗ idA) ◦ (idA ⊗ γ) and ε = β ◦ (idA ⊗ η). (4.3)

A morphism of Frobenius algebras is a morphism of k-algebras which is also a

morphism of k-coalgebras.

The following theorem makes a precise correspondence between 2-dimensional

oriented TQFTs and Frobenius algebras. It was initially proved by Dijkgraaf

[Dij89], and later reproved in more detail by others, such as [Abr96, Koc04].

Theorem 4.4.5. Let k be a field. There is an equivalence of categories

2-TQFTor
k ≃ CFrobAlgk

between the category of 2-dimensional oriented TQFTs over k and the category of

commutative Frobenius algebras over k, which assigns to a TQFT Z the Frobenius

algebra A = Z(S1) and

Z
( )

= η, Z
( )

= µ, Z
( )

= β,

Z
( )

= ε, Z
( )

= δ, Z
( )

= γ.

Example 4.4.6. Let S be a finite set and let A = kS be the k-algebra of k-

valued functions on S, where multiplication is given pointwise. Then A admits

the structure of a Frobenius algebra with β(f ⊗ g)(s) =
∑
s∈S f(s)g(s) and

γ(1) =
∑
s∈S 1s ⊗ 1s, where 1s denotes the indicator function. From (4.3), we

find that the coalgebra structure is given by ε(f) =
∑
s∈S f(s) and δ(f) =∑

s∈S f(s)1s ⊗ 1s. For any closed surface Σg of genus g, we have

Z (Σg) (1) = Z
( )

◦ Z
( )g ◦ Z ( )

= (ε ◦ (µ ◦ δ)g ◦ η)(1) = |S|.

Therefore, Z(M)(1) = |S|π0(M) for any general closed oriented surface M , that

is, Z quantizes the number of connected components of M .

Example 4.4.7. The complex numbers A = C are a Frobenius algebra over

k = R with β(z1 ⊗ z2) = Re(z1z2) and γ(1) = 1 ⊗ 1 − i ⊗ i. One quickly finds

that δ(z) = z ⊗ 1− iz ⊗ i and ε(z) = Re(z). The corresponding TQFT yields

Z (Σg) (1) = Z
( )

◦ Z
( )g ◦ Z ( )

= (ε ◦ (µ ◦ δ)g ◦ η)(1) = 2g.

In this sense, this TQFT quantizes the genus of the surface.
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Remark 4.4.8. Let us make a note about the difference between oriented and

unoriented TQFTs. Clearly, via the forgetful functor Bordor
n → Bordn, which

forgets the orientation, any TQFT induces an oriented TQFT. In this sense, an

unoriented TQFT can be seen as an oriented TQFT with extra structure. How-

ever, not every oriented TQFT arises in such a way. This follows from Proposi-

tion 4.4.2 and the fact that not every finitely generated projective module (that

is, dualizable module) is isomorphic to its dual.

4.5 Representation ring as TQFT

Let G be a finite group, and denote by A = RC(G) the representation ring of

G, that is, the complex algebra generated by C-valued class functions on G. Of

great importance in the representation theory of G is the inner product that is

defined on A, which we will denote by β : A⊗C A→ C, and which is given by

β(a⊗ b) = 1

|G|
∑
g∈G

a(g)b(g−1) for a, b ∈ A.

A lesser known but equally important operation on A is the convolution operation

µ : A⊗C A→ A on A, which is given by

µ(a⊗ b)(g) =
∑
h∈G

a(h)b(h−1g) for a, b ∈ A,

and is related to the inner product via β(a ⊗ b) = µ(a ⊗ b)(1) for a, b ∈ A. The
unit η : C → A with respect to µ is given by η(1)(1) = 1 and η(1)(g) = 0 for

g ̸= 1. Alternatively, η can be expressed as

η(1) =
1

|G|
∑
χ∈Ĝ

χ(1)χ, (4.4)

where Ĝ denotes the set of irreducible complex characters of G. These operations

give RC(G) the structure of a commutative Frobenius algebra over C.

Proposition 4.5.1. The representation ring RC(G) is a commutative Frobenius

algebra over C with multiplication µ and bilinear form β.

Proof. First note that µ is associative as

µ(a⊗ µ(b⊗ c))(g) =
∑

h1,h2∈G

a(h1)b(h2)c(h
−1
2 h−1

1 g)

=
∑

h′
1,h

′
2∈G

a(h′2)b(h
′
2
−1
h′1)c(h

′
1
−1
g) = µ(µ(a⊗ b)⊗ c)(g)
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for all a, b, c ∈ A and g ∈ G, where h′1 = h1h2 and h′2 = h1, and µ is commutative

as

µ(a⊗ b)(g) =
∑
h∈G

a(h)b(h−1g) =
∑
h′∈G

b(h′)a(h′
−1
g) = µ(b⊗ a)(g)

for all a, b ∈ A and g ∈ G, where h′ = h−1g. Furthermore, β is associative as

β(µ(a⊗ b)⊗ c) = 1

|G|
∑
g,h∈G

a(h)b(h−1g)c(g−1)

=
1

|G|
∑
g,h∈G

a(g)b(g−1h)c(h−1) = β(a⊗ µ(b⊗ c))

for all a, b, c ∈ A. Finally, β is non-degenerate as γ : C → A ⊗C A given by

γ(1) =
∑
χ∈Ĝ χ⊗ χ satisfies

(β ⊗ idA)(a⊗ γ(1)) =
∑
χ∈Ĝ

β(a⊗ χ)χ = a

by the first orthogonality theorem [Ser77, Theorem 3], and by the same argument

(idA ⊗ β)(γ(1)⊗ a) = a, for all a ∈ A.

Remark 4.5.2. The copairing γ : C → A ⊗C A, or rather γ(1), can be seen as

an inner product on the conjugacy classes of G. As a function G×G→ C, it is
given by

γ(1)(g1, g2) = |{h ∈ G | hg1h−1 = g2}|.

Under the equivalence of Theorem 4.4.5, the representation ring A = RC(G)

corresponds to a 2-dimensional oriented TQFT

ZG : Bordor
2 → VectC.

From (4.3), we find that the comultiplication δ : A→ A⊗CA and counit ε : A→ C
on A are given by

δ(a) =
∑
χ∈Ĝ

µ(a⊗ χ)⊗ χ and ε(a) =
1

|G|
a(1). (4.5)

The convolution of irreducible characters χ, χ′ ∈ Ĝ is well known [Isa76, Theorem

2.13] to be given by

µ(χ⊗ χ′) =

{
|G|
χ(1)χ if χ = χ′,

0 otherwise.
(4.6)
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This implies that, for any irreducible character χ ∈ Ĝ,

ZG
( )

(χ) = (µ ◦ δ)(χ) = |G|2

χ(1)2
χ. (4.7)

In other words, the irreducible characters of G form a basis of eigenvectors for the

map ZG
( )

. The following theorem describes the invariant that this TQFT

quantizes.

Theorem 4.5.3. The TQFT ZG quantizes the groupoid cardinality |XG(Σg)| =
|RG(Σg)|/|G|. In particular,

ZG(Σg)(1) =
∑
χ∈Ĝ

(
|G|
χ(1)

)2g−2

= |XG(Σg)|.

Proof. The first equality follows from (4.7) and the expressions for η and ε.

For the second equality, let f : G → C be the class function given by f(g) =

|{(A,B) ∈ G2 | [A,B] = g}|. From the explicit presentation of RG(Σg),

RG(Σg) =

{
(A1, B1, . . . , Ag, Bg) ∈ G2g

∣∣∣∣∣
g∏
i=1

[Ai, Bi] = 1

}
,

and the definition of the convolution operator on RC(G), it is clear that

|RG(Σg)| = (f ∗ · · · ∗ f︸ ︷︷ ︸
g times

)(1),

where f ∗ f = µ(f ⊗ f). Therefore, it suffices to show that f is equal to

ZG
(

◦
)
(1) = (µ ◦ δ ◦ η)(1) =

∑
χ∈Ĝ

|G|
χ(1)

χ,

or equivalently, that β(f⊗χ) = |G|/χ(1) for every irreducible complex character

χ of G. Note that β(f ⊗ χ) is equal to
1

|G|
∑
g∈G

f(g)χ(g−1) =
1

|G|
∑

A,B∈G
χ([A,B]−1) =

1

|G|
∑

A,B∈G
χ(BAB−1A−1).

Let ρ : G→ GL(V ) be a representation with character χ. Schur’s lemma implies

that, for any A ∈ G, the operator TA =
∑
B∈G ρ(BAB

−1) is a scalar multiple of

the identity, that is, TA = tr(TA)/χ(1) = |G|χ(A)/χ(1). Hence, it follows that

β(f ⊗ χ) = 1

|G|
∑

A,B∈G
tr(TAA

−1) =
1

|G|
∑
A∈G

|G|
χ(1)

χ(A)χ(A−1) =
|G|
χ(1)

.

Example 4.5.4. When G is abelian, all irreducible representations of G are

of one-dimensional, so ZG
( )

is simply multiplication by |G|2. Therefore,
|RG(Σg)| = |G|2g as expected.
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4.6 Arithmetic method

Let us elaborate on the arithmetic method from [HR08]. Given a complex alge-

braic group G, typically a linear algebraic group such as GLn or SLn, the goal

of this method is to compute the E-polynomial of the G-representation vari-

ety RG(Σg). It tries to accomplish this using the following theorem, which is a

consequence of [HR08, Theorem 6.1.2].

Theorem 4.6.1 (Katz’ theorem). Let X be a complex variety with a spreading-

out X̃ over a finitely generated Z-algebra R ⊆ C. If there exists a polynomial

P ∈ Z[q] such that |(X̃ ×R Fq)(Fq)| = P (q) for all ring morphisms R→ Fq, then
the E-polynomial of X is given by P (uv) ∈ Z[u, v].

Most common linear algebraic groups G, such as GLn and SLn, can be defined

over Z, which determine a natural spreading-out of RG(Σg) over R = Z. In this

case, we find that

|RG(Σg)(Fq)| = |Hom(π1(Σg, ∗), G(Fq))|
= |G(Fq)| |XG(Fq)(Σg)|
= |G(Fq)|ZG(Fq)(Σg)(1).

Hence, to compute this point count, we can apply Theorem 4.5.3. This reduces

the problem to studying the representation theory of the finite groups G(Fq), or
more specifically, to studying the dimensions of their irreducible representations.

This was originally done for the groups G = GLn in [HR08], and later also for

the groups G = SLn in [Mer15].

However, note that it is not clear at all why these point counts should be poly-

nomial in q. It will be, by Theorem 4.5.3, when |G(Fq)| is polynomial in q and

the irreducible representations χ of G(Fq) come in families in which both χ(1)

and the size of the family is polynomial in q. This is the case in [HR08, Mer15],

but fails already when G is not a linear algebraic group, such as an elliptic curve.

An amazing result by [BK22] shows that the above quantities are polynomial in

q when G is a connected split reductive group, using Lusztig’s Jordan decompo-

sition to describe the irreducible representations of G(Fq). More precisely, these

quantities are polynomial in q after fixing a congruence condition q ≡ i mod d,

where d is an integer depending on the root datum of G, and i can be any in-

teger. By appropriate choice of finitely generated Z-algebra R, one can enforce

the congruence condition q ≡ 1 mod d, implying that the E-polynomial of the

character stack XG(Σg) is polynomial in uv [BK22, Corollary 4].
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4.7 Character stack TQFT

In this section, we will construct a lax TQFT quantizing the virtual class of

the G-character stack in the Grothendieck ring of stacks. The construction of

this TQFT is an adaptation of the work of González-Prieto, Logares and Muñoz

[GLM20], the main differences being that we will not fix a set of basepoints

on our manifolds, and that we focus on the character stack rather than the

representation variety.

Fix a base scheme S and let G be a linear algebraic group over S. Like described

in Section 4.3, the TQFT will be constructed as the composite of two functors,

a field theory FG and a quantization functor Q,

Bordn Corr(StckS) K0(StckS)-Mod
FG Q

where the category Corr(StckS) is defined as follows. Recall from Definition 1.6.4

that StckS is the 2-category of algebraic stacks of finite type over S with affine

stabilizers, which has pullbacks by Lemma 1.6.3.

Definition 4.7.1. Let C be a 2-category with pullbacks. The category of corre-

spondences over C is the 2-category, denoted by Corr(C), defined as follows. Its

objects are the objects of C. A 1-morphism from X to Y is a correspondence,

that is, a diagram X
f←− Z

g−→ Y in C. A 2-morphism between correspondences

X
f←− Z

g−→ Y and X
f ′

←− Z ′ g′−→ Y is an isomorphism h : Z → Z ′ in C together

with 2-isomorphisms α : f ⇒ f ′ ◦ h and β : g ⇒ g′ ◦ h.

Z

X Y

Z ′

f g

h

f ′ g′

⇓ ⇓α β

The composition of correspondences X
f←− Y

g−→ X ′ and X ′ f ′

←− Y ′ g′−→ X ′′ is

given by X
f◦πY←−−− Y ×X′ Y ′ g◦πY ′−−−−→ X ′′. If C is monoidal, then so is Corr(C).

Remark 4.7.2. Correspondences over C can be viewed as an extension of mor-

phisms in C, since any morphism f : X → Y in C can be seen as the correspon-

dence X
idX←−− X f−→ Y .

Let us start with the field theory. For this we want to consider Bordn as a

2-category, as in Remark 4.2.6.

Definition 4.7.3. Let FG : Bordn → Corr(StckS) be the 2-functor that assigns

to a closed manifold M the character stack XG(M), to a bordism W : M1 →M2

the correspondence

XG(M)← XG(W )→ XG(M
′)
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induced by the inclusions Mi → W , and finally to an equivalence of bordisms

f : W →W ′ the diagram

XG(W )

XG(M1) XG(M2)

XG(W
′)

≀

where the vertical isomorphism is induced by f .

Proposition 4.7.4. FG defines a symmetric monoidal functor.

Proof. AsM×[0, 1] is homotopy equivalent toM , it follows that XG(M×[0, 1]) ∼=
XG(M) for any closed manifoldM , so FG preserves identity morphisms. For any

two bordisms W : M1 →M2 and W ′ : M2 →M3, the diagram

Π(W ′ ◦W )

Π(W ) Π(W ′)

Π(M1) Π(M2) Π(M3)

naturally commutes, and the square is a pushout square by the Seifert–van Kam-

pen theorem for fundamental groupoids [Bro67]. Lemma 2.3.6 implies that the

resulting square on G-character stacks is a cartesian square, which shows that

FG is functorial. The same lemma also shows XG(M1 ⊔M2) is naturally isomor-

phic to XG(M1)×XG(M2), and this isomorphism clearly respects the symmetric

monoidal structure, that is, FG is symmetric monoidal.

Next, we define the quantization functor. As in Remark 4.2.6, we view the cat-

egory K0(StckS)-Mod as a 2-category in the trivial way, and define Q as a

2-functor. Equivalently, one can think of Q as a 1-functor after identifying iso-

morphic 1-morphisms in Corr(StckS).

Definition 4.7.5. Let Q : Corr(StckS) → K0(StckS)-Mod be the 2-functor

that assigns to an object X the K0(StckS)-module

Q(X) = K0(StckX)

and to a correspondence X
f←− Z

g−→ Y the morphism

Q(X f←− Z
g−→ Y) = g! ◦ f∗ : K0(StckX)→ K0(StckY)

with f∗ and g! as in Section 3.2. Note that two correspondences connected by a

2-morphism are indeed assigned to the same K0(StckS)-module morphism.
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Proposition 4.7.6. Q is a symmetric lax monoidal functor.

Proof. For any object X of StckS , it is immediate from the definition that

Q(idX) = idK0(StckX). Consider a composite of correspondences

Z

Y1 Y2

X1 X2 X3

h j

f1 g1 f2 g2

for which the square is a 2-cartesian square. To show Q respects composition, it

suffices to show f∗2 ◦ (g1)! = j! ◦ h∗ as morphisms K0(StckY1
) → K0(StckY2

).

This is true for formal reasons: for any U→ Y1, the diagram

U×Y1 Z Z Y2

U Y1 X2

h

j

f2

g1

is a 2-cartesian rectangle as both squares are 2-cartesian squares. Therefore,

(f∗2 ◦ (g1)!)([U→ Y1]) = [U×Y1 Z] = (j! ◦ h∗)([U→ Y1]). The fact that Q is lax

monoidal and symmetric follows from the natural morphism

K0(StckX)⊗K0(StckS) K0(StckY)→ K0(StckX×SY).

Remark 4.7.7. Note that Q is only lax monoidal, and not monoidal, since the

above morphism is not necessarily an isomorphism, see Example 3.2.10.

Finally, let us show that the TQFT obtained through the composition of FG and

Q indeed quantizes the virtual class of the G-character stack.

Theorem 4.7.8. There exists a lax TQFT

ZG : Bordn → K0(StckS)-Mod

given by the composite ZG = Q ◦ FG, quantizing the virtual class of the G-

character stack. That is, [XG(W )] = ZG(W )(1) in K0(StckS) for any closed

manifold W .

Proof. For any closed manifold W , viewed as a bordism from and to ∅, the

corresponding field theory FG(W ) is given by the correspondence

S XG(W ) St t

where t is the terminal morphism. Applying the quantization functorQ, it follows
that

ZG(W )(1) = t!t
∗(1) = [XG(W )] ∈ K0(StckS).
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4.8 Field theory of surfaces

The goal of this section is to make explicit the field theories FG(W ) correspond-

ing to various bordisms W in dimension n = 2. We focus in particular on the

generators (4.2), as any 2-dimensional oriented bordism can be built from these

through composition and taking disjoint unions.

Example 4.8.1. The inclusions S1 → S1 × [0, 1] of the in- and out-boundary

into the cylinder induce an equivalence of groupoids Π(S1) ≃ Π(S1 × [0, 1]).

Therefore, the field theory FG(S1× [0, 1]) is given by the identity on FG(S1), as

expected.

Proposition 4.8.2. The field theory of the bordism from ∅ to S1 is given

by

S BG [G/G]e ,

where e is induced by the unit of G, and G acts on itself by conjugation. Similarly,

the field theory of the bordism from S1 to ∅ is given by

[G/G] BG Se .

Proof. Since the fundamental group of the disk is trivial, its G-character stack

is given by XG(D
1) = BG. The inclusion of S1 into the disk induces the trivial

homomorphism π1(S
1, ∗) = Z → 1 = π1(D

1, ∗) between fundamental groups,

and consequently the corresponding map BG→ [G/G] is given by the inclusion

of the identity.

Proposition 4.8.3. The field theory of the bordism from S1 ⊔ S1 to S1 is

given by

[G/G]
2

[G2/G] [G/G]
π1×π2 m

where π1, π2 : [G
2/G] → [G/G] are induced by the projections, and m by multi-

plication on G. Similarly, the field theory of the bordism from S1 to S1 ⊔S1

is given by

[G/G] [G2/G] [G/G]
2m π1×π2 .

Proof. We will compute the field theory for , and the field theory for can

be computed completely analogous. Choose a basepoint x on the out-boundary,

basepoints y and z on the in-boundary, a path γ1 from x to y, a path γ2 from x

to z, and let α and β be generators of the fundamental group π1
(

, x
) ∼= F2

as depicted in the figure below.

Under the inclusion of the in-boundary S1 ⊔ S1 into , the generators of

π1(S
1, y) ∼= Z and π1(S

1, z) ∼= Z are sent to γ1αγ
−1
1 and γ2βγ

−1
2 , respectively.
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x

y

z

α

β

γ1

γ2

Figure 4.2: The pair of pants as a bordism from S1⊔S1 to S1. A basepoint x

on the out-boundary is chosen, and basepoints y and z on the in-boundary.

Also are chosen paths γ1 from x to y and γ2 from x to z, and two generators

α and β of the fundamental group at x.

This determines the map [G2/G] → [G/G]2 as claimed. Under the inclusion of

the out-boundary S1 into , the generator of π1(S
1, x) ∼= Z is sent to the loop

αβ, which determines the map [G2/G]→ [G/G] as claimed.

Proposition 4.8.4. The field theory of the bordism from S1 to S1 is given

by

[G/G] [G3/G] [G/G]
π1 θ

where π1 is induced by the first projection G3 → G, and θ is induced by G3 → G

given by (C,A,B) 7→ C[A,B].

Proof. Since is equal to the composite ◦ , it suffices to compute

the composite of the correspondences as given by Proposition 4.8.3. Hence, let

us describe the fiber product X = [G2/G]×[G/G]2 [G
2/G]. By definition of fiber

products of stacks, the objects of X over T are tuples (P,Q, g1, h1, g2, h2, α, β),

where P and Q are G-torsors over T with G-equivariant morphisms P
(g1,h1)−−−−→ G2

and Q
(g2,h2)−−−−→ G2, and α, β : P → Q are morphisms of G-torsors such that

g1 = g2 ◦ α and h1 = h2 ◦ β. A morphism from (P ′, Q′, g′1, h
′
1, g

′
2, h

′
2, α

′, β′) to

(P,Q, g1, h1, g2, h2, α, β) is a pair of morphisms ofG-torsors (γ1 : P
′ → P, γ2 : Q

′ →
Q) such that g′i = gi ◦ γi and h′i = hi ◦ γi for i = 1, 2 and α = γ2 ◦ α′ ◦ γ−1

1

and β = γ2 ◦ β′ ◦ γ−1
1 . Note that every object is isomorphic one with P = Q

and β = idP . Therefore, we can equivalently describe this category as the cate-

gory whose objects over T are tuples (P,C,A,B), where P is a G-torsor over T

and C = m ◦ (g1, h1), A = h−1
1 and B = α, and a morphism (P ′, C ′, A′, B′) →

(P,C,A,B) is a morphism γ : P ′ → P such that C ′ = C ◦ γ, A′ = A ◦ γ and
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B′ = γ−1 ◦ B ◦ γ. With this description it is clear that X ∼= [G3/G]. Unfold-

ing the definitions, the morphism X→ [G/G] corresponding to the in-boundary

is indeed given by (C,A,B) 7→ C. The morphism X → [G/G] corresponding

to the out-boundary is given by (C,A,B) 7→ B−1CABA−1, which is naturally

isomorphic to C[A,B].

Besides orientable bordisms, there are also non-orientable bordisms, which our

field theory FG allows. Of interest to us are the bordisms

: S1 → S1 and : S1 → S1 (4.8)

corresponding to the projective plane with two punctures and the cylinder which

reverses the orientation of S1, respectively. The field theory FG ( ) is easily

seen to be the correspondence

[G/G] [G/G] [G/G]i id

where i is induced by the inversion g 7→ g−1. The field theory of the punctured

projective plane is described by the following proposition.

Proposition 4.8.5. The field theory of the bordism from S1 to S1 is

given by

[G/G] [G2/G] [G/G]
π1 v

where v is given by (B,A) 7→ BA2.

Proof. Choose basepoints x and y on the in- and out-boundary of the bor-

dism, respectively, and let α and β be generators of the fundamental group

π1
(

, x
) ∼= F2 as depicted in the figure below.

x y

β

α
γ

Figure 4.3: The projective plane with two punctures as a bordism from S1

to S1. Basepoints x and y are chosen on in- and out-boundary, respectively.

Also, generators α and β of the fundamental group at x are chosen, and

path γ connecting x and y.
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Under the inclusion of the in-boundary S1 into , the generator of π1(S
1, x)

∼= Z is sent to β, and under the inclusion of the out-boundary S1, the generator

of π1(S
1, y) ∼= Z is sent to γβα2γ−1. These determine the maps [G2/G]→ [G/G]

as claimed.

4.9 Arithmetic TQFT

In this section we will construct a higher-dimensional analogue of the TQFT of

Section 4.5. To be precise, for any finite group G, we will construct an arithmetic

TQFT

Z#
G : Bordn → VectC

which will agree (up to natural isomorphism) with the TQFT of Section 4.5.

Whereas the construction of the TQFT of Section 4.5 is very ad-hoc, in terms

of specific operations on the representation ring RC(G), the construction of Z#
G

will be very much like that of the character stack TQFT: as the composite of a

field theory and a quantization functor.

Field theory and quantization

Fix a finite group G.

Definition 4.9.1. The arithmetic field theory is the 2-functor

F#
G : Bordn → Corr(FinGrpd)

which assigns to a closed (n−1)-dimensional manifoldM theG-character groupoid

F#
G (M) = XG(M)

and to a bordism W : M1 →M2 the correspondence

F#
G (W ) =

(
XG(M1)

i1←− XG(W )
i2−→ XG(M2)

)
.

Proposition 4.9.2. F#
G is a symmetric monoidal functor.

Proof. The proof is completely analogous to that of Proposition 4.7.4, where

XG(−) is also sends finite colimits in FGGrpd to limits in FinGrpd.

Definition 4.9.3. Given a groupoid A, denote by CA the complex vector space

of complex-valued functions on the objects of A which are invariant under iso-

morphism.
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This construction admits some functoriality. Given a functor f : A→ B between

groupoids, we can pull back functions via

f∗ : CB → CA, φ 7→ φ ◦ f.

Pullback is functorial in the sense that (g ◦ f)∗ = f∗ ◦ g∗ for functors f : A→ B

and g : B → C. Moreover, if µ : f ⇒ g is a natural transformation between

functors f, g : A → B, then f∗ = g∗. In particular, if A and B are equivalent

groupoids, then CA and CB are naturally isomorphic.

Furthermore, if f : A → B is a functor between essentially finite groupoids, we

define pushforward along f as

f! : CA → CB , φ 7→

b 7→ ∑
[(a,β)]∈f−1(b)/∼

φ(a)

|Aut(a, β)|


where f−1(b) denotes the fiber product A ×B {b} as in Definition 1.1.6. It is

an easy exercise to show that pushforward is also functorial in the sense that

(g ◦ f)! = g! ◦ f! for functors f : A→ B and g : B → C.

Example 4.9.4. For any groupoid A, let f : A → {∗} be the final morphism

and let φ ∈ CA be the constant function φ(a) = 1. Then (f!φ)(∗) = |A| is the

groupoid cardinality of A.

Definition 4.9.5. The arithmetic quantization functor is the functor

Q# : Corr(FinGrpd)→ VectC

which assigns to a groupoid A the vector space CA, and which assigns to a

correspondence of groupoids A
f←− B

g−→ C the morphism g! ◦ f∗ : CA → CC .
Note that two correspondences connected by a 2-morphism are indeed assigned

to the same linear map.

Lemma 4.9.6. Q# is a symmetric monoidal functor.

Proof. Let D
f←− B

g−→ A and A
h←− C

i−→ E be correspondences of essentially

finite groupoids. The relevant diagram in VectC is given by

CB×AC

CB CC

CD CA CE

(πC)!π∗
B

g! j!f∗
h∗

where πB : B×AC → B and πC : B×AC → C are the projections. To show Q#

respects composition, it suffices to show that h∗ ◦ g! = (πC)! ◦ π∗
B .
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First note that, for any x ∈ C, the groupoids π−1
C (x) = (B ×A C) ×C {x}

and g−1(h(x)) = B ×A {h(x)} are equivalent. Explicitly, an object of π−1
C (x)

is a tuple (b, c, α, γ) with (b, c, α) ∈ B ×A C and γ : c → x a morphism in

C. A morphism (b′, c′, α′, γ′) → (b, c, α, γ) is given by a tuple of morphisms

(β : b′ → b, ζ : c′ → c) such that α◦g(β) = h(ζ)◦α′ and γ◦ζ = γ′. By appropriate

choice of ζ, this is equivalent to the groupoid whose objects are (b, α) with b ∈ B
and α : g(b) → h(x) and morphisms (b′, α′) → (b, α) are morphisms β : b′ → b

such that α′ ◦ g(β) = α. But this is precisely g−1(h(x)).

Now, for any φ ∈ CB and any c ∈ C, it follows that

((πC)!π
∗
Bφ)(c) =

∑
[(b,c,α,γ)]∈π−1

C (c)/∼

φ(b)

|Aut(b, c, α, γ)|

=
∑

[(b,α)]∈g−1(h(c))/∼

φ(b)

|Aut(b, α)|
= (h∗g!φ)(c).

Definition 4.9.7. The arithmetic TQFT Z#
G : Bordn → VectC is the compos-

ite Q# ◦ F#
G .

Proposition 4.9.8. The arithmetic TQFT quantizes the groupoid cardinality of

the G-character groupoid, that is,

Z#
G (W )(1) = |XG(W )|

for any closed n-dimensional manifold W , seen as a bordism ∅→ ∅.

Proof. The field theory F#
G (W ) is given by

{∗} XG(W ) {∗}t t

where t is the final morphism. Applying the quantization functor Q#, we find

Z#
G (W )(1) = t!t

∗(1) =
∑

[x]∈t−1(∗)/∼

1

|Aut(x)|
= |XG(W )|,

using that t−1(∗) = XG(W ).

Remark 4.9.9. The arithmetic TQFT can be seen as a special case of the

Dijkgraaf–Witten TQFT [DW90] with α = 0 ∈ Hn(BG,R/Z). This TQFT is

also known as finite gauge theory, since the gauge group G is finite.
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Comparison with the representation ring

Let us return to case n = 2. For a finite group G, we have XG(S
1) = [G/G] where

G acts on itself by conjugation. In particular, Z#
G (S1) is the complex vector space

of complex-valued functions on G which are invariant under conjugation. But this

is precisely the underlying vector space of the representation ring RC(G), that

is, there is a canonical isomorphism

Z#
G (S1) = C[G/G] ∼= RC(G) = ZG(S

1). (4.9)

Proposition 4.9.10. Let G be a finite group. For n = 2, there is a natural

isomorphism

Z#
G
∼= ZG

as functors Bordor
2 → VectC from the arithmetic TQFT to the TQFT of Sec-

tion 4.5.

Proof. Since both Z#
G and ZG are monoidal functors, the isomorphism (4.9)

naturally extends to isomorphisms Z#
G

(
⊔mi=1S

1
) ∼= ZG

(
⊔mi=1S

1
)
for all m ≥ 0.

As the category Bordor
2 of 2-dimensional oriented bordisms is generated by the

bordisms (4.2), it suffices to verify the naturality of the isomorphisms for these

generators only.

■ Case W = . The field theory F#
G (W ) is given by

{∗} [{∗}/G] [G/G]t e

where t is the terminal morphism and e is the inclusion of the unit of G. Hence,

the morphism Z#
G (W ) : C → C[G/G] sends 1 to e!t

∗1, which is precisely the

indicator function on the unit of G and corresponds, under the isomorphism

(4.9), to the unit η(1) of RC(G).

■ Case W = . Similarly, the field theory F#
G (W ) is given by

[G/G] [{∗}/G] {∗}e t

so the morphism Z#
G (W ) : C[G/G] → C is given by f 7→ t!e

∗f = 1
|G|f(1), which

corresponds, under the isomorphism (4.9), to the counit ε of RC(G).

■ Case W = . The field theory F#
G (W ) is given by

[G/G]2 [G2/G] [G/G]
π1×π2 m

where m is multiplication on G. Hence, the morphism Z#
G (W ) : RC(G) ⊗C

RC(G) → RC(G) maps f1 ⊗ f2 7→ m!(π1 × π2)∗(f1 ⊗ f2) which is precisely

µ(f1 ⊗ f2).
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■ Case W = . Similarly, the field theory F#
G (W ) is given by

[G/G] [G2/G] [G/G]2m π1×π2

so the morphism Z#
G (W ) : RC(G) → RC(G) ⊗C RC(G) is given by f 7→ (π1 ×

π2)!m
∗f . Note that, for any g1, g2 ∈ G, the groupoid (π1 × π2)

−1(g1, g2) is

equivalent to G as a set. Hence, for any irreducible character χ, we find

Z#
G (W )(χ)(g1, g2) =

∑
h∈G

χ(g1hg2h
−1) = |G|χ(g)χ(h)/χ(1),

where the last equality is shown as in the proof of Theorem 4.5.3. Therefore,

using (4.5) and (4.6), we find that Z#
G (W )(χ) is precisely δ(χ).

■ Case W = . The field theory F#
G (W ) is given by

[G/G]2 [G/G]2 [G/G]2id t

where t switches the two copies of G. Clearly, Z#
G (W ) is given by f1 ⊗ f2 7→

f2 ⊗ f1, which is precisely τ .

Non-orientable surfaces

Recall that the TQFT of Section 4.5 was given by the Frobenius algebra structure

on the representation ring RC(G). However, Z#
G is also defined for non-orientable

bordisms, so we obtain additional operations on the representation ring. In par-

ticular, let us consider the orientation-reversing cylinder : S1 → S1 and the

projective plane : S1 → S1 as in (4.8).

The field theory F#
G ( ) is easily seen to be

[G/G] [G/G] [G/G]i id

where i is induced by the inversion g 7→ g−1. Hence, it follows that

Z#
G ( ) : RC(G)→ RC(G), f 7→ i∗f = (g 7→ f(g−1)) = f

is complex conjugation of class functions.

Regarding the projective plane, we have the following lemma.

Lemma 4.9.11. The map ν := Z#
G

( )
: RC(G)→ RC(G) is given by

ν(χ) = εχ
|G|
χ(1)

χ

for any irreducible character χ ∈ Ĝ, where εχ = 1
|G|
∑
g∈G χ(g

2) is known as the

Frobenius–Schur indicator of χ [FS06].
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Proof. Analogous to Proposition 4.8.5, the field theory F#
G

( )
is

[G/G] [G2/G] [G/G]
π1 v

where v is induced by (B,A) 7→ BA2. Applying Q# we find that

ν(f) = v!π
∗
1f =

(
g 7→

∑
BA2=g

f(B) =
∑
h∈G

f(gh2)

)
.

Note that we have an equality of bordisms

=
◦
◦

◦

which shows that ν(f) = µ((ν ◦ η)(1)⊗ f) for all f ∈ RC(G). We compute

(ν ◦ η)(1)(g) =
∑
h∈G

η(1)(gh2) = |{h ∈ G | h2 = g−1}|

and thus, for any χ ∈ Ĝ, we find

β((ν ◦ η)(1)⊗ χ) = 1

|G|
∑
g∈G

(ν ◦ η)(1)(g)χ(g−1) =
1

|G|
∑
h∈G

χ(h2) = εχ

from which we obtain that

(ν ◦ η)(1) =
∑
χ∈Ĝ

εχχ.

Finally, using (4.6) we conclude that ν(χ) = µ((ν ◦ η)(1)⊗ χ) = εχ
|G|
χ(1)χ.

This expression can be used to compute the groupoid cardinality |XG(Nr)| of
the G-character groupoid of the non-orientable closed surface Nr of demigenus

r, that is, the connected sum of r non-projective planes. The decomposition

Nr = ◦ r ◦ yields the following proposition. Note that this formula

was already known to Frobenius and Schur in [FS06, (9), p.197].

Proposition 4.9.12. Let Nr be the closed non-orientable surface of demigenus

r, that is, the surface obtained as the connected sum of r projective planes. Then

Z#
G (Nr) (1) = |XG(Nr)| =

∑
χ∈Ĝ

εrχ

(
|G|
χ(1)

)r−2

.
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4.10 Comparison of TQFTs

Let us summarize the various TQFTs constructed so far. Fix a base scheme S,

a linear algebraic group G over S, a finite field Fq, and an Fq-rational point
x : SpecFq → S of S. The functors defined in the previous sections, i.e., the

field theory and quantization functors, fit nicely together in the following (not

necessarily commutative!) diagram. The dashed arrow, completing the diagram,

will be defined in this section.

Corr(StckS) K0(StckS)-Mod

Bordn

Corr(FinGrpd) VectC

Q

(−)(Fq)

FG

F#
G(Fq)

Q#

µ∗
S

Recall that for any algebraic stack X over S, the groupoid X(Fq) is the groupoid
of Fq-points SpecFq → X whose composition to S is equal to the fixed point

x : SpecFq → S. In particular, S(Fq) = {x}.

We can see the TQFT of G-character stacks, ZG = Q ◦ FG, in the top row,

and the arithmetic TQFT, Z#
G(Fq)

= Q# ◦ F#
G(Fq)

, in the bottom row. Note that

one can interpolate between the two: using the field theory FG, then taking the

Fq-rational points, and finally applying the arithmetic quantization functor Q#,

we obtain yet another TQFT given by the composite Z̃G = Q# ◦ (−)(Fq) ◦ FG.

It turns out all three TQFTs all quantize different invariants. Of course, ZG
quantizes a different type of invariant (an element in the Grothendieck ring of

stacks) while Z#
G and Z̃G quantize a complex number. Nevertheless, in this sec-

tion we will relate these TQFTs through natural transformations. More precisely,

there will be a natural transformation in the square on the right in the diagram,

and, if G is connected, a natural isomorphism in the triangle on the left. The

functor µ∗
S will be defined in order to relate the targets of the geometric and

arithmetic TQFT.

Definition 4.10.1. For any object X of StckS , define

µX : K0(StckX)→ CX(Fq), [Y
f−→ X] 7→

(
x 7→ |f−1(x)|

)
where the groupoid cardinality of f−1(x) = Y(Fq) ×X(Fq) {x} was taken. This

map is easily seen to be a morphism of rings, where multiplicativity follows from
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the following diagram, in which all squares are cartesian:

π−1
X (x) f−1(x)

Y×X Z Y

g−1(x) ∗

Z X
xg

f

In particular, the morphism µS : K0(StckS)→ CS(Fq) = C induces the functor

µ∗
S : VectC → K0(StckS)-Mod

given by restriction of scalars.

Proposition 4.10.2. The maps µX define a natural transformation

µ : Q ⇒ µ∗
S ◦ Q# ◦ (−)(Fq).

In particular, this induces a natural transformation of TQFTs

ZG ⇒ µ∗
S ◦ Q# ◦ (−)(Fq) ◦ FG.

Proof. For any correspondence X
f←− Z

h−→ Y in StckS , the relevant diagram of

K0(StckS)-modules is:

K0(StckX) K0(StckZ) K0(StckY)

CX(Fq) CZ(Fq) CY(Fq)

f∗

µX

g!

µZ µY

f∗ g!

Let us show that the first square commutes. For any stack U
h−→ X and point

z ∈ Z(Fq), we have

µZ(f
∗[U])(z) =

∑
[(u,z,α)]∈(U×XZ)(Fq)/∼

|Aut(z)|
|Aut(u, z, α)|

.

As in the proof of Lemma 1.6.3, the group Aut(u) × Aut(z) acts naturally on

the set HomX(Fq)(h(u), f(z)), and the stabilizer of any α in this set is precisely

Aut(u, z, α). Hence, it follows from the orbit-stabilizer theorem that

µZ(f
∗[U])(z) =

∑
[u]∈U(Fq)/∼
α : h(u)

∼−→f(z)

1

|Aut(u)|

=
∑

[(u,α)]∈h−1(f(z))/∼

1

|Aut(u)|

= |h−1(f(z))| = (f∗µX([U]))(z).
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Next, let us show that the second square commutes. For any stack U
h−→ Z and

point y ∈ Y(Fq), we have

(g!µZ[U])(y) =
∑

[(z,α)]∈g−1(y)/∼

|h−1(z)|
|Aut(z)|

= |(g ◦ h)−1(y)| = (µYg![U])(y).

Proposition 4.10.3. If G is connected, there is a natural isomorphism

(−)(Fq) ◦ FG ∼= F#
G(Fq)

.

In particular, this induces a natural isomorphism of TQFTs

Q# ◦ (−)(Fq) ◦ FG ∼= Z#
G(Fq)

.

Proof. Proposition 1.5.10 implies that XG(M)(Fq) is naturally isomorphic to

XG(Fq)(M) for any compact manifold M . The statement now follows directly

from the definitions of the field theories.

Remark 4.10.4. For non-connected G, there need not even be a natural trans-

formation (−)(Fq)◦FG ⇒ F#
G(Fq)

. Consider the 2-sphere S2 as a bordism ∅→ ∅.

Since the G-character stack of S2 is BG, one has Z̃G(S
2)(1) = |BG(Fq)|, whereas

Z#
G(Fq)

(S2)(1) = |RG(S2)(Fq)|/|G(Fq)| = |1|/|G(Fq)|. Already for G = Z/2Z,
these quantities are different, see Remark 1.5.9.

Corollary 4.10.5. Suppose G is connected. Then there is a natural transforma-

tion between the geometric and arithmetic TQFT

ZG ⇒ µ∗
S ◦ Z

#
G(Fq)

.

Unfolding the definitions in dimension n = 2, we obtain the following theorem,

relating the geometric method to the arithmetic method.

Theorem 4.10.6. Suppose G is connected. Denote by I ∈ K0(Stck[G/G]) the

class of [S/G] → [G/G] induced by the unit of G. If the K0(StckS)-module

V = ⟨ZG
( )g

(I) for g ∈ Z≥0⟩ is finitely generated, then:

(i) The sums of equidimensional irreducible complex characters form a basis for

the subspace µ[G/G](V) ⊆ C[G/G](Fq).

(ii) The dimensions of the irreducible complex characters of G(Fq) are precisely

given by

di =
|G(Fq)|√

λi

for λi ∈ Z the eigenvalues of µS(A), where A is any matrix representing the

linear map ZG
( )

with respect to a generating set of V.
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(iii) Write µ[G/G](I) =
∑
i vi, where vi are eigenvectors of µS(A) correspond-

ing to the eigenvalues λi. Then each vi is a scalar multiple of the sum of

equidimensional characters, or more precisely,

vi =
di

|G(Fq)|
∑

χ∈Ĝ s.t.
χ(1)=di

χ.

Proof. By Corollary 4.10.5, we have the following commutative diagram.

K0(StckS) K0(Stck[G/G]) K0(Stck[G/G])

C C[G(Fq)/G(Fq)] C[G(Fq)/G(Fq)]

ZG( )

µS

ZG

( )

µ[G/G] µ[G/G]

Z#
G(Fq)( ) Z#

G(Fq)

( )

The square on the right shows that

µ[G/G](V) = ⟨Z#
G(Fq)

( )
(µ[G/G](I)) for g ∈ Z≥0⟩,

and the square on the left shows that µ[G/G](I) ∈ C[G/G](Fq) ∼= RC(G(Fq)) cor-

responds to the unit

η(1) =
1

|G(Fq)|
∑
χ∈Ĝ

χ(1)χ =
∑
d≥0

wd with wd =
d

|G(Fq)|
∑

χ∈Ĝ s.t.
χ(1)=d

χ. (∗)

Clearly, the wd are linearly independent, and moreover, by (4.7), they are eigen-

vectors of Z#
G(Fq)

( )
with eigenvalues |G(Fq)|2/d2. Since the eigenvalues are

distinct, the wd form a basis for µ[G/G](V), proving (i).

For (ii), as the matrix µS(A) represents Z
#
G(Fq)

( )
, its eigenvalues are pre-

cisely given by |G(Fq)|2/d2. Finally, (iii) follows from (∗).

4.11 Gm ⋊ Z/2Z-character stacks

Let us illustrate how the arithmetic TQFT and the character stack TQFT are

related, and how they differ, by means of an example. Throughout this section,

we consider the group G = Gm ⋊ Z/2Z, where Z/2Z acts on Gm via x 7→ x−1,

over any field k of characteristic not equal to 2, or more generally, over the finitely

generated algebra R = Z[ 12 ].

Arithmetic method. Following the arithmetic method, we consider the rep-

resentation theory of the finite groups G(Fq) = F×
q ⋊ Z/2Z with q is odd. The
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character table of G(Fq) can easily be computed, e.g. using [Ser77, Proposition

25]. Fixing any generator x ∈ F×
q , the character table of G(Fq) is given by

{1} {−1} {xℓ, x−ℓ} (F×
q )

2σ (F×
q )

2xσ

ρε,δ 1 ε
q−1
2 εℓ δ εδ

τk 2 2(−1)k ζkℓq−1 + ζ−kℓq−1 0 0

where 1 ≤ k, ℓ ≤ q−3
2 and ε, δ = ±1, and σ is the non-trivial element in Z/2Z.

Summing characters of the same dimension, the character table reduces to

{1} {−1} {xℓ, x−ℓ} (F×
q )

2σ (F×
q )

2xσ

v1 =
∑
ε,δ ρε,δ 4 4α(q−1)/2 4αℓ 0 0

v2 =
∑
k τk q − 3 −2α(q−1)/2 −2αℓ 0 0

where αℓ = 1 for ℓ even and αℓ = 0 for ℓ odd. Alternatively, this table can be

expressed as

{1} {t ∈ G(Fq) | t ̸= 1 a square} {t ∈ G(Fq) | t not a square}

v1 4 4 0

v2 q − 3 −2 0

Now, from (4.4), (4.5) and (4.7) follows that the TQFT Z#
G(Fq)

is, with respect

to the basis v1, v2, given by

Z#
G(Fq)

( )
= |G(Fq)|2

(
1 0

0 1
4

)
,

Z#
G(Fq)

( )
=

1

|G(Fq)|

(
4 q − 3

)
, Z#

G(Fq)

( )
=

1

|G(Fq)|

(
1

2

)
,

where, of course, |G(Fq)| = 2(q − 1). Therefore, the number of points of the

G(Fq)-representation varieties are given by

|RG(Fq)(Σg)| = (q − 3)(q − 1)2g−1 + 22g+1(q − 1)2g−1.

Applying Theorem 4.6.1 (with R = Z[ 12 ]), we obtain the E-polynomial

e(RG×RC(Σg)) = (uv − 3)(uv − 1)2g−1 + 22g+1(uv − 1)2g−1.
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Geometric method. Following the geometric method, the goal is to compute

the K0(Stckk)-module morphism ZG
( )

. Since K0(Stck[G/G]) is not finitely

generated as K0(Stckk)-module, it is impossible to compute this map in full, so

instead we restrict to a finitely generated submodule of K0(Stck[G/G]) which will

be invariant under this map.

Note that, via the natural map [G/G] → BG, we can view K0(Stck[G/G]) as a

K0(StckBG)-module. Moreover, from Proposition 4.8.4 it is not hard to see that

ZG
( )

promotes to a morphism of K0(StckBG)-modules.

Denote by I ∈ K0(Stck[G/G]) the class of the inclusion [{1}/G] → [G/G]

of the identity, and denote by S ∈ K0(Stck[G/G]) the class of the morphism

[Gm/G] → [G/G] induced by the squaring map x 7→ x2. Furthermore, we will

make use of the following classes in K0(StckBG). Denote by A,B and C the

classes [Gm/G], [Gmσ/G] and [(Z/2Z)/G], respectively, where Gm, Gmσ (recall

that σ denotes the non-trivial element of Z/2Z) and Z/2Z are viewed as subva-

rieties of G on which G acts by conjugation.

Proposition 4.11.1. The K0(StckBG)-submodule ⟨I, S⟩ ⊆ K0(Stck[G/G]) is

invariant under ZG
( )

, and

ZG
( )

(I) = A2 · I + 3B · S,
ZG
( )

(S) = (A+B)2 · S.

Proof. The image of I is the virtual class of the morphism [G2/G] → [G/G]

induced by the commutator [−,−] : G2 → G. Stratifying G by Gm and Gmσ, we
find

[x, y] = 1, [x, yσ] = x2,

[xσ, y] = y−2, [xσ, yσ] = x2y−2.

The first stratum contributesA2·I. The second and third stratum both contribute

B ·S. After a change of variables x′ = x2y−2 and y′ = y, we find that the fourth

stratum contributes B · S as well.

Next, the image of S is the virtual class of the morphism [(Gm×G2)/G]→ [G/G]

induced by

Gm ×G2 → G, (z, a, b) 7→ z2[a, b].

Stratifying G as above, this morphism is given by

z2[x, y] = z2, z2[x, yσ] = x2z2,

z2[xσ, y] = y−2z2, z2[xσ, yσ] = x2y−1z2.

The first stratum contributes A2 · S, the second and third stratum contribute

AB · S each, and the fourth stratum contributes B2 · S.
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In order to repeatedly apply ZG
( )

, we must understand how the scalars

A,B and C behave under multiplication.

Lemma 4.11.2. In K0(StckBG), the following relations hold:

(i) A2 = (L+ 2)A− (L− 2)C − (L+ 1)

(ii) B2 = AB

(iii) C2 = 2C

(iv) AC = (L− 1)C

Proof. (ii) and (iii) follow from the G-equivariant isomorphisms

Gmσ ×Gmσ → Gmσ ×Gm, (xσ, yσ) 7→ (xσ, yxσ)

Z/2Z× Z/2Z→ {±1} × Z/2Z, (a, b) 7→ (ab, b)

where G acts trivially on {±1}. For (i), the action of G on Gm by conjugation

can be extended to P1
k, so that A = [P1

k/G]−C. After a change of variables on P1
k,

the action of G can be described by σ · (x : y) = (−x : y). Note that this change

of variables uses the assumption that 2 is invertible. Now, [P1
k/G] = [A1

k/G] + 1

where G acts on A1
k by σ · x = −x, and thus A = [A1

k/G] + 1 − C. One sees,

similar to (ii) and (iii), that [A1
k/G]

2 = L[A1
k/G] and [A1

k/G]C = LC. It follows
that

A2 = ([A1
k/G] + 1− C)2

= (L+ 2)[A1
k/G]− 2LC + 1

= (L+ 2)A− (L− 2)C − (L+ 1).

Finally, (iv) follows as AC = ([A1
k/G] + 1− C)C = (L− 1)C.

The above lemma, in combination with Proposition 4.11.1, allows us to obtain

the images under ZG
( )

of the elements

I, A · I, C · I, B · S, AB · S, BC · S.

Moreover, it follows that the K0(Stckk)-submodule of K0(Stck[G/G]) generated

by these elements is invariant under ZG
( )

. In terms of these generators,

the map ZG
( )

is represented by the following matrix.
−L− 1 −L2 − 3L− 2 0 0 0 0

L+ 2 L2 + 3L+ 3 0 0 0 0

2− L −2L2 + 3L+ 2 L2 − 2L+ 1 0 0 0

3 0 0 −4L− 4 −4L2 − 12L− 8 0

0 3 0 4L+ 8 4L2 + 12L+ 12 0

0 0 3 8− 4L −8L2 + 12L+ 8 4L2 − 8L+ 4


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One diagonalizes this matrix with eigenvalues

1, 4, (L− 1)2, (L+ 1)2, 4(L− 1)2, 4(L+ 1)2,

and eigenvectors

L+ 1

−1
−1
−L− 1

1

1


,



0

0

0

L+ 1

−1
−1


,



0

0

(L− 1)
2

0

0

−1


,



2(L+ 1)2

−2(L+ 1)2

(L− 2)(L+ 1)2

−2
2

2− L


,



0

0

0

0

0

1


,



0

0

0

2

−2
L− 2


,

respectively. From the decomposition Σg = ◦ g◦ , we can now compute

the virtual class [XG(Σg)] in K0(StckBG). Using that

ZG
( )

(1) = I, ZG
( )

(I) = 1 and ZG
( )

(S) = 2

we obtain the following theorem.

Theorem 4.11.3. Let G = Gm ⋊ Z/2Z over a field of characteristic not equal

to 2. The virtual class of the G-character stack XG(Σg) in K0(StckBG) equals

[XG(Σg)] = L−1(L+ 1− (L+ 1)2g)

+ L−1((L+ 1)
2g − 1)A

+ 2L−1(4g − 1)(L− (L+ 1)2g−2 + 1)B

+ 1
2L

−1(L(L− 1)2g − (L− 2)(L+ 1)2g − 2)C

+ 2L−1(4g − 1)((L+ 1)2g−2 − 1)AB

+ L−1(4g − 1)(L(L− 1)2g−2 − (L− 2)(L+ 1)2g−2 − 2)BC.

Finally, in order to obtain the virtual class of the character stack in K0(Stckk),

we simply need to compute the images of 1, A,B,C,AB and BC under the

morphism

c! : K0(StckBG)→ K0(Stckk).

Lemma 4.11.4. In K0(Stckk), the following equalities hold:

(i) c!(1) = L/(L2 − 1)

(ii) c!(A) = 1

(iii) c!(B) = 1

(iv) c!(C) = (L− 1)−1

(v) c!(AB) = L

(vi) c!(BC) = 1
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Proof. (i) View G as the subgroup of GL2 generated by
(
x 0
0 x−1

)
and ( 0 1

1 0 ).

From the GL2-torsor [GL2/G] → BG follows that [BG] = [GL2/G]/[GL2].

Writing GL2 = Spec k[a, b, c, d, (ad− bc)−1], we can identify

[GL2/G] = Spec k[ab, cd, ad+ bc, (ad− bc)−2]

= Spec k[x, y, z, (z2 − 4xy)−1]

whose virtual class is easily seen to be L2(L− 1). Hence, we obtain c!(1) =

L2(L− 1)/[GL2] = L/(L2 − 1).

(ii) From the GL2-torsor GL2 ×G Gm → [Gm/G], it follows that [Gm/G] =

[Gm ×G GL2]/[GL2], where we can identify [Gm ×G GL2] with

Spec k[ab, cd, ad+ bc, x+ x−1, (ad− bc)(x− x−1), (ad− bc)−2]

= Spec k[u, v, w, t, s, (w2 − 4uv)−1]/(s2 − (t2 − 4)(w2 − 4uv))

whose virtual class can be computed as L(L− 1)2(L+1). Hence, we obtain

c!(A) = L(L− 1)2(L+ 1)/[GL2] = 1.

(iii) This case is analogous to (ii).

(iv) As [(Z/2Z)/G] = BGm and Gm is special, we find [(Z/2Z)/G] = (L− 1)−1.

(v) Note that [Gmσ×Gm/G] ∼= B(Z/2Z)× [Gm/⟨σ⟩]. Since [B(Z/2Z)] = 1 and

[Gm/⟨σ⟩] = L, we find that [Gmσ ×Gm/G] = L.

(vi) Finally, [(Gmσ × (Z/2Z))/G] = [B(Z/2Z)] = 1.

Corollary 4.11.5. Let G = Gm⋊Z/2Z over a field k of characteristic not equal

to 2. The virtual class of the G-character stack XG(Σg) in K0(Stckk) is given

by

[XG(Σg)] =
(L− 1)

2g−2 (
22g+1 + L− 3

)
2

+
(L+ 1)

2g−2 (
22g+1 + L− 1

)
2

.

Indeed, note that [XG(Σg)] ̸= [RG(Σg)]/[G] in K0(Stckk), reflecting the fact that

G is not connected.

4.12 Representation variety TQFT

While the construction of the TQFT of Theorem 4.7.8 is quite elegant, us-

ing it to explicitly compute the virtual class of character stacks can be rather

hard. When M is a connected closed manifold and G a special algebraic group,

the virtual class of the G-character stack XG(M) can also be computed as
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[XG(M)] = [RG(M)]/[G] by Proposition 3.5.5. Hence, if there were to exist

a (lax) TQFT that quantizes the virtual class of the G-representation variety

RG(M), this would lead to a more practical approach, as more stratifications

will be allowed for in computations: stratifications on RG(M), as opposed to

stratifications on XG(M), need not be G-equivariant with respect to the action

of G by conjugation. Such a TQFT was proposed by [GLM20], making use of

pointed bordisms instead of bordisms, that is, bordisms equipped with a choice

of basepoints on their boundaries. These basepoints are used to keep track of

any non-trivial loops that arise when bordisms are composed. The downside of

this TQFT is that it does not quite quantize the virtual class of RG(M), but

rather [G]n[RG(M)], where n is the number of basepoints on M . Without these

basepoints, no such TQFT exists.

Nevertheless, we can define the following morphisms, which will effectively com-

pute the virtual class of the representation variety. However, we stress that these

maps do not come from a TQFT.

Definition 4.12.1. Let G be a linear algebraic group over a field k. Define the

following K0(Vark)-module morphisms,

Zrep
G

( )
: K0(Vark)→ K0(VarG), 1 7→

[
{1} → G

]

Zrep
G

( )
: K0(VarG)→ K0(Vark),

 X

G

f

 7→ [
f−1(1)

]

Zrep
G

( )
: K0(VarG)→ K0(VarG),

 X

G

f

 7→
 X ×G2 (x,A,B)

G f(x)[A,B]


Zrep
G

( )
: K0(VarG)→ K0(VarG),

 X

G

f

 7→
 X ×G (x,A)

G f(x)A2


where {1} → G is the inclusion of the unit, and [A,B] = ABA−1B−1 denotes

the group commutator. Furthermore, we define the K0(Vark)-module morphism

Zrep
G

( )
: K0(VarG)⊗K0(VarG) → K0(VarG)[

X
f−→ G

]
⊗
[
Y

g−→ G
]
7→

[
X × Y m◦(f×g)−−−−−−→ G

]
where m : G×G→ G denotes the multiplication map.

From the explicit presentations of the G-representation varieties of the orientable

and non-orientable surfaces, RG(Σg) and RG(Nr), as in Example 2.1.4, it follows
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that their virtual classes can be computed through the following formulas.

[RG(Σg)] = Zrep
G

( )
◦ Zrep

G

( )g ◦ Zrep
G

( )
(1) (4.10)

[RG(Nr)] = Zrep
G

( )
◦ Zrep

G

( )g ◦ Zrep
G

( )
(1) (4.11)

Moreover, it follows immediately from the expressions in Definition 4.12.1 that

the following relations hold, for all X ∈ K0(VarG):

Zrep
G

( )
(X) = Zrep

G

( ) (
X ⊗

(
Zrep
G

( )
◦ Zrep

G

( ))
(1)
)

(4.12)

Zrep
G

( )
(X) = Zrep

G

( ) (
X ⊗

(
Zrep
G

( )
◦ Zrep

G

( ))
(1)
)

(4.13)

Let us explain why the above equations are useful. They show that, in order to

compute Zrep
G

( )
and Zrep

G

( )
, it suffices to understand only the image

of Zrep
G

( )
(1) under these maps, and to compute Zrep

G

( )
. However, this

latter is only ‘linear’ in the two inputs, whereas the original maps Zrep
G

( )
and Zrep

G

( )
are ‘quadratic’ in their inputs. This will result in significant

simplifications in the concrete computations of the following chapters.



Chapter 5

SL2-character stacks

In this chapter, we apply the theory of Chapter 4 to compute the virtual classes of

theG-character stacks XG(M), forM equal to both orientable and non-orientable

closed surfaces, and G equal to

SL2 =

{(
a b

c d

) ∣∣∣∣∣ ad− bc = 1

}
.

Even though G = SL2 is one of the simplest non-trivial groups, the resulting

computations are quite intricate. Throughout this chapter, we work over an al-

gebraically closed field k with char(k) ̸= 2.

Similar computations were performed by [LMN13, MM16] to compute the corre-

sponding E-polynomials. While the scissor relation (3.3) is the main ingredient

in these computations, they cannot simply be lifted to the Grothendieck ring of

varieties. Instead, many subtle points arise and have to be dealt with, such as

the study of P1-fibrations, equivariant motivic invariants (as in Section 3.6), and

non-zero elements in the Grothendieck ring of varieties whose E-polynomial is

zero.

As G = SL2 is a special group, the virtual class of the G-character stack XG(M)

is equal to that of the G-representation variety RG(M) divided by [SL2] = L(L−
1)(L + 1). Hence, we can apply the theory of Section 4.12, allowing us to make

non-equivariant stratifications. In order to use (4.10), (4.11), (4.12) and (4.13),

we will compute

Zrep
G

( )
◦ Zrep

G

( )
and Zrep

G

( )
◦ Zrep

G

( )
(5.1)

in Section 5.2 and Section 5.3, respectively, and in Section 5.4 we compute

Zrep
G

( )
. (5.2)

89
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It is not necessary to compute these maps in full. Rather it suffices to compute

their restriction to a certain finitely generated submodule of K0(VarG). The

generators for this submodule are described in Section 5.1. For the computation

of some of these maps, we need an extra relation in the Grothendieck ring of

varieties regarding P1-fibrations. This will also be discussed in Section 5.1.

Finally, in Section 5.5 we collect and discuss the results.

5.1 Generators, relations and P1-fibrations

Let us introduce some notation. The following varieties are all considered natu-

rally as varieties over G = SL2.

I+ = {( 1 0
0 1 )},

I− = {
(−1 0

0 −1

)
},

J+ = {A ∈ G | A conjugate to ( 1 1
0 1 )} ,

J− =
{
A ∈ G | A conjugate to

(−1 1
0 −1

)}
,

M = {A ∈ G | tr(A) ̸= ±2},
X2 = {(A, ℓ) ∈M × A1

k | ℓ2 = tr(A)− 2},
X−2 = {(A, ℓ) ∈M × A1

k | ℓ2 = tr(A) + 2},
X2,−2 = {(A, ℓ) ∈M × A1

k | ℓ2 = tr(A)2 − 4},
Y = {(A,ω) ∈M × A1

k \ {0} | tr(A) = ω2 + ω−2},

(5.3)

By the same symbols, we will also denote their virtual class in K0(VarG). These

elements will be the generators of the K0(Vark)-submodule of K0(VarG) on

which (5.1) and (5.2) will be computed. A useful alternative presentation of the

last five generators is as follows:

M ∼= (GL2/D × A1
k \ {0,±1}) � S2 → G, (P, λ) 7→ P

(
λ 0
0 λ−1

)
P−1

X2
∼= (GL2/D × A1

k \ {0,±1,±i}) � S2 → G, (P, ω) 7→ P
(

−ω2 0
0 −ω−2

)
P−1

X−2
∼= (GL2/D × A1

k \ {0,±1,±i}) � S2 → G, (P, ω) 7→ P
(
ω2 0
0 ω−2

)
P−1

X2,−2
∼= GL2/D × A1

k \ {0,±1} → G, (P, λ) 7→ P
(
λ 0
0 λ

)
P−1

Y ∼= GL2/D × A1
k \ {0,±1,±i} → G, (P, ω) 7→ P

(
ω2 0
0 ω−2

)
P−1

where D ⊆ GL2 is the subgroup of diagonal matrices, and where S2 acts on the

left coset space GL2/D by P 7→ P ( 0 1
1 0 ), and acts on the coordinates λ and ω

by λ 7→ λ−1 and ω 7→ ω−1. The following lemma gives a better understanding of

the relation between these generators.
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Lemma 5.1.1. The following relations hold in K0(VarG):

X2
2 = 2X2, X2

−2 = 2X−2, X2
2,−2 = 2X2,−2

and Y = X2X−2 = X2X2,−2 = X−2X2,−2.

Proof. The first equality follows from

X2 ×M X2 = {(A, ℓ1, ℓ2) ∈M × A2
k | ℓ21 = tr(A)− 2 and ℓ2 = ±ℓ1} ∼= X2 ⊔X2,

and similarly for the second and third. The final two equalities follow from the

fact that, if ℓ21 = tr(A)−2 and ℓ22 = tr(A)+2, then (ℓ1ℓ2)
2 = tr(A)2−4. Finally,

the fourth equality follows from the isomorphism

Y
∼−→ X2 ×M X−2 = {(A, ℓ1, ℓ2) ∈M × A2

k | ℓ21 = tr(A)− 2 and ℓ22 = tr(A) + 2}

which is given by (A,ω) 7→ (A,ω − ω−1, ω + ω−1) with inverse (A, ℓ1, ℓ2) 7→
(A, 12 (ℓ1 + ℓ2)).

Remark 5.1.2. The symbols X2, X−2 and X2,−2 were adopted from [Gon20]

and reflect the monodromy action of these spaces as covering spaces over M .

They are double covers of M , and have non-trivial monodromy for loops around

trA = 2 or trA = −2 as indicated by the subscript of the symbol. More precisely,

write T for the trivial representation of π1(M, ∗) and N2 (resp. N−2) for the 1-

dimensional representation that sends a loop around trA = 2 (resp. trA = −2)
to −1. Then the monodromy representations of X2, X−2 and X2,−2 are T ⊕N2,

T⊕N−2 and T⊕N2⊗N−2, respectively. Since Y ∼= X2×MX−2, it follows that Y

is a 4-to-1 cover ofM with monodromy representation T ⊕N2⊕N−2⊕N2⊗N−2.

In particular, the monodromy representation of M ⊔M ⊔ Y is equal to that of

X2⊔X−2⊔X2,−2. This is also the case for their Hodge monodromy representation

[LMN13, (5)], and for this reason, the generator Y is not needed in the E-

polynomial computations of [LMN13, MM16]. However, the analogous equality

does not (necessarily) hold in K0(VarG) as M ⊔M ⊔ Y is not isomorphic to

X2⊔X−2⊔X2,−2 overM : the former has two sections overM whereas the latter

has none.

Finally, when computing the images of the generators (5.3) under the maps

(5.1) and (5.2), we will encounter some non-trivial P1-fibrations. Recall, a P1-

fibration is a morphism P → X which is étale-locally of the form X×P1
k
πX−−→ X,

where πX denotes the projection to X. However, as many motivic invariants

χ : K0(Vark) → R satisfy χ(P ) = χ(P1
k)χ(X) for all P1-fibrations P → X, we

will impose this relation as well. This includes the point-count over finite fields,

and the E-polynomial and Euler characteristic over C [MOV09, Lemma 2.4].
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Definition 5.1.3. Let S be a variety over k. Denote by KP1

0 (VarS) the quotient

of K0(VarS) by relations of the form

[P ]S = [P1
k] · [X]S (5.4)

for all P1-fibrations P → X over S. Similarly, denote by KP1

0 (StckS) the quotient

of K0(StckS) by the same relations. Furthermore, if G is a finite group, denote by

KP1

0 (VarGS ) the quotient of K0(VarGS ) by the same relations, for all G-equivariant

P1-fibrations P → X over S.

We will need the G-equivariant version when dealing with varieties of the form

X �G, and we want to stratify X in a G-equivariant manner. In that case, it is

important that taking the quotient with respect to G respects the relation (5.4).

Proposition 5.1.4. Let S be variety over k, and let G be a finite group. The

morphism K0(VarGS ) → K0(VarS) given by [X]S 7→ [X � G]S descends to a

morphism

KP1

0 (VarGS )→ KP1

0 (VarS).

Proof. It must be shown that for every G-equivariant P1-fibration P → X over

S, we have [P �G]S = [P1
k] · [X �G]S in KP1

0 (VarS).

If G does not act faithfully on X, then N = {g ∈ G | g · x = x for all x ∈ X} is
a normal subgroup of G which acts trivially on X. Since X � G = X � (G/N)

and P �G = (P �N)� (G/N), we may replace G by G/N and P by P ′ = P �N
(still a P1-fibration over X) and assume that G does act faithfully on X.

Next, let H be a set of representatives for the conjugacy classes of subgroups of

G. Stratify X =
⊔
H∈HXH , where XH = {x ∈ X | Stab(x) is conjugate to H}.

Note that the action of G restricts to XH since Stab(g · x) = g Stab(x)g−1 for

all g ∈ G and x ∈ X. Furthermore, we have XH � G = YH � NG(H), where

YH = {x ∈ X | Stab(x) = H} and NG(H) is the normalizer of H in G, and

similarly (P ×X XH)�G = (P ×X YH)�NG(H). Hence, replacing G by NG(H)

and X by YH , we may assume Stab(x) is constant and normal in G. Moreover,

since we could assume G to act faithfully on X, we can assume the action of G

on X to be free.

After stratifying X into smooth strata, the quotient map X → X � G is étale

[Dré04, Proposition 4.11], so from the cartesian diagram

P P �G

X X �G
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it follows that P � G → X � G is a P1-fibration over S as well. Therefore,

[P �G]S = [P1
k] · [X �G]S , as desired.

5.2 Orientable surfaces

The goal of this section is to prove the following proposition, which completely

characterizes the first map of (5.1). The stratifications used are similar to those

in [LMN13], but adapted to the setting of KP1

0 (VarG).

Proposition 5.2.1. The virtual class of G2 → G given by (A,B) 7→ [A,B] in

KP1

0 (VarG) is equal to(
Zrep
G

( )
◦ Zrep

G

( ) )
(1)

= L(L− 1)(L+ 1)(L+ 4)I+ + L(L− 1)(L+ 1)I−

+ L(L− 3)(L+ 1)J+ + L2(L+ 3)J− + (L− 1)2(L+ 1)M

+ 2L(L+ 1)X2 − L(L+ 1)X−2 − (L− 1)2X2,−2 + L(L− 2)Y.

Proof. Write A =
(
a b
c d

)
and B = ( x y

z w ) and stratify based on the conjugacy

class of [A,B].

■ If [A,B] = 1, we consider the following cases.

– Case A = ±1. Since any B commutes with A, this stratum has a virtual

class equal to 2[G]I+ = 2L(L− 1)(L+ 1)I+.

– Case A ∈ J±. Conjugate A to
(±1 1

0 ±1

)
to find that B must be of the form(±1 x

0 ±1

)
. Hence, we obtain 4L[J+]I+ = 4L(L− 1)(L+ 1)I+.

– Case A ∈M . Note that A can be conjugated to
(
λ 0
0 λ−1

)
for some λ ̸= 0,±1,

after which B must be diagonal. Hence, this stratum can be identified with({
(P, λ, µ) ∈ GL2/D × (A1

k \ {0,±1})× (A1
k \ {0})

})
� S2

where A = P
(
λ 0
0 λ−1

)
P−1 and B = P

(
µ 0

0 µ−1

)
P−1, and where S2 acts

via (P, λ, µ) 7→
(
P ( 0 1

1 0 ) , λ
−1, µ−1

)
. To compute the virtual class of this

quotient, we apply Section 3.6 with the finite (cyclic) group S2 = Z/2Z.
Using notation as in (3.12), we find

[A1
k \ {0,±1}]S2 = (L− 2)⊗ T − 1⊗N,
[A1
k \ {0}]S2 = L⊗ T − 1⊗N,

[GL2/D]S2 = L2 ⊗ T + L⊗N.

Therefore, we obtain L(L− 2)(L− 1)(L+ 1)I+.
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Together, these cases add up to L(L− 1)(L+ 1)(L+ 4)I+.

■ Suppose [A,B] = −1. From the equivalent expressions ABA−1 = −B and

B−1AB = −A follows that trA = trB = 0. In particular, we can conjugate

A to
(
i 0
0 −i

)
, after which B must be of the form

(
0 y

−1/y 0

)
. Hence, we obtain

L(L− 1)(L+ 1)I−.

■ Suppose [A,B] ∈ J+. Conjugate [A,B] to ( 1 1
0 1 ). From AB = ( 1 1

0 1 )BA follows

that trB = tr(ABA−1) = tr
(
( 1 1
0 1 )B

)
and hence z = 0. Similarly, trA =

tr
(
BAB−1

)
= tr

(
( 1 1
0 1 )

−1
A
)
implies c = 0. Now detA = detB = 1 yields

d = a−1 and w = x−1, and the only remaining equation is y(a− a−1)− b(x−
x−1) = 1/ax. Consider the following cases.

– If a ̸= ±1, we can solve for y = (1/ax+ b(x− x−1))/(a− a−1), and obtain

L(L− 3)(L− 1)J+.

– If a = ±1, we must have x ̸= ±1 and can solve for b = a/(1−x2). We obtain

2L(L− 3)J+.

Together, these cases add up to L(L− 3)(L+ 1)J+.

■ Suppose [A,B] ∈ J−. Conjugate [A,B] to
(−1 1

0 −1

)
. From trB = tr(ABA−1) =

tr
( (−1 1

0 −1

)
B
)
follows that z = 2(x + w), and from trA = tr(BAB−1) =

tr
( (−1 1

0 −1

)−1
A
)
follows that c = −2(a+ d). The only remaining equation is

ay − bw − bx− dw + dy = 0. Consider the following cases.

– Case w = −x. From detB = 1 follows that x = ±i. The action of conjugation

by {( 1 α0 1 )} ∼= Ga turns this stratum into a Ga-torsor over the stratum with

y = 0. On this stratum with y = 0, we can solve for d = 0, and detA = 1

implies a ̸= 0 and b = 1/2a. Hence, we obtain 2L(L− 1)J−.

– Case w ̸= −x. The action of conjugation by {( 1 α0 1 )} ∼= Ga turns this stratum
into a Ga-torsor over the stratum with w = 0. On this stratum with w = 0,

it follows from detB = 1 that x ̸= 0 and y = −1/2x. We can solve for

b = −(a+ d)/2x2. Finally, detA = 1 translates to ad− (a+ d)2/x2 = 1.

∗ Case d = −a. Solve for a = ±i to obtain 2L(L− 1)J−.

∗ Case d ̸= −a. Make a substitution x′ = (a+ d)/x to rewrite the equation

as ad− (x′)2 = 1. This is easily seen to give L(L2 − L+ 4)J−.

Together, these cases add up to L2(L+ 3)J−.

■ Suppose [A,B] ∈M . Diagonalizing [A,B], this stratum can be expressed as{
(P,A,B, λ) ∈ GL2/D ×G2 × (A1

k \ {0,±1})
∣∣ [A,B] =

(
λ 0
0 λ−1

)}
� S2
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where S2 acts via λ 7→ λ−1 and P 7→ P ( 0 1
1 0 ), and on A and B via conjugation

by ( 0 1
1 0 ). From trA = tr(BAB−1) = tr

( (
λ−1 0
0 λ

)
A
)
follows that d = a/λ,

and from trB = tr(ABA−1) = tr
( (

λ 0
0 λ−1

)
B
)
that w = λx. The relevant

equations are now ax+ bz − λ(ax+ cy) = 0 and detA = a2λ−1 − bc = 1 and

detB = λx2 − yz = 1. Consider the following cases.

– Case b = c = 0. It follows that a2 = λ, x = 0 and z = −y−1. Note that S2

acts via a 7→ d = a/λ = a−1 and y 7→ z = −y−1. Therefore, we obtain the

following S2-virtual classes

[{y ̸= 0}]S2 = L⊗ T − 1⊗N
[GL2/D × {a2 = λ}]S2

M = X−2 ⊗ T + (Y −X−2)⊗N.

Multiplying these and taking the quotient by S2, we obtain (L+1)X−2−Y .

– Case y = z = 0. Similarly, we obtain (L+ 1)X−2 − Y .

– Case b = 0 or c = 0, but not both. The action of S2 swaps b and c, so

we can identify the S2-quotient with the stratum where b = 0 and c ̸= 0.

The action of conjugation by
{(

α 0
0 α−1

)} ∼= Gm turns this stratum into a

Gm-torsor over the stratum with c = 1. On this stratum with c = 1, we find

that a2 = λ, y = ax(λ−1 − 1) with x ̸= 0, and z = (λx2 − 1)/y. Hence, we

obtain (L− 1)2Y .

– Case y = 0 or z = 0, but not both. Similarly, we obtain (L− 1)2Y .

– In the above cases, we have counted twice the stratum given by b = z = 0

or c = y = 0, so we need to subtract it once. Note that these conditions

cannot be satisfied simultaneously, and moreover, the action of S2 swaps

them. Therefore, we can identify the S2-quotient with the stratum where

b = z = 0 (and c, y ̸= 0). The action of conjugation by
{(

α 0
0 α−1

)} ∼= Gm
turns this stratum into a Gm-torsor over the stratum with c = 1. On this

stratum with c = 1, we find a2 = λ and solve for (x, y) = ±
(
a−1, a−1 − a

)
.

Hence, we obtain −2(L − 1)Y , where the minus sign signifies this stratum

must be subtracted from the total.

– Case bcyz ̸= 0. Solve for c = (a2/λ−1)/b and z = (λx2−1)/y. The conditions
c, z ̸= 0 translate to a2 ̸= λ and x−2 ̸= λ. The remaining equation is

x2 − a′(λ− 1)

(λ+ 1)
xy′ +

(
1− (a′)2

λ+ λ−1 + 2

)
(y′)2 = λ−1,

where we made substitutions y′ = y/b and a′ = a(1 + λ−1). The condition

a2 ̸= λ translates to (a′)2 ̸= λ + λ−1 + 2. This equation describes a family

of conics over the plane {(a′, λ) | (a′)2 ̸= λ + λ−1 + 2} with discriminant

D = (a′ − 2)(a′ + 2). To compute its virtual class, the idea is to complete
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this family of conics to a P1-fibration over the (a′, λ)-plane, for D ̸= 0, so

that relation (5.4) can be used. The stratum at infinity will be computed

separately, and must be subtracted from the total.

Note that the variable b ̸= 0 is independent of a′, x and y′, except through

the action of S2 given by b 7→ c = (a′λ/(λ+1)2−1)/b. Extending b to be P1-

valued, we can regard this stratum as a P1-fibration minus the stratum with

b = 0 or b = ∞. Note that the cases b = 0 and b = ∞ are interchanged by

the action of S2. Hence, for the sake of the computation, we can effectively

act as if b is completely independent of a′, x and y′, with S2-virtual class

[{b ̸= 0}]S2 = L⊗ T − 1⊗N .

∗ Case D = 0. Solve for a′ = ±2. Suppose a′ = 2. Then
(
x − λ−1

λ+1y
′)2 =

λ−1. Write ω = x − λ−1
λ+1y

′ so that ω2 = λ−1 and note that S2 acts via

ω 7→ −ω−1. The condition x2 ̸= λ−1 translates to x ̸= ±ω. Substituting
x′ = x/ω yields x′ ̸= ±1 and S2 acts via x′ 7→ −x′. From the S2-virtual

classes

[{b ̸= 0}]S2 = L⊗ T − 1⊗N
[{x′ ̸= ±1}]S2 = (L− 1)⊗ T − 1⊗N

[GL2/D × {ω2 = λ−1}]S2

M = X2 ⊗ T + (Y −X2)⊗N

we obtain L(L+1)X2−(2L−1)Y . The case a′ = −2 is completely similar,

so we double this virtual class to obtain 2L(L+ 1)X2 − (4L− 2)Y .

∗ Case D ̸= 0. Complete the family of conics to a P1-fibration given by

X2 − a′(λ− 1)

(λ+ 1)
XY +

(
1− (a′)2

λ+ λ−1 + 2

)
Y 2 = λ−1Z2, (5.5)

over the base B = GL2/D × {(a′, λ) | a′ ̸= ±2 and (a′)2 ̸= λ+ λ−1 + 2}.
Regarding B as the open complement of (a′)2 = λ+λ−1+2, we compute

its S2-virtual class as

[B]S2

M = (L− 2)(M ⊗ T + (X2,−2 −M)⊗N)

− (X−2 ⊗ T + (Y −X−2)⊗N).

Multiplying by [P1
k] = L + 1 and by [{b ̸= 0}]S2 = L ⊗ T − 1 ⊗ N , and

taking the quotient by S2, we obtain

(L− 2)(L+ 1)2M − (L+ 1)2X−2 − (L− 2)(L+ 1)X2,−2 + (L+ 1)Y.

∗ Now we must subtract the stratum of points at infinity, that is, the points

given by Z = 0. Since there are no solutions with X = 0, we can work
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with the dehomogenized coordinate Y/X. In fact, writing u = Y/X ·(
1− (a′)2λ

(λ+1)2

)
, equation (5.5) reduces to

(
2u− a′(λ− 1)

(λ+ 1)

)2

= (a′ − 2)(a′ + 2).

Substituting u′ = 2u− a′(λ−1)
λ+1 , we find that u′ is invariant under S2, and

the equation simplifies to

(u′)2 = (a′)2 − 4.

Regarding this stratum as the open complement of (a′)2 = λ + λ−1 + 2,

we compute its S2-virtual class as[
GL2/D ×

{
(u′)2=(a′)2−4̸=0

(a′)2 ̸=λ+λ−1+2

}]S2

M
= (L− 3)(M ⊗ T − (X2,−2 −M)⊗N)

− Y ⊗ (T +N).

Multiplying by [{b ̸= 0}]S2 = L ⊗ T − 1 ⊗N and taking the quotient by

S2, we obtain

−
(
(L− 3)(L+ 1)M − (L− 3)X2,−2 − (L− 1)Y

)
,

where the overall minus sign signifies this stratum should be subtracted

from the total.

∗ Finally, we must subtract the stratum where x−2 = λ. In this case, we

solve for y′ = 0 or y′ = a′x(λ−1)(λ+1)
(λ+1)2−(a′)2λ . When a′ = 0, these values coincide,

so from the S2-virtual classes

[{b ̸= 0}]S2 = L⊗ T − 1⊗N
[GL2/D × {x−2 = λ}]S2

M = X−2 ⊗ T + (Y −X−2)⊗N

we obtain

−
(
(L+ 1)X−2 − Y

)
.

When a′ ̸= 0, the values for y′ are interchanged by the action of S2.

Hence, we can identify the S2-quotient with the stratum where y′ = 0.

The condition (a′)2 ̸= λ + λ−1 + 2 translates to a′ ̸= ±(x + x−1). This

gives

−
(
(L− 5)(L− 1)Y

)
.

Together, these cases add up to (L − 1)2(L + 1)M + 2L(L + 1)X2 − L(L +

1)X−2 − (L− 1)2X2,−2 + L(L− 2)Y .
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5.3 Non-orientable surfaces

Analogous to the previous section, we prove the following proposition, charac-

terizing the second map of (5.1).

Proposition 5.3.1. The virtual class of G→ G given by A 7→ A2 in K0(VarG)

is equal to(
Zrep
G

( )
◦ Zrep

G

( ))
(1) = 2I+ + L(L+ 1)I− + 2J+ +X−2.

Proof. Write A =
(
a b
c d

)
and stratify based on the conjugacy class of A2.

■ If A2 = 1, then A = ±1, so we obtain 2I+.

■ Suppose A2 = −1. If b = 0, then d = a−1 with a = ±i, contributing 2LI−.
If b ̸= 0 and c = 0, then d = a−1 with a ̸= ±i, contributing 2(L − 1)I−. If

b, c ̸= 0, then d = −a and a2 + bc = −1, contributing (L − 2)(L − 1)I−. In

total, we obtain L(L+ 1)I−.

■ Suppose A2 ∈ J+. By conjugating we can assume A2 = ( 1 1
0 1 ). There are no

solutions for c ̸= 0, and c = 0 yields a = d = b/2 = ±1, so we obtain 2J+.

■ There are no solutions with A2 ∈ J−.

■ Suppose A2 ∈M . This stratum is given by

(
GL2/D × (A1

k \ {0,±1,±i})
)

� S2 → G, (P, ω) 7→ P
(
ω2 0
0 ω−2

)
P−1,

where S2 acts on ω via ω 7→ ω−1. Hence, this is equal to X−2.

5.4 Multiplication in SL2

In this section, we compute the images Zrep
G

( )
(X ⊗ Y ) for all pairs (X,Y )

of generators in (5.3), in a series of lemmas. For conciseness, we will omit some

cases, but those can be obtained directly from the cases we do compute. For

example, the cases with X = I− are straightforward, and the cases with X = J−
and X = X−2 can be derived from those with X = J+ and X2.

First, let us fix some notation. When computing Zrep
G

( )
(X ⊗ Y ) for a pair

(X,Y ), we write A for a point of X and B = ( x y
z w ) for a point of Y . When Y

is of the form (GL2/D × Λ) � S2 for some S2-variety Λ over A1
k \ {0,±1}, we

also write B = P
(
µ 0

0 µ−1

)
P−1 with P =

(
α β
γ δ

)
∈ GL2/D and µ ∈ A1

k \ {0,±1}.
Recall that S2 acts on (P, µ) via (P, µ) 7→

(
P ( 0 1

1 0 ) , µ
−1
)
. More specifically, when

Λ = A1
k \ {0,±1,±i}, we write µ = ω2 with ω ∈ Λ. Similarly, when X is of the
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form (GL2/D×Λ)�S2 for such Λ, we write A = Q
(
ρ 0

0 ρ−1

)
Q−1 with Q ∈ GL2/D

and ρ ∈ A1
k \ {0,±1}, and write ρ = ν2 when Λ = A1

k \ {0,±1,±i}.

When dealing with the strata where AB ∈ M , we usually want to diagonalize

AB. This can be done once we base change along the double cover (GL2/D ×
A1
k \ {0,±1}) → M . We write λ for the coordinate on A1

k \ {0,±1}. The group

S2 acts on this double cover via (P, λ) 7→
(
P ( 0 1

1 0 ) , λ
−1
)
.

Strata often admit symmetry by the action of conjugation with some subgroup of

SL2. When this happens for the subgroups {( 1 α0 1 )} ∼= Ga or
{(

α 0
0 α−1

)} ∼= Gm,

we will speak of Ga-symmetry or Gm-symmetry, respectively. In these cases,

such a stratum turns into a (Zariski-locally trivial) Ga-torsor or Gm-torsor, so

to compute its virtual class it suffices to compute that of the base.

Finally, to avoid confusion between the various S2-actions, we write Sλ2 , S
µ
2 and

Sρ2 to differentiate between them.

Lemma 5.4.1.

Zrep
G

( )
(J+ ⊗ J+) = (L+ 1)(L− 1)I+ + (L− 2)J+ + LJ−

+ (L+ 1)M −X2,−2

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then A = B−1, so we obtain [J+]I+ = (L+ 1)(L− 1)I+.

■ If AB = −1, there are no solutions as trA = 2 ̸= −2 = − trB−1.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A =

(
w−z x−y
−z x

)
.

From trA = trB = 2 follows that z = 0 and (using detB = 1) also x = w = 1.

Furthermore, y ̸= 0, 1 as A,B ̸= 1, so we obtain (L− 2)J+.

■ If AB ∈ J−, then conjugate to AB =
(−1 1

0 −1

)
and solve for A =

(−w−z x+y
z −x

)
.

From trA = trB = 2 follows that z = −4. Fix x = 0 using Ga-symmetry, and

solve for w = 2 and y = 1/4. We obtain LJ−.

■ If AB ∈ M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λw −λy

−z/λ x/λ

)
.

From trB = 2 follows that w = 2−x. From trA = 2 and detA = 1 and λ ̸= 1

follows that z ̸= 0. From detB = 1 follows that y = (xw−1)/z. From trA = 2

follows that x = 2λ
λ+1 . Make a substituting z′ = z λ+1

λ−1 , and note that Sλ2 acts

via z′ 7→ 1/z′. Now, from the Sλ2 -virtual classes

[{z′ ̸= 0}]S
λ
2 = L⊗ T − 1⊗N

[GL2/D × {λ ̸= 0,±1}]S
λ
2

M =M ⊗ T − (X2,−2 −M)⊗N

follows that the quotient by Sλ2 is (L+ 1)M −X2,−2.
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Lemma 5.4.2.

Zrep
G

( )
(J+ ⊗M) = L(L− 2)(J+ + J−) + (L− 3)(L+ 1)M + 2X2,−2

Proof. Note that Zrep
G

( )
(X ⊗ G) = [X] · G for all X ∈ K0(VarG). Since

G = I++I−+J++J−+M , the result can be derived from the above lemma.

Lemma 5.4.3.

Zrep
G

( )
(J+ ⊗X2) = L(L− 3)(J+ + J−) + (L− 3)(L+ 1)M

− (L+ 1)X2 − (L− 3)X2,−2 + LY

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = ±1, there are no solutions.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A =

(
w−z x−y
−z x

)
. From

trA = 2 follows that z = x+ w − 2 and from detB = 1 that y = (xw − 1)/z.

Furthermore, we can solve for w = ℓ2−x+2 with ℓ ̸= 0,±2i. Hence, we obtain

L(L− 3)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 3)J−.

■ If AB ∈ M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λw −λy

−z/λ x/λ

)
.

Consider the following cases.

– Case y = z = 0. There are no solutions.

– Case y = 0 or z = 0, but not both. Since the action of Sλ2 swaps y and z, we

can identify the Sλ2 -quotient with the stratum where z = 0. From trA = 2

and detA = 1 follows that x = w−1 = λ, so in particular ℓ2 = λ+ λ−1 − 2.

Since A ̸= 1, we have y ̸= 0, so we obtain (L− 1)Y .

– Case yz ̸= 0. From trA = 2 follows that w = (2−x/λ)/λ and from detB = 1

that y = (xw − 1)/z. We substitute z′ = zλ/(x − λ) so that Sλ2 acts via

z′ 7→ 1/z′. Using ℓ2 = trB−2, we can solve for x = λ(ℓ2λ+2λ−2)/(λ2−1).

The conditions y ̸= 0 and trB ̸= ±2 translate to ℓ2 ̸= λ + λ−1 − 2 and

ℓ2 ̸= 0,−4. From the Sλ2 -virtual classes

[{z′ ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{
ℓ2 ̸=λ+λ−1−2
ℓ ̸=0,±2i

}]Sλ
2

M
= (L− 3)(M ⊗ T + (X2,−2 −M)⊗N)

− (X2 ⊗ T + (Y −X2)⊗N)

we obtain (L− 3)(L+ 1)M − (L+ 1)X2 − (L− 3)X2,−2 + Y .
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Lemma 5.4.4.

Zrep
G

( )
(J+ ⊗X2,−2) = L(L− 3)(J+ + J−) + (L− 3)(L+ 1)M + 2X2,−2

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = ±1, there are no solutions.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1. We

have γ ̸= 0 since trA = 2 and µ ̸= ±1. Hence, we can fix γ = 1, α = 0 and

β = 1 by lifting P to GL2 and using Ga-symmetry. Now trA = 2 implies

δ = −µ−1
µ+1 with µ ̸= 0,±1, so we obtain L(L− 3)J+.

■ If AB ∈ J+, then similarly we obtain L(L− 3)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. The action of Sλ2 swaps α and γ, so we can break the Sλ2 -action

and consider only the stratum with γ = 0. Fix α = δ = 1 by lifting P to

GL2. From trA = 2 follows that µ = λ. Furthermore, we must have β ̸= 0

to ensure A ̸= 1, so we obtain (L− 1)X2,−2.

– Case αγ ̸= 0 and βδ = 0. The action of Sλ2 swaps β and δ, so we can identify

the Sλ2 -quotient with the stratum where δ = 0. Fix β = γ = 1 by lifting

P to GL2. From trA = 2 follows that µ = λ−1. Furthermore, there are no

conditions on α other than α ̸= 0, so we obtain another (L− 1)X2,−2.

– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with µ = λ±1, and use trA = 2 to solve for β = α (λ−µ)2
(λµ−1)2 . Note

that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{

λ̸=0,±1
µ̸=0,±1,λ±1

}]Sλ
2

M
= (L− 3)(M ⊗ T + (X2,−2 −M)⊗N)

−X2,−2 ⊗ (T +N)

we obtain (L− 3)(L+ 1)M − 2(L− 2)X2,−2.

Lemma 5.4.5.

Zrep
G

( )
(J+ ⊗ Y ) = L(L− 5)(J+ + J−) + (L− 5)(L+ 1)M

− (L− 5)X2,−2 + (L− 1)Y

Proof. Stratify based on the conjugacy class of the product AB.
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■ If AB = ±1, there are no solutions.

■ If AB ∈ J+, the computation is the same as for A ∈ J+ and B ∈ X2,−2, but

with µ = ω2 and ω ̸= 0,±1,±i. Hence, we obtain L(L− 5)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0.

Fix α = δ = 1 by lifting P to GL2. From trA = 2 follows that ω2 = λ.

Furthermore, we must have β ̸= 0 to ensure A ̸= 1, so we obtain (L− 1)Y .

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

δ = 0. Fix β = γ = 1 by lifting P to GL2. From trA = 2 follows that

ω2 = λ−1. Furthermore, there are no conditions on α other than α ̸= 0, so

we obtain another (L− 1)Y .

– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with µ = λ±1, and use trA = 2 to solve for β = α (λ−µ)2
(λµ−1)2 . Note

that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{

λ ̸=0,±1
ω2 ̸=0,±1,λ±1

}]Sλ
2

M
= (L− 5)(M ⊗ T + (X2,−2 −M)⊗N)

− Y ⊗ (T +N)

we obtain (L− 5)(L+ 1)M − (L− 5)X2,−2 − (L− 1)Y .

Lemma 5.4.6.

Zrep
G

( )
(M ⊗M) = L(L2 − 2L− 1)(I+ + I−)

+ L(L− 3)(L− 1)(J+ + J−)

+ (L3 − 4L2 + 3L+ 4)M − 4X2,−2

Zrep
G

( )
(M ⊗X2) = L(L2 − 3L− 2)(I+ + I−)

+ L(L− 4)(L− 1)(J+ + J−)

+ (L3 − 5L2 + 2L+ 6)M + L(X2 +X−2)

+ 2(L− 3)X2,−2 − 2LY

Zrep
G

( )
(M ⊗X2,−2) = L(L− 3)(L+ 1)(I+ + I−)

+ L(L− 3)(L− 1)(J+ + J−)

+ (L− 3)(L− 2)(L+ 1)M − 6X2,−2
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Zrep
G

( )
(M ⊗ Y ) = L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)(L− 2)(L+ 1)M + 2(L− 5)X2,−2 − 2LY

Proof. Note that Zrep
G

( )
(G ⊗ X) = [X] · G for all X ∈ K0(VarG). Since

G = I+ + I− + J+ + J− +M , the result follows from the earlier lemmas.

Lemma 5.4.7.

Zrep
G

( )
(X2,−2 ⊗X2,−2) = 2L(L− 3)(L+ 1)(I+ + I−)

+ L(L− 3)(L− 1)(J+ + J−)

+ (L− 3)2(L+ 1)M + (L2 − 4L− 9)X2,−2

Proof. Stratify based on the conjugacy class of the product AB.

■ IfAB = 1, then solve forA = B−1 to obtain [X2,−2×MX2,−2]I+ = 2[X2,−2]I+ =

2L(L− 3)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [X2,−2 ×M X2,−2]I− =

2[X2,−2] = 2L(L− 3)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γ = 0. Fix α = δ = 1 by lifting P to GL2, and fix β = 0 using

Ga-symmetry. Solving for ρ = µ±1 ̸= 0,±1, we obtain 2L(L− 3)J+.

– Case γ ̸= 0. Fix γ = 1, α = 0 and β = 1 by lifting P to GL2 and using

Ga-symmetry. Using trA = ρ + ρ−1, solve for δ = − (µ−ρ)(µρ−1)
ρ(µ−1)(µ+1) . Since

µ, ρ ̸= 0,±1, we obtain L(L− 3)2J+.

■ If AB ∈ J−, then similarly we obtain L(L− 3)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both cases

µ ̸= 0,±1,±λ, so we obtain 2L(L− 5)X2,−2.

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

β = 0. Fix α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both

cases µ ̸= 0,±1,±λ, so we obtain 2(L− 1)(L− 5)X2,−2.
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– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Solve for β =
α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Note that α ̸= β is automatically satisfied as there are no

solutions with ρ = λ±1µ±1. Note that Sλ2 acts via α 7→ α−1. From the

Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{

λ,µ ̸=0,±1
ρ̸=0,±1,λ±1µ±1

}]Sλ
2

M
= (L− 3)2(M ⊗ T + (X2,−2 −M)⊗N)

− 2(L− 5)X2,−2 ⊗ (T +N)

we obtain (L− 3)2(L+ 1)M − (3L2 − 18L+ 19)X2,−2.

Lemma 5.4.8.

Zrep
G

( )
(X2,−2 ⊗ Y ) = 2L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)(L− 3)(L+ 1)M

+ (L− 5)(L+ 3)X2,−2 − 4LY

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [X2,−2 ×M Y ]I+ = 2[Y ]I+ =

2L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [X2,−2 ×M Y ]I− = 2[Y ]I+ =

2L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, the computation is the same as for A ∈ X2,−2 and B ∈ X2,−2,

but with µ = ω2 and ω ̸= 0,±1,±i. Hence, we obtain L(L− 5)(L− 1)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both cases

µ = ω2 ̸= 0,±1,±λ, so we obtain 2L(L− 5)X2,−2 − 4LY .

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

β = 0. Fix α = δ = 1 by lifting P to GL2. Solve for ρ = (λµ−1)±1. In both

cases µ = ω2 ̸= 0,±1,±λ, so we obtain 2(L− 1)(L− 5)X2,−2 − 4(L− 1)Y .

– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Furthermore,
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note that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{
λ,ω2,ρ ̸=0,±1
ρ̸=λ±1ω±2

}]Sλ
2

M
= (L− 5)(L− 3)(M ⊗ T + (X2,−2 −M)⊗N)

− (2(L− 5)X2,−2 − 4Y )⊗ (T +N)

we obtain (L− 5)(L− 3)(L+1)M − (L− 5)(3L− 5)X2,−2 +4(L− 1)Y .

Lemma 5.4.9.

Zrep
G

( )
(Y ⊗ Y ) = 4L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)2(L+ 1)M − (L− 5)2X2,−2 + 2L(L− 9)Y

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [Y ×M Y ]I+ = 4[Y ]I+ =

4L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [Y ×M Y ]I− = 4[Y ]I− =

L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γ = 0. Fix α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-
symmetry. Then ν2 = ω±2, that is, ν = ±ω±1 ̸= 0,±1,±i. Hence, we obtain

4L(L− 5)J+.

– Case γ ̸= 0. Fix γ = 1, α = 0 and β = 1 by lifting P to GL2 and using

Ga-symmetry. Solve for δ = − (µ−ρ)(µρ−1)
ρ(µ−1)(µ+1) . Since ω, ν ̸= 0,±1,±i, we obtain

L(L− 5)2J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case αγ = 0. Identify the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ν
2 = (λω−2)±1. If ν2 = λω−2, then

substituting u = νω yields u2 = λ with ω ̸= 0,±1,±i,±u,±iu. The case

ν2 = (λω−2)−1 is similar with u = ν/ω, so we obtain 2L(L− 9)Y .

– Case αγ ̸= 0 and βδ = 0. Identify the Sλ2 -quotient with the stratum where

β = 0. Fix α = δ = 1 by lifting P to GL2. Solve for ν2 = (λω−2)±1. Again,

substituting u = νω±1, respectively, we obtain 2(L− 9)(L− 1)Y .
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– Case αβγδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2. Note that there are no

solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Furthermore,

note that Sλ2 acts via α 7→ α−1. From the Sλ2 -virtual classes

[{α ̸= 0}]S
λ
2 = L⊗ T − 1⊗N[

GL2/D ×
{
λ,ω2,ν2 ̸=0,±1
ν2 ̸=λ±1ω±2

}]Sλ
2

M
= (L− 5)2(M ⊗ T + (X2,−2 −M)⊗N)

− 2(L− 9)Y ⊗ (T +N)

we obtain (L− 5)2(L+ 1)M − (L− 5)2X2,−2 − 2(L− 9)(L− 1)Y .

Lemma 5.4.10.

Zrep
G

( )
(X2,−2 ⊗X2) = L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 4)(L− 1)(J+ + J−)

+ (L− 3)2(L+ 1)M + (L− 9)X2,−2 − 2LY

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [X2,−2 ×M X2]I+ = [Y ]I+ =

L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [X2,−2×MX−2]I− = [Y ]I+ =

L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γδ = 0. Identify the Sµ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-symmetry. Solve for

ρ = ω±2. Hence, we obtain 2L(L− 5)J+.

– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = ω±2, and solve for

β = − ρ(µ−1)(µ+1)
(µ−ρ)(µρ−1) . Since[{

ρ,ω2 ̸=0,±1
ρ ̸=ω±2

}
� Sµ2

]
= (L− 3)2 − (L− 5) = L2 − 7L+ 14,

we obtain L(L2 − 7L+ 14)J+.

■ If AB ∈ J−, then similarly we obtain L(L− 4)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.
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– Case P is (anti-)diagonal. Identify the Sµ2 -quotient with the stratum where

P is diagonal. Fix α = δ = 1 by lifting P to GL2 and using Gm-symmetry.

Solve for ρ = (λω−2)±1, and identify the Sλ2 -quotient with the stratum

where ρ = λω−2. From the conditions ω ̸= 0,±1,±i and ω2 ̸= ±λ, we
obtain (L− 5)X2,−2 − 2Y .

– Case P has one zero. Identify the Sµ2 -quotient with the stratum where αγ =

0, and subsequently the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ρ = (λω−2)±1. From the conditions

β ̸= 0, ω ̸= 0,±1,±i and ω2 ̸= ±λ, we obtain 2(L− 5)(L− 1)X2,−2− 4(L−
1)Y .

– Case P has no zeros. Fix γ = δ = 1 by lifting P to GL2. Note that there are

no solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Substituting

α′ = αλρ−µλµ−ρ , we find that Sλ2 and Sµ2 act via α′ 7→ 1/α′ and α′ 7→ α′,

respectively. From the Sλ2 × S
µ
2 -virtual classes

[{α′ ̸= 0}]S
λ
2 ×Sµ

2 = (L⊗ Tλ − 1⊗Nλ)⊗ Tµ[
GL2/D ×

{
ρ,ω2 ̸=0,±1
ρ ̸=λ±1ω±2

}]Sλ
2 ×Sµ

2

M
=

(L− 3)((L− 3)⊗ Tµ − 2⊗Nµ)(M ⊗ Tλ + (X2,−2 −M)⊗Nλ)

− ((L− 5)X2,−2 − 2Y )⊗ (Tλ +Nλ)⊗ (Tµ ⊗Nµ)

we obtain (L− 3)2(L+ 1)M − 2(L2 − 6L+ 7)X2,−2 + 2(L− 1)Y .

Lemma 5.4.11.

Zrep
G

( )
(Y ⊗X2) = 2L(L− 5)(L+ 1)(I+ + I−)

+ L(L− 5)(L− 1)(J+ + J−)

+ (L− 5)(L− 3)(L+ 1)M

− (L− 5)(L− 3)X2,−2 + L(L− 9)Y

Proof. Stratify based on the conjugacy class of the product AB.

■ If AB = 1, then solve for A = B−1 to obtain [Y ×M X2]I+ = 2[Y ]I+ =

2L(L− 5)(L+ 1)I+.

■ If AB = −1, then solve for A = −B−1 to obtain [Y ×M X−2]I− = 2[Y ]I− =

2L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.
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– Case γδ = 0. Identify the Sµ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-symmetry. Solve for

ν2 = ω±2, that is, ν = ±ω±1. Since ω ̸= 0,±1,±i, we obtain 4L(L− 5)J+.

– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = ω±2, and solve for

β = − ρ(µ−1)(µ+1)
(µ−ρ)(µρ−1) . Since[{

ν,ω ̸=0,±1,±i
ν ̸=±ω±1

}
� Sµ2

]
= (L− 5)(L− 3)− 2(L− 5) = (L− 5)2,

we obtain L(L− 5)2J+.

■ If AB ∈ J−, then similarly we obtain L(L− 5)(L− 1)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case P is (anti-)diagonal. Identify the Sµ2 -quotient with the stratum where

P is diagonal. Fix α = δ = 1 by lifting P to GL2. Solve for ν2 = (λω−2)±1,

and identify the Sλ2 -quotient with the stratum where ν2 = λω−2. Substitute

u = νω so that u2 = λ. From the condition ω ̸= 0,±1,±i,±u,±iu, we
obtain (L− 9)Y .

– Case P has one zero. Identify the Sµ2 -quotient with the stratum where αγ =

0, and subsequently the Sλ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2. Solve for ν
2 = (λω−2)±1. Again, substituting

u = νω±1, respectively, we obtain 2(L− 9)(L− 1)Y .

– Case P has no zeros. Fix γ = δ = 1 by lifting P to GL2. Note that there are

no solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . Substituting

α′ = αλρ−µλµ−ρ , we find that Sλ2 and Sµ2 act via α′ 7→ 1/α′ and α′ 7→ α′,

respectively. From the Sλ2 × S
µ
2 -virtual classes

[{α′ ̸= 0}]S
λ
2 ×Sµ

2 = (L⊗ Tλ − 1⊗Nλ)⊗ Tµ[
GL2/D ×

{
ν,ω ̸=0,±1,±i
ν2 ̸=λ±1ω±2

}]Sλ
2 ×Sµ

2

M
=

(L− 5)((L− 3)⊗ Tµ − 2⊗Nµ)(M ⊗ Tλ + (X2,−2 −M)⊗Nλ)

− (L− 9)Y ⊗ (Tλ +Nλ)⊗ (Tµ ⊗Nµ)

we obtain (L−5)(L−3)(L+1)M−(L−5)(L−3)X2,−2−(L−9)(L−1)Y .
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Lemma 5.4.12.

Zrep
G

( )
(X2 ⊗X2) = 2L(L2 − 3L− 2)I+ + L(L− 5)(L+ 1)I−

+ L(L− 5)(L− 1)J+ + L(L− 4)(L− 1)J−

+ (L− 3)2(L+ 1)M − L(L− 3)X−2

− (L− 3)2X2,−2 + L(L− 6)Y

Proof. Stratify based on the conjugacy class of the product AB.

■ IfAB = 1, then solve forA = B−1. It follows that ν2 = ω±2, that is, ν = ±ω±1,

so identify the Sρ2 -quotient with the stratum where ν = ±ω−1. From the Sµ2 -

virtual classes

[GL2/D]S
µ
2 = L2 ⊗ T + L⊗N[{

ω ̸=0,±1,±i
ν ̸=±ω

}]Sµ
2

= 2((L− 3)⊗ T − 2⊗N)

we obtain 2L(L2 − 3L− 2)I+.

■ If AB = −1, then solve for A = −B−1. It follows that ν2 = −ω±2, that is,

ν = ±iω±1. Identify the Sρ2 -quotient with the stratum where ν = ±iω−1, and

subsequently identify the Sµ2 -quotient with the stratum where ν = iω−1. We

obtain [Y ]I− = L(L− 5)(L+ 1)I−.

■ If AB ∈ J+, then conjugate to AB = ( 1 1
0 1 ) and solve for A = ( 1 1

0 1 )B
−1.

Consider the following cases.

– Case γδ = 0. Identify the Sµ2 -quotient with the stratum where γ = 0. Fix

α = δ = 1 by lifting P to GL2, and fix β = 0 using Ga-symmetry. It follows

that ν2 = ω±2, that is, ν = ±ω±1, so identify the Sρ2 -quotient with the

stratum where ν = ±ω. Since ω ̸= 0,±1,±i, we obtain 2L(L− 5)J+.

– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = ω±2, and solve for

β = − ρ(µ−1)(µ+1)
(µ−ρ)(µρ−1) . Since[{
ν,ω ̸=0,±1,±i
ν2 ̸=ω±2

}
� Sµ2 × S

ρ
2

]
= (L− 3)2 − 2(L− 3) = (L− 5)(L− 3)

we obtain L(L− 5)(L− 3)J+.

■ If AB ∈ J−, then conjugate to AB =
(−1 1

0 −1

)
and solve for A =

(−1 1
0 −1

)
B−1.

Consider the following cases.

– Case γδ = 0. Similarly to the above we obtain 2L(L− 5)J−.
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– Case γδ ̸= 0. Fix γ = δ = 1 by lifting P to GL2, and fix α = 0 using

Ga-symmetry. Note that there are no solutions with ρ = −µ±1, and solve

for β = ρ(µ−1)(µ+1)
(µ+ρ)(µρ+1) . Since[{
ν,ω ̸=0,±1,±i
ν ̸=±iω±1

}
� Sµ2 × S

ρ
2

]
= (L− 3)2 − (L− 5) = L2 − 7L+ 14

we obtain L(L2 − 7L+ 14)J−.

■ If AB ∈M , then conjugate to AB =
(
λ 0
0 λ−1

)
and solve for A =

(
λ 0
0 λ−1

)
B−1.

Consider the following cases.

– Case P is (anti)-diagonal. Identify the Sµ2 -quotient with the stratum where P

is diagonal. Fix α = δ = 1 by lifting P to GL2. It follows that ν
2 = (λω−2)±1,

so identify the Sρ2 -quotient with the stratum where ν2 = λω−2. Substitute

u = νω so that u2 = λ. Since ω ̸= 0,±1,±i,±u,±iu, we find[
GL2/D ×

{
u2=λ

ω ̸=0,±1,±i,±u,±iu

}]Sλ
2

M
=

(X−2 ⊗ T + (Y −X−2)⊗N)((L− 6)⊗ T − 3⊗N)

so we obtain (L− 3)X−2 − 3Y .

– Case P has one zero. Identify the Sµ2 -quotient with the stratum where αγ =

0, and subsequently the Sλ2 -quotient with the stratum where γ = 0. Fix α =

δ = 1 by lifting P to GL2. Identify the Sρ2 -quotient with the stratum where

ν2 = λω−2. Substitute u = νω so that u2 = λ and ω ̸= 0,±1,±i,±u,±iu.
Furthermore, β ̸= 0, so we obtain (L− 9)(L− 1)Y .

– Case P has no zeros. Fix γ = δ = 1 by lifting P to GL2. Note that there are

no solutions with ρ = λ±1µ±1, and solve for β = α(λ−µρ)(λρ−µ)
(λµ−ρ)(λµρ−1) . The various

S2-actions on α are given by

α
Sλ
27→ α−1, α

Sµ
27→ β =

α(λ− µρ)(λρ− µ)
(λµ− ρ)(λµρ− 1)

, α
Sρ
27→ α.

Extending α to be P1-valued, we can consider this stratum as a P1-fibration

minus the stratum where α = 0 or α =∞. Since the cases α = 0 or α =∞
are interchanged by Sλ2 but invariant under Sµ2 , we can effectively act as

if α is invariant under Sµ2 and Sρ2 and has Sλ2 -virtual class [{α ̸= 0}]Sλ
2 =

L⊗ T − 1⊗N . Together with the Sλ2 -virtual class[
GL2/D ×

{
ν,ω ̸=0,±1,±i
ν2 ̸=λ±1ω±2

}
� Sµ2 × S

ρ
2

]Sλ
2

M
=

(L− 3)2(M ⊗ T + (X2,−2 −M)⊗N)

− (X−2 ⊗ T + (Y −X−2)⊗N)((L− 6)⊗ T − 3⊗N)

we obtain (L−3)2(L+1)M−(L−3)(L+1)X−2−(L−3)2X2,−2+(4L−6)Y .



5.5. RESULTS 111

5.5 Results

Using (4.13), Proposition 5.3.1 and the lemmas in Section 5.4, we obtain an

expression for the matrix associated with Zrep
G

( )
with respect to the gen-

erators (5.3).

Zrep
G

( )
=



2 L2 + L 2L2 − 2 0 L3 − 3L2 − 2L
L2 + L 2 0 2L2 − 2 L3 − 3L2 − 2L

2 0 L2 − L− 2 2L2 L3 − 3L2

0 2 2L2 L2 − L− 2 L3 − 3L2

0 0 L2 − 1 L2 − 1 L3 − 2L2 − L+ 2

0 1 0 −L− 1 L
1 0 −L− 1 0 L
0 0 1− L 1− L 2L− 2

0 0 L L −2L

L3 − 4L2 − 5L 2L3 − 6L2 − 4L L3 − 4L2 − 5L 2L3 − 8L2 − 10L
2L3 − 6L2 − 4L L3 − 4L2 − 5L L3 − 4L2 − 5L 2L3 − 8L2 − 10L
L3 − 3L2 − 2L L3 − 4L2 − L L3 − 3L2 − 2L L3 − 4L2 − 5L
L3 − 4L2 − L L3 − 3L2 − 2L L3 − 3L2 − 2L L3 − 4L2 − 5L

L3 − 3L2 − L+ 3 L3 − 3L2 − L+ 3 L3 − 3L2 − L+ 3 L3 − 5L2 − L+ 5

−L2 + L L2 + L 0 0

L2 + L −L2 + L 0 0

−L2 + 4L− 3 −L2 + 4L− 3 L2 + 2L− 3 −L2 + 6L− 5

L2 − 4L L2 − 4L −2L 2L2 − 6L


This matrix can be diagonalized with eigenvalues

0, −L(L− 1), L(L− 1), L(L− 1)(L+ 1), (L− 1)(L+ 1),

−L(L+ 1), 2L(L+ 1), 2L(L− 1), L(L+ 1)

and respective eigenvectors

0

0

0

0

2

−1

−1

−1

1





−L− 1

L+ 1

−1

1

0

0

0

0

0





−L2 + 4L+ 5

−L2 + 4L+ 5

5− L
5− L
0

0

0

0

2





1

1

1

1

1

0

0

0

0





L
L
0

0

−1

0

0

1

0





(L− 1)2

−(L− 1)2

1− L
L− 1

0

−2

2

0

0





1− L
L− 1

1

−1

0

−1

1

0

0





L+ 1

L+ 1

1

1

0

0

0

−1

1





−(L− 1)2

−(L− 1)2

L− 1

L− 1

0

−2

−2

0

2


.

The following theorem now follows from (4.11).

Theorem 5.5.1. For any r ≥ 0, the virtual class of the SL2-character stack of

Nr in KP1

0 (Stckk) is

[XSL2
(Nr)] =

1

4
Lr−2(L+ 1)r−2((L− 1)(1 + (−1)r)− (−2)r+1)

+
1

4
Lr−2(L− 1)r−2((L− 1)(1 + (−1)r) + 2r+1 − 4)

+ (Lr−2 + 1)(L− 1)r−2(L+ 1)r−2.
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Remark 5.5.2. The first eigenvector, with eigenvalue 0, corresponds to the

element 2M +Y −X2−X−2−X2,−2 ∈ K0(VarG). We encountered this element

already in Remark 5.1.2, where it was shown to be non-zero. On the other hand,

the (Hodge) monodromy representation of M +M +Y agrees with that of X2 +

X−2 + X2,−2, so it is not surprising to encounter this element in the kernel of

Zrep
G

( )
.

Similarly, for the orientable surfaces, using (4.12), Proposition 5.2.1 and the

lemmas in Section 5.4, we obtain an expression for the matrix associated with

Zrep
G

( )
with respect to the same set of generators.

Zrep
G

( )
=



L4 + 4L3 − L2 − 4L L3 − L L5 − 2L4 − 4L3 + 2L2 + 3L
L3 − L L4 + 4L3 − L2 − 4L L5 + 3L4 − L3 − 3L2

L3 − 2L2 − 3L L3 + 3L2 L5 + L4 + 3L2 + 3L
L3 + 3L2 L3 − 2L2 − 3L L5 − 3L3 − 6L2

L3 − L2 − L+ 1 L3 − L2 − L+ 1 L5 − 2L3 + L
2L2 + 2L −L2 − L −2L3 − 4L2 − 2L
−L2 − L 2L2 + 2L L3 + 2L2 + L

−L2 + 2L− 1 −L2 + 2L− 1 −2L3 + 4L2 − 2L
L2 − 2L L2 − 2L 2L3 − 2L2 + 2L

L5 + 3L4 − L3 − 3L2 L6 − 2L5 − 4L4 + 3L2 + 2L L6 − 11L4 − 3L3 + 10L2 + 3L
L5 − 2L4 − 4L3 + 2L2 + 3L L6 − 2L5 − 4L4 + 3L2 + 2L L6 − 3L5 − 8L4 + 7L2 + 3L

L5 − 3L3 − 6L2 L6 − 2L5 − 3L4 + L3 + 3L2 L6 − 3L5 − 4L4 − 3L3 + 9L2

L5 + L4 + 3L2 + 3L L6 − 2L5 − 3L4 + L3 + 3L2 L6 − 3L5 − L4 − 3L3 + 6L2

L5 − 2L3 + L L6 − 2L5 − 2L4 + 2L3 + 3L2 − 2 L6 − 3L5 − 3L4 + 4L3 + 5L2 − L− 3

L3 + 2L2 + L L3 + L2 2L4 + 2L3

−2L3 − 4L2 − 2L L3 + L2 −2L4 + 2L2

−2L3 + 4L2 − 2L 4L3 − 6L2 + 2 −2L4 + 11L3 − 13L2 + L+ 3

2L3 − 2L2 + 2L −4L3 + 2L2 2L4 − 11L3 + 7L2

L6 − 3L5 − 8L4 + 7L2 + 3L L6 − 2L5 − 9L4 − L3 + 8L2 + 3L L6 − L5 − 20L4 − 4L3 + 19L2 + 5L
L6 − 11L4 − 3L3 + 10L2 + 3L L6 − 2L5 − 9L4 − L3 + 8L2 + 3L L6 − L5 − 20L4 − 4L3 + 19L2 + 5L
L6 − 3L5 − L4 − 3L3 + 6L2 L6 − 2L5 − 5L4 + 6L2 L6 − 4L5 − 4L4 − 8L3 + 15L2

L6 − 3L5 − 4L4 − 3L3 + 9L2 L6 − 2L5 − 5L4 + 6L2 L6 − 4L5 − 4L4 − 8L3 + 15L2

(L− 1)2 (L+ 1)
(
L3 − 2L2 − 4L− 3

)
(L− 3) (L− 1)2 (L+ 1)3 (L− 5) (L− 1)2 (L+ 1)3

−2L4 + 2L2 0 0

2L4 + 2L3 0 0

−2L4 + 11L3 − 13L2 + L+ 3 L4 + 6L3 − 12L2 + 2L+ 3 −3L4 + 20L3 − 26L2 + 4L+ 5

2L4 − 11L3 + 7L2 −6L3 + 6L2 4L4 − 20L3 + 16L2


It turns out this matrix can be diagonalized using the same set of eigenvectors.

The corresponding eigenvalues are

0, L2(L− 1)2, L2(L− 1)2, L2(L− 1)2(L+ 1)2, (L− 1)2(L+ 1)2,

L2(L+ 1)2, 4L2(L+ 1)2, 4L2(L− 1)2, L2(L+ 1)2.

The following theorem now follows from (4.10). The corresponding E-polynomi-

als can be seen to agree with [MM16].
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Theorem 5.5.3. For any g ≥ 0, the virtual class of the SL2-character stack of

Σg in KP1

0 (Stckk) is

[XSL2
(Σg)] =

1

2
L2g−2(L+ 1)2g−2(22g + L− 1)

+
1

2
L2g−2(L− 1)2g−2(22g + L− 3)

+ (L2g−2 + 1)(L− 1)2g−2(L+ 1)2g−2.

The fact that both matrices can be simultaneously diagonalized is not too sur-

prising considering the fact that and commute as bordisms. Fur-

thermore, it can be seen that

Zrep
G

( )3
= Zrep

G

( )
◦ Zrep

G

( )
which reflects the equality of bordisms

3
= ◦ .

What is remarkable is that the equality

Zrep
G

( )2
= Zrep

G

( )
holds for G = SL2 (at least on the set of generators (5.3)), even though it does

not for general G. For example, it already fails to hold for G = Gm. Comparing

Theorem 5.5.3 and Theorem 5.5.1, we find the following.

Corollary 5.5.4. [XSL2(Σg)] = [XSL2(N2g)] in KP1

0 (Stckk) for all g ≥ 0.

An explanation for this relation between the orientable and non-orientable case

can be given for the corresponding E-polynomials, from the point of view of the

arithmetic method.

Suppose G is a linear algebraic group over a finitely generated Z-algebra R. Com-

paring Theorem 4.5.3 and Proposition 4.9.12, it follows that, for any morphism

R → Fq, the point counts |RG(Σg)(Fq)| and |RG(N2g)(Fq)| agree whenever the

Frobenius–Schur indicators εχ of all irreducible characters χ of G(Fq) are equal

to ±1. That is, if all irreducible representations of G(Fq) are either real or pseu-

doreal.

Indeed, if we take G = SL2 and R = Z[1/2, i], then a map R → Fq exists if

and only if q ≡ 1 mod 4. For such q, any element of SL2(Fq) is conjugate to its

inverse, and hence

χ(g) = χ(g−1) = χ(g)
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for all g ∈ SL2(Fq) and irreducible characters χ of SL2(Fq). This shows that

all irreducible characters χ of SL2(Fq), with q ≡ 1 mod 4, are either real or

pseudoreal, that is, εχ = ±1, and hence

|RSL2(Σg)(Fq)| = |RSL2(N2g)(Fq)|.

Since these numbers are polynomial in q, it follows from Theorem 4.6.1 (Katz’

theorem) that e(RSL2
(Σg)) = e(RSL2

(N2g)), and in turn that e(XSL2
(Σg)) =

e(XSL2
(N2g)).



Chapter 6

Upper triangular matrices

In this chapter we apply the theory of the Chapter 4 in order to study the G-

character stacks of the closed orientable surfaces Σg, for G equal to one of the

following algebraic groups, over any field k:

■ the group Tn = {A ∈ GLn | Aij = 0 for 1 ≤ j < i ≤ n} ⊆ GLn of n× n upper

triangular matrices, and

■ its subgroup Un = {A ∈ Tn | Aii = 1 for 1 ≤ i ≤ n} of unipotent matrices.

These groups can be realized as semidirect products of copies of Ga and Gm and

are therefore all special, see Proposition 3.3.16 and Example 3.3.17. In particular,

the virtual class of the G-character stack of Σg in the Grothendieck ring of stacks

is simply given by the quotient

[XG(Σg)] = [RG(Σg)]/[G] (6.1)

as in Proposition 3.5.5. Hence, it suffices to apply the theory of Section 4.12, and

work on the level of the G-representation variety.

Furthermore, these groups G are all connected. Therefore, the geometric TQFT

and the arithmetic TQFT can be compared, as there is a natural transformation

between them, see Corollary 4.10.5. We will consider both the geometric and the

arithmetic method, and compare the results.

Note that the algebraic groups Tn, for all n ≥ 1, decompose as a product

Tn = Gm × T̃n where T̃n = {A ∈ Tn | Ann = 1}.

In turn, this induces a decomposition of representation varieties

RTn(M) ∼= RT̃n
(M)×RGm(M). (6.2)

As Gm is abelian, we have RGm
(Σg) ∼= G2g

m , and we can focus on T̃n instead.

This slightly simplifies the computations as dimension is lower.

115
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6.1 Algebraic representatives

Before doing computations, we first introduce the notion of algebraic represen-

tatives, which are crucial to doing computations in the later sections.

Definition 6.1.1. Let G be an algebraic group over k, and let X be a variety

over k with a transitive G-action. A point ξ ∈ X(k) is an algebraic representative

for X if the Stab(ξ)-torsor

G→ X, g 7→ g · ξ

is Zariski-locally trivial. Equivalently, ξ is an algebraic representative for X if

every point of X has an open neighborhood U and a morphism γ : U → G such

that x = γ(x) · ξ for all x ∈ U .

Remark 6.1.2. ■ If there exists an algebraic representative ξ for X, then every

ξ′ ∈ X(k) is an algebraic representative for X. Namely, if ξ = g · ξ′, then one

takes γ′(x) = γ(x)g.

■ Algebraic representatives need not always exist. For example, consider the

group G = Gm acting on X = A1
k \ {0} via t · x = t2x. Then X does not

have an algebraic representative as Gm → A1
k \ {0} given by t 7→ t2 is not

Zariski-locally trivial.

■ The proof of Corollary 3.3.15 shows that ξ ∈ X(k) is an algebraic representa-

tive for X if Stab(ξ) is special. However, it is possible that ξ is an algebraic

representative even when Stab(ξ) is not special. For example, consider any

non-special group G acting trivially on a point.

For us, the main example of algebraic representatives are for any of the groups

Un,Tn or T̃n acting by conjugation on a conjugacy class.

Proposition 6.1.3. Let G be Un,Tn or T̃n, for some n ≥ 1, acting on itself

by conjugation. Then the stabilizer Stab(A) of any point A ∈ G(k) is special. In

particular, A is an algebraic representative for its conjugacy class.

Proof. If G = Tn, the stabilizer Stab(A) ⊆ Tn is triangularizable, and can be

written as an extension

1→ U → Stab(A)→ D → 1

of D = {B ∈ Stab(A) | B is diagonal} by the maximal normal unipotent sub-

group U = Stab(A) ∩ Un. We will show that both U and D are special, so that

the result follows from Proposition 3.3.16 (i). If G = Un, we have Stab(A) = U ,

so the result follows from the same proof. If G = T̃n, then the action of T̃n on
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itself by conjugation can be extended to an action of Tn, and the corresponding

stabilizers are related by StabTn
(A) ∼= Gm × StabT̃n

(A). The result then follows

from Proposition 3.3.16 (ii) or (iii) and the fact that StabTn(A) is special.

Note that U = {B ∈ Un | AB − BA = 0} is a subgroup of Un given by a linear

subspace, identifying Un ∼= An(n−1)/2
k in the usual way. From [Mil15, Example

8.46] we know that Un admits a normal series

Un = U (0)
n ⊇ · · · ⊇ U (r)

n ⊇ U (r+1)
n ⊇ · · · ⊇ U (n(n−1)/2)

n = {1},

where each U
(r)
n ⊆ Un is a normal subgroup given by a linear subspace of Un,

whose quotients U
(r)
n /U

(r+1)
n are canonically isomorphic to Ga. Therefore, inter-

secting this normal series with U yields a normal series of U where each quotient

is either Ga or 0. Hence, U is an extension of copies of Ga, which is special by

Proposition 3.3.16 (i).

Furthermore, D can be identified with

D = {B ∈ G | B is diagonal and AB −BA = 0}
= {(B11, . . . , Bnn) ∈ Gnm | Aij(Bii −Bjj) = 0 for all 1 ≤ i ≤ j ≤ n}
= {(B11, . . . , Bnn) ∈ Gnm | Bii = Bjj whenever Aij ̸= 0},

which, being a product of copies of Gm, is also special.

The notion of algebraic representatives can be generalized to a relative setting

as follows. This generalization is useful when the G-action is not transitive, and

we will use it in the later sections.

Definition 6.1.4. Let G be an algebraic group over k, acting on a variety

X over k, and let π : X → T be a G-invariant morphism. A family of algebraic

representatives for X over T is a morphism ξ : T → X over T (that is, π◦ξ = idT )

such that the Stab(ξ)-torsor

G× T → X, (g, t) 7→ g · ξ(t)

of varieties over T is Zariski-locally trivial. Note that by Stab(ξ) we understand

(G × T ) ×X T as a group over T . Equivalently, ξ is a family of algebraic repre-

sentatives for X over T if every point of X has an open neighborhood U and a

morphism γ : U → G such that x = γ(x) · ξ(π(x)) for all x ∈ U .

Example 6.1.5. Consider the group G = T2 =
{
( x y0 z )

∣∣ x, z ̸= 0
}

of 2 × 2

upper triangular matrices acting on X =
{
( a b0 1 )

∣∣ a ̸= 0, 1
}

by conjugation.

Then X has a family of algebraic representatives over T =
{
( a 0
0 1 )

∣∣ a ̸= 0, 1
}
,

with π and ξ the projection and inclusion, respectively, as one can take

γ

(
a b

0 1

)
=

(
1 b

1−a
0 1

)
.
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The following lemma shows why it is useful to have algebraic representatives in

the context of computing virtual classes.

Proposition 6.1.6. Let G be an algebraic group over k, acting on a variety S

over k. Let π : S → T be a G-invariant morphism, and let ξ : T → S be a family

of algebraic representatives for S over T . Then for any morphism f : Y → S and

G-equivariant morphism g : X → S, we have

[X ×S Y ]S = [(X ×S T )×T Y ]S ∈ K0(VarS),

where (X ×S T )×T Y is seen as a variety over S via the composite f ◦ πY .

Proof. Locally on X, there is a commutative diagram

X ×S Y (X ×S T )×T Y

S

φ

ψ

f◦πY

where φ(x, y) = (γ(f(y)) · x, π(f(y)), y) and ψ((x, t), y) = (γ(f(y)) · x, y). One

easily sees that φ and ψ are well-defined over S and inverse to each other.

In the case of algebraic representatives, that is, when T is a point, we obtain the

following corollaries.

Corollary 6.1.7. Let G be an algebraic group over k, acting on a variety S over

k with algebraic representative ξ ∈ S(k). Then for any morphism f : Y → S and

G-equivariant morphism g : X → S, we have

[X ×S Y ]S = [X ×S {ξ}] · [Y ]S ∈ K0(VarS).

Corollary 6.1.8. Let G be an algebraic group over k, acting on a variety S over

k with algebraic representative ξ ∈ S(k). Then for any G-equivariant morphism

g : X → S, we have

[S] · [X]S = [X] · [S]S ∈ K0(VarS).

Proof. Apply Corollary 6.1.7 with f = idS to find that

[X]S = [X ×S {ξ}] · [S]S .

Applying c! to both sides of this equation, for c : S → Spec k the final morphism,

yields [S][X ×S {ξ}] = [X] in K0(Vark).
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6.2 Geometric method

The virtual classes of the G-representation varieties RG(Σg) in the Grothendieck

ring of varieties can be computed, as was shown in Section 4.12, using the mor-

phisms

Zrep
G

( )
: K0(VarG)→ K0(Vark), Zrep

G

( )
: K0(Vark)→ K0(VarG)

and Zrep
G

( )
: K0(VarG)→ K0(VarG)

of K0(Vark)-modules. Note that all varieties over G that we consider are natu-

rally equipped with a G-action such that the morphism to G is G-equivariant,

even though the ring K0(VarG) does not remember this information. For this

reason, it turns out that K0(VarG) is best understood via a decomposition

K0(VarG) ∼=
N⊕
i=1

K0(VarCi
),

as in Proposition 3.3.6, where the Ci are locally closed subvarieties of G given by

families of conjugacy classes. We will show that each Ci has a family of algebraic

representatives. As a result, the submodule of K0(VarG) generated by the units

1Ci
∈ K0(VarCi

) will be invariant under Zrep
G

( )
.

Conjugacy classes of T̃n

Let us start by describing the conjugacy classes of T̃n, with a focus on the unipo-

tent conjugacy classes. We will give algebraic representatives for the unipotent

conjugacy classes, and families of algebraic representatives for (families of) non-

unipotent conjugacy classes. Furthermore, we will determine equations describing

the unipotent conjugacy classes, and finally, compute the virtual classes of the

unipotent conjugacy classes as well as those of the stabilizers of their represen-

tatives. All of this data will be used to compute Zrep
G

( )
as a matrix with

respect to the generators given by the unipotent classes.

Unipotent conjugacy classes. To find the number of unipotent conjugacy

classes of T̃n, and a representative for each one, one can use Belitskii’s algorithm

as described in [Kob05]. Given a unipotent matrix A ∈ T̃n over any field k,

Belitskii’s algorithm outputs a canonical representative of the conjugacy class of

A. It achieves this by repeatedly conjugating A by certain elementary matrices

in order to make as many entries of A as possible equal to 0 or 1, see [Kob05]

for details. For n = 1, . . . , 5, it turns out there are only finitely many unipotent

conjugacy classes U1, . . . ,UM , and the canonical representatives ξ1, . . . , ξM only
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have entries with 0’s and 1’s [Kob05]. The number M of unipotent conjugacy

classes is given by the following table.

n 1 2 3 4 5

M 1 2 5 16 61

We will use the convention that U1 is the conjugacy class of the identity. Note

that the representatives will be automatically algebraic by Proposition 6.1.3.

Remark 6.2.1. The qualitative result of Belitskii’s algorithm, that for n =

1, . . . , 5 every unipotent matrix in T̃n can be conjugated to a matrix contain-

ing only 0’s and 1’s, is enough to find representatives. Only finitely many such

matrices exist (2n(n−1)/2) and they are easily partitioned by whether they are

conjugate. Then, one simply chooses one representative in each conjugacy class.

Non-unipotent conjugacy classes. Next, we describe the non-unipotent

conjugacy classes of T̃n in terms of families depending on their diagonal. De-

fine a diagonal pattern to be a partition of the set {1, 2, . . . , n}. Then, for any

matrix A ∈ T̃n, the diagonal pattern δA of A is the partition such that i and j

are equivalent if Aii = Ajj . Note that two matrices A and B in T̃n are conju-

gate only if their diagonals coincide, but not necessarily if. Now, we look at the

following families of conjugacy classes:

Cδ,i = {A ∈ T̃n | δA = δ and A ∼ diag(A) + ξi − 1},

for any diagonal pattern δ and i = 1, . . . ,M , where diag(A) denotes the diagonal

part of A. We claim that any such Cδ,i has a family of representatives over

Cδ,i = {A ∈ T̃n | δA = δ and A = diag(A) + ξi − 1}

where πδ,i : Cδ,i → Cδ,i and ξδ,i : Cδ,i → Cδ,i are given by πδ,i(A) = diag(A)+ξi−1
and ξδ,i(A) = A. This is proved in Lemma 6.2.2 below. Of course, some Cδ,i
may be equal to Cδ,j while i ̸= j, but one can explicitly check whether any

of the representatives are conjugate in order to remove any such duplicates.

In particular, one can ensure Aij = 0 for all A ∈ Cδ,k whenever Aii ̸= Ajj ,

after appropriate conjugation. In the end, we obtain families of conjugacy classes

C1, . . . , CN with families of algebraic representatives over C1, . . . , CN , where the

number N is given by the following table.

n 1 2 3 4 5

N 2 3 12 61 372
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We will choose our indices in such a way that the ξi coincide with the unipotent

representatives for i = 1, . . . ,M .

Lemma 6.2.2. For every i = 1, . . . , N , the following statements hold:

(i) the stabilizer Hi := Stab(ξi(t)) is independent of t ∈ Ci,

(ii) ξi is a family of representatives of Ci over Ci,

(iii) the map G/Hi × Ci → Ci given by (g, t) 7→ gξi(t)g
−1 is an isomorphism.

Proof. (i) The statement can easily be verified by a computer, as there are only

a finite number of cases to consider. Alternatively, write A = ξi(t) and note that

B ∈ Stab(A) if and only if for all 1 ≤ i ≤ j ≤ n,

Bij(Aii −Ajj) +
j∑

k=i+1

BkjAik −
j−1∑
k=i

BikAkj = 0. (∗)

We claim that Bij = 0 for all i ≤ j such that Aii ̸= Ajj . The result follows from

this claim, because Aij is independent of t for i ̸= j (by definition of Ci), so

the solutions to (∗) will be independent of t. We proof the claim by induction

on j − i, the case j − i = 0 being trivial. For the general case, take i ≤ j such

that Aii ̸= Ajj . Now, for every k ∈ {i + 1, . . . , j} such that Aik ̸= 0, we have

Akk = Aii ̸= Ajj , so Bkj = 0 by the induction hypothesis. Similarly, for every

k ∈ {i, . . . , j − 1} such that Akj ̸= 0, we have Akk = Ajj ̸= Aii so Bik = 0 by

the induction hypothesis. Therefore, (∗) reduces to Bij = 0.

(ii) From (i) follows that the map

G× Ci → Ci, (g, t) 7→ gξi(t)g
−1

is an Hi-torsor, which is Zariski-locally trivial because Hi is special by Proposi-

tion 6.1.3. Hence, it follows that ξi is a family of algebraic representatives for Ci
over Ci. This also proves (iii).

Equations. Next, we want to find equations describing the unipotent conju-

gacy classes Ui for i = 1, . . . ,M . For simplicity, we will compute equations for

the closures U i rather than Ui. This is sufficient using the inclusion-exclusion

matrix of Section 3.3. The closure U i is the closure of the image of the morphism

fi : G→ G, g 7→ gξig
−1.

Since G = T̃n is affine, fi can equivalently be described by the corresponding

morphism on the coordinate ring of G,

f#i : OG(G)→ OG(G).



122 CHAPTER 6. UPPER TRIANGULAR MATRICES

In particular, the closure U i corresponds to the ideal Ii ⊆ OG(G) which is the

kernel of f#i . Generators for these ideals can be computed using Gröbner basis

[AL94], and this gives us the desired equations. In particular, we use [AL94,

Theorem 2.4.2] in order to compute the kernel of f#i .

Example 6.2.3. Consider the unipotent conjugacy class U of ξ =
(

1 0 1
0 1 0
0 0 1

)
in

G = T̃3. The morphism f : G→ G, g 7→ gξg−1 is given by

f

a b c

0 d e

0 0 1

 =

1 0 a

0 1 0

0 0 1

 ,

that is, f#(a) = f#(d) = 1, f#(b) = f#(e) = 0 and f#(c) = a. Indeed, we find

that the ideal ker f# = (a− 1, b, d− 1, e) describes the closure of the conjugacy

class U =
{(

1 0 c
0 1 0
0 0 1

) ∣∣∣ c ̸= 0
}
.

Orbits and stabilizers. For any A ∈ T̃n, in order to compute the virtual

class of the conjugacy class of A, we can use Corollary 3.3.15. Indeed, the sta-

bilizer Stab(A) of any A ∈ T̃n is special by Proposition 6.1.3. To compute the

virtual class of the stabilizer of A, we apply Algorithm 3.4.3, using the explicit

description

Stab(A) = {B ∈ T̃n | AB −BA = 0}.

Computing the TQFT

Let us return to the problem of computing the matrix associated to Z
( )

with respect to the generators 1Ui = [Ui]G ∈ K0(VarG). We start by computing

the first column of this matrix. Recall that by convention U1 = {1} is the con-

jugacy class of the identity, and that c denotes the final morphism to Spec k. To

compute the first column of this matrix, we write

c!
(
Zrep
G

( )
(1U1)|Ui

)
= [{(A,B) ∈ G2 | [A,B] ∈ Ui}]

=

N∑
j=1

[{(A,B) ∈ G× Cj | [A,B] ∈ Ui}]

=

N∑
j=1

[{(A, t) ∈ G× Cj | [A, ξj(t)] ∈ Ui}]× [T̃n/ Stab(ξj(t0))]

=

N∑
j=1

Eij [Orbit(ξj(t0))],
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where Eij = [{(A, t) ∈ G × Cj | [A, ξj(t)] ∈ Ui}] and t0 ∈ Cj is any closed

point. For the third equality, we used Proposition 6.1.6 with Y = S = Cj and

X = {(A,B) ∈ G× Cj | [A,B] ∈ Ui}, in combination with Lemma 6.2.2 (iii).

Since we have computed equations describing the closures U i, it is in fact easier

to compute the classes Eij = [{(A, t) ∈ G×Cj | [A, ξj(t)] ∈ U i}] rather than the

Eij . By Corollary 3.3.11, they are related through the inclusion-exclusion matrix

C of the stratification by

Eij =

M∑
k=1

CikEkj .

The coefficients Eij can be computed using Algorithm 3.4.3. Then, using Corol-

lary 6.1.8, we obtain

Zrep
G

( )
(1U1) =

M∑
i,k=1

N∑
j=1

CikEkj [Orbit(ξj(t0))]/[Ui] · 1Ui .

Next, to compute the other columns of the matrix associated to Zrep
G

( )
,

we will make use of the already computed first column. In particular, we have

c!
(
Zrep
G

( )
(1Uj

)|Ui

)
= [{(g,A,B) ∈ Uj ×G2 | g[A,B] ∈ Ui}]

=

M∑
k=1

[{(g,A,B) ∈ Uj ×G2 | g[A,B] ∈ Ui, [A,B] ∈ Uk}]

=

M∑
k=1

[{g ∈ Uj | gξk ∈ Ui}][{(A,B) ∈ G2 | [A,B] ∈ Uk}]

=

M∑
k=1

Fijk c!
(
Zrep
G

( )
(1U1)|Uk

)
,

where Fijk = [{g ∈ Uj | gξk ∈ Ui}]. Note that the third equality follows from

Corollary 6.1.7 applied to S = Uk and X = {(g, h) ∈ Uj × Uk | gh ∈ Ui} and

Y = {(A,B) ∈ G2 | [A,B] ∈ Uk}.

As for the coefficients Eij , it is easier to compute F ijk = [{g ∈ U j | gξk ∈ U i}]
rather than Fijk, and they are related through the inclusion-exclusion matrix of

the stratification by

Fijk =

M∑
m,ℓ=1

CimCjℓFmℓk.
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The coefficients F ijk can be computed using Algorithm 3.4.3. Finally, using

Corollary 6.1.8 we obtain

Zrep
G

( )
(1Uj

) =

M∑
i,k,ℓ,m=1

CimCjℓFmℓk c!
(
Zrep
G

( )
(1U1

)|Uk

)
/[Ui] · 1Ui

.

Remark 6.2.4. Naively computing the coefficients of the matrix representing

Zrep
G

( )
would require computing the virtual class of M2 varieties, each of

which being a subvariety of G3, with equations being mostly quadratic due to

the commutator [A,B]. With this new setup, one needs to compute the virtual

class of MN +M3 varieties to obtain the coefficients Eij and F ijk. However,

the advantage of this approach is that these varieties will now be subvarieties

of G × Cj and Uj , respectively, with equations being mostly linear. In practice,

the simplification of these systems of equations far outweighs the number of such

systems. It is due to the (families of) algebraic representatives of the conjugacy

classes Ci that these simplifications can be made.

Remark 6.2.5. Let us make a few computational remarks. First, to speed up the

computation of the coefficients Eij and F ijk, which are done by Algorithm 3.4.3,

note that these can be performed in parallel as they are independent. Second,

there are some checks one can perform to detect obvious errors. In particular,

one can assert that the following equalities hold:

■
∑M
i=1 c!

(
Zrep
G

( )
(1Uj )|Ui

)
= [G]2 [Uj ] for all j,

■
∑M
i=1 Fijk = [Uj ] for all j, k,

■
∑M
j=1 Fijk = [Ui] for all i, k,

■
∑M
i=1Eij = [G] [Cj ] for all j.

Results

The code to perform the computations as described in this section can be found in

[Vog22]. For every n = 1, . . . , 5, the resulting matrix associated to Zrep
G

( )
,

with respect to the generators 1Ui , is a matrix whose coefficients are polynomials

in the Lefschetz class L. These matrices can be diagonalized over the field Q(L)
of rational functions in L, and the resulting eigenvalues and eigenvectors are

recorded in Appendix A.

Applying equations (4.10), (6.2) and (6.1), we obtain the following theorem.

Theorem 6.2.6. The virtual classes of the Tn-character stacks of Σg in the

Grothendieck ring of stacks for n = 2, 3, 4, 5 are given by
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(i) [XT2(Σg)] = L2g−2 (L− 1)
2g−1

+ L2g−2 (L− 1)
4g−2

(ii) [XT3(Σg)] = L4g−4 (L− 1)
4g−2

+ L6g−6 (L− 1)
2g−1

+ 2L6g−6 (L− 1)
4g−2

+

L6g−6 (L− 1)
6g−3

(iii) [XT4(Σg)] = L8g−8 (L− 1)
4g−2

+L8g−8 (L− 1)
6g−3

+L10g−10 (L− 1)
2g−1

+

3L10g−10 (L− 1)
4g−2

+ 2L10g−10 (L− 1)
6g−3

+ L12g−12 (L− 1)
2g−1

+

3L12g−12 (L− 1)
4g−2

+ 3L12g−12 (L− 1)
6g−3

+ L12g−12 (L− 1)
8g−4

(iv) [XT5
(Σg)] = L12g−12 (L− 1)

6g−3
+ 2L14g−14 (L− 1)

4g−2
+

3L14g−14 (L− 1)
6g−3

+ L14g−14 (L− 1)
8g−4

+ 2L16g−16 (L− 1)
2g−1

+

7L16g−16 (L− 1)
4g−2

+ 7L16g−16 (L− 1)
6g−3

+ 2L16g−16 (L− 1)
8g−4

+

2L18g−18 (L− 1)
2g−1

+ 7L18g−18 (L− 1)
4g−2

+ 8L18g−18 (L− 1)
6g−3

+

3L18g−18 (L− 1)
8g−4

+ L20g−20 (L− 1)
2g−1

+ 4L20g−20 (L− 1)
4g−2

+

6L20g−20 (L− 1)
6g−3

+ 4L20g−20 (L− 1)
8g−4

+ L20g−20 (L− 1)
10g−5

.

The computation times1 for Zrep
G

( )
for the groups G = T̃n are listed in the

table below. These times do not include the diagonalization of Zrep
G

( )
, as

this was done by hand.

n 2 3 4 5

world time 1.92s 5.17s 1m19s 1h38m

CPU time 2.11s 31.50s 28m12s 50h9m

Finally, we note that precisely the same method can be applied to the groups

G = Un for n = 1, . . . , 5. In fact, the coefficients Fijk can be reused. For these

groups, the map Zrep
G

( )
is given by

Zrep
G

( )
(1U1

) =

M∑
i,j,k=1

CikEkj [Orbit(ξj)]/[Ui] · 1Ui

Zrep
G

( )
(1Uj

) =

M∑
i,k,ℓ,m=1

CimCjℓFmℓk c!
(
Zrep
G

( )
(1U1

)|Uk

)
/[Ui] · 1Ui

where now Eij = [{A ∈ Un | [A, ξj ] ∈ U i}], and F ijk are the same as for G = T̃n.
Importantly, we still consider the action of T̃n on Un by conjugation so that

the orbits and stabilizers, such as Orbit(ξj), remain unchanged. This yields the

following theorem.

Theorem 6.2.7. The virtual classes of the Un-character stacks of Σg in the

Grothendieck ring of stacks for n = 2, 3, 4, 5 are given by

1As performed on an Intel®Xeon®CPU E5-4640 0 @ 2.40GHz. Since the computations

were performed in parallel (64 cores), both the world time and the CPU time were recorded.
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(i) [XU2(Σg)] = L2g−1

(ii) [XU3(Σg)] = L4g−4 (L− 1) + L6g−4

(iii) [XU4(Σg)] = L8g−7 (L− 1) + L10g−9 (L− 1) (L+ 1) + L12g−9

(iv) [XU5
(Σg)] = L12g−12 (L− 1)

2
+ L14g−13 (L− 1) (2L− 1)+

L16g−15 (L− 1) (L+ 1) (2L− 1) + L18g−16 (L− 1) (2L+ 1) + L20g−16.

6.3 Arithmetic method

Let us now consider the arithmetic side of the same story, applying the theory

of Section 4.5. That is, we will study the representation theory of the groups

Tn and Un over finite fields Fq, and, in particular, we want to determine the

dimensions of the irreducible representations of these finite groups G. We will

encode these values in the representation zeta function

ζG(s) =
∑
χ∈Ĝ

χ(1)−s

where Ĝ denotes the set of irreducible complex characters of G. Theorem 4.5.3

shows that ζG(s) contains precisely enough information about the point count

of the G-character groupoid of Σg, since the given equation can be rewritten to

|XG(Σg)| = |G|−χ(Σg)ζG(−χ(Σg)), (6.3)

where χ(Σg) = 2−2g denotes the Euler characteristic of Σg. Finally, these point

counts will turn out to be polynomial in q, so that by Katz’ theorem 4.6.1, these

polynomials determine the E-polynomials of the character stacks.

The representation zeta functions of these finite groups will be computed al-

gorithmically. Roughly speaking, the algorithm, which we describe below, com-

putes representation zeta functions recursively by decomposing subgroups of Tn
as semidirect subgroups N ⋊ H with H ⊆ Tn−1 and N ⊆ Gn−1

a . Hence, let us

recall how the representation theory of semidirect products is related to that of

its factors.

Semidirect products

Consider a finite group G = N ⋊H, with N ⊆ G an abelian normal subgroup.

Following [Ser77, Section 8.2], we describe how the representation theory of G is

related to that of N and H. As N is abelian, its irreducible representations are

one-dimensional and given by X = Hom(N,C×). The group H acts on X via

(h · χ)(n) = χ(h−1nh) for all χ ∈ X, h ∈ H and n ∈ N.
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Let (χi)i∈X/H be a collection of representatives for the orbits in X under H. For

each i ∈ X/H, let Hi = {h ∈ H | h · χi = χi} denote the stabilizer of χi, and let

Gi = N ⋊Hi ⊆ G be the corresponding subgroup of G. We can extend χi to Gi
by setting

χi((n, h)) = χi(n) for all n ∈ N and h ∈ Hi.

Indeed, this defines a (1-dimensional) character of Gi as

χi((n1, h1)(n2, h2)) = χi((n1(h1n2h
−1
1 ), h1h2))

= χi(n1h1n2h
−1
1 ) = χi(n1)χi(n2) = χi((n1, h1))χi((n2, h2))

for all n1, n2 ∈ N and h1, h2 ∈ Hi. Now, any irreducible representation ρ of Hi

induces a representation ρ̃ of Gi by composing with the projection Gi → Gi/N =

Hi, and we define

θi,ρ = IndGGi
(χi ⊗ ρ̃) .

It turns out that these are precisely all the irreducible representations of G.

Proposition 6.3.1 ([Ser77, Proposition 25]). (i) θi,ρ is irreducible.

(ii) If θi,ρ is isomorphic to θi′,ρ′ , then i = i′ and ρ is isomorphic to ρ′.

(iii) Every irreducible representation of G is isomorphic to some θi,ρ.

In terms of representation zeta functions, this proposition translates to the fol-

lowing corollary, using the fact that dim
(
IndGH(ρ)

)
= dim(ρ)[G : H].

Corollary 6.3.2. The representation zeta function of G is given by

ζG(s) =
∑

i∈X/H

ζHi
(s)[G : Gi]

−s =
∑

i∈X/H

ζHi
(s)[H : Hi]

−s.

Decomposing triangles

Consider the group Un(Fq) = {A ∈ GLn(Fq) | Aii = 1 and Aij = 0 for i > j} of
n × n unipotent upper triangular matrices over a finite field Fq. Let N be the

kernel of

Un(Fq)→ Un−1(Fq), A 7→ (Aij)
n−1
i,j=1,

so that the quotient Un(Fq)/N is isomorphic to Un−1(Fq). Now we have a split

exact sequence

1 N Un(Fq) Un−1(Fq) 1,
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which yields a semidirect decomposition Un(Fq) = N ⋊ Un−1(Fq), where N is

abelian. Moreover, for any unipotent subgroup U ⊆ Un(Fq), the above exact

sequence can be intersected with U to obtain

1 U ∩N U U ∩ Un−1(Fq) 1,

yielding a semidirect decomposition U = (U ∩N)⋊ (U ∩ Un−1(Fq)).

We identify N ∼= Gn−1
a (Fq) = Fn−1

q , where Fq as additive group is equal to

(Z/pZ)m for q = pm. The irreducible characters χα ∈ X = Hom(N,C×) of N

can now also be identified with vectors α = (α1, . . . , αn−1) ∈ Fn−1
q , via

χα(x) = ζ⟨α,x⟩p for all x ∈ N,

where ζp is a primitive pth root of unity, and ⟨−,−⟩ denotes the trace form given

by ⟨α, x⟩ =
∑n−1
i=1 TrFq/Fp

(αixi) ∈ Fp, which is a non-degenerate bilinear form.

Since Un−1(Fq) acts on N ∼= Fn−1
q by left multiplication, it acts on X ∼= Fn−1

q

by right multiplication, because ⟨αA, x⟩ = ⟨α,Ax⟩ for all α, x ∈ Fn−1
q and A ∈

GLn−1(Fq).

From now on, to unclutter the notation, we will omit the field Fq from the group,

simply writing G instead of G(Fq), and Un instead of Un(Fq), etc.

Example 6.3.3. Consider the group U3
∼= G2

a⋊U2. As discussed above, H = U2

acts on X = Hom(G2
a,C×) ∼= G2

a by right-multiplication, that is,

(
α β

)(1 a

0 1

)
=
(
α β + aα

)
for all

(
1 a

0 1

)
∈ H and

(
α β

)
∈ X.

Hence, the orbits in X under H are given by
{(
α β

)
: β ∈ Fq

}
for all α ∈ F×

q

and
{(

0 β
)}

for all β ∈ Fq. We choose the following representatives:

■ χα =
(
α 0

)
, for which Hα = {1}, so the contribution to the zeta function is

(q − 1) ζ{1}(s) [H : Hα]
−s = (q − 1) q−s.

■ χβ =
(
0 β

)
, for which Hβ = U2, so the contribution to the zeta function is

q ζU2(s) [H : Hβ ]
−s = q2.

Adding up the contributions, it follows from Corollary 6.3.2 that ζU3
(s) = q2 +

(q − 1) q−s.
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Example 6.3.4. Consider U4
∼= G3

a ⋊ U3, for which X = Hom(G3
a,C×) ∼= G3

a,

and H = U3 acts on
(
α β γ

)
∈ X by right-multiplication, that is,

(
α β γ

)1 a b

0 1 c

0 0 1

 =
(
α β + aα γ + bα+ cβ

)
.

Hence, the orbits in X under H are given by
{(
α β γ

)
: β, γ ∈ Fq

}
for all

α ∈ F×
q ,
{(

0 β γ
)
: γ ∈ Fq

}
for all β ∈ F×

q , and
{(

0 0 γ
)}

for all γ ∈ Fq.
We choose the following representatives:

■ χα =
(
α 0 0

)
with Hα

∼= Ga, contributing

(q − 1) ζGa
(s) [H : Hα]

−s = q1−2s(q − 1).

■ χβ =
(
0 β 0

)
with Hβ

∼= G2
a, contributing

(q − 1) ζG2
a
(s) [H : Hβ ]

−s = q2−s(q − 1).

■ χγ =
(
0 0 γ

)
with Hγ = U3, contributing

q ζU3
(s) [H : Hγ ]

−s = q3 + (q − 1) q1−s.

In total, ζU4
(s) = q3 + q1−s(q − 1)(q + 1) + q1−2s(q − 1).

The construction as described above can be applied more generally to any con-

nected algebraic subgroup G ⊆ Tn as follows. Let G′ be the image of the map

G → T̃n given by A 7→ A/Ann. Then either G ∼= G′ or G ∼= Gm × G′, because

the only connected subgroups of Gm are {1} and Gm itself. Since ζGm
(s) = q−1

is known, we may assume G ⊆ T̃n. The group T̃n can be decomposed, similar to

Un, as
1 Gn−1

a T̃n Tn−1 1,

where the map T̃n → Tn−1 is given by A 7→ (Aij)
n−1
i,j=1. Intersecting with G, we

obtain G = N ⋊H with N = G∩Gn−1
a abelian and H = G∩Tn−1, to which we

can apply Corollary 6.3.2.

Example 6.3.5. Consider G = T2
∼= Gm × T̃2 with T̃2

∼= Ga ⋊ Gm, for which

X = Hom(Ga,C×) ∼= Ga and H = Gm acts on α ∈ X by multiplication. Hence,

the orbits in X under H are given by {0} and {α : α ∈ F×
q }. We choose the

following representatives:

■ χ0 = 0 yields H0 = Gm, contributing ζGm
(s) = q − 1,
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■ χ1 = 1 yields H1 = {1}, contributing (q − 1)−s.

In total,

ζT2
(s) = ζGm

(s) ζT̃2
(s) = (q − 1)((q − 1) + (q − 1)−s) = (q − 1)2 + (q − 1)1−s.

These examples illustrate how one computes the representation zeta function

in a recursive manner using Proposition 6.3.1. Note that in all examples, the

stabilizersHα of χα are independent of α (and similarly forHβ ,Hγ , ...). However,

the following example shows that this need not always be the case: we obtain a

family of stabilizers Hα,β which depend explicitly on the parameters α and β.

Example 6.3.6. Consider G = G3
a ⋊H with H =

{(
1 0 a
0 1 b
0 0 1

)}
acting naturally

on G3
a. Then H acts on X = Hom(G3

a,C×) ∼= G3
a by

(
α β γ

)1 0 a

0 1 b

0 0 1

 =
(
α β γ + aα+ bβ

)
.

Hence, the orbits in X under H are given by
{(

0 0 γ
)}

for all γ ∈ Fq and{(
α β γ

)
: γ ∈ Fq

}
for all α, β ∈ Fq with (α, β) ̸= (0, 0). We choose the

following representatives:

■ χγ =
(
0 0 γ

)
with Hγ = H, contributing q ζH(s) = q3,

■ χα,β =
(
α β 0

)
with Hα,β =

{(
1 0 xβ
0 1 −xα
0 0 1

)
: x ∈ Fq

}
. Note that Hα,β

depends explicitly on α and β, even though Hα,β
∼= Ga for all α and β. These

representatives contribute

(q2 − 1) ζGa
(s) [H : Hα,β ]

−s = q1−s(q − 1)(q + 1).

In total, ζG(s) = q3 + q1−s(q − 1)(q + 1).

Algorithmically computing ζG(s)

Now we will describe an algorithm to compute ζG(s) for connected algebraic

groups G ⊆ Tn, in the style of examples 6.3.3, 6.3.4 and 6.3.6. An implementation

of this algorithm can be found at [Vog22], together with the code for computing

ζUn
(s) and ζTn

(s) for n = 1, . . . , 10. The resulting zeta functions are given in

Theorem 6.3.11 and Theorem 6.3.10.

Before discussing the algorithm, let us give some remarks.

The algorithm is divided into two parts. The main part, Algorithm 6.3.7, finds

a semidirect decomposition G ∼= N ⋊H and applies Corollary 6.3.2 in order to
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compute ζG(s). Finding representatives for the orbits in X under H is a more

intricate step, and is described separately in Algorithm 6.3.8.

As highlighted in Example 6.3.6, it is possible for the stabilizers Hα to depend

explicitly on the parameter α. Therefore, in order for the algorithm to work

recursively, we allow the input of the algorithm to be a family G of algebraic

groups Gt ⊆ Tn parametrized by a variety T over Fq, that is, a subgroup G ⊆
Tn × T over T . We then understand the representation zeta function of G to be

ζG(s) =
∑

t∈T (Fq)

ζGt
(s).

As we want the computations to hold over general a ground field Fq, we will

in practice work over Z. Then |T (Fq)| can be computed as a polynomial in q

whenever [T ] ∈ K0(VarZ) can be computed as a polynomial in q = [A1
Z] using

Algorithm 3.4.3.

There are steps in the algorithm containing conditions that depend on the value

of t ∈ T . At such steps, we stratify T into the stratum where the condition holds

and the stratum where it does not hold, and continue the algorithm on both

strata separately.

Algorithm 6.3.7. Input: A family of connected algebraic groups G ⊆ Tn × T
over a variety T .

Output: The representation zeta function ζG(s) as a polynomial in q, q−s and

(q − 1)−s.

1. If n = 0, then G is trivial, so that ζG(s) = |T (Fq)|. Hence, we can assume

n ≥ 1.

2. Since G is connected, the image of the map G→ Gnm × T given by (A, t) 7→
((Aii)

n
i=1, t) is isomorphic to Gdm × T for some 0 ≤ d ≤ n, at least locally

on T , so after stratifying T we can assume this to be the case. If d = n,

then there is an isomorphism G ∼= Gm × G′ with G′ ⊆ T̃n × T given by

(A, t) 7→ (Ann, (A/Ann, t)), so that ζG(s) = (q − 1) ζG′(s). If d < n, then

G ∼= G′ ⊆ T̃n via the map A 7→ A/Ann. Either way, we can assume G ⊆
T̃n × T .

3. Write G = N ⋊ H as discussed above. The group H ⊆ Tn−1 × T can be

obtained as the group of minors H =
{
((Aij)

n−1
i,j=1, t) : (A, t) ∈ G

}
, and N

can be obtained as the closed subgroup of G given by Aij = 0 for 1 ≤ i <

j ≤ n− 1 and Aii = 1 for 1 ≤ i ≤ n− 1.



132 CHAPTER 6. UPPER TRIANGULAR MATRICES

4. Identify N ∼= Gra × T for some 0 ≤ r ≤ n − 1, possibly after stratifying T .

Consider induced action ofH on the space of charactersX = HomT (N,Gm×
T ) ∼= Gra × T .

5. Use Algorithm 6.3.8 to find families of representatives χi : Ti → X, param-

etrized by varieties Ti over T , for the orbits in X under H, together with

their stabilizer Hi ⊆ H ×T Ti over Ti and index [H ×T Ti : Hi].

6. Repeat the algorithm to compute ζHi
(s) for all i, from which ζG(s) can be

computed using Corollary 6.3.2.

Algorithm 6.3.8. Input: A family of connected algebraic groups H ⊆ Tn × T
over a variety T , acting linearly on a subvariety X ⊆ Gra × T over T . Write

α1, . . . , αr for the coordinates on Gra.

Output: A stratification of X by H-invariant locally closed subvarieties Xi;

families of representatives χi : Ti → Xi with Ti varieties over T ; the stabilizers

Hi ⊆ H ×T Ti of the χi; such that the index [H ×T Ti : Hi] is polynomial in q.

1. Repeat steps 2 and 3 until H acts trivially on X. Then χ := idX : X → X

is a family of representatives, with stabilizer H ×T X and index [H ×T X :

H ×T X] = 1. If both step 2 and 3 do not apply, fail.

2. If αi
H7→ aαi for some coordinate a on H, then a must be a diagonal entry

of H. Stratify X based on αi:

(i) Case αi = 0. Continue with the action of H restricted to the closed

subvariety X ′ = X ∩ {αi = 0}.

(ii) Case αi ̸= 0. By choosing representatives with αi = 1, we can replace

X by X ′ = X ∩ {αi = 1} and H by H ′ = H ∩ {a = 1}. Continue with

the action of H ′ on X ′, and keep track of the index [H : H ′] = q−1. In

the end, compose the families of representatives χ′
i : Ti → X ′

i with the

inclusion X ′
i → Xi = H ·X ′

i.

3. Write αi
H7→
∑
j ajfj , where aj are coordinates on H and fj are functions

on X which are not identically zero. If some fℓ is invariant under the action

of H, then stratify X based on fℓ:

(i) Case fℓ = 0. Continue with the action of H restricted to the closed

subvariety X ′ = X ∩ {fℓ = 0}.

(ii) Case fℓ ̸= 0. By choosing representatives with αi = 0, we can re-

place X by X ′ = X ∩ {αi = 0, fℓ ̸= 0} and H by H ′ = H ∩ {aℓ =

−f−1
ℓ

∑
j ̸=ℓ ajfj}. Continue with the action of H ′ on X ′, and keep
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track of the index [H : H ′] = q− 1. In the end, compose the families of

representatives χ′
i : Ti → X ′

i with the inclusion X ′
i → Xi = H ·X ′

i.

Remark 6.3.9. Unfortunately, this algorithm might possibly fail. In fact, if this

algorithm were to never fail, then the representation zeta function ζG(s) is always

a polynomial in q, q−s and (q−1)−s. Then, evaluating at s = 0, this would imply

that the number of conjugacy classes of G is a polynomial in q. In particular, this

would imply Higman’s Conjecture [PS15, Conjecture 1.1]. For us, the algorithm

does not fail when applied to G = Un or G = Tn for n = 1, . . . , 10.

Results

The representation zeta functions of Un and Tn were computed using Algo-

rithm 6.3.7, and are presented in Theorem 6.3.10 and Theorem 6.3.11 below.

One can evaluate these zeta functions at s = 0 in order to obtain the number

of conjugacy classes of the groups over finite fields Fq. For G = Un, the re-

sulting polynomials in q can be seen to agree with [PS15, Appendix A], where

t = q − 1. In this sense, these zeta functions are a generalization of the polyno-

mials k(Un(Fq)) as in [PS15]. Furthermore, the E-polynomials of RUn
(Σg) and

RTn(Σg) over k = C can be obtained through Theorem 4.6.1 and (6.3). Indeed,

one can verify that for 1 ≤ n ≤ 5 these E-polynomials agree with the virtual

classes as given by Theorem 6.2.6 and Theorem 6.2.7, via the map (3.6).

Theorem 6.3.10. The representation zeta functions ζUn(s) for n = 1, . . . , 10

are given by

(i) ζU1
(s) = 1

(ii) ζU2
(s) = q

(iii) ζU3
(s) = q−s(q − 1) + q2

(iv) ζU4
(s) = q1−s(q − 1)(q + 1) + q1−2s(q − 1) + q3

(v) ζU5
(s) = q1−2s(q−1)(q+1)(2q−1)+q2−s(q−1)(2q+1)+q1−3s(q−1)(2q−1)+q−4s(q−

1)2 + q4

(vi) ζU6
(s) = q2−2s(q− 1)(q+2)(q2 + q− 1)+ q2−3s(q− 1)(q+1)(4q− 3)+ q−4s(q− 1)(2q2 −

1)(q2 + q − 1) + q3−s(q − 1)(3q + 1) + q1−5s(q − 1)2(2q + 1) + q1−6s(q − 1)2 + q5

(vii) ζU7
(s) = q3−2s(q − 1)(q + 1)(2q2 + 3q − 3) + q1−4s(q − 1)(2q − 1)(q4 + 5q3 − 3q − 1) +

q4−s(q − 1)(4q + 1) + q2−3s(q − 1)(3q4 + 6q3 − 2q2 − 5q + 1) + q1−5s(q − 1)(q5 + 7q4 −

2q3 − 9q2 +3q+1)+ q1−6s(q− 1)2(4q3 +7q2 − 3q− 1)+ q1−8s(q− 1)2(3q− 2)+ q−7s(q−

1)2(5q3 − 3q + 1) + q−9s(q − 1)3 + q6
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(viii) ζU8
(s) = q4−2s(q − 1)(3q + 2)(q2 + 2q − 2) + q5−s(q − 1)(5q + 1) + q3−3s(q − 1)(q5 +

5q4 +10q3 − 7q2 − 8q+3)+ q3−6s(q− 1)(q5 +7q4 +16q3 − 24q2 − 14q+15)+ q2−4s(q−

1)(12q5+9q4−16q3−9q2+6q+1)+ q1−5s(q−1)(2q7+8q6+13q5−23q4−9q3+12q2−

1) + q1−7s(q − 1)2(6q5 + 18q4 + 4q3 − 19q2 + q + 3) + q1−8s(q − 1)2(q5 + 13q4 + 8q3 −

14q2 − 4q+3)+ q1−11s(q− 1)3(3q+1)+ q−9s(q− 1)2(4q5 +10q4 − 7q3 − 8q2 +3q+1)+

q−10s(q − 1)2(5q4 + q3 − 6q2 + 1) + q1−12s(q − 1)3 + q7

(ix) ζU9
(s) = q5−2s(q−1)(2q+1)(2q2+5q−5)+q6−s(q−1)(6q+1)+q4−3s(q−1)(2q5+9q4+

14q3−15q2−11q+6)+q4−4s(q−1)(4q5+19q4+11q3−34q2−10q+14)+q2−5s(q−1)(q8+

5q7+29q6+q5−53q4−2q3+27q2−3q−2)+q2−6s(q−1)(10q7+33q6−9q5−68q4+10q3+

38q2 − 11q− 1)+ q1−7s(q− 1)(2q9 +8q8 +27q7 +2q6 − 87q5 +20q4 +46q3 − 15q2 − 3q+

1)+ q1−8s(q− 1)2(9q7 +33q6 +40q5 − 45q4 − 40q3 +21q2 +5q− 1)+ q1−9s(q− 1)2(2q7 +

30q6 + 42q5 − 44q4 − 48q3 + 25q2 + 7q − 1) + q1−11s(q − 1)2(4q6 + 25q5 + 5q4 − 48q3 +

7q2 +9q+1)+ q1−12s(q− 1)2(10q5 +18q4 − 32q3 − 10q2 +18q− 3)+ q1−15s(q− 1)3(4q−

3) + q−10s(q − 1)2(2q8 + 13q7 + 38q6 − 24q5 − 49q4 + 20q3 + 11q2 − 3q − 1) + q−13s(q −

1)3(12q4 +10q3 − 13q2 + q+1)+ q−14s(q− 1)3(9q3 − 2q2 − 5q+2)+ q−16s(q− 1)4 + q8

(x) ζU10
(s) = q6−2s(q−1)(5q+2)(q2+3q−3)+q7−s(q−1)(7q+1)+q5−3s(q−1)(3q5+15q4+

19q3 − 28q2 − 13q+ 10) + q4−4s(q− 1)(q7 + 7q6 + 32q5 + 12q4 − 65q3 − 6q2 + 27q− 3) +

q3−5s(q−1)(2q8+21q7+42q6−16q5−103q4+24q3+50q2−13q−3)+q2−6s(q−1)(6q9+

27q8+64q7−73q6−118q5+64q4+70q3−39q2+q+1)+q2−7s(q−1)(2q10+5q9+39q8+

74q7 − 130q6 − 133q5 +128q4 +74q3 − 60q2 +2q+1)+ q2−8s(q− 1)(q10 +12q9 +39q8 +

67q7−137q6−172q5+200q4+63q3−80q2+2q+6)+q2−9s(q−1)2(10q8+65q7+117q6−

36q5−221q4+18q3+98q2−11q−6)+ q1−11s(q−1)2(6q9+31q8+109q7+8q6−240q5−

10q4 +135q3 − 17q2 − 8q− 1)+ q1−12s(q− 1)2(2q9 +22q8 +77q7 +46q6 − 217q5 − 48q4 +

156q3−12q2−20q+1)+q1−13s(q−1)2(10q8+50q7+60q6−138q5−110q4+146q3+8q2−

25q+2)+q1−15s(q−1)3(4q6+42q5+46q4−51q3−44q2+23q+5)+q1−19s(q−1)4(4q+

1) + q−10s(q − 1)2(2q11 + 8q10 + 50q9 + 112q8 − 29q7 − 227q6 + 17q5 + 123q4 − 24q3 −

12q2+q+1)+q−14s(q−1)2(2q9+24q8+53q7−52q6−127q5+84q4+49q3−32q2−3q+

3)+q−16s(q−1)3(10q6+37q5−9q4−42q3+6q2+10q−1)+q−17s(q−1)3(12q5+14q4−

21q3 − 8q2 + 6q + 1) + q−18s(q − 1)3(9q4 − q3 − 9q2 + q + 1) + q1−20s(q − 1)4 + q9.

Theorem 6.3.11. The representation zeta functions ζTn
(s) for n = 1, . . . , 10

are given by

(i) ζT1
(s) = q − 1

(ii) ζT2
(s) = (q − 1)1−s + (q − 1)2

(iii) ζT3
(s) = q−s(q − 1)2−s + 2(q − 1)2−s + (q − 1)1−2s + (q − 1)3

(iv) ζT4
(s) = 3q−s(q−1)2−2s+2q−s(q−1)3−s+ q−2s(q−1)3−s+ q−2s(q−1)2−2s+ q−s(q−

1)1−3s + 3(q − 1)3−s + 3(q − 1)2−2s + (q − 1)1−3s + (q − 1)4
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(v) ζT5
(s) = 8q−s(q − 1)3−2s + 7q−2s(q − 1)3−2s + 7q−2s(q − 1)2−3s + 7q−s(q − 1)2−3s +

3q−3s(q − 1)3−2s + 3q−s(q − 1)4−s + 2q−2s(q − 1)4−s + 2q−2s(q − 1)1−4s + 2q−3s(q −

1)2−3s + 2q−s(q − 1)1−4s + q−3s(q − 1)4−s + q−4s(q − 1)3−2s + 6(q − 1)3−2s + 4(q −

1)4−s + 4(q − 1)2−3s + (q − 1)1−4s + (q − 1)5

(vi) ζT6
(s) = q−2s(q − 1)1−5s(q + 7) + 29q−2s(q − 1)3−3s + 24q−3s(q − 1)3−3s + 23q−2s(q −

1)2−4s+21q−s(q−1)3−3s+17q−3s(q−1)2−4s+16q−2s(q−1)4−2s+15q−4s(q−1)3−3s+

15q−s(q−1)4−2s+13q−3s(q−1)4−2s+13q−s(q−1)2−4s+10q−4s(q−1)2−4s+7q−4s(q−

1)4−2s + 5q−5s(q − 1)3−3s + 4q−3s(q − 1)1−5s + 4q−s(q − 1)5−s + 3q−2s(q − 1)5−s +

3q−5s(q − 1)4−2s + 3q−s(q − 1)1−5s + 2q−3s(q − 1)5−s + 2q−4s(q − 1)1−5s + 2q−5s(q −

1)2−4s + q−4s(q − 1)5−s + q−6s(q − 1)4−2s + q−6s(q − 1)3−3s + 10(q − 1)4−2s + 10(q −

1)3−3s + 5(q − 1)5−s + 5(q − 1)2−4s + (q − 1)1−5s + (q − 1)6

(vii) ζT7
(s) = 2q−4s(q−1)1−6s(q+8)+ q−2s(q−1)2−5s(2q+53)+ q−2s(q−1)1−6s(2q+13)+

q−3s(q−1)2−5s(2q+71)+q−3s(q−1)1−6s(3q+19)+q−4s(q−1)2−5s(3q+67)+q−5s(q−

1)1−6s(q+12)+107q−3s(q−1)3−4s+104q−4s(q−1)3−4s+87q−2s(q−1)3−4s+79q−3s(q−

1)4−3s+73q−4s(q−1)4−3s+73q−5s(q−1)3−4s+71q−2s(q−1)4−3s+49q−5s(q−1)4−3s+

48q−5s(q−1)2−5s+46q−s(q−1)4−3s+44q−s(q−1)3−4s+42q−6s(q−1)3−4s+30q−6s(q−

1)4−3s+28q−2s(q−1)5−2s+27q−3s(q−1)5−2s+24q−s(q−1)5−2s+23q−6s(q−1)2−5s+

22q−4s(q−1)5−2s+21q−s(q−1)2−5s+15q−7s(q−1)3−4s+13q−5s(q−1)5−2s+12q−7s(q−

1)4−3s+7q−6s(q−1)5−2s+5q−7s(q−1)2−5s+5q−s(q−1)6−s+4q−2s(q−1)6−s+4q−6s(q−

1)1−6s+4q−8s(q−1)4−3s+4q−s(q−1)1−6s+3q−3s(q−1)6−s+3q−7s(q−1)5−2s+3q−8s(q−

1)3−4s +2q−4s(q− 1)6−s + q−5s(q− 1)6−s + q−8s(q− 1)5−2s + q−9s(q− 1)4−3s +20(q−

1)4−3s+15(q−1)5−2s+15(q−1)3−4s+6(q−1)6−s+6(q−1)2−5s+(q−1)1−6s+(q−1)7

(viii) ζT8
(s) = 14q−3s(q−1)2−6s(q+14)+6q−7s(q−1)1−7s(q+7)+4q−3s(q−1)3−5s(q+87)+

2q−2s(q−1)2−6s(3q+50)+2q−7s(q−1)2−6s(3q+89)+q−2s(q−1)3−5s(3q+208)+q−2s(q−

1)1−7s(3q+20)+ q−3s(q− 1)1−7s(q2 +11q+47)+ q−4s(q− 1)3−5s(9q+457)+ q−4s(q−

1)2−6s(20q + 261) + q−4s(q − 1)1−7s(12q + 61) + q−5s(q − 1)3−5s(6q + 485) + q−5s(q −

1)2−6s(24q+305)+q−5s(q−1)1−7s(2q2+20q+79)+q−6s(q−1)3−5s(6q+415)+q−6s(q−

1)2−6s(19q+250)+ q−6s(q−1)1−7s(q2+13q+60)+ q−8s(q−1)2−6s(3q+85)+ q−8s(q−

1)1−7s(q+15)+410q−4s(q−1)4−4s+398q−5s(q−1)4−4s+340q−6s(q−1)4−4s+332q−3s(q−

1)4−4s + 297q−7s(q − 1)3−5s + 238q−7s(q − 1)4−4s + 229q−2s(q − 1)4−4s + 192q−4s(q −

1)5−3s + 174q−3s(q − 1)5−3s + 171q−5s(q − 1)5−3s + 168q−8s(q − 1)3−5s + 147q−8s(q −

1)4−4s+139q−2s(q−1)5−3s+136q−6s(q−1)5−3s+110q−s(q−1)4−4s+90q−7s(q−1)5−3s+

85q−s(q−1)5−3s+80q−s(q−1)3−5s+73q−9s(q−1)3−5s+71q−9s(q−1)4−4s+56q−8s(q−

1)5−3s+45q−3s(q−1)6−2s+43q−2s(q−1)6−2s+42q−4s(q−1)6−2s+35q−s(q−1)6−2s+

34q−5s(q−1)6−2s+31q−s(q−1)2−6s+30q−9s(q−1)2−6s+27q−10s(q−1)4−4s+26q−9s(q−

1)5−3s+22q−6s(q−1)6−2s+21q−10s(q−1)3−5s+13q−7s(q−1)6−2s+11q−10s(q−1)5−3s+

7q−8s(q− 1)6−2s + 7q−11s(q− 1)4−4s + 6q−s(q− 1)7−s + 5q−2s(q− 1)7−s + 5q−10s(q−

1)2−6s + 5q−s(q − 1)1−7s + 4q−3s(q − 1)7−s + 4q−9s(q − 1)1−7s + 4q−11s(q − 1)5−3s +

3q−4s(q − 1)7−s + 3q−9s(q − 1)6−2s + 3q−11s(q − 1)3−5s + 2q−5s(q − 1)7−s + q−6s(q −
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1)7−s + q−10s(q− 1)6−2s + q−12s(q− 1)5−3s + q−12s(q− 1)4−4s +35(q− 1)5−3s +35(q−

1)4−4s+21(q−1)6−2s+21(q−1)3−5s+7(q−1)7−s+7(q−1)2−6s+(q−1)1−7s+(q−1)8

(ix) ζT9
(s) = 10q−8s(q−1)4−5s(q+186)+10q−8s(q−1)3−6s(7q+204)+6q−3s(q−1)4−5s(q+

182)+6q−11s(q−1)3−6s(q+81)+4q−2s(q−1)4−5s(q+149)+4q−2s(q−1)1−8s(q+7)+

4q−6s(q−1)3−6s(27q+598)+4q−9s(q−1)3−6s(11q+377)+3q−7s(q−1)4−5s(4q+739)+

2q−3s(q−1)2−7s(q2+23q+212)+2q−4s(q−1)3−6s(31q+754)+2q−7s(q−1)2−7s(4q2+

103q+730)+2q−8s(q−1)2−7s(3q2+72q+586)+2q−10s(q−1)3−6s(7q+491)+2q−11s(q−

1)1−8s(2q + 19) + 2q−12s(q − 1)2−7s(q + 38) + q−2s(q − 1)3−6s(12q + 425) + q−2s(q −

1)2−7s(12q+167)+q−3s(q−1)3−6s(31q+912)+q−3s(q−1)1−8s(2q2+21q+85)+q−4s(q−

1)4−5s(15q+1658)+q−4s(q−1)2−7s(2q2+89q+758)+q−4s(q−1)1−8s(4q2+45q+165)+

q−5s(q−1)4−5s(16q+2111)+q−5s(q−1)3−6s(92q+2099)+q−5s(q−1)2−7s(9q2+157q+

1138)+ q−5s(q− 1)1−8s(q3 +12q2 +83q+262)+ q−6s(q− 1)4−5s(21q+2302)+ q−6s(q−

1)2−7s(6q2 +180q+1339)+ q−6s(q− 1)1−8s(10q2 +97q+316)+ q−7s(q− 1)3−6s(101q+

2451) + q−7s(q − 1)1−8s(2q3 + 22q2 + 131q + 369) + q−8s(q − 1)1−8s(9q2 + 81q + 277) +

q−9s(q−1)2−7s(3q2+80q+823)+q−9s(q−1)1−8s(2q2+39q+181)+q−10s(q−1)2−7s(39q+

536) + q−10s(q− 1)1−8s(2q2 + 25q+ 119) + q−11s(q− 1)2−7s(11q+ 222) + 1395q−9s(q−

1)4−5s+1254q−6s(q−1)5−4s+1224q−5s(q−1)5−4s+1123q−7s(q−1)5−4s+1061q−4s(q−

1)5−4s +923q−8s(q− 1)5−4s +911q−10s(q− 1)4−5s +776q−3s(q− 1)5−4s +670q−9s(q−

1)5−4s+505q−11s(q−1)4−5s+494q−2s(q−1)5−4s+436q−10s(q−1)5−4s+394q−5s(q−

1)6−3s + 381q−4s(q − 1)6−3s + 369q−6s(q − 1)6−3s + 319q−3s(q − 1)6−3s + 299q−7s(q −

1)6−3s+251q−11s(q−1)5−4s+242q−12s(q−1)4−5s+239q−2s(q−1)6−3s+230q−8s(q−

1)6−3s + 230q−s(q − 1)5−4s + 225q−s(q − 1)4−5s + 208q−12s(q − 1)3−6s + 154q−9s(q −

1)6−3s + 141q−s(q − 1)6−3s + 132q−s(q − 1)3−6s + 126q−12s(q − 1)5−4s + 98q−10s(q −

1)6−3s+89q−13s(q−1)4−5s+67q−3s(q−1)7−2s+67q−4s(q−1)7−2s+61q−2s(q−1)7−2s+

61q−5s(q − 1)7−2s + 58q−13s(q − 1)3−6s + 53q−13s(q − 1)5−4s + 51q−11s(q − 1)6−3s +

50q−6s(q−1)7−2s+48q−s(q−1)7−2s+43q−s(q−1)2−7s+34q−7s(q−1)7−2s+25q−12s(q−

1)6−3s+25q−14s(q−1)4−5s+22q−8s(q−1)7−2s+18q−14s(q−1)5−4s+13q−9s(q−1)7−2s+

12q−13s(q − 1)2−7s + 11q−13s(q − 1)6−3s + 9q−14s(q − 1)3−6s + 8q−12s(q − 1)1−8s +

7q−10s(q − 1)7−2s + 7q−s(q − 1)8−s + 6q−2s(q − 1)8−s + 6q−s(q − 1)1−8s + 5q−3s(q −

1)8−s +5q−15s(q− 1)5−4s +4q−4s(q− 1)8−s +4q−14s(q− 1)6−3s +4q−15s(q− 1)4−5s +

3q−5s(q − 1)8−s + 3q−11s(q − 1)7−2s + 2q−6s(q − 1)8−s + q−7s(q − 1)8−s + q−12s(q −

1)7−2s + q−15s(q − 1)6−3s + q−16s(q − 1)5−4s + 70(q − 1)5−4s + 56(q − 1)6−3s + 56(q −

1)4−5s+28(q−1)7−2s+28(q−1)3−6s+8(q−1)8−s+8(q−1)2−7s+(q−1)1−8s+(q−1)9

(x) ζT10
(s) = q−6s(q − 1)1−9s(3q + 17)(2q2 + 13q + 63) + 12q−13s(q − 1)3−7s(14q + 349) +

10q−14s(q− 1)3−7s(7q+219)+ 7q−5s(q− 1)4−6s(30q+1201)+ 7q−12s(q− 1)4−6s(12q+

967)+5q−2s(q−1)5−5s(q+282)+5q−10s(q−1)5−5s(3q+1366)+4q−2s(q−1)4−6s(5q+

333)+4q−15s(q−1)1−9s(q+11)+3q−2s(q−1)3−7s(10q+259)+3q−7s(q−1)4−6s(118q+

4475) + 3q−8s(q − 1)3−7s(9q2 + 385q + 4636) + 3q−11s(q − 1)3−7s(4q2 + 205q + 3159) +

2q−3s(q−1)4−6s(27q+1496)+2q−4s(q−1)2−8s(8q2+139q+889)+2q−5s(q−1)5−5s(13q+
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3104) + 2q−5s(q − 1)2−8s(q3 + 25q2 + 293q + 1620) + 2q−8s(q − 1)5−5s(19q + 4337) +

2q−12s(q − 1)3−7s(3q2 + 176q + 3381) + 2q−13s(q − 1)4−6s(13q + 2180) + 2q−14s(q −

1)4−6s(5q+1223)+2q−15s(q−1)2−8s(11q+170)+2q−16s(q−1)3−7s(2q+161)+q−2s(q−

1)2−8s(20q + 257) + q−2s(q − 1)1−9s(5q + 37) + q−3s(q − 1)5−5s(8q + 2717) + q−3s(q −

1)3−7s(3q2+117q+2039)+q−3s(q−1)2−8s(6q2+104q+791)+q−3s(q−1)1−9s(3q2+33q+

134)+q−4s(q−1)5−5s(21q+4418)+q−4s(q−1)4−6s(122q+5413)+q−4s(q−1)3−7s(4q2+

273q+4096)+ q−4s(q− 1)1−9s(q3 +15q2 +108q+342)+ q−5s(q− 1)3−7s(19q2 +545q+

6943)+q−5s(q−1)1−9s(2q3+35q2+230q+659)+q−6s(q−1)5−5s(41q+7704)+q−6s(q−

1)4−6s(299q + 11188) + q−6s(q − 1)3−7s(21q2 + 809q + 9883) + q−6s(q − 1)2−8s(2q3 +

84q2 + 953q + 4932) + q−7s(q − 1)5−5s(36q + 8593) + q−7s(q − 1)3−7s(37q2 + 1103q +

12627) + q−7s(q − 1)2−8s(8q3 + 144q2 + 1413q + 6663) + q−7s(q − 1)1−9s(2q4 + 21q3 +

143q2 + 654q + 1524) + q−8s(q − 1)4−6s(356q + 14191) + q−8s(q − 1)2−8s(6q3 + 135q2 +

1587q+7639)+q−8s(q−1)1−9s(q4+20q3+165q2+790q+1818)+q−9s(q−1)5−5s(20q+

8073)+q−9s(q−1)4−6s(322q+13751)+q−9s(q−1)3−7s(30q2+1125q+13721)+q−9s(q−

1)2−8s(4q3+125q2+1513q+7536)+q−9s(q−1)1−9s(10q3+131q2+723q+1771)+q−10s(q−

1)4−6s(227q+12026)+ q−10s(q− 1)3−7s(21q2 +934q+12376)+ q−10s(q− 1)2−8s(8q3 +

142q2 +1407q+6977)+ q−10s(q− 1)1−9s(2q4 +22q3 +154q2 +704q+1669)+ q−11s(q−

1)4−6s(136q+9425)+q−11s(q−1)2−8s(61q2+889q+5143)+q−11s(q−1)1−9s(6q3+73q2+

433q+1181)+q−12s(q−1)2−8s(32q2+526q+3607)+q−12s(q−1)1−9s(2q3+36q2+255q+

805)+q−13s(q−1)2−8s(10q2+249q+2095)+q−13s(q−1)1−9s(10q2+110q+431)+q−14s(q−

1)2−8s(5q2 + 101q+ 983) + q−14s(q− 1)1−9s(2q2 + 33q+ 171) + q−15s(q− 1)3−7s(20q+

929) + q−16s(q − 1)2−8s(2q + 91) + 5331q−11s(q − 1)5−5s + 3802q−12s(q − 1)5−5s +

3288q−7s(q−1)6−4s+3213q−6s(q−1)6−4s+3128q−8s(q−1)6−4s+2802q−5s(q−1)6−4s+

2724q−9s(q−1)6−4s+2472q−13s(q−1)5−5s+2228q−4s(q−1)6−4s+2216q−10s(q−1)6−4s+

1657q−11s(q − 1)6−4s + 1544q−3s(q − 1)6−4s + 1442q−14s(q − 1)5−5s + 1192q−15s(q −

1)4−6s+1149q−12s(q−1)6−4s+937q−2s(q−1)6−4s+759q−15s(q−1)5−5s+757q−6s(q−

1)7−3s +729q−5s(q− 1)7−3s +725q−13s(q− 1)6−4s +700q−7s(q− 1)7−3s +655q−4s(q−

1)7−3s + 607q−8s(q − 1)7−3s + 525q−s(q − 1)5−5s + 524q−3s(q − 1)7−3s + 492q−16s(q −

1)4−6s + 480q−9s(q − 1)7−3s + 427q−s(q − 1)6−4s + 426q−14s(q − 1)6−4s + 413q−s(q −

1)4−6s+377q−2s(q−1)7−3s+365q−10s(q−1)7−3s+346q−16s(q−1)5−5s+249q−11s(q−

1)7−3s + 225q−15s(q − 1)6−4s + 217q−s(q − 1)7−3s + 203q−s(q − 1)3−7s + 163q−12s(q −

1)7−3s +155q−17s(q−1)4−6s +133q−17s(q−1)5−5s +105q−16s(q−1)6−4s +97q−4s(q−

1)8−2s+94q−5s(q−1)8−2s+93q−3s(q−1)8−2s+92q−13s(q−1)7−3s+85q−6s(q−1)8−2s+

82q−2s(q−1)8−2s+74q−17s(q−1)3−7s+70q−7s(q−1)8−2s+63q−s(q−1)8−2s+57q−s(q−

1)2−8s + 50q−8s(q − 1)8−2s + 50q−14s(q − 1)7−3s + 43q−17s(q − 1)6−4s + 42q−18s(q −

1)5−5s+35q−18s(q−1)4−6s+34q−9s(q−1)8−2s+25q−15s(q−1)7−3s+22q−10s(q−1)8−2s+

16q−18s(q − 1)6−4s + 13q−11s(q − 1)8−2s + 12q−17s(q − 1)2−8s + 11q−16s(q − 1)7−3s +

9q−18s(q−1)3−7s+9q−19s(q−1)5−5s+8q−16s(q−1)1−9s+8q−s(q−1)9−s+7q−2s(q−

1)9−s+7q−12s(q−1)8−2s+7q−s(q−1)1−9s+6q−3s(q−1)9−s+5q−4s(q−1)9−s+5q−19s(q−

1)6−4s + 4q−5s(q− 1)9−s + 4q−17s(q− 1)7−3s + 4q−19s(q− 1)4−6s + 3q−6s(q− 1)9−s +



138 CHAPTER 6. UPPER TRIANGULAR MATRICES

3q−13s(q−1)8−2s+2q−7s(q−1)9−s+q−8s(q−1)9−s+q−14s(q−1)8−2s+q−18s(q−1)7−3s+

q−20s(q−1)6−4s+q−20s(q−1)5−5s+126(q−1)6−4s+126(q−1)5−5s+84(q−1)7−3s+84(q−

1)4−6s+36(q−1)8−2s+36(q−1)3−7s+9(q−1)9−s+9(q−1)2−8s+(q−1)1−9s+(q−1)10

The computation times2 for the representation zeta functions ζUn
(s) are given

by

n 2 3 4 5 6 7 8 9 10

time 0.01s 0.08s 0.25s 0.77s 2.41s 8.18s 27.43s 1m44s 6m52s

and those for the representation zeta functions ζTn
(s) are given by

n 2 3 4 5 6 7 8 9 10

time 0.03s 0.15s 0.51s 1.81s 6.32s 26.16s 1m53s 6m39s 55m46s

6.4 Arithmetic-geometric correspondence

In this section, we give some more insight into the correspondence between the

arithmetic and geometric method. In one direction, Theorem 4.10.6 shows how

information on the geometric side can be translated to the arithmetic side. More

precisely, the eigenvalues and eigenvectors of the geometric TQFT ZG partially

describe the character tables of the finite groups G(Fq). Let us illustrate how, in
the other direction, the arithmetic information provides geometric insight into

the ZG. In particular, we will show how the representation theory of the groups

Un(Fq) of unipotent upper triangular matrices over Fq can be used to simplify the

corresponding geometric TQFT ZG. This yields a new smaller set of generators

for this TQFT motivated by the arithmetic side. More precisely, we obtain this

new generating set by canonically lifting the sums of equidimensional characters

to the Grothendieck ring of varieties. These generators will be given by virtual

classes of locally closed subvarieties of G.

Unipotent 3 × 3 matrices. Consider the group U3(Fq) of unipotent upper

triangular matrices of rank 3 over a finite field Fq,

U3(Fq) =


1 x y

0 1 z

0 0 1

 : x, y, z ∈ Fq

 .

The irreducible complex characters of U3(Fq) are of dimension 1 or q. Denote

the set of 1-dimensional characters by X1 and of the q-dimensional characters by

2As performed on an Intel®Xeon®CPU E5-4640 0 @ 2.40GHz.
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Xq. Summing the 1-dimensional characters, we find that v1 =
∑
χ∈X1

χ is given

by

v1

1 x y

0 1 z

0 0 1

 =

{
q if x = z = 0,

0 otherwise.

Summing the q-dimensional characters, we find that v2 =
∑
χ∈Xq

χ is given by

v2

1 x y

0 1 z

0 0 1

 =


−q if x = z = 0 and y ̸= 0,

q(q − 1) if x = y = z = 0,

0 otherwise.

Now, since the eigenvectors v1 and v2 are ‘polynomial in q’-valued on locally

closed subsets of G = U3, we can naturally lift these eigenvectors along the mor-

phism µ[G/G] : K0(Stck[G/G]) → C[G/G](Fq) = RC(G(Fq)) of Definition 4.10.1,

replacing q by L to obtain

L[{x = z = 0}] and − L[{x = z = 0, y ̸= 0}] + L(L− 1)[{x = y = z = 0}]

respectively, expressed in terms of the virtual classes ofG-equivariant subvarieties

of U3. Indeed, from the computations of Section 6.2, whose results can be found

in Appendix A, it can be seen that these elements are eigenvectors of ZG, with

eigenvalues L6 and L4, respectively. In fact, the submodule of K0(Stck[G/G])

generated by these two eigenvectors contains ZG
( )

(1) and is invariant under

ZG( ), and is therefore a simplification of the M = 5 generators as used in

Section 6.2.

Unipotent 4 × 4 matrices. Consider the group U4(Fq) of unipotent upper

triangular matrices of rank 4 over a finite field Fq,

U4(Fq) =



1 a b c

0 1 d e

0 0 1 f

0 0 0 1

 : a, b, c, d, e, f ∈ Fq

 .

This group has three families of irreducible complex characters: the 1-dimen-

sional characters X1, the q-dimensional characters Xq and the q2-dimensional
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characters Xq2 . Summing equidimensional characters, we find

∑
χ∈X1

χ


1 a b c

0 1 d e

0 0 1 f

0 0 0 1

 =

{
q2 if a = d = f = 0,

0 otherwise,

∑
χ∈Xq

χ


1 a b c

0 1 d e

0 0 1 f

0 0 0 1

 =


q4 if a = b = d = e = f = 0,

−q2 if a = d = f

0 otherwise,

∑
χ∈Xq2

χ


1 a b c

0 1 d e

0 0 1 f

0 0 0 1

 =


q3(q − 1) if a = b = c = d = e = f = 0,

−q3 if a = b = d = e = f = 0 and c ̸= 0,

0 otherwise.

We lift these to elements in K0(Stck[G/G]), for G = U4, given by

L2[{a = d = f = 0}],
L4[{a = b = d = e = f = 0}]− L2[{a = d = f = 0}], and
L3(L− 1)[{a = b = c = d = e = f = 0}]− L3[{a = b = d = e = f = 0, c ̸= 0}].

Again, the computations of Section 6.2, whose results can be found in Appendix

A, show that these elements are eigenvectors of ZG, with eigenvalues L12, L10 and

L8, respectively. These three elements to generate a submodule of K0(Stck[G/G])

which can replace the one from Section 6.2 withM = 16 generators, a significant

simplification.

Remark 6.4.1. During the algorithmic computations of Section 6.3, it is, in

principle, possible to keep track of the irreducible characters of Un(Fq) and

Tn(Fq) for 6 ≤ n ≤ 10. Then, as in the above examples, the sums of equi-

dimensional characters can be lifted to elements in K0(Stck[G/G]) for G = Un or

G = Tn, respectively. While we have not attempted this, these lifts would gener-

ate a submodule of K0(Stck[G/G]) which, one could hopefully show, is invariant

under ZG
( )

. This would provide a way to extend the geometric method to

groups of upper triangular matrices of rank ≥ 6, even though there are infinitely

many conjugacy classes.



Chapter 7

Motivic stability

Let Γn be a sequence of finitely generated groups, and let G be an algebraic

group over a field k. One can wonder whether the invariants of the corresponding

sequence of character stacks XG(Γn) are related. We will mainly focus on the

sequence Γn = Zn of free abelian groups and the sequence Γn = Fn of free groups,

for which the character stacks parametrize (commuting) tuples of elements in G

up to conjugation.

Geometric invariants of these and related spaces have been studied extensively

[Bai07, AC07, PS13, FL14]. For Xn the sequence of G-representation varieties

or G-character varieties of Zn, the homology groups Hk(Xn) were computed in

[RS19], and their mixed Hodge structures in [FS21]. A pattern emerged: fixing

n and varying G through sequences Gr of classical groups (such as GLr or Ur),

the homology groups Hk(Xn) remain constant for sufficiently large r, that is,

they stabilize. This pattern was proved in [RS21], as well as for fixed G and

increasing n, and for many related sequences Xn. Moreover, taking into account

the action of the symmetric group Sn on Zn by permutation, inducing an action

of Sn on Xn and in turn on Hk(Xn), they showed the homology groups stabilize

as Sn-representations. This type of stability, called representation stability, was

formulated in [CF13]: a sequence Vn of Sn-representations is representation sta-

ble, roughly speaking, if the multiplicities of the irreducible representations Vλ,

corresponding to the partitions λ of n, stabilize. Partitions for n and n + 1 are

related by increasing the first number.

In this chapter, we combine the notion of representation stability with that of

motivic stability. Completing the Grothendieck ring of varieties, one can study

the convergence of a sequence of virtual classes. Such convergence was studied

in [VW15] for sequences of symmetric powers SymnX (as an algebraic analogue

of the Dold–Thom theorem) and sequences of configuration spaces ConfnX.

141



142 CHAPTER 7. MOTIVIC STABILITY

Using the theory of Section 3.6, we will generalize the notion of motivic stability,

and introduce the concept of motivic representation stability. As an application,

we will show that the sequence of GLr-character stacks XGLr (Zn), with the action

of Sn, is motivically representation stable.

7.1 Motivic stability

Motivic stability is a property of a sequence of varieties, which amounts to the

convergence (in some sense) of their virtual classes in the topological ring M̂L,

which is the completion of the localization K0(Vark)[L−1] of the Grothendieck

ring of varieties. This topological ring was originally constructed by Kontsevich in

the context of motivic integration [Kon95]. For more information on this object,

we refer to [Bou11, Loo02, VW15].

For our applications, we adapt the standard definitions to the equivariant setting.

Throughout, fix an algebraic group G over k, and denote by L the class [A1
k] ∈

K0(VarGk ) of A1
k on which G acts trivially.

Definition 7.1.1. WriteMG
L for the localization K0(VarGk )[L−1]. Consider the

increasing filtration onMG
L ,

0 ⊆ · · · ⊆ FnMG
L ⊆ Fn+1MG

L ⊆ · · · ⊆ MG
L ,

where FnMG
L is the subgroup of MG

L generated by all elements of the form

[X]/Lm with dimX −m ≤ n. Note that
⋃
n∈Z FnM̂G

L =MG
L . The completion

with respect to this filtration is denoted

M̂G
L = lim←−

n

MG
L /FnMG

L .

An element x ∈ M̂G
L can be represented as a tuple (xn) ∈

∏
n∈ZMG

L /FnMG
L

such that xn ≡ xm mod FnMG
L for all m ≤ n.

The completion M̂G
L inherits, a priori, only the group structure fromMG

L . Mul-

tiplication is defined as follows. Let x = (xn) and y = (yn) be elements of M̂G
L .

Note that there exists a sufficiently large N such that xn = yn = 0 for all n ≥ N .

Now define xy by (xy)n = x′n−Ny
′
n−N mod FnMG

L , where x
′
n−N , y

′
n−N ∈ MG

L
are lifts xn−N and yn−N , respectively. This is independent of the choice of lift

since, for any other lift x′′n−N , we have x′′n−Ny
′
n−N − x′n−Ny

′
n−N = (x′′n−N −

x′n−N )y′n−N ∈ Fn−NMG
L · FNMG

L ⊆ FnMG
L . Similarly, it is independent of the

choice of lift y′n−M . This gives M̂G
L a ring structure.

Definition 7.1.2. Let X be a G-variety over k. For any n ≥ 0, the n-th G-

symmetric power of X, denoted Symn
GX, is the G-variety given by the ordinary
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symmetric power SymnX = Xn�Sn with the action ofG induced by the diagonal

action on Xn.

Definition 7.1.3. Let X be a G-variety over k. The symmetric powers Symn
GX

of X are called motivically stable if the limit

lim
n→∞

[Symn
GX]

Ln dimX

exists in M̂G
L . More generally, a sequence Xn of G-varieties over k is motivically

stable if the limit

lim
n→∞

[Xn]

LdimXn

exists in M̂G
L .

Example 7.1.4. When G = 1 is the trivial group, we simply write M̂L instead

of M̂G
L . In this case, the following sequences are motivically stable.

■ From Example 3.3.5, we see that the sequence Xn = GLn is motivically stable,

with limit limn→∞[GLn]/Ln
2

=
∏
i≥1(1− L−i).

■ Similarly, Xn = SLn is motivically stable with limit limn→∞[SLn]/Ln
2−1 =∏

i≥2(1 − L−i). Since [PGLn] = [SLn], the sequence Xn = PGLn is also mo-

tivically stable, with the same limit.

■ It is still an open conjecture [VW15, Conjecture 1.25] whether the symmetric

powers of all geometrically irreducible varieties are motivically stable. However,

some evidence has been presented against it [Lit14].

Example 7.1.5. Let us give some intuition for what motivic stabilization implies

about the cohomology of Xn. Suppose Xn is a sequence of varieties over k = C.
Note that the E-polynomial descends to a continuous morphism

e : M̂G
L → Z[u, v]J(uv)−1K

where the target is equipped with the (uv)−1-adic topology. Since

e([Xn]/LdimXn) =
∑

k,p,q∈Z
(−1)khk;p,qc (Xn)u

p−dimXnvq−dimXn ,

it follows, if the sequence Xn motivically stabilizes, that, for all p and q, the

numbers hk;dimXn−p,dimXn−q
c (Xn) are eventually constant as n→∞. If the Xn

are smooth projective, then evaluating in u = v = t, it also follows that the

dimensions dimCH
dimXn−k
c (Xn;C) are eventually constant as n → ∞, as well

as the dimensions dimCHk(Xn;C) by Poincaré duality.
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In the context of motivic stability, an important source of sequences of varieties

are the symmetric powers of a variety X. In order to keep track of the virtual

classes of these symmetric powers, we collect them as the coefficients of a power

series, as first done by [Kap00].

Definition 7.1.6. Let X be a G-variety over k. The motivic zeta function of X

is

ZG(X, t) =
∑
n≥0

[Symn
GX] tn ∈ 1 + t ·K0(VarGk )JtK.

Lemma 7.1.7. Let X be a G-variety over k, and Y ⊆ X a G-invariant closed

subvariety with open complement U . Then ZG(X, t) = ZG(Y, t)ZG(U, t), and

hence ZG(−, t) descends to a group morphism

ZG(−, t) : K0(VarGk )→ 1 + t ·K0(VarGk )JtK

with the multiplicative group structure on the right. In particular, Symn
G descends

to a map

Symn
G : K0(VarGk )→ K0(VarGk ).

Proof. From

[Symn
GX] = [Xn � Sn] =

∑
i+j=n

[(Sn · (Y i × U j)) � Sn]

=
∑
i+j=n

[(Y i � Si)× (U j � Sj)] =
∑
i+j=n

[Symi
G Y ][Symj

G U ]

follows that

ZG(X, t) =
∑
n≥0
i+j=n

[Symi
G Y ][Symj

G U ] tn = ZG(Y, t)ZG(U, t).

The following lemma is a variation of [Göt01, Lemma 4.4], adapted to the equiv-

ariant setting.

Proposition 7.1.8. Let G be a finite group, and let X be a G-variety over k.

For any r ≥ 0, we have

ZG(Lr[X], t) = ZG([X],Lrt).

Proof. It suffices to treat the case r = 1. Denote by π : Symn(X×A1
k)→ SymnX

the obvious projection. Note that SymnX is naturally stratified by locally closed
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subvarieties (SymnX)λ according to the partitions λ of n. For every such parti-

tion λ, we consider the cartesian diagram

X
ℓ(λ)
∗ ×

∏n
i=1(Aik � Si)ai(λ) π−1 ((SymnX)λ)

X
ℓ(λ)
∗ (SymnX)λ

πλ

where ai(λ) denotes the number of times i appears in λ, and X
ℓ(λ)
∗ the space of

ℓ(λ) =
∑
i ai(λ) distinct ordered points of X. Since

∏n
i=1(Aik � Si)

ai(λ) ∼= Ank ,
the diagram defines an étale trivialization of πλ. The transition functions are

given by the action of the group Sa1(λ)×· · ·×San(λ), which acts linearly. Hence,

πλ is a vector bundle which is étale-locally trivial, so by Hilbert’s Theorem 90

[Ser58, Theorem 2] also Zariski-locally trivial. However, note that a stratification

of (SymnX)λ trivializing πλ need not necessarily be G-invariant. Nevertheless,

using that G is finite, any such stratification can be intersected with all of its

translations by g ∈ G, in order to obtain a G-invariant stratification. Hence, we

conclude that [Symn
G(X × A1

k)] = Ln[Symn
GX].

From the Chevalley–Shephard–Todd theorem [Che55], it is easy to see that

SymnArk is not isomorphic to Anrk for n, r > 1. Nevertheless, the above proposi-

tion yields the following corollary.

Corollary 7.1.9. For any n, r ≥ 0, we have Symn Lr = Lnr. In particular,

ZG(Lr, t) = 1/(1− Lrt).

Lemma 7.1.10. Let X be a d-dimensional G-variety over k, and suppose that

the symmetric powers Symn
GX are motivically stable. Then

lim
n→∞

[Symn
GX]

Lnd
=
[
(1− t)ZG(X, t/Ld)

]
t=1

.

Proof. As

[
(1− t)ZG(X, t/Ld)

]
t=1

=

1 +∑
n≥1

(
[Symn

GX]

Lnd
− [Symn−1

G X]

L(n−1)d

)
tn


t=1

evaluates to a telescoping series, it is equal to limn→∞[Symn
GX]/Lnd.

Example 7.1.11. Let X be a variety over k such that [X] ∈ K0(Vark) is a

polynomial in L. Then the sequence of symmetric powers Xn = SymnX is mo-

tivically stable if and only if [X] is monic in L. Namely, writing [X] =
∑d
i=0 aiLi
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with ad ̸= 0, it follows from Lemma 7.1.7 and Corollary 7.1.9 that

ZG([X], t) =

d∏
i=0

(
1

1− Lit

)ai
.

Hence, [SymnX]/Lnd is the n-th coefficient of

ZG(X, t/Ld) =
d∏
i=0

(
1

1− Li−dt

)ai
.

Therefore, for ad = 1, we find that

lim
n→∞

[SymnX]

Lnd
=
[
(1− t)ZG(X, t/Ld)

]
t=1

=

d−1∏
i=0

(
1

1− Li−d

)ai
,

and for ad > 1, the limit is easily seen to not exist.

Proposition 7.1.12 ([VW15, Proposition 4.2]). Let X be a G-variety over k,

and Y ⊆ X a G-invariant closed subvariety of dimension dimY < dimX, with

open complement U = X\Y . Then the symmetric powers Symn
GX are motivically

stable if and only if the symmetric powers Symn
G U are motivically stable, and in

this case

lim
n→∞

[Symn
GX]

Ln dimX
= ZG(Y,L− dimX) lim

n→∞

[Symn
G U ]

Ln dimX
.

Proof. Let us prove the result modulo F−mMG
L for allm ≥ 0, by induction onm.

The case m = 0 is trivial as [Symn
GX]/Ln dimX ≡ 0 mod F0MG

L , and similarly

for U . For m > 0 we find, as in Lemma 7.1.7, that, for all n ≥ 1,

[Symn
GX]

Ln dimX
≡
m−1∑
i=0

[Symn−i
G U ]

L(n−i) dimX

[Symi
G Y ]

Li dimX
mod F−mMG

L (∗)

since [Symn−i
G U ][Symi

G Y ]/Ln dimX ∈ F−mMG
L for i ≥ m as dimY < dimX.

Now, if the symmetric powers of U stabilize modulo F−mMG
L , say to ℓ =

limn→∞[Symn
G U ]/LdimX , then the right-hand side of equation (∗) stabilizes

modulo F−mMG
L to ℓ ZG(Y,L− dimX). Conversely, if the symmetric powers of

X stabilize modulo F−mMG
L , then the symmetric powers of U stabilize modulo

F−m+1MG
L (by the induction hypothesis), so every term on the right-hand side

of (∗) with i ≥ 1 stabilizes modulo F−mMG
L . But then also the term with i = 0

must stabilize, which shows that the symmetric powers of U stabilize modulo

F−mMG
L .

Remark 7.1.13. Suppose G is the trivial group, and write Z(−, t) for ZG(−, t).
The definition of Z(−, t) can be extended to the Grothendieck ring of stacks
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K0(Stckk). Since K0(Stckk) ∼= K0(Vark)[L−1, (Ln − 1)−1] by Theorem 3.5.7, it

suffices to recursively define Z(x/L, t) and Z(x/(Ln−1), t) in terms of Z(x, t) for

all elements x ∈ K0(Stckk), using that Z(x, t) is determined for x ∈ K0(Vark).

This is done as follows.

Z(x/L, t) = Z(x,L−1t)

Z(x/(Ln − 1), t) =
∏
i≥0

Z(x,Lint)−1

Note that this gives a well-defined map

Z(−, t) : K0(Stckk)→ 1 + t ·K0(Stckk)JtK

since

Z(xL/L, t) = Z(x, t) and

Z(x(Ln − 1)/(Ln − 1)) =
∏
k≥0

Z(x(Ln − 1),Lknt) =
∏
k≥0

Z(x,Lknt)
Z(x,L(k+1)nt)

= Z(x, t)

which is easily seen to still be group morphism. In particular, looking at the n-th

coefficient of Z(−, t), we find that Symn descends to a map

Symn : K0(Stckk)→ K0(Stckk).

The definition of symmetric powers does not naturally extend from varieties to

stacks. However, as shown in [Eke09b], the class Symn[X] coincides with the

virtual class of the stacky symmetric power [Xn/Sn] for objects X of Stckk when

char(k) = 0 and char(k) > n.

7.2 Equivariant stability

In this section we will show various stability results, for non-trivial algebraic

groups G. Let us start by considering one of the simplest actions.

Proposition 7.2.1. Let G = Gm act on A1
k via α · x = αx. Then

lim
n→∞

Symn
G[A1

k]

Ln
=

[Gm]

L− 1

in M̂G
L , where on the right Gm acts transitively on itself.

Proof. Write X = [A1
k] for the described action of Gm on A1

k. Since Symn A1
k
∼=

Ank has basis of coordinates given by the elementary symmetric polynomials, we

have

Symn
GX =

n∏
i=1

[A1
k] =

n∏
i=1

(1 + Yi),
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where, for any i ≥ 1, we denote Yi = [Gm] for the action α · x = αix. Note that

YiYj = (L − 1)Ygcd(i,j) for any i, j ≥ 1. Indeed, there exist a, b ∈ Z such that

ai+ bj = d := gcd(i, j), so the equality follows from the isomorphism

Gm ×Gm ∼= Gm ×Gm
(x, y) 7→ (xayb, xj/ gcd(i,j)y−i/d)

(zi/dwb, zj/dw−a)←[ (z, w),

where α · (x, y, z, w) = (αix, αjy, αdz, w). Now, it follows that

Symn
GX = 1 +

∑
i≥1

an,iYi with an,i =
∑
S

(L− 1)|S|−1,

where the latter sum runs over all non-empty subsets S ⊆ {1, 2, . . . , n} such that

gcd(S) = i. Now, for any i ≥ 2, we see that any S appearing in this sum must

have |S| ≤ n/i, so that degL(an,i) ≤ n/i− 1. In particular,

lim
n→∞

an,i
Ln

= 0

for i ≥ 2. Furthermore, from the equality 1+
∑n
i=1 an,i(L− 1) = Ln follows that

lim
n→∞

an,1
Ln

= lim
n→∞

1

Ln

(
Ln − 1

L− 1
−

n∑
i=2

an,i

)
=

1

L− 1
,

and therefore

lim
n→∞

Symn
GX

Ln
=

1

L− 1
Y1.

Corollary 7.2.2. The action of G = Gm on A1
k given by α · x = αx extends

to P1
k and restricts to Gm. The symmetric powers of P1

k and Gm are motivically

stable with limits

lim
n→∞

Symn
G[P1]

Ln
=

L
(L− 1)2

[Gm]

lim
n→∞

Symn
G[Gm]

Ln
=

1

L
[Gm].

Proof. This follows from Proposition 7.2.1 together with Proposition 7.1.12 and

the fact that ZG(1, t) = 1/(1− t).

Next, we will generalize this result to the groups G = GLr acting on affine space.

In doing so, the following definition will be useful.

Definition 7.2.3. Let Xn be a sequence of G-varieties over k. A family of G-

invariant subvarieties Yn ⊆ Xn is negligible if limn→∞ dimXn − dimYn =∞. In

particular, Xn is motivically stable with limit ℓ = limn→∞[Xn]/LdimXn if and

only if Zn = Xn \ Yn is motivically stable with the same limit.
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Proposition 7.2.4. Let G = GLr act naturally on Ark for some r ≥ 1. Then

lim
n→∞

Symn
G[Ark]

Lnr
=

[GLr]∏r
i=1(Lr − Li−1)

=

r∏
i=1

[Ark]− Li−1

Lr − Li−1

with GLr acting transitively on itself.

Proof. Let Xn ⊆ Symn
GArk be the strata where GLr acts freely, that is, the strata

of points whose stabilizer is trivial. Then Xn → Xn � GLr is a GLr-torsor, so

[Xn] = [Xn � GLr][GLr] since GLr is a special group. In particular, if we show

that the complement Yn = (Symn
GArk) \Xn of points with non-trivial stabilizer

is negligible, then the result follows as

lim
n→∞

Symn
G[Ark]

Lnr
= lim
n→∞

[Xn]

Lnr
= lim
n→∞

[Xn � GLr]

Lnr
[GLr]

where

lim
n→∞

[Xn � GLr]

Lnr
= lim
n→∞

[Xn]

Lnr
[GLr]

−1 = [GLr]
−1 =

1∏r
i=1(Lr − Li−1)

.

To show that Yn is negligible, suppose (x1, . . . , xn) ∈ (Ark)n is a point which (in

passing to the quotient by Sn) is stabilized by some non-trivial A ∈ GLr. Then

there is a permutation σ ∈ Sn such that Axi = xσ(i) for all i = 1, . . . , n. Hence,

there is a surjection ⊔
σ∈Sn

Zσ → Yn

with Zσ =
{
(A, x1, . . . , xn) ∈ (GLr \ {1})× (Ark)n | Axi = xσ(i)

}
. We claim that

dimZσ ≤ dimGLr + nr − n for all σ ∈ Sn, from which it follows that dimYn ≤
dimGLr +nr−n, which in turn implies Yn is negligible. To prove this claim, fix

some σ ∈ Sn and write σ = τ1τ2 . . . τs in canonical cycle notation (in particular,

we do not omit 1-cycles). Then for every cycle τ = (i1 i2 . . . im), let

Zτ =
{
(A, xi1 , . . . , xim) | Axij = xτ(ij)

}
.

If τ is a 1-cycle, then dimZτ ≤ dimGLr + r− 1 since A is non-trivial. If τ is an

(m ≥ 2)-cycle, then dimZτ ≤ dimGLr + r. Simple combinatorics now yields

dimZσ = dim(Zτ1 ×GLr\{1} · · · ×GLr\{1} Zτs) ≤ dimGLr + nr − n.

Remark 7.2.5. Note that Proposition 7.2.1 is a special case of this proposition,

but with an alternative proof.

Finally, we want to extend this result to any linear algebraic group G acting lin-

early on affine space. In order to relate M̂G
L for various G, consider the following

lemma.
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Lemma 7.2.6. Let G be an algebraic group over k with subgroup H ⊆ G. The

morphisms ResGH and IndGH of Definition 3.6.5 extend to continuous morphisms

ResGH : M̂G
L → M̂H

L and IndGH : M̂H
L → M̂G

L .

In fact, ResGH is defined for any morphism H → G of algebraic groups over k.

Proof. Since ResGH(FmMG
L ) ⊆ FmMH

L and IndGH(FmMH
L ) ⊆ Fm′MG

L , with

m′ = m+ dimG− dimH, both IndGH and ResGH extend to the completions.

Corollary 7.2.7. Let G be an algebraic group over k acting on Ark via some

morphism ρ : G→ GLr of algebraic groups. Then

lim
n→∞

Symn
G[Ark]

Lnr
=

[GLr]∏r
i=1(Lr − Li−1)

where G acts on GLr by multiplication via ρ.

Proof. Use Proposition 7.2.4 and that ResGLr

G ◦ Symn
GLr

= Symn
G ◦Res

GLr

G .

7.3 Motivic representation stability

In the context of motivic stability, it is typical to consider a sequence of symmetric

powers SymnX = Xn�Sn of a varietyX over k. However, one can more generally

consider the whole Xn together with the action of Sn by permutation. One

can then attempt to study the stability of the Sn-virtual class of Xn, as in

Definition 3.6.12.

However, two problems arise. First of all, the group Sn depends on n, so to

talk about stability, we must identify the irreducible representations of Sn for

varying n. Recall that the irreducible representations of Sn are parametrized

by the partitions of n [FH91]. Write Vλ for the irreducible representation of Sn
corresponding to a partition λ of n. For any partition λ = (λ1, λ2, . . .) and any

integer n ≥ |λ|+ λ1, denote by λ[n] the partition of n given by

λ[n] = (n− |λ|, λ1, λ2, . . .).

Then, we think of the family Vλ[n] of irreducible representations of Sn as corre-

sponding to each other.

The second problem is that the Sn-virtual class depends on the choice of a set H
of subgroups of Sn. One could, as in Example 3.6.15, take set of Young subgroups

H = {Sλ1
× · · · × Sλk

| λ is a partition of n}. (7.1)
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This idea will give rise to Definition 7.3.4. However, to get rid of the choice,

we will first consider invariants in K0(A) instead of K0(Vark) for some suitable

category A and functor X : Vark → A. We will assume the following:

■ A is a K-linear idempotent complete tensor triangulated category, with K a

field of characteristic zero.

■ The functor X induces a ring morphism K0(Vark)→ K0(A). For any element

x ∈ K0(Vark), we will denote its image in K0(A) also by x.

■ For any finite group G and G-variety X over k, the coefficient of [X (X)]G ∈
K0(A)⊗RK(G) corresponding to the trivial representation equals [X (X�G)].

Inspired by [CF13, Definition 2.3], we introduce the following definition.

Definition 7.3.1. Let Xn be a sequence of varieties over k with an action of

Sn. The sequence is A-representation stable if, writing

[Xn]
Sn =

∑
λ[n]

[Xn]λ[n] ⊗ [Vλ[n]] ∈ K0(A)⊗RQ(Sn),

the coefficients [Xn]λ[n]/LdimXn are eventually independent of n.

One way to compute the coefficients [Xn]µ, for partitions µ of n, is to look at the

virtual classes of the quotients Xn � Sλ with Sλ ∈ H. This way, one inevitably

encounters the Kostka numbers Kµλ. We will need the following lemma.

Lemma 7.3.2. Let λ and µ be partitions. The Kostka number Kµ[n]λ[n] is inde-

pendent of n for n ≥ |λ|+ µ1.

Proof. Recall that Kµλ is equal to the number of ways to fill the Young diagram

of µ with λ1 1’s, λ2 2’s, etc., such that the resulting tableau is non-decreasing

along rows and strictly increasing along columns [FH91]. Denote by Aµλ the set

of such tableaux. In particular, Kµλ = |Aµλ|.

For |µ| > |λ|, we have µ[n] < λ[n], and hence Kµ[n]λ[n] = 0. Now suppose

|µ| ≤ |λ|. Considering Aµ[n]λ[n], note that all (n− |λ|) 1’s must be placed on the

first row of the Young diagram of µ[n]. Therefore, any Young tableau in Aµ[n]λ[n]
is completely determined by the second through last rows and the last |λ| − |µ|
entries of the first row. Note that, for n ≥ |λ|+ µ1, these last |λ| − |µ| entries do
not put any restrictions on the entries of the second through last rows. Hence,

we obtain a bijection between Aµ[n]λ[n] and Aµ[n′],λ[n′] for all n, n′ ≥ |λ| + µ1,

which shows that Kµ[n]λ[n] = Kµ[n′]λ[n′].

Proposition 7.3.3. Suppose the sequences [Xn �Sλ[n]]/LdimXn ∈ K0(A) stabi-
lize for all partitions λ. Then, the sequence Xn is A-representation stable.
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Proof. Write [Xn]
Sn =

∑
λ[n][Xn]λ[n] ⊗ [Vλ[n]]. For any λ, we have, similar to

Example 3.6.15,

[Xn � Sλ[n]] =
〈
TSλ[n]

,ResSn

Sλ[n]
[Xn]

Sn

〉
=
〈
IndSn

Sλ[n]
TSλ[n]

, [Xn]
Sn

〉
=

∑
µ[n]≥λ[n]

Kµ[n]λ[n][Xn]
µ[n].

Note that there are, independent of n, only finitely many partitions µ such that

µ[n] ≥ λ[n]: those µ with |µ| < |λ|, and those with |µ| = |λ| and µ > λ.

By Lemma 7.3.2, the numbers Kµ[n]λ[n] are, for sufficiently large n, independent

of n. Hence, [Xn]λ[n] can be expressed as a linear combination of [X �Sµ[n]] with
µ[n] ≥ λ[n], where the coefficients do not change for sufficiently large n ≥ 2|λ| ≥
|λ|+ µ1.

This motivates the following definition. Also agrees with stabilization ofG-virtual

class with H given by (7.1).

Definition 7.3.4. Let Xn be a sequence of varieties over k with an action of

Sn. The sequence is said to be motivically representation stable if the sequences

[Xn � Sλ[n]] are motivically stable for all partitions λ. In particular, this implies

Xn is A-representation stable for all A and X : Vark → A as above. Also, in

particular, the sequence [Xn � Sn] is motivically stable.

More generally, a sequence Xn of (G× Sn)-varieties over k is motivically repre-

sentation stable if the sequences [Xn �Sλ[n]] are motivically stable, as sequences

of G-varieties, for all partitions λ.

Example 7.3.5. Let X be a variety over k whose sequence of symmetric powers

SymnX is motivically stable, and let Xn = Xn with Sn acting by permutation.

Then, for any partition λ, the sequence

[Xn � Sλ[n]] = Symn−|λ|X ×
∏
i≥1

Symλi X

is motivically stable. In particular, Xn is motivically representation stable.

7.4 GLr-character stacks

The goal of this section is to show the sequences of character stacks

Xn = XG(Γn) = [RG(Γn)/G]
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of the free groups Γn = Fn and the free abelian groups Γn = Zn are motivic

representation stable for the general linear groups G = GLr of any rank r ≥ 0

over a field k, where the action of Sn is induced from the action of Sn on Γn
by permutation. However, since the notion of motivic representation stability

is only defined for (G-)varieties, we will instead prove that the sequences of

representation varieties Xn = RG(Γn) are motivically representation stable as

sequences of G-varieties. Indeed, note that the action of G by conjugation and

the action of Sn by permutation commute.

The case of Γn = Fn turns out to be a quick consequence of the theory developed

in the previous sections.

Theorem 7.4.1. For every r ≥ 0, the sequence of GLr-representation varieties

Xn = RGLr (Fn)

with the action of GLr by conjugation, and the action of Sn by permutation, is

motivically representation stable.

Proof. For any n ≥ 1, write Xn = RGLr
(Fn) = (GLr)

n. Given any partition λ,

we find

Xn � Sλ[n] = Sym
n−|λ|
GLr

GLr ×
∏
i≥1

Symλi

GLr
GLr,

where GLr acts on itself by conjugation. Viewing GLr as a dense open subset of

Ar2k , the action of GLr on itself is linear, and hence the sequence Xn � Sλ[n] is

motivically stable by Corollary 7.2.7 and Proposition 7.1.12.

For the remainder of this section, we will focus on the case Γn = Zn, and assume

that k is algebraically closed.

Theorem 7.4.2. For every r ≥ 0, the sequence of GLr-representation varieties

Xn = RGLr (Zn)

with the action of GLr by conjugation, and the action of Sn by permutation, is

motivically representation stable.

Notation-wise, we will use the following presentation of Xn, as the closed subva-

riety of (GLr)
n given by commuting tuples of elements Ai ∈ GLr.

Xn =
{
(A1, . . . , An) ∈ (GLr)

n
∣∣ all Ai commute

}
Interestingly, it turns out the cases r ≤ 3 should be treated differently from the

general case r > 3. We will first treat the cases r = 2, 3.



154 CHAPTER 7. MOTIVIC STABILITY

Proposition 7.4.3. The GL2-representation varieties Xn = RGL2(Zn) are mo-

tivically representation stable.

Proof. Consider the possible Jordan normal forms of an element A ∈ GL2.(
λ 0
0 λ

)
(
λ 1
0 λ

) (
λ 0
0 µ

)
In particular, note that a matrix of the form

(
λ 0
0 µ

)
, with λ ̸= µ, only commutes

with diagonal matrices, and that a matrix of the form
(
λ 1
0 λ

)
only commutes with

matrices of the form ( x y0 x ). Therefore, Xn can be stratified by the subvarieties

Yn = {A ∈ Xn | all Ai are scalar} ,
Jn =

{
A ∈ Xn | some Ai is conjugate to

(
λ 1
0 λ

)}
and Mn =

{
A ∈ Xn | some Ai is conjugate to

(
λ 0
0 µ

)}
.

Simultaneously conjugating the Ai into normal form, we can express Jn as

Jn = IndGL2

H (Jn \ Yn)

where J = {( x y0 x ) | x ̸= 0} and H = {( a b0 c ) | a, c ̸= 0} the stabilizer of J . Simi-

larly, we have

Mn = IndGL2

K (Mn \ Yn)

where M =
{(

x 0
0 y

)
| x, y ̸= 0

}
and K = {( a 0

0 b ) , (
0 a
b 0 ) | a, b ̸= 0} the stabilizer

of M . Clearly dimYn = n while dimJn,dimMn ≥ 2n, implying Yn ⊆ Xn is

negligible. Hence, it suffices to show that the sequences J ′
n and M ′

n, given by

J ′
n = IndGL2

H (Jn) and M ′
n = IndGL2

K (Mn)

are motivically representation stable.

First we consider J ′
n. Note that, for any partition λ, the actions of Sλ[n] and GL2

on Jn commute, so that

J ′
n � Sλ[n] = IndGL2

H

(
Sym

n−|λ|
H J ×

∏
i≥1

Symλi

H J
)
.

Note that the action of H on J is linear, viewing J as an open dense subva-

riety of A2
k. Hence, the sequence J ′

n � Sλ[n] is motivically stable as a result of

Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6.

The argument regarding Mn is analogous: for any partition λ, we have

M ′
n � Sλ[n] = IndGL2

K

(
Sym

n−|λ|
K M ×

∏
i≥1

Symλi

K M
)
.
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Again, the action of K on M ⊆ A2
k is linear, so the sequence M ′

n � Sλ[n] is also

motivically stable.

Proposition 7.4.4. The GL3-representation varieties Xn = RGL3
(Zn) are mo-

tivically stable.

Proof. The proof is very similar to that of Proposition 7.4.3. Consider the pos-

sible Jordan normal forms of an element A ∈ GL3.(
λ 0 0
0 λ 0
0 0 λ

)
(
λ 1 0
0 λ 0
0 0 λ

) (
λ 0 0
0 λ 0
0 0 µ

)
(
λ 1 0
0 λ 1
0 0 λ

) (
λ 1 0
0 λ 0
0 0 µ

) (
λ 0 0
0 µ 0
0 0 ρ

)
Having analyzed which matrices commute with each Jordan type, we stratify Xn

by the subvarieties

Y 0
n =

{
A ∈ Xn | all Ai are conjugate to

(
λ 0 0
0 λ 0
0 0 λ

)
,
(
λ 1 0
0 λ 0
0 0 λ

)
or
(
λ 0 0
0 λ 0
0 0 µ

)}
,

Y 1
n =

{
A ∈ Xn | some Ai is conjugate to

(
λ 1 0
0 λ 1
0 0 λ

)}
,

Y 2
n =

{
A ∈ Xn | some Ai is conjugate to

(
λ 1 0
0 λ 0
0 0 µ

)}
,

Y 3
n =

{
A ∈ Xn | some Ai is conjugate to

(
λ 0 0
0 µ 0
0 0 ρ

)}
.

Note that the sequences Y 1
n , Y

2
n and Y 3

n do not intersect since matrices that

have different Jordan type in the bottom row never commute. As in the proof

of Proposition 7.4.3, to show motivic representation stability of the strata Y in, it

suffices to show motivic representation stability of the sequences

Y ′i
n = IndGL3

Hi
(Jni ) for i = 1, 2, 3,

where

J1 =
{( x y z

0 x y
0 0 x

)
| x ̸= 0

}
H1 =

{(
a b c
0 1 d
0 0 1/a

)
| a ̸= 0

}
J2 =

{(
x y 0
0 x 0
0 0 z

)
| x, z ̸= 0

}
H2 =

{(
a b 0
0 c 0
0 0 d

)
| a, c, d ̸= 0

}
J3 =

{(
x 0 0
0 y 0
0 0 z

)
| x, y, z ̸= 0

}
H3 = G3

m ⋊ S3.

More precisely, H3 ⊆ GLr is the subgroup generated by the diagonal matrices

and the permutation matrices.
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Now, for any partition λ, we find

Y ′i
n � Sλ[n] = IndGL3

Hi

(
Sym

n−|λ|
Hi

Ji ×
∏
j≥1

Sym
λj

Hi
Ji

)
.

For all i, the group Hi acts linearly on Ji, a dense open of A3
k, so it fol-

lows from Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6 that the limits

limn→∞ Y in/L3n exist. Knowing that dimXn ≥ 3n, we see that Y 0
n ⊆ Xn is

negligible, and the result follows.

Looking at the proofs of Proposition 7.4.3 and Proposition 7.4.4, it might be

tempting to think that in the general case the non-negligible strata are those

containing matrices with maximal Jordan type. However, this turns out to be

the case only for r ≤ 3.

For the general case we use a result initially proved by Schur [Sch05], and later re-

proved by Jacobson [Jac44], about the maximum number of linearly independent

commuting matrices. This leads to the idea of stratifying the representation va-

rieties RGLr
(Zn) by the dimension of the linear subspace inside Matr×r spanned

by the matrices Ai.

Proof of Theorem 7.4.2. The case r = 0 is obvious, and the case r = 1 fol-

lows from motivic representation stability of Gnm, see Example 7.1.11 and Ex-

ample 7.3.5. The cases r = 2 and r = 3 were treated in Proposition 7.4.3 and

Proposition 7.4.4, so we can assume r > 3.

As usual, write Xn = RGLr (Zn) for all n ≥ 1. For any point A ∈ Xn correspond-

ing to a tuple (A1, . . . , An) of commuting elements in GLr, define

dA = dimk⟨A1, . . . , An⟩

to be the dimension of the linear subspace of Matr×r(k) spanned by the Ai. By

[Jac44, Theorem 1], we have dA ≤ m with

m =

{
r2/4 + 1 if r is even,

(r2 − 1)/4 + 1 if r is odd.

Note that dA is invariant under the actions of Sn and GLr, soXn can be stratified

equivariantly by

Xn,d = {A ∈ Xn | dA = d} for 1 ≤ d ≤ m.

Now, we will show that Xn,d ⊆ Xn is negligible for d < m, so that we solely need

to focus on Xn,m. Note that the dimension of Xn is at least nm, as it contains
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the family of commuting matrices given by

A1 =

(
λ1I M1

0 λ1I

)
, . . . , An =

(
λnI Mn

0 λnI

)
(∗)

with λi ̸= 0, Mi ∈ Mat r
2×

r
2
if r is even, and Mi ∈ Mat r+1

2 × r−1
2

if r is odd. To

see why the strata Xn,d with d < m are negligible, observe that Xn,d can be

covered by a dense open of Xd × (Adk)n, that is, there is a surjective morphism

from a dense open Yn,d ⊆ Xd × (Adk)n given by

Yn,d → Xn,d,
(
(Ai)

d
i=1 , (αij)

n,d
i,j=1

)
7→
( d∑
j=1

αijAj

)n
i=1

.

In particular, dimXn,d ≤ dimYn,d ≤ r2d + nd, and hence limn→∞ dimXn −
dimXn,d =∞ for d < m, so it follows that Xn,d ⊆ Xn is negligible.

By [Jac44, Theorem 3], every A ∈ Xn,m can be conjugated to a tuple of the form

(∗). Hence, to show motivic representation stability of Xn,m it suffices to show

motivic representation stability of

X ′
n,m = IndGLr

H

(
Jn
)

with J =

{(
λI M

0 λI

) ∣∣∣∣∣ λ ̸= 0 and

M ∈ Mat⌈ r2⌉×⌊
r
2⌋

}
,

where the stabilizer

H =

{(
A B

0 C

)}
⊆ GLr

acts trivially on λ, and acts on M via the linear action(
A B

0 C

)
·M = AMC−1.

Now, from Corollary 7.2.7, Proposition 7.1.12 and Lemma 7.2.6, it follows that

limn→∞[Xn,m]/LdimXn,m exists. Moreover, as all Xn,d with d < m are negligible,

this limit is equal to limn→∞[Xn]/LdimXn .





Bibliography

[Abr96] L. Abrams. “Two-dimensional topological quantum field theories and

Frobenius algebras”. J. Knot Theory Ramifications 5.5 (1996), pp. 569–

587.

[AL94] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases.
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Appendix A

TQFT for upper triangular

matrices

The following pages describe the K0(Vark)-module morphism Zrep
G

( )
for

the groups G = Un and G = Tn over k = C for 2 ≤ n ≤ 5. We restrict

these maps to the K0(Vark)-submodule of K0(VarG) generated by the elements

1U1 , . . . ,1UM
∈ K0(VarG), corresponding to the inclusions of the unipotent con-

jugacy classes Ui → G, and express them as matrices with respect to these

generators.

For every 2 ≤ n ≤ 5, representatives for these unipotent conjugacy classes are,

in order, given by:

( 1 0
0 1 ) , (

1 1
0 1 )

(
1 0 0
0 1 0
0 0 1

)
,
(

1 1 0
0 1 0
0 0 1

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)
,
(

1 1 0
0 1 1
0 0 1

)
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

)
,(

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,

(
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

)
,

(
1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,(

1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

)
,

(
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

)
,

(
1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

)

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,
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1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 1
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,(

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,(

1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 1
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,(

1 0 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 1 0 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,(

1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 1 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,(

1 0 0 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,(

1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 1 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 1 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,(

1 0 0 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,(

1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 1 1 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)
,(

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

)

Case G = U2. The matrix associated to Zrep
U2

( )
is given by[

L2 0

0 L2

]
,

for which both 1U1 and 1U2 are eigenvectors with eigenvalue L2.

Case G = T2. The matrix associated to Zrep
T2

( )
is given by[

L2 (L− 1) L2 (L− 2) (L− 1)

L2 (L− 2) L2
(
L2 − 3L+ 3

) ] ,
whose eigenvalues are L2 and L2(L− 1)2 with respective eigenvectors[

1− L
1

]
and

[
1

1

]
.
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Case G = U3. The matrix associated to Zrep
U3

( )
is given by


L3
(
L2 + L− 1

)
0 L3 (L− 1)

2
(L+ 1) 0 0

0 L6 0 0 0

L3 (L− 1) (L+ 1) 0 L3
(
L3 − L2 + 1

)
0 0

0 0 0 L6 0

0 0 0 0 L6

 ,

whose eigenvalues are L4 and L6 (with multiplicity 4), with respective eigenvec-

tors 
1− L
0

1

0

0

 ,

0

1

0

0

0

 ,

1

0

1

0

0

 ,

0

0

0

1

0

 ,

0

0

0

0

1

 .

Case G = T3. The matrix associated to Zrep
T3

( )
is given by


L3 (L− 1)

2 (L2 + L− 1
)

L6 (L− 2) (L− 1)
2 L3 (L− 1)

4
(L+ 1)

L5 (L− 2) (L− 1) L6 (L− 1)
(
L2 − 3L+ 3

)
L5 (L− 2) (L− 1)

2

L3 (L− 1)
3
(L+ 1) L6 (L− 2) (L− 1)

2 L3 (L− 1)
2 (L3 − L2 + 1

)
L5 (L− 2) (L− 1) L6 (L− 2)

2
(L− 1) L5 (L− 2) (L− 1)

2

L5 (L− 2)
2 L6 (L− 2)

(
L2 − 3L+ 3

)
L5 (L− 2)

2
(L− 1)

L6 (L− 2) (L− 1)
2 L6 (L− 2)

2
(L− 1)

2

L6 (L− 2)
2
(L− 1) L6 (L− 2) (L− 1)

(
L2 − 3L+ 3

)
L6 (L− 2) (L− 1)

2 L6 (L− 2)
2
(L− 1)

2

L6 (L− 1)
(
L2 − 3L+ 3

)
L6 (L− 2) (L− 1)

(
L2 − 3L+ 3

)
L6 (L− 2)

(
L2 − 3L+ 3

)
L6
(
L2 − 3L+ 3

)2

,

whose eigenvalues are

L6, L4 (L− 1)
2
, L6 (L− 1)

2
, L6 (L− 1)

2
, L6 (L− 1)

4

with respective eigenvectors
L2 − 2L+ 1

1− L
L2 − 2L+ 1

1− L
1

 ,

1− L
0

1

0

0

 ,


0

−1
0

1

0

 ,

1− L
2− L
1− L
0

1

 ,

1

1

1

1

1

 .
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Case G = U4. The matrix associated to Zrep
U4

( )
(which we do not print

due to its size) has eigenvalues, with multiplicity, given by

L8 (mult. 2), L10 (mult. 6), L12 (mult. 8)

with respective eigenvectors

■ 1U4 − (L− 1)1U1

■ 1U14
− (L− 1)1U5

■ 1U3 − (L− 1)(1U1 + 1U4)
■ 1U3

− 1U6

■ 1U9
− (L− 1)1U2

■ 1U11 − (L− 1)1U3

■ 1U12
− (L− 1)1U7

■ 1U16 − (L− 1)1U10

■ 1U8

■ 1U2
+ 1U9

■ 1U1 + 1U3 + 1U4 + 1U6 + 1U11

■ 1U7
+ 1U12

■ 1U13

■ 1U5
+ 1U14

■ 1U15

■ 1U10 + 1U16 .

Case G = T4. The matrix associated to Zrep
T4

( )
has eigenvalues, with

multiplicity, given by

L10, L12, L8 (L− 1)
2
, L10 (L− 1)

2
(mult. 3), L12 (L− 1)

2
(mult. 3),

L8 (L− 1)
4
, L10 (L− 1)

4
(mult. 2), L12 (L− 1)

4
(mult. 3), L12 (L− 1)

6

with respective eigenvectors

■ 1U16
+ (L− 1)

3
(1U1

+ 1U4
)− (L− 1)

2
(1U3

+ 1U6
)− (L− 1)(1U10

− 1U11
)

■ 1U15 − (L− 1)
3
(1U1 + 1U3 + 1U4 + 1U6 + 1U11) + (L− 1)

2
(1U2 + 1U5 + 1U7 +

1U9
+ 1U12

+ 1U14
)− (L− 1)(1U8

+ 1U10
+ 1U13

+ 1U16
)

■ 1U14 + L (L− 1)
2
1U1 − L (L− 1)1U4 − (L− 1)1U5

■ 1U9
+ (L− 1)

2
(1U1

+ 1U3
+ 1U4

)− (L− 1)(1U2
+ 1U6

+ 1U11
)

■ 1U9 − 1U12 − (L− 1)(1U2 − 1U7) + L (L− 1) (1U3 − 1U6)
■ 1U9

+L (L− 1)
2
(1U1

+1U4
)−(L−1)(1U2

+1U16
)−L (L− 1)1U6

+(L− 1)
2
1U10

■ 1U8
− 1U13

− (L− 1)(1U2
− 1U7

+ 1U9
− 1U12

)
■ 1U15+(L− 1)

2
(1U1+1U3+1U4+1U6−1U7+1U11−1U12)+(L− 2) (L− 1) (1U2+

1U5
+ 1U9

+ 1U14
)− (2L− 3)1U8

■ 1U8
− 1U10

− 1U16
− (L− 1)(1U5

− 1U7
− 1U12

+ 1U14
)

■ 1U14
− L (L− 1)1U1

+ L1U4
− (L− 1)1U5
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■ 1U6 + 1U9 + 1U11 − (L− 1)(1U1 + 1U2 + 1U3 + 1U4)
■ 1U9

− 1U12
− (L− 1)(1U2

− 1U7
)− L(1U3

− 1U6
)

■ 1U2 − 1U7 + 1U8 + 1U9 − 1U12 − 1U13

■ 1U7 +1U12 −1U15 +(L−1)(1U1 +1U3 +1U4 +1U6 +1U11)+(L−2)(1U2 +1U5 +

1U9
+ 1U14

) + (L− 3)1U8

■ 1U5 − 1U7 + 1U8 − 1U10 − 1U12 + 1U14 − 1U16

■ 1U1
+ 1U2

+ 1U3
+ 1U4

+ 1U5
+ 1U6

+ 1U7
+ 1U8

+ 1U9
+ 1U10

+ 1U11
+ 1U12

+

1U13
+ 1U14

+ 1U15
+ 1U16

.

Case G = U5. The matrix associated to Zrep
U5

( )
has eigenvalues, with

multiplicity, given by

L12, L14 (mult. 6), L16 (mult. 18), L18 (mult. 20), L20 (mult. 16)

with respective eigenvectors

■ 1U36
+ L (L− 1)

2
1U1
− L (L− 1)1U5

− (L− 1)1U7

■ 1U23 − (L− 1)1U9

■ 1U28
− (L− 1)1U6

■ 1U32
+ (L− 1)

2
(1U1

+ 1U5
)− (L− 1)(1U4

+ 1U8
)

■ 1U36 − L (L− 1)1U1 + L1U5 − (L− 1)1U7

■ 1U46
− (L− 1)1U15

■ 1U53
− (L− 1)1U19

■ 1U4 − 1U8

■ 1U17
− (L− 1)1U11

■ 1U22
− (L− 1)1U10

■ 1U18 − (L− 1)(1U9 + 1U23)
■ 1U26

+ L (L− 1)
2
(1U1

+ 1U4
+ 1U5

)− L (L− 1) (1U3
+ 1U10

)
■ 1U27

− (L− 1)(1U6
+ 1U28

)
■ 1U32 − (L− 1)(1U1 + 1U5)− (L− 2)1U4

■ 1U34
− (L− 1)1U3

■ 1U35
− (L− 1)1U2

■ 1U42 − (L− 1)1U13

■ 1U47
− (L− 1)1U16

■ 1U48
− (L− 1)1U20

■ 1U50 − (L− 1)1U21

■ 1U52
− (L− 1)1U29

■ 1U55
+ (L− 1)

2
(1U7

+ 1U36
)− (L− 1)(1U24

+ 1U31
)

■ 1U56 − (L− 1)1U25

■ 1U60
− (L− 1)1U41

■ 1U61
− (L− 1)1U51

■ 1U14 − (L− 1)(1U11 + 1U17)
■ 1U24

− 1U31
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■ 1U26 − (L− 1)(1U1 + 1U4 + 1U5 + 1U8 + 1U32)− (L− 2)(1U10 + 1U22)
■ 1U3

− 1U10
− 1U22

+ 1U34

■ 1U33 − (L− 1)(1U2 + 1U35)
■ 1U7

− 1U10
− 1U22

+ 1U24
− 1U26

+ 1U36

■ 1U38 − (L− 1)1U33

■ 1U40
− (L− 1)1U12

■ 1U45 − (L− 1)1U14

■ 1U44
− (L− 1)(1U15

+ 1U46
)

■ 1U14 − 1U16 − 1U47

■ 1U21
+ 1U50

− (L− 1)(1U9
+ 1U18

+ 1U23
)

■ 1U29 + 1U52 − (L− 1)(1U6 + 1U27 + 1U28)
■ 1U54

− (L− 1)1U30

■ 1U24 + 1U55 − (L− 1)(1U10 + 1U22 + 1U26)
■ 1U25

− 1U33
+ 1U56

■ 1U58 − (L− 1)1U39

■ 1U59
− (L− 1)1U43

■ 1U41 + 1U60 − (L− 1)(1U13 + 1U42)
■ 1U51

+ 1U61
− (L− 1)(1U20

+ 1U48
)

■ 1U37

■ 1U12
+ 1U40

■ 1U15 + 1U44 + 1U46

■ 1U11
+ 1U14

+ 1U16
+ 1U17

+ 1U45
+ 1U47

■ 1U49

■ 1U9
+ 1U18

+ 1U21
+ 1U23

+ 1U50

■ 1U6 + 1U27 + 1U28 + 1U29 + 1U52

■ 1U19
+ 1U53

■ 1U30 + 1U54

■ 1U1
+ 1U3

+ 1U4
+ 1U5

+ 1U7
+ 1U8

+ 1U10
+ 1U22

+ 1U24
+ 1U26

+ 1U31
+ 1U32

+

1U34 + 1U36 + 1U55

■ 1U2
+ 1U25

+ 1U33
+ 1U35

+ 1U38
+ 1U56

■ 1U57

■ 1U39
+ 1U58

■ 1U43 + 1U59

■ 1U13
+ 1U41

+ 1U42
+ 1U60

■ 1U20 + 1U48 + 1U51 + 1U61 .

Case G = T5. The matrix associated to Zrep
T5

( )
has eigenvalues, with

multiplicity, given by

L12 (L− 1)
4
, L14 (L− 1)

2
(mult. 2), L16 (mult. 2), L14 (L− 1)

4
(mult. 3),

L16 (L− 1)
2
(mult. 7), L18 (mult. 2), L14 (L− 1)

6
, L16 (L− 1)

4
(mult. 7),

L18 (L− 1)
2
(mult. 7), L20, L16 (L− 1)

6
(mult. 2), L18 (L− 1)

4
(mult. 8),



173

L20 (L− 1)
2
(mult. 4), L18 (L− 1)

6
(mult. 3), L20 (L− 1)

4
(mult. 6),

L20 (L− 1)
6
(mult. 4), L20 (L− 1)

8

with respective eigenvectors

■ 1U13
+ L (L− 1)

2
1U1
− L (L− 1)1U5

− (L− 1)1U10

■ 1U25
− L2 (L− 1)

3
1U1

+ L2 (L− 1)
2
1U5

+ L (L− 1)
2
(1U6

+ 1U13
+ 1U18

) −
L (L− 1) (1U9

+ 1U22
)− L (L− 1)

3
1U10

− (L− 1)1U23

■ 1U45
+L (L− 1)

3
(1U1

+ 1U5
)−L (L− 1)

2
(1U4

+ 1U14
)+L (L− 1)1U17

− (L−
1)1U42

■ 1U29
+ L (L− 1)

4
(1U1

+ 1U4
+ 1U5

) − L (L− 1)
3
(1U3

+ 1U14
+ 1U17

) +

L (L− 1)
2
(1U16

−1U31
)−(L− 1)

3
(1U18

+1U22
)+(L− 1)

2
(1U19

+1U20
+1U26

)−
(L− 1)(1U21 + 1U27 + 1U28) + L (L− 1)1U33

■ 1U55
+ L (L− 1)

4
(1U1

+ 1U5
+ 1U14

) − L (L− 1)
3
(1U4

+ 1U17
+ 1U30

) −
(L− 1)

3
(1U6 +1U9)+ (L− 1)

2
(1U8 +1U35 +1U47)+L (L− 1)

2
(1U34 −1U43)−

(L− 1)(1U37
+ 1U49

+ 1U53
) + L (L− 1)1U46

■ 1U9 − 1U22 − (L− 1)(1U6 − 1U18)
■ 1U25

+L2 (L− 1)
2
1U1
−L2 (L− 1)1U5

+L (L− 2) (L− 1)1U6
−L (L− 2)1U9

+

L (L− 1)
2
1U10 − L (L− 1)1U13 − (L− 1)1U23

■ 1U45
− L (L− 1)

2
(1U1

+ 1U5
) + L (L− 1) (1U4

+ 1U14
)− L1U17

− (L− 1)1U42

■ 1U28
− L (L− 1)

2
1U2

+ L2 (L− 1)
2
1U3

+ L (L− 1) (1U15
+ 1U19

) −
L2 (L− 1)1U16

− (L− 1)
3
(1U18

+ 1U22
)− (L− 1)1U20

+ (L− 1)
2
1U26

− L1U27

■ 1U29
− L (L− 1)

3
(1U1

+ 1U4
+ 1U5

+ 1U16
) − L (L− 2) (L− 1)

2
(1U2

+ 1U18
+

1U22
) + L (L− 1)

4
1U3

+ L (L− 1)
2
(1U14

+ 1U17
) + L (L− 2) (L− 1) (1U15

+

1U26) + (L− 1)
(
L2 − L− 1

)
1U19 − (L− 1)1U21 − (L2 − L− 1)1U27

■ 1U27
+ 1U33

+ (L− 1)
2
(1U2

+ 1U18
+ 1U22

) − L (L− 1)
2
1U3
− (L − 1)(1U15

+

1U19 + 1U26 + 1U31) + L (L− 1)1U16

■ 1U40 − (L− 1)
3
(1U1 +1U4 +1U5 +1U14 +1U17)+ (L− 1)

2
(1U3 +1U10 +1U13 +

1U16
+ 1U30

+ 1U34
)− (L− 1)(1U12

+ 1U32
+ 1U38

)
■ 1U37 + (L− 1)

2
(1U6 + 1U9)− (L− 1)(1U8 + 1U35)− L (L− 1)1U43 + L1U46

■ 1U37
−(L− 1)

3
(1U6

+1U9
)+(L− 1)

2
1U8

+L2 (L− 1)
2
1U30
−L2 (L− 1)1U34

−
(L− 1)1U35 − L (L− 1)

2
1U41 + L (L− 1) (1U44 + 1U47)− L1U49

■ L2 (L− 1)
3
(1U1

+ 1U5
+ 1U14

) − L2 (L− 1)
2
(1U4

+ 1U17
) − (L− 1)

2
(1U6

+

1U9) + (L − 1)1U8 + L2 (L− 2) (L− 1)
2
1U30 − L2 (L− 2) (L− 1)1U34 −

(L− 1)
(
L2 − L− 1

)
1U35

+(L2−L−1)1U37
−L (L− 1)

3
1U41

+L (L− 1)
2
1U44

+

L (L− 1)1U53
− L1U55

■ 1U54
− (L− 1)

4
(1U1

+ 1U3
+ 1U4

+ 1U5
+ 1U14

+ 1U16
+ 1U17

) + (L− 1)
3
(1U2

+

1U10
+1U12

+1U13
+1U15

+1U30
+1U32

+1U34
)− (L− 1)

2
(1U11

+1U31
+1U33

+

1U38 + 1U40 − 1U47 − 1U49) + (L− 1)(1U39 − 1U48 − 1U53 − 1U55)
■ 1U59

− (L− 1)
4
(1U1

+1U4
+1U5

+1U14
+1U17

+1U30
+1U34

)+ (L− 1)
3
(1U3

+

1U10 +1U13 +1U16 +1U32 +1U38 +1U41 +1U44)− (L− 1)
2
(1U12 −1U19 −1U27 +

1U40
+ 1U43

+ 1U46
+ 1U50

)− (L− 1)(1U21
+ 1U29

− 1U52
+ 1U57

)
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■ 1U25 −L2 (L− 1)1U1 +L21U5 −L (L− 1) (1U6 +1U10 +1U18)+L(1U9 +1U13 +

1U22
)− (L− 1)1U23

■ 1U26
+ 1U28

+ L (L− 1)1U2
− L1U15

− (L− 1)(1U18
+ 1U20

+ 1U22
)

■ 1U27 + 1U29 + L (L− 1)
2
(1U1 + 1U3 + 1U4 + 1U5) + L (L− 2) (L− 1)1U2 −

L (L− 1) (1U14
+ 1U16

+ 1U17
)− L (L− 2)1U15

− (L− 1)(1U19
+ 1U21

)
■ 1U26 +1U27 +1U33 +(L− 1)

2
1U2 +L (L− 1)1U3 − (L−1)(1U15 +1U18 +1U19 +

1U22
+ 1U31

)− L1U16

■ 1U32 + 1U40 + (L− 1)
2
(1U1 + 1U4 + 1U5 + 1U10 + 1U13 + 1U14 + 1U17) − (L −

1)(1U3
+ 1U12

+ 1U16
+ 1U30

+ 1U34
+ 1U38

)
■ 1U8

+ 1U37
− (L− 1)(1U6

+ 1U9
+ 1U35

) + L (L− 1)1U41
− L1U44

■ 1U8 − (L− 1)(1U6 + 1U9 + 1U37) + L2 (L− 1)1U30 − L21U34 + (L− 1)
2
1U35 −

L (L− 1) (1U43
+ 1U47

) + L(1U46
+ 1U49

)
■ L2 (L− 1)

2
(1U1 + 1U5 + 1U14) − L2 (L− 1) (1U4 + 1U17) + (L− 1)

3
(1U6 +

1U9
) − (L− 1)

2
1U8

+ L2 (L− 2) (L− 1)1U30
− L2 (L− 2)1U34

+

(L− 1)
(
L2 − 3L+ 1

)
1U35

− (L2 − 3L + 1)1U37
+ L (L− 1) (1U43

− 1U53
) −

L(1U46 − 1U55)
■ 1U36

− (L− 1)
3
(1U1

+ 1U3
+ 1U4

+ 1U5
+ 1U10

+ 1U12
+ 1U13

+ 1U14
+ 1U16

+

1U17) + (L− 1)
2
(1U2 + 1U6 + 1U8 + 1U9 + 1U11 + 1U15 + 1U30 + 1U32 + 1U34 +

1U38
+ 1U40

)− (L− 1)(1U7
+ 1U31

+ 1U33
+ 1U35

+ 1U37
+ 1U39

)
■ 1U36

− 1U51
+ (L− 1)

2
(1U6

+ 1U8
+ 1U9

+ 1U19
+ 1U27

)− (L− 1)(1U7
+ 1U21

+

1U29
+1U35

+1U37
−1U42

−1U45
)−L (L− 1)

2
(1U10

+1U12
+1U13

−1U30
−1U32

−
1U34 + 1U41 + 1U44) + L (L− 1) (1U11 − 1U31 − 1U33 + 1U50)

■ 1U21
+1U29

+1U52
−(L−1)(1U19

+1U27
+1U43

+1U46
+1U50

)+(L− 1)
2
(1U41

+1U44
)

■ 1U36
− L (L− 1)

3
(1U1

+ 1U3
+ 1U4

+ 1U5
+ 1U14

+ 1U16
+ 1U17

) −
(L− 1)

2 (L2 − 3L+ 1
)
(1U2

+1U15
)+(L− 1)

2
(1U6

+1U8
+1U9

−1U39
+1U48

)−
(L− 1)(1U7 + 1U35 + 1U37 + 1U54) + (L− 1)

3
1U11 + L (L− 1)

2
(1U30 + 1U32 +

1U34
) + (L− 1)

(
L2 − 3L+ 1

)
(1U31

+ 1U33
)

■ 1U39
+1U53

+1U55
+(L− 1)

2
(1U2

+1U15
)−(L−1)(1U11

+1U31
+1U33

+1U47
+1U49

)
■ 1U36 − 1U58 + (L− 1)

2
(1U2 + 1U6 + 1U8 + 1U9 + 1U11 + 1U15 − 1U18 + 1U19 −

1U22
−1U26

+1U27
)−L (L− 1)

2
(1U3

+1U12
+1U16

−1U30
−1U34

−1U38
+1U41

+

1U44
)− (L− 1)(1U7

− 1U20
+ 1U21

− 1U28
+ 1U29

+ 1U31
+ 1U33

+ 1U35
+ 1U37

+

1U39 − 1U56) + L (L− 1) (1U43 + 1U46)
■ 1U36

− L (L− 1)
3
(1U1

+ 1U4
+ 1U5

+ 1U14
+ 1U17

) + (L− 1)
2
(1U2

+ 1U6
+

1U8 + 1U9 + 1U11 + 1U15 + 1U57) − (L − 1)(1U7 + 1U31 + 1U33 + 1U35 + 1U37 +

1U39
+1U59

)−L (L− 1)
2
(1U12

−1U32
−1U38

)− (L− 2) (L− 1)
2
(1U19

+1U27
)+

(L− 2) (L− 1) (1U21 + 1U29)− L (L− 2) (L− 1)
2
(1U30 + 1U34)

■ 1U61
+ (L− 1)

4
(1U1

+ 1U3
+ 1U4

+ 1U5
+ 1U10

+ 1U12
+ 1U13

+ 1U14
+ 1U16

+

1U17 + 1U30 + 1U32 + 1U34 + 1U38 + 1U40)− (L− 1)
3
(1U2 + 1U6 + 1U8 + 1U9 +

1U11
+ 1U15

+ 1U18
+ 1U20

+ 1U22
+ 1U26

+ 1U28
+ 1U31

+ 1U33
+ 1U35

+ 1U37
+

1U39
+1U41

+1U43
+1U44

+1U46
+1U50

+1U52
)+ (L− 1)

2
(1U7

+1U19
+1U21

+

1U23 + 1U25 + 1U27 + 1U29 + 1U36 + 1U42 + 1U45 + 1U47 + 1U49 + 1U51 + 1U53 +

1U55
+ 1U56

+ 1U58
)− (L− 1)(1U24

+ 1U48
+ 1U54

+ 1U57
+ 1U59

+ 1U60
)
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■ 1U26 +1U27 +1U28 +1U29 −L (L− 1) (1U1 +1U2 +1U3 +1U4 +1U5)+L(1U14 +

1U15
+ 1U16

+ 1U17
)− (L− 1)(1U18

+ 1U19
+ 1U20

+ 1U21
+ 1U22

)
■ 1U8

+1U37
+1U49

+1U55
−L (L− 1) (1U1

+1U5
+1U14

+1U30
+1U41

)+L(1U4
+

1U17 + 1U34 + 1U44)− (L− 1)(1U6 + 1U9 + 1U35 + 1U47 + 1U53)
■ 1U31

+1U33
−1U35

−1U37
+1U39

− (L− 1)(1U2
−1U6

−1U8
−1U9

+1U11
+1U15

)
■ 1U36

+ (L− 1)
2
(1U1

+ 1U3
+ 1U4

+ 1U5
+ 1U10

+ 1U12
+ 1U13

+ 1U14
+ 1U16

+

1U17) + (L− 2) (L− 1) (1U6 + 1U8 + 1U9)− (L− 1)(1U7 + 1U30 + 1U32 + 1U34 +

1U38
+ 1U40

)− (L− 2)(1U35
+ 1U37

)
■ 1U20

+ 1U28
− 1U35

− 1U37
+ (L − 1)(1U6

+ 1U8
+ 1U9

− 1U18
− 1U22

− 1U26
) −

L(1U11 − 1U31 − 1U33 + 1U43 + 1U46 − 1U50)
■ 1U36−1U51− (L−1)(1U7−1U42−1U45)+L (L− 1) (1U10 +1U12 +1U13−1U30−
1U32

− 1U34
) + L (L− 2) (1U11

− 1U31
− 1U33

)
■ 1U20

+1U28
− (L− 1)

2
(1U6

+1U8
+1U9

)+L (L− 1) (1U11
−1U31

−1U33
+1U41

+

1U44)−(L−1)(1U18+1U22+1U26−1U35−1U37)+L (L− 2) (1U43+1U46)−L1U52

■ 1U35
+1U36

+1U37
+L (L− 1)

2
(1U1

+1U2
+1U3

+1U4
+1U5

+1U14
+1U15

+1U16
+

1U17
)− (L− 1)(1U6

+1U7
+1U8

+1U9
+1U53

+1U54
+1U55

)−L (L− 1) (1U30
+

1U31 + 1U32 + 1U33 + 1U34) + (L− 1)
2
(1U47 + 1U48 + 1U49)

■ 1U36
− 1U58

+ L (L− 1) (1U3
+ 1U12

+ 1U16
− 1U30

− 1U34
− 1U38

) +

(L− 2) (L− 1) (1U6
+ 1U8

+ 1U9
− 1U18

− 1U22
− 1U26

)− (L− 1)(1U7
− 1U56

) +

(L− 2)(1U20 + 1U28 − 1U35 − 1U37)
■ 1U36

+ L (L− 1)
2
(1U1

+ 1U4
+ 1U5

+ 1U14
+ 1U17

+ 1U41
+ 1U44

) +

(L− 2) (L− 1) (1U6
+ 1U8

+ 1U9
)− (L− 1)(1U7

− 1U20
+ 1U21

− 1U28
+ 1U29

+

1U59) + L (L− 1) (1U12 − 1U32 − 1U38 − 1U43 − 1U46)− (L− 1)
2
(1U18 − 1U19 +

1U22
+1U26

−1U27
−1U57

)+L (L− 2) (L− 1) (1U30
+1U34

)−(L−2)(1U35
+1U37

)
■ 1U24

− 1U48
− 1U54

+(L− 1)
2
(1U18

+ 1U20
+ 1U22

+ 1U26
+ 1U28

− 1U41
− 1U43

−
1U44 − 1U46 − 1U50 − 1U52)− (L− 1)(1U19 + 1U21 + 1U23 + 1U25 + 1U27 + 1U29 −
1U42

− 1U45
− 1U47

− 1U49
− 1U51

− 1U53
− 1U55

)
■ 1U24

− 1U57
− 1U59

+ (L− 1)
2
(1U6

+ 1U8
+ 1U9

+ 1U35
+ 1U37

− 1U41
− 1U43

−
1U44 − 1U46 − 1U50 − 1U52)− (L− 1)(1U7 + 1U23 + 1U25 + 1U36 − 1U42 − 1U45 −
1U51

− 1U56
− 1U58

)
■ 1U48

+ 1U54
− 1U60

+ (L− 1)
2
(1U2

+ 1U11
+ 1U15

− 1U18
− 1U20

− 1U22
− 1U26

−
1U28 + 1U31 + 1U33 + 1U39)− (L− 1)(1U7 − 1U23 − 1U25 + 1U36 + 1U42 + 1U45 +

1U51
− 1U56

− 1U58
)

■ 1U61
− (L− 1)

3
(1U1

+ 1U3
+ 1U4

+ 1U5
+ 1U10

+ 1U12
+ 1U13

+ 1U14
+ 1U16

+

1U17 + 1U30 + 1U32 + 1U34 + 1U38 + 1U40 − 1U41 − 1U43 − 1U44 − 1U46 − 1U50 −
1U52

)− (L− 2) (L− 1)
2
(1U2

+ 1U6
+ 1U8

+ 1U9
+ 1U11

+ 1U15
+ 1U31

+ 1U33
+

1U35
+ 1U37

+ 1U39
) + (L− 1) (2L− 3) (1U7

+ 1U36
) + (L− 1)

2
(1U18

+ 1U20
+

1U22 +1U26 +1U28 −1U56 −1U58)+ (L− 2) (L− 1) (1U19 +1U21 +1U23 +1U25 +

1U27
+ 1U29

)− (2L− 3)1U24
− (L− 1)(1U48

+ 1U54
)

■ 1U30
+ 1U31

+ 1U32
+ 1U33

+ 1U34
+ 1U35

+ 1U36
+ 1U37

+ 1U38
+ 1U39

+ 1U40
−

(L− 1)(1U1 + 1U2 + 1U3 + 1U4 + 1U5 + 1U6 + 1U7 + 1U8 + 1U9 + 1U10 + 1U11 +

1U12
+ 1U13

+ 1U14
+ 1U15

+ 1U16
+ 1U17

)
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■ 1U35 +1U36 +1U37 −1U50 −1U51 −1U52 − (L−1)(1U6 +1U7 +1U8 +1U9 −1U41 −
1U42

−1U43
−1U44

−1U45
−1U46

)−L(1U10
+1U11

+1U12
+1U13

−1U30
−1U31

−
1U32 − 1U33 − 1U34)

■ 1U11 − 1U20 − 1U28 + 1U39 + 1U51 − 1U58 − (L− 1)(1U2 + 1U15 − 1U18 − 1U22 −
1U26

+ 1U31
+ 1U33

+ 1U42
+ 1U45

− 1U56
)−L(1U3

− 1U10
− 1U13

+ 1U16
+ 1U32

−
1U38

+ 1U43
+ 1U46

− 1U50
)

■ 1U24 − 1U48 − 1U54 − (L− 1)(1U18 + 1U20 + 1U22 + 1U26 + 1U28 − 1U41 − 1U43 −
1U44
−1U46

−1U50
−1U52

)−(L−2)(1U19
+1U21

+1U27
+1U29

−1U42
−1U45

−1U51
)

■ 1U19
+1U21

−1U23
−1U25

+1U27
+1U29

−1U42
−1U45

+1U47
+1U49

−1U51
+1U53

+1U55

■ 1U7
− 1U23

− 1U25
+ 1U36

− 1U42
− 1U45

− 1U51
+ 1U56

+ 1U58

■ 1U24
− 1U57

− 1U59
− (L − 1)(1U6

+ 1U8
+ 1U9

+ 1U35
+ 1U37

− 1U41
− 1U43

−
1U44 − 1U46 − 1U50 − 1U52)− (L− 2)(1U7 + 1U36 − 1U42 − 1U45 − 1U51)

■ 1U24 − 1U60 − (L− 1)(1U2 + 1U11 + 1U15 + 1U31 + 1U33 + 1U39 − 1U41 − 1U43 −
1U44

− 1U46
− 1U50

− 1U52
)− (L− 2)(1U7

+ 1U19
+ 1U21

− 1U23
− 1U25

+ 1U27
+

1U29
+ 1U36

− 1U42
− 1U45

− 1U51
)

■ 1U61 +(L− 1)
2
(1U1 +1U3 +1U4 +1U5 +1U10 +1U12 +1U13 +1U14 +1U16 +1U17 +

1U30
+1U32

+1U34
+1U38

+1U40
)+(L− 2) (L− 1) (1U2

+1U6
+1U8

+1U9
+1U11

+

1U15
+1U18

+1U20
+1U22

+1U26
+1U28

+1U31
+1U33

+1U35
+1U37

+1U39
−1U41

−
1U43 −1U44 −1U46 −1U50 −1U52)+ (L− 2)

2
(1U7 +1U19 +1U21 +1U27 +1U29 +

1U36
)− (L−1)(1U23

+1U25
)−2 (L− 2)1U24

− (L2−3L+3)(1U42
+1U45

+1U51
)

■ 1U18
+ 1U19

+ 1U20
+ 1U21

+ 1U22
+ 1U23

+ 1U24
+ 1U25

+ 1U26
+ 1U27

+ 1U28
+

1U29 − 1U41 − 1U42 − 1U43 − 1U44 − 1U45 − 1U46 − 1U47 − 1U48 − 1U49 − 1U50 −
1U51

− 1U52
− 1U53

− 1U54
− 1U55

■ 1U6
+1U7

+1U8
+1U9

+1U23
+1U24

+1U25
+1U35

+1U36
+1U37

−1U41
−1U42

−
1U43

− 1U44
− 1U45

− 1U46
− 1U50

− 1U51
− 1U52

− 1U56
− 1U57

− 1U58
− 1U59

■ 1U2 +1U7 +1U11 +1U15−1U18−1U20−1U22−1U23−1U25−1U26−1U28 +1U31 +

1U33
+ 1U36

+ 1U39
+ 1U42

+ 1U45
+ 1U48

+ 1U51
+ 1U54

− 1U56
− 1U58

− 1U60

■ 1U41
+ 1U43

+ 1U44
+ 1U46

− 1U48
+ 1U50

+ 1U52
− 1U54

+ 1U56
+ 1U58

− 1U61
+

(L−1)(1U1
+1U3

+1U4
+1U5

+1U10
+1U12

+1U13
+1U14

+1U16
+1U17

+1U18
+

1U20 + 1U22 + 1U26 + 1U28 + 1U30 + 1U32 + 1U34 + 1U38 + 1U40) + (L− 2)(1U2 +

1U6
+1U8

+1U9
+1U11

+1U15
+1U19

+1U21
+1U23

+1U25
+1U27

+1U29
+1U31

+

1U33
+ 1U35

+ 1U37
+ 1U39

) + (L− 3)(1U7
+ 1U24

+ 1U36
)

■ 1U1 +1U2 +1U3 +1U4 +1U5 +1U6 +1U7 +1U8 +1U9 +1U10 +1U11 +1U12 +1U13 +

1U14
+1U15

+1U16
+1U17

+1U18
+1U19

+1U20
+1U21

+1U22
+1U23

+1U24
+1U25

+

1U26
+1U27

+1U28
+1U29

+1U30
+1U31

+1U32
+1U33

+1U34
+1U35

+1U36
+1U37

+

1U38 +1U39 +1U40 +1U41 +1U42 +1U43 +1U44 +1U45 +1U46 +1U47 +1U48 +1U49 +

1U50
+1U51

+1U52
+1U53

+1U54
+1U55

+1U56
+1U57

+1U58
+1U59

+1U60
+1U61

.



Summary

This thesis studies the geometry of representation varieties and character stacks.

These are spaces that parametrize the representations of a finitely generated

group Γ into an algebraic group G. More precisely, the representation variety

parametrizes all such representations, whereas the character stack parametrizes

them up to isomorphism. Usually, the finitely generated group Γ is the funda-

mental group of a compact manifold M , in which case the representation variety

and character stack equivalently parametrize G-local systems on M . This thesis

contains a number of methods to study these spaces through their invariants.

Besides providing theoretical descriptions, another aim of this thesis is to explic-

itly compute these invariants in specific cases. Motivated by these applications,

we develop a number of new computational tools.

In Chapter 1, we review the necessary background on groupoids and algebraic

stacks, focusing in particular on quotient stacks and stabilizers. We use this

theory in Chapter 2, where we give precise definitions of representation varieties

and character stacks. Furthermore, we show that these spaces admit a number

of functorial properties that are crucial for the later parts of the thesis.

In Chapter 3, we study motivic invariants, which are invariants χ of varieties

that are additive and multiplicative in the sense that χ(X) = χ(Z) + χ(X \ Z)
and χ(X × Y ) = χ(X)χ(Y ) for all varieties X and Y and closed subvarieties

Z ⊆ X. We discuss various motivic invariants and their properties, with a special

focus on the universal motivic invariant, called the virtual class, which takes

values in the Grothendieck ring of varieties. This Grothendieck ring has a natural

generalization to algebraic stacks, allowing us to talk about the virtual class, and

other motivic invariants, of character stacks. Furthermore, we develop tools for

computing motivic invariants, such as an algorithm to compute virtual classes

of certain varieties, and we study how motivic invariants behave with respect to

finite group actions.

In Chapter 4, we describe two known methods for computing motivic invariants

of representation varieties and character stacks. We show how both the arithmetic
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method, which studies the character stacks of compact orientable surfaces through

counting points over finite fields, and the geometric method, which studies the

same character stacks using clever stratifications, can be expressed in terms of

Topological Quantum Field Theories (TQFTs). Originating from physics, TQFTs

are monoidal functors from the category of bordisms to the category of modules

over a fixed commutative ring. The TQFTs associated to both methods can be

expressed as the composite of a field theory and a quantization functor. Compar-

ing the field theories and quantization functors of both methods, we show that

the TQFTs of both methods can be related through natural transformations.

In Chapter 5, we apply the theory of Chapter 4 to explicitly compute the vir-

tual classes of the SL2-character stacks of orientable and non-orientable surfaces.

This results in many intricate computations. Even though similar computations

already exist that compute the E-polynomial (an invariant coarser than the

virtual class, reflecting the mixed Hodge structure) of these character stacks,

adapting these computations to the Grothendieck ring of varieties introduces

many subtle problems which we deal with.

In Chapter 6, we focus on the groups G of n× n upper triangular matrices and

unipotent upper triangular matrices. By means of computer-assisted calculations,

we compute the virtual classes of the G-character stacks of orientable surfaces

for n ≤ 5 through the geometric method, and their E-polynomials for n ≤ 10

through the arithmetic method. This task, which is already difficult for small n,

was made possible by introducing the notion of algebraic representatives, and

using the theory of special algebraic groups. Comparing the arithmetic and geo-

metric method, we show how the geometric method can be simplified significantly

using the results from the arithmetic method, that is, using the representation

theory of the groups of upper triangular matrices over finite fields.

Finally, in Chapter 7, we turn our attention to the representation varieties and

character stacks of the free groups Fn and free abelian groups Zn. These spaces

parametrize tuples (resp. commuting tuples) of elements of G. It is known that

the homology of these spaces, and many variations thereof, stabilize as n tends

to infinity, in a well-defined sense known as representation stability. Inspired by

this notion, we define an analogous notion of motivic representation stability for

stability in the Grothendieck ring of varieties. As an application, we show that

the character stacks of Fn and Zn stabilize in this sense for the linear groups

G = GLr.



Samenvatting

Dit proefschrift bestudeert de meetkunde van representatievariëteiten en karak-

terstacks. Dit zijn ruimtes die de representaties van een eindig voortgebrachte

groep Γ naar een algebräısche groep G parametriseren. Om precies te zijn,

de representatievariëteit parametriseert al zulke representaties, en de karakter-

stack tot op isomorfie. De eindig voortgebrachte groep Γ is doorgaans de funda-

mentaalgroep van een compacte differentieerbare variëteit M , in welk geval de

representatievariëteit en karakterstack ook wel G-lokale systemen opM parame-

triseren. Dit proefschrift bevat een aantal methodes om deze ruimtes te bestud-

eren aan de hand van hun invarianten. Naast het geven van theoretische beschrij-

vingen, beoogt dit proefschrift ook om deze invarianten expliciet te berekenen.

Gemotiveerd door deze toepassingen, ontwikkelen we een aantal nieuwe compu-

tationele hulpmiddelen.

In Hoofdstuk 1 geven we de nodige voorkennis over groepöıden en algebräısche

stacks, waarbij de nadruk ligt op quotiëntstacks en stabilisatoren. Deze the-

orie gebruiken we in Hoofdstuk 2, waar we een precieze definitie geven van

representatievariëteiten en karakterstacks. Verder laten we zien dat deze ruimtes

een aantal functoriële eigenschappen bezitten die cruciaal zijn voor de latere

delen van het proefschrift.

In Hoofdstuk 3 bestuderen we motivische invarianten, dat zijn invarianten χ van

variëteiten die additief en multiplicatief zijn in de zin dat χ(X) = χ(Z)+χ(X\Z)
en χ(X×Y ) = χ(X)χ(Y ) voor alle variëteiten X en Y en gesloten subvariëteiten

Z ⊆ X. We bespreken verschillende motivische invarianten en hun eigenschap-

pen, met een nadruk op de universele motivische invariant, de virtuele klasse, die

waardes aanneemt in de Grothendieck-ring van variëteiten. Deze Grothendieck-

ring heeft een natuurlijke generalisatie naar algebräısche stacks, die ons in staat

stelt te praten over de virtuele klasse, en andere motivische invarianten, van

bijvoorbeeld karakterstacks. Verder ontwikkelen we hulpmiddelen om motivische

invarianten te berekenen, zoals een algoritme om virtuele klassen te berekenen, en

bestuderen we hoe motivische invarianten zich gedragen onder groepswerkingen

van eindige groepen.
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In Hoofdstuk 4 beschrijven we twee bekende methodes om motivische invarianten

te berekenen van representatievariëteiten en karakterstacks. We laten zien dat

zowel de arithmetische methode, die de karakterstacks van compacte oriënteerbare

oppervlakten bestudeert door punten te tellen over eindige lichamen, en de

meetkundige methode, die dezelfde karakterstacks bestudeert door deze slim te

stratificeren, kunnen worden beschreven als topologische kwantumveldentheorie

(TQFT). TQFTs vinden hun oorsprong in de natuurkunde, en zijn monöıdale

functoren van de categorie van bordismen naar de categorie van modulen over

een vaste commutatieve ring. De TQFTs van beide methodes kunnen worden

uitgedrukt als samenstelling van een veldentheorie en een kwantisatiefunctor.

Door de veldentheorieën en kwantisatiefunctoren te vergelijken, laten we zien

dat de twee TQFTs zijn verbonden via een natuurlijke transformatie.

In Hoofdstuk 5 passen we de theorie van Hoofdstuk 4 toe om expliciet de virtuele

klassen van de SL2-karakterstacks van oriënteerbare en niet-oriënteerbare opper-

vlakken uit te rekenen, met complexe berekeningen tot gevolg. Ondanks dat er

al vergelijkbare berekeningen bestaan die de E-polynomen bepalen (een grovere

invariant dan de virtuele klasse, die de gemengde Hodgestructuur weerspiegelt)

van deze karakterstacks, introduceert het tillen van deze berekeningen naar de

Grothendieck-ring van variëteiten diverse subtiele problemen die we oplossen.

In Hoofdstuk 6 richten we ons op de groepen G van n×n bovendriehoeksmatrices

en unipotente bovendriehoeksmatrices. Met behulp van de computer bepalen we

de virtuele klassen van de karakterstacks van oriënteerbare oppervlakken voor

n ≤ 5 via de meetkundige methode, en hun E-polynomen voor n ≤ 10 via

de arithmetische methode. Deze berekeningen, al gecompliceerd voor kleine n,

zijn mogelijk gemaakt door het introduceren van algebräısche representanten en

de theorie van speciale algebräısche groepen. We vergelijken de arithmetische

en meetkundige methode, en laten zien hoe de meetkundige methode significant

vereenvoudigd kan worden door gebruik te maken van de resultaten van de arith-

metische methode, dat wil zeggen, gebruikmakend van de representatietheorie

van de groepen van bovendriehoeksmatrices over eindige lichamen.

Ten slotte, in Hoofdstuk 7, bestuderen we de representatievariëteiten en karakter-

stacks van de vrije groepen Fn en de vrije abelse groepen Zn. Deze ruimtes

parametriseren tupels (resp. commuterende tupels) van elementen van G. Het

is bekend dat de homologie van deze ruimtes, en variaties daarop, stabiliseert

als n naar oneindig neigt, in een goed-gedefinieerde zin bekend als representatie-

stabiliteit. Gëınspireerd door dit begrip definiëren we een analoog begrip van

motivische representatiestabiliteit voor stabiliteit in de Grothendieck-ring van

variëteiten. Als toepassing laten we zien dat de karakterstacks van Fn en Zn

stabiliseren in deze zin voor de algemene lineaire groepen G = GLr.
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