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Introduction

These are notes of a mini-course at the summer school at Baskerville Hall (Hay-on-Wye) held on 8-12 August
2022, organised by Vladimir Dokchitser and Céline Maistret. The meeting marks the 100™" anniversary of
the Mordell-Weil theorem. The lectures focus on the torsion subgroup of the Mordell-Weil group of elliptic
curves over Q, specifically two landmark results proved in the 1970’s on this topic:

« Mazur’s theorem on torsion [Maz77al.

« Serre’s open image theorem [Ser72].

The lectures are intended to be a first initiation to some ideas in these papers. The full extent of these re-
sults is too ambitious to treat satisfactorily in three hours of lectures. These written notes are intended to
complement the lectures and provide slightly more context, details, and references for the more technical
parts of our discussion of Mazur’s theorem. Ultimately, their scope remains limited, and students aspiring
to study these results seriously are referred to the original sources, which are both masterfully crafted.

1.1 The Mordell-Weil theorem

The study of rational points on elliptic curves has a long and rich tradition that stretches across different
historical eras, languages, and geographical borders. Today we celebrate the centenary of the Mordell-Weil
theorem, whose development followed efforts of many mathematicians. In this motivational introduction,
we discuss a few of them. We do not attempt to give an exhaustive, or even adequate, historical treatment.
Instead, we cherry-pick precedents for the later developments we wish to discuss in these notes.

The method of ascent

We begin with (perhaps) the earliest reference to an elliptic curve in recorded history. Already, it involves
the mechanism of ‘ascent’, a way to proliferate solutions to cubic equations. In Diophantus’ Artihmetika
[DioAD] Problem 24 of Book IV, taken here from the late 19 century reproduction [Dio93], poses the
following question:

%0.
dodévra douudy Oucdetv elg 0vo doiduodg, xo.zl
wougly tov On’ adtdv xVPov mage mAsvedy.

Diophantus asks the reader to “divide a given number into two numbers whose product is a cube minus
its side”. By means of an example, the book of Diophantus explains how to solve this problem for the number
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6, by finding a rational solutiorﬂ to the equation

y(6 —y) =2 — 2. (1.1)

The method used by Diophantus is remarkable. It makes in a purely algebraic way use of the doubling
formula of a point on an elliptic curve. More precisely, Diophantus considers solutions to the equation
that satisfy the additional equation x = 3y — 1. By substitution, we find the relation

271% — 262 = 0.

This cubic polynomial has a double root at y = 0 and another one at y = 26/27 from which Diophantus

obtains the solution
6 =26/27+ 136/27.

This construction may be summarised in modern language by saying that Diophantus notes the existence
of an obvious (but in his eyes utterly unacceptable) solution (x, y) = (—1, 0) and computes that the tangent
line to the elliptic curve E defined by (1.1) intersects F again in a rational point with coordinates

wn=(53)-

The tangent line construction of Diophantus is visualised in Figure

4 | | | | |
—4 -2 0 2 4 6 8

Figure 1.1: The elliptic curve E : y(6 — y) = 2% — x

It is quite remarkable that the first widely known historical occurrence of an elliptic curve already
uses its group law implicitly, effectively doubling a point (or rather, multiplying it by —2) to obtain a new
point. Since typically the complexity of the coordinates grows by applying this procedure of producing new
solutions from old ones, we might call it the method of ‘ascent’. The true significance of this construction
of Diophantus took many centuries to obtain its modern formulation. One of the first explicit modern

'We should note that for Diophantus, only positive rational solutions would be considered valid.
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descriptions of the group law on elliptic curves and Jacobians of curves may be found in the work of Poincaré
[Poi01] at the beginning of the 20 century. In this paper, Poincaré makes the following comments:

PROPRIETES ARITHMETIQUES DES COURBES ALGEBRIQUES. 171

On peut se proposer de choisir les arguments

(2) %, Oy Oy ..., Oy

de telle fagon que la formule (1) comprenne tous les points rationnels
de la cubique. Les ¢ <+ 1 points rationnels qui ont les arguments (2)
formeront alors ce que nous appellerons un systéme de points ration-
nels fondamentauz.

1l est clair que I'on peut choisir d’une infinit¢ de maniéres le systeme
des points rationnels fondamentaux. On devra tout d'abord dans ce
choix s'arranger de telle facon que le nombre ¢ + 1 des points fonda-
mentaux soit aussi petit que possible. Cette valeur minima de ce
nombre ¢ + 1 scra ce que j'appellerai le rang de la cubique; c’est
¢videmment un ¢lément Lrés important de la classification des cubiques
ationnelles.

The realisation that the group law on elliptic curves gives a proliferation of rational solutions begs the
question (which is precisely what Poincaré ponders here) what minimum amount of fundamental solutions
is needed to produce all solutions in this way, a quantity for which Poincaré coins the term “rank”.

Fundamentally, we should wonder whether the rank is always finite? At its core, this problem asks us
to reverse the process of ascent occurring in Diophantus, and backtrack all the way to a fundamental set of

generators. The question of finiteness of the rank remained open until the groundbreaking paper of Mordell
[Mor22], which develops the important method of descent.

The method of descent

The origins of the method of descent occur in the work of Fermat, who applies it to a variety of problems
which he describes in his 1659 letter to Pierre de Carcavi [dF59]. Perhaps his most famous application of
this principle survives in the only complete proof of the hand of Fermat that survived today, where he
shows that congruent numbers (areas of right angled triangles with rational side lengths) are never squares
[Fer70]. Fermat reduces this problem to showing there are no non-trivial solutions to the equation

Tt -yt =2z (1.2)

In the reduction of the problem to this Diophantine equation, Fermat makes use of the explicit parametrisa-
tion of Pythagorean triples, a classical result that was certainly well known to him. To solve however,
Fermat uses a truly remarkable and original method, which we recognise in contemporary language as a
descent by 2-isogeny on an elliptic curve. Fermat sounds rather pleased with his argument, stating that
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“This type of demonstration will provide excellent progress in arithmetic." The proof appears entirely in
prose in the following paragraph of the 1670 edition [Fer70] containing his observations.

Arthmeticorum Liber VI. 339

laboriofi meditatione deteximus , [wbiungemus. Hoc nempe demonflrandi genus mi-
705 47 ari;/m:etici;fupped:'taz’u'.fpragrejﬁu,/j area trianguli effer qttqa’rams darentur
duo quadaratoguadrats ‘quorum differcuiia effer guadrarus Vndefequitur dari dne
gmzdm‘m quornm & [umma d‘al_[jl'rc'mm L'f]ft quadratus, Datur 1iague numerus
coirifofitus ex guadrato & duplo guadrari equalis guadrato , ea condisione Vi qua-
drastenm componentes f}zmw.'guadmmm. Sed fi nwmerns gtmd'mtux ComponItur ex
Ruadrato & duplo alterius guadrars ciuslatns fimiliier componitur ex quadrato &
duplo guadrazivt facillime polfumus demonftrare.

Vade concluderur latus illud effe fummam laterum circa recium triangnli re-
clanguli & vaum ex quadratis illud componentibus efficere bafem & duplum qua-
dratum equari perpendsculo.

illud itague triangulum reangulum conficictnr a duobus quadratis quorum
Sunma ¢ drjﬁ:rcmiajenmt quadrati. Atifli duo quadratiminores Prababulitr;rpri-
wis guadratis Primbﬁ/ppa/i!is quornm tam (umma quam differentia facinnt quadratii,
Ergofi dentur duo guadrata quorumﬁtmma ¢ differensiafaciant guaaramw,aﬂzbuur
in tutegris [nmma duorum g:ma’r.uamm cinfdem nature priore minor. Lodem
ratiocinio dabitur & minor iftd inuenta per Yiam prioris & [emper in infiniium
minores inucnientur pumeriin integris idem praftantes: Quod 1mpofsibile eft ,quia
dato mumero quonis integro non poffunt dari infinitiin integris sllo minores. Des
monfirationem integram & fufiusexplicatam infevere marginiveratipfins exiguiras.

Hac ratione deprebendimns o demonflratione confirmanimus nullum numernm
triangulum preter viitatem equari quadratoquadrato.

In modern language, we may describe the proof of Fermat as follows. Suppose we have a non-trivial

solution (z, y, z) to the quartic equation (1.2), then we may assume x, y and z are coprime positive integers.
From this coprime solution, Fermat constructs a new (smaller) solution, in two steps.

Step 1. We factorise the equation (1.2) as follows:

2 =gt oyt = (22 — ) (2 + ).

Note that the factors on the right hand side are coprime to each other. This implies that they must both be
squares, i.e. there are positive integers s, ¢ such that

2?2 —y? = 82

{ 2ty =
Observe that s and ¢ must both be odd integers, and by changing the sign of s if necessary we may assume
that s — ¢ = 0 (mod 4). We then note that y must be even, and that we therefore have the following

decomposition into integer factors:
t+s t—s\ (y)2
2 4 ) \2/ -
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The factors on the left hand side are coprime positive integers. We may once again conclude they are both
perfect squares, so that we find odd coprime positive integers u, v that satisfy the equalities

2 2
s = ut—2
{ t = u?+ 202 (13)
Note that we have now produced a triple (u, v, x) that satisfies u* +4v* = 2. Moreover, the triple (z,y, z)
may be recovered from the triple (u, v, x) by the identities y = 2uv and z = u* — 4v*.

Step 2. Note that the relation

ut 4 4ot = 22

satisfied by the triple (u, v, z) constructed in step 1 implies in particular that (u?, 202, z) is a Pythagorean
triple. As such, we may find coprime positive integers m, n satisfying

w2 = m2_n2
2% = 2mn (1.4)
T = m?+n?

Since v? = mn we see that m and n are both squares. Writing m = a?,n = b? with a,b > 0 we find

that the triple (a, b, u) is a solution to (1.2), i.e. a* — b* = u?. We see that a < a* + b* = x so that we
constructed a new solution whose first coordinate is strictly smaller than that of the original solution. This
shows that if a non-trivial solution exists, we can keep descending ad infinitum, which is absurd.

If we unpack Fermat’s argument a little further, we see that it considers two genus 1 curves defined by
homogeneous equations in the weighted projective plane, namely

E, { (x,y,2) € P[21,1,2] cooat—yt=22 }

(1.5)
Ey { (u,v,w) € P[QLLQ] cout + 4ot = w? }

They define elliptic curves after the choice of base points (1,0,1) € E1(Q) and (1,0,1) € E2(Q). These
elliptic curves admit a pair (¢1, ¢2) of dual rational 2-isogenies, described by:

\ \ \
4t 1 4t 1
2f 1 ¢1 = (z,zy,2* +y*) 2r 1

>
of 1 2 of 1
<
¢2 = (w, 2uv, u* — 4v%)

727 - 72, -
747 - 74, -

Il Il Il Il Il Il il Il I\ Il

4 =2 0 2 4 4 =2 0 2 4

The argument of Fermat produces for any purported non-trivial point (z,y, z) € E1(Q) apreimage (a, b, u)
for the multiplication by 2 map [2] = ¢2 o ¢1. The procedure consists of two steps, and first constructs
a preimage for ¢, then a preimage for ¢;. When taken to its natural conclusion, Fermat therefore really
shows two things: First, his arguments suffice to show that

E1(Q)/#2(F2(Q)) ~ Z 2Z ~ E(Q)/é1(E1(Q)),
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and second, his descent argument on the ever shrinking first coordinate of a solution may be used to deduce
that any solution must have one of its coordinates equal to zero. From this, one concludes that

EI(Q) = {(1,0,1),(170, 1)7(17170)7(17_170)}
E2(Q) = {(1,0,1%( 1)?(07152>7(0’1’_2)}

7 /AZ
7 /2Z x 7 )2Z.

Nearly three centuries later, Mordell showed in his landmark paper [Mor22] how an argument of this
sort can be carried out for general elliptic curves E over Q. Mordell shows how to establish finiteness of

the group F(Q)/2E(Q) and deduces by an infinite descent that the group F(Q) is finitely generated. The
first paragraph of the paper of Mordell [Mor22] reads as follows.

[ Received 1 May, read 22 May, 1922.]

§ 1. Mathematicians have been familiar with very few
questions for so long a period with so little accomplished in the
way of general results*, as that of finding the rational solutions+,
or say for shortness, the solutions of indeterminate equations of

genus unity of the forms

é’::”g;+])r§:;7]+','<§27]:+(/EU:;+€I]"} 1)
'//: = qxt + bx® + ca® + dr + e ‘ ....... ’

O =f(2,9,2) ceeeieiiiiiinniinnnniciiineieiennennes (2),
where f1s a ternary homogeneous cubic in z, y, z, including as a
particular case
=4 = o — (s i (3)

Today another century has passed, and we might make a remark similar to what Mordell observes
above. Indeed, the method for obtaining finiteness pioneered by Mordell remains essentially the only known
approach. The work of Weil [Wei29|] represents a very important step in the process of developing this
approach. What Weil observes is that the infinite descent procedure depends on a notion of “size” which
may be formalised in the notion of heights, extending the argument to general number fields, and abelian
varieties. The theory of heights is the subject of Joseph Silverman’s mini-course at this summer school, and
I will therefore leave its discussion in his far more capable hands. The insight of Weil yielded the statement
that is nowadays most commonly referred to as the Mordell-Weil theorem.

Theorem 1 (Mordell-Weil). Let A be an abelian variety defined over a number field K. The Mordell-Weil
group A(K) is finitely generated, i.e. there exist a finite subgroup A(K )iors C A(K) and r > 0 such that

AK) ~ A(K)iors X 2.

Suppose we are given an abelian variety A defined over a number field K. The determination of its
Mordell-Weil group in practice is a widely studied computational problem. There is a striking dichotomy
between the determination of the torsion subgroup, and the determination of the rank.

To fix ideas, let us consider the case of an elliptic curve E defined over K, given (say) by an explicit
Weierstrafl equation. The torsion subgroup E(K )to.s is usually easily determined in practice, for instance
using Silverman [Sil09) VIL3, VIIL7]. Determining the rank r > requires a comparatively much deeper
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analysis, and an elaboration of the arguments appearing in Mordell [Mor22] has given us the celebrated
method of descent, which in its present form is the most effective and systematic (essentially, the only one)
to determine the Mordell-Weil group of particular examples. We assume here the reader is familiar with
computations of a 2-descent as appearing in Silverman [Sil09) Chapters VIII and X], though we will recall
the method in Chapter[2|and illustrate it on an explicit example.

1.2 Classification of torsion

We may wonder, for a given number field K, what the possible torsion subgroups F(K )iors of an elliptic
curve over K are. A folklore conjecture, whose origins are difficult to track down, states that the size of
this torsion group is bounded by an absolute constant B(K). A breakthrough on this question came from
Manin [Man69], who built on methods of Demjanenko to show the following:

B cBoem o630pe [ (3), § 22] Haccenc otmedaer:

«Cremyromas runoTesa BolwIa yxe B (DOIBRIOP:

Funoresa. Jaa sadannoeo k (u, 6 uacrnocru, das k = Q) nopador
epynn O ozpanuuerny.

B aroii 3aMeTKe J[0Ka3aHA CIPaBEVIHBOCTH COOTBETCTBYIOIIETO yTBEpPIKe-
HUA i p-KoMunoHeHT rpymn @: |

TEOPEMA 0. IIycre p — gukcuposarrnoe npocroe uwucao. Cywecreyer ra-
K6z koHcTauTa ¢ (3asuciwyas auwb or p u k), ur0o nopadok epynnuvl p-Epyue-
Hus k-Touek saauntuueckol kpueol, onpedeaennoli Had k, ne npesocxodur c.

In other words, Manin shows that for a fixed number field K and a fixed prime ¢, the ¢-part of the
torsion of an elliptic curve over K is bounded by a constant. This constant depends on K and ¢. While this
falls short of establishing the boundedness conjecture stated above, the proof is rather simple and contains
many ingenious ideas. The setup is to prove the theorem by showing that X (¢") has finitely many K-
rational points when n is large enough. This is a trivial consequence of the Mordell conjecture, since the
genus of X (£™) is unbounded as n grows. However, Manin proved his theorem before Faltings showed the
Mordell conjecture, by showing that its Jacobian contains a K -simple isogeny factor A with multiplicity m
satisfying

m > rkz A(K) /rkz Endg (A)

using the theory of heights. To finish the proof, Manin then shows that the /-torsion of elliptic curves £
over K with fixed j-invariant j = j(E) € K is bounded. The proof is striking: Suppose that for any n > 1
there is a twist of E with a rational point of order ¢". Choosing isomorphisms over an algebraic closure,
Manin transports these points to the f-adic Tate module of E, and shows the existence of a non-trivial
submodule

LCcTy)(F)= @E[ﬂ"], as G g-modules.

Then, he can invoke methods of Serre [Ser68]] to show that if E' does not have complex multiplication, then
the /-adic Tate module must be irreducible. We will return to these ideas later.

For K = Q, the spectacular work of Mazur [Maz77b\|Maz77al[Maz78]] completely settles these questions.
Mazur brings a wealth of new ideas to the table. Like Manin, it considers the modular Jacobians J; (N) and
Jo (V) for sufficiently large N. We will discuss his proof in more detail in Chapter and mention here only
that a crucial ingredient is the existence of a nontrivial Eisenstein quotient

Jo(N) — Jeis(N)
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which is of rank zero. The methods of Mazur and subsequent developments by Kamienny [Kam92bl[KM95|
Edi95] developed into the work of Merel [Mer96]], who showed the famous strong uniform boundedness
conjecture:

Theorem 2. For any d € Z>1 there exists a constant B(d) such that for all elliptic curves E over a number
field K with [K : Q] = d we have
E(K)tors < B(d).

This result completely settles the question of boundedness in the strongest possible sense, since the
bound appearing does not depend on K, only on its degree over Q. This leaves open the question of giving
an explicit list of possible torsion groups, whose determination for number fields of small degree is an
ongoing effort, see for instance [KM88| Kam92al for d = 2, and [JKL11} [DN19| [DKSS21].

The key innovation of Merel was to pass to a different quotient of the Jacobian, namely the winding
quotient. The intricate flat descent arguments of Mazur are here replaced by the works of Gross—Zagier
[GZ85, [GZ86] and Kolyvagin [Kol89)] which establish a sufficiently large part of the Birch-Swinnerton-
Dyer conjecture to show that the rank of the winding quotient is zero. It should be pointed out however
that the Eisenstein quotient has by no means left the stage, and there has been renewed recent interest in
Eisenstein quotients, see for instance [WWZE20| Lec21].

1.3 Galois modules of torsion points

The argument of Manin we discussed above in the context of torsion crucially relied on investigations of
Serre [Ser68]). These investigations resulted in his famous open image theorem, a landmark result that shows
that when / is a large prime, a given elliptic curve E/  is not only free of /-torsion, but in fact the Galois
module E[/] is as irreducible as possible. More precisely, for any m > 1 we have an action of the Galois
group of K on the m-torsion E[m], which gives a morphism

pEm : Gal(K/K) — Aut(E[m]) = GL2(Z /mZ).

Suppose that the elliptic curve has a cyclic subgroup of order m defined over K, then the image of the
morphism is contained in a Borel subgroup. In other words, with respect to a suitable choice of basis for
E[m], it is of the form

*k

PE,m - Gg — (0 I) < GLQ(Z /mZ)

Likewise, if it has a rational point of order m defined over K, the diagonal entries must furthermore be zero,
i.e. the Galois group Gk acts by transvections. The morphisms pg ,,, defined in this way are compatible
in the choice of m under the natural transition maps Aut(E[m;]) — Aut(FE[ms]) for mg | m; and hence
result in a representation

pe : Gal(K/K) — lim Aut(E[m]) = GLy(Z).

The following theorem was proved in [Ser72]].
Theorem 3 (Serre). If E/K is an elliptic curve that does not have complex multiplication, the image of the
morphism Gal(K / K) — GLy(Z) has finite index.

The techniques utilised by Serre [Ser68/Ser72]] are highly original and clever, and rely on subtle proper-
ties of ¢-adic Galois representations that would easily merit an entire mini-course (or several) by themselves.
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The work of Serre proves in particular that for any given elliptic curve without CM, the Galois represen-
tation on E[¢] has surjective image for £ > C(E), for some constant C(E) depending only on the elliptic
curve. Serre raises the question whether this constant can be taken independently of the elliptic curve over
K. For K = Q one suspects that £ > 37 should always suffice. This question remains open, though much
is known. To solve this question, we might reverse it by picking an open subgroup H < GLg(z) and ask
for a classification of all elliptic curves E' such that the image of pg is contained in H. The work of Mazur
[Maz77al Maz78] effectively solves the cases where H is defined to be maximal at all primes except a single
prime ¢, where the image on the /-adic Tate module is

1
Im (pp i) < <0 I) < GLa(Zy), Im (pp =) < <; :) < GLa(Zy),

respectively, which amount to finding all rational points on the modular curves X; (¢) and X (¢) respec-
tively. For Serre’s uniformity question, we see that whenever the map from Gq to Aut(E[{]) = GL2(Fy)
is not surjective, the image of its quotient pp ¢ must be contained in a maximal subgroup of GL3(Fy) for
some prime ¢. The maximal subgroups of GL3(F) may be classified, and are as follows:

« Borel subgroups, conjugate to

(3 I) < GLa(Zy)

As we noted before, the work of Mazur [Maz77al [Maz78] completely classifies the elliptic curves
whose Galois image is contained in this subgroup. In other words

« Exceptional subgroups: These are subgroups with projective image A4, Sy or Ay, which Serre settles
in his original paper [Ser72]]. This question turns out to be approachable purely locally at ¢, and Serre
shows that when ¢ > 13 the curves X, (¢) have no Q,-points, so in particular it has no Q-points.
The case X, (13) was settled more recently [BDM™ 21]).

« Normalisers of split Cartan subgroups F;* x F,* < GLy(F,), which are conjugate to

( Ou )

This case was settled much more recently in the beautiful work of Bilu-Parent and Bilu-
Parent-Rebolledo [BPR13] using Runge’s method, for £ > 13. The case ¢/ = 13 has genus 3 and
became known as the cursed modular curve. It was settled in [BDM™19].

+ Normalisers of non-split Cartan subgroups F ZXQ < GLy(F;). This case remains very mysterious
today, and essentially we only know the rational points on a handful of examples. Historically, the
first success came from Heegner [Hee52] and Stark [Sta66]], who effectively determined all the integral
points on Y, (24), which is an elliptic curve, to prove the famous class number one problem of Gauss.
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This Diophantine interpretation was pointed out retrospectively by Serre [Ser97]]. The first £ for which
the curve does not have genus 0 is £ = 11, and we have

XE(11) i y? +y =2 — 2> — Tz + 10.

The rational points were first determined by Ligozat [Lig77], but do not take anything for granted
and solve this problem yourself, using a 2-descent as we do below for a different modular curve of
level 11. For ¢ > 11 very little is known about the set of rational points. The only examples where
the set was fully determined are the genus 3 curve X, (13) in [BDM"19] and the genus 6 curve
X£.(17) in [BDM™21]]. The methods rely on the non-abelian Chabauty techniques developed by Kim
[Kim05| Kim09| Kim10] and they are at present only equipped to deal with specific examples, relying
on explicit equations.

Even after the many results obtained by all these people, many open questions remain. The possible
ambitions one can have in this direction are unlimited, and encapsulated in what is typically referred to as
Mazur’s Program B, see for instance [Maz77bl].

Program B. Given a number field K and a subgroup H of GLg(Z) = [, GL2(Zy,), classify all elliptic

curves E over K whose associated Galois representation on torsion points maps G into H < GLo(Z).

This program may be paraphrased as finding all the rational points over all number fields K on all the
modular curves Xy associated to any congruence subgroup H. Needless to say, it is difficult to imagine
that Mazur’s Program B will ever be able to be fully settled, and clearly we are only at the beginning of this
journey. This goes especially when we start to consider also higher dimensional abelian varieties in place
of elliptic curves, and it is clear that there is work for several future generations in this program.

1.4 Outline and preprequisites

As all other courses during this meeting, this course is aimed at graduate students who are already familiar
with the basic theory of elliptic curves, at the level of Silverman [Sil09]]. In addition, the chapter discussing
the work of Mazur on torsion of elliptic curves over Q will assume familiarity with some more advanced
algebro-geometric notions such as sheaves and cohomology on the flat site. Students familiar with Milne
[Mil80] will have knowledge that far surpasses what we need here, and in any case we recall some of the
language that is required in the appendices.



Descent and the Mordell-Weil theorem

In this chapter, we quickly review the Mordell-Weil theorem and the method of descent on elliptic curves,
which we illustrate in a few explicit examples. All the material here is classical, and is discussed in much
more detail in Silverman [Sil09, Chapter VIII, X], which we assume students to be familiar with. The aim
is to recap the necessary results, and offer a slightly more technological treatment that foreshadows the
algebro-geometric considerations in the next chapter.

2.1 Selmer groups

Let A be an abelian variety defined over a number field K, and let n > 1 be an arbitrary integer. The short
exact sequence of G x-modules defined by the multiplication by n map

0—An]—A "5 A4-—0 (2.1)

defines a long exact sequence in Galois cohomology, from which we extract the following short exact se-
quence
0— A(K)/nA(K) — H' (K, Aln]) — H' (K, A)[n] — 0 (2.2)

The group A(K)/nA(K) is usually called the weak Mordell-Weil group. The first step towards the proof
of the Mordell-Weil theorem is to show that the weak Mordell-Weil group is finite. If A(K) is finitely
generated, this must clearly be true. The converse is shown using the theory of heights, which will be
abundantly studied in the lectures of Silverman at this summer school.

Since the cohomology group H' (K, A[n)) is infinite, the sequence does not yet prove the finiteness
of the weak Mordell-Weil group. To this end, we consider also the local variants of (2.2), and obtain the
following commutative diagram with exact rows, where the products are taken over all places v of K, and
the vertical maps are the product of the corresponding localisation maps.

0 — A(K)/nA(K) —— HY(K, A[n]) — HY(K, A)[n] —— 0

| | e |

0 — [, A(Ky)/nA(K,) — [T, H' (K, Aln]) — [T, H' (K, A)[n] — 0

By the commutativity of this diagram and the exactness of the rows, we see that the image of the weak
Mordell-Weil group must lie in the kernel of the map (. This observation allows us to refine the sequence

13
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([2.2), by defining the Selmer group Sel,,(A) and the Tate-Shafarevich group I1I(A) as the kernels of the
natural localisation maps

Sel,(A) = Ker(H'(K,A[n]) — T[], H(K,, A))
MI(A) = Ker( H(K,4) — [[,H(K,, A))

so that we obtain a short exact sequence

0 — A(K)/nA(K) — Sel,, (A) — III(A)[n] — 0. (2.3)

2.2 The weak Mordell-Weil theorem

The finiteness of the weak Mordell-Weil group follows from the finiteness of the Selmer group. For this
latter fact, many excellent resources exist, see for instance Silverman [Sil09, Chapter VIII] and Milne [Mil06}
Chapter IV.3]. Since the target audience is assumed to be acquainted with these proofs, we take this as an
opportunity to sketch a proof that relies on algebro-geometric language. This proof will prepare us for the
arguments of Mazur to come.

Theorem 4. Let A be an abelian variety defined over a number field K. For any integer n > 1, the weak
Mordell-Weil group A(K)/nA(K) is finite.

Proof. Let U be the Zariski open subset of Spec(Qf ) obtained by inverting the set S consisting of
all the primes of bad reduction of A, and the primes dividing n. Then A extends to an abelian variety
o/ over U, and we have an exact sequence of sheaves on the étale site of U defined by

0— A — o "> o —0
and since &7 (U) = A(K) we extract from the long sequence in cohomology that
0— A(K)/nA(K) — Hi (U, o/[n])

and therefore it suffices to show that H}, (U, <7 [n]) is finite. By the Hochschild-Serre spectral sequence
[Mil80, Theorem 2.20], it suffices to show this after replacing U by a finite étale covering V' — U. Since
the finite flat group scheme <7 [n] has invertible order on U, we may take V' = Spec O [1/5], where
L/K is a finite Galois extension over which

o n| ~ (Z /nZ)?

is constant. We may furthermore assume that Oy, contains the n-th roots of unity, so that also p,, =~
Z /nZ. The short exact Kummer sequence

0— pt, — Gy —— G, —0

over V induces a long exact sequence of étale cohomology groups, from which we extract the following
short exact sequence:

0—OL[1/8]*/(OL[1/S))" — HL(V, Z /nZ) — Pic(V)[n] — 0.

Note that H,(V, Z /nZ) is flanked by two terms that are finite: the left follows from Dirichlet’s unit
theorem, whereas the right follows from the finiteness of class groups. O
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In the above proof, it is shown that when U is a Zariski open of Spec Ok where A has good reduction
and 7 is invertible, then the étale cohomology group Hy, (U, <7 [n]) is finite. This group consists of classes
of the Galois cohomology group

H' (K, Aln]) > Hg(Spec(K), A[n])

that are unramified at all finite places of the set S containing the primes of bad reduction of A, and the
prime divisors of n. Therefore the Selmer group Sel,,(A) is contained in it. It is described by the additional
finiteness conditions at the bad places in .S as explained in §[2.1}

The proof of the weak Mordell-Weil theorem may often be turned into an algorithm for determining the
weak Mordell-Weil group, or in any case, the Selmer group. Depending on the chosen example, the setup
may be a variation of the above, replacing multiplication by n by another isogeny. For practical reasons, it
is typically most convenient to use a 2-isogeny, as explained in Silverman [Sil09) Chapter X]. In general, and
certainly for the examples we will consider, one typically does not expect to have any rational 2-isogenies.
When E/[2] is irreducible, one typically follows the procedure in Silverman [Sil09} Exercise 10.9], which we
will now review. In the language used in the above proof of the weak Mordell-Weil theorem, it consists
of identifying a minimal V, the spectrum of the ring of S-integers in an extension of Q that trivialises a
conveniently chosen submodule M C A[n], and describing the classes sufficiently explicitly to be able to
disqualify many from lying in the image of a global point, by local considerations.

2.3 The method of 2-descent on elliptic curves

Let E be an elliptic curve over Q such that the Gg-module E[2] is irreducible. Consider a cubic extension
K/ Q such that the G x-module E[2] is reducible. In other words, we take K to be the number field obtained
by adjoining the coordinates of a 2-torsion point P € F[2]. Complete this point P to a basis { P, Q} of F[2].
Then with respect to this basis, the G x-module E[2] is of the form

E[2] ~ ((1) ’{) :

By restriction to G’k and projection to the lower right entry, we now obtain a morphism
v HY(Q, B[2]) — H' (K, o) = K*/(K*)? (24)
This morphism ¢ has two important properties (see exercises):

« It has kernel Ker(p) = 1.
« It has image Im(¢) = Ker (KX/(KX)2 m Q* /(QX)Q)

Already, these two facts allow us to find a bound, purely in terms of number field arithmetic, on the order
of the weak Mordell-Weil group E(Q)/2E(Q), since

E(Q)/2E(Q) < Im(yp).

Indeed, the classes obtained from global points in the image of ¢» must be squares at all places not contained
in the set S, consisting of all places of K lying above the infinite place, the places of bad reduction of F,
and the places dividing 2. Together with the above description of Im(¢), this yields a finite computable
subgroup of K* /(K *)? containing the weak Mordell-Weil group E(Q)/2E(Q).
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The second part of the 2-descent then proceeds to eliminate individual classes of this explicitly computed
subgroup of K* /(K *)?, showing they cannot lie in the image of £(Q)/2E(Q) due to a local obstruction.
In order to do this, it is necessary to give an explicit description of the map

B(Q) — H!(K, puz) ~ K* /(K*)*.

Note that this map is constructed by projection to the line spanned by the point @), and therefore proceeds
by taking the principal homogeneous space of E[2] given by the fibre of [2] : E — E at the point @), and
taking the Weil pairing eo(—, —) with the K -rational point P. By the explicit description of the Weil pairing
[Sil09]], we see that the image of a point R € E(Q) coincides with the class of

z(R) — 2(P) € K* J(KX)2.

This explicit description allows us to further restrict the image of rational points in Im(¢p), by local consid-
erations. To digest this method, we illustrate it on the same example that appeared in the introduction.

Example
Consider the elliptic curve E defined over Q by the affine equation
E:yP+y=a®—2° (2.5)

which has conductor Ng = 11, and we quickly find that the torsion subgroup of F(Q) is isomorphic to
Z /5Z, generated by the rational point (0, 0). We will show that the rank of this elliptic curve is zero.

Step 1: The image of ¢. The curve has short Weierstrafl equation given by 32 = 23 — 432z + 8208,
and the 2-torsion E[2] is irreducible. It acquires a rational point over the number field K defined by the
cubic equation on the right hand side. A simple presentation is given by K = Q(«) where

a®—a+a+1=0.

This is a cubic number field of signature (r, s) = (1, 1) and discriminant A = —22 . 11. Its ring of integers
is the monogenic order O = Z[«] which has trivial class group Clgx = 1 and rank one unit group

0% = (—1) x {(a).

Let S be the finite set of places of K consisting of all archimedean places, and all places dividing 2Ng = 22.
More precisely, the following places are contained in S:

+ There are two archimedean places and K ®q R ~ C x R, and the corresponding local elements
modulo squares are represented by

Cr/C? = 1,
R* /(R¥)? = =+l.

« There is a unique 2-adic place and K ®q Q, ~ K, where (2) = p® in Of is totally ramified, and
p = (a+ 1). The corresponding local field modulo squares is represented by
KY/(KX)? = (-1,5,a,a—2,a+1) ~ F5.
« There are two 11-adic places and K ®q Qq; ~ K,, x K,, where (11) = q,q3 in Ok, and we have
g, = (2 — 1) and g5 = (a? + a — 1). The local fields modulo squares are represented by

KXJ(KX)? = (11,-1) ~ F}
KX/(KX)? = (*+a-1la) ~ F3
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Since K has trivial class group, any class in K* /(K *)? that is a square locally at all places v & S is

represented by an element which is, up to a unit in O}, a product of the generators of p, q; and q5. In other
words, an element in the subgroup

FS ~ (—-l,a,a+1,2a—1,0® +a—1) Cc K*/(K*)2

The image of the weak Mordell-Weil group is contained in the kernel of the norm map to the subgroup
Fi ~ (—1,2,11) € Q* /(Q*)2. With respect to these chosen bases, we easily compute that the norm
map induces a linear transformation Nm : F5 — F2 described by the following matrix representation,
where the matrix acts on column vectors:

11011 Nm(—1) = Nm(a) = -1

0 01 00 since Nm(a+1) =2

0 00 11 Nm(2a — 1) = Nm(a? + o — 1) = —11
We see that the kernel of this matrix is of rank two spanned by the column vectors (1,1,0,0,0)T and
(0,0,0,1,1)T. We may therefore conclude that the image of the global points F(Q) is contained in the

rank 2 submodule

(—a,3a% — 5o — 1) € K*J(K*)2. (2.6)

Step 2: Local obstructions. The upper bound obtained above is not sharp enough to conclude that the
rank of E is zero. We will now use the explicit description of the Weil pairing and find local obstructions
at primes in S to exclude classes of as possible elements of the image of a global point. Consider the
short Weierstrafy model for E' given by

E : y? =23 — 4322 + 8208
then E[2] has a unique non-trivial K -rational point
P = (z,y) = (—=18a% + 18a — 12,0)

and the image of a rational point R = (z,y) € E(Q) is given by the class of the element z — z(P) €
K*/(K*)2 The subgroup has three non-trivial elements, each of which we can consider in turn. For
instance, the group F(Q,)/2E(Q,) is cyclic of order two, generated by the class of

(z,y) = (LVTTT7) € E(Qy)
which maps to the class of

13 —18a + 1802 = 302 — 5a — 1 mod (K;)?.

We conclude that in the rank 2 submodule (2.6), the non-trivial classes —a and —a(3a? — 5a — 1) are not
contained in the image of a global point. A similar argument shows that the remaining non-trivial class has
an 11-adic obstruction to coming from a global point. We conclude that F(Q)/2FE(Q) = 1 and hence

E(Q)~Z/5Z.

2.4 Modular curves

The elliptic curve whose Mordell-Weil group we just determined is one of special significance. It is a model
of the modular curve X;(11), and the determination of the rational points implies that there are no elliptic
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curves over Q with a rational point of order 11. To explain why, we briefly review some important properties
of modular curves, which will be used later.

The (affine) modular curves Yy(N) and Y7 (V) are moduli spaces for isomorphism classes of elliptic
curves I endowed with the following additional structures

Yo(N) : (E,H) H isacyclic subgroup order N,
Yi(N) : (E,P) Pisapointorder N.

They have natural compactifications by a finite set of cusps, indexed by the corresponding level structures
on the Tate curve Tate(q)/ Z((¢)). Concretely, the N-torsion submodule is spanned by elements (x and
¢"/N, and the action of the automorphism group on E[N] is generated by ( + C;,l and ¢'/N > (gt /N,
This is explained in detail in [DI995]], and perhaps best illustrated on an example.

Example. As in Silverman [Sil09, Exercise VIII.8.12], one shows that any elliptic curve E over a Q-
algebra with a rational point P of order 5 can be put in the form

E,: >+ (1 —a)zy — ay = 2° — az?
for some value of a. This curve has discriminant A = a’(a? — 11a — 1). The curve X;(5) has genus 0 and
the cusps are given by the orbits of the points (£¢/® of order 5 under the automorphism group. Concretely,
we find the following orbits, grouped by distinct colours.

[(a,b) ]O 1

[\)
w

4]

B W~ O

There are hence 4 cusps on X1 (5), of which two (e and e) are rational over Q, and two (e and ) are rational
over Q(¢s)* = Q(v/5), the maximal real subfield of the cyclotomic field Q((s).

Increasing the level structure, one may prove (see exercises) that the modular curve X;(11) is of genus
1 and has a familiar looking minimal Weierstrafl model over Q, given by

X, (11) 1 +y = 2% — 22

It has precisely 10 cusps, of which 5 are rational over Q and 5 are rational over Q((5)". We now see that
the example of 2-descent we treated in the previous section has special significance. We proved there that
there are 5 rational points on X7 (11), which are all accounted for by the cusps. As a consequence, we see
that we proved the following:

Theorem 5. There is no elliptic curve ;g with a rational point of order 11.

Whereas this is but a modest part of the torsion theorem of Mazur, it may make us bold enough to wonder
whether these methods may be extended to modular curves X (¢) for ¢ > 11 prime. This is precisely what
Mazur does, though there are clearly many formidable obstacles to overcome. In the next chapter, we will
analyse the structures we encountered in the 2-descent, and see whether there may be a better version of
the descent argument that is more amenable to generalisation.



Modular curves and flat descent

In this chapter, we turn to the systematic study of torsion points of prime order N on elliptic curves Eq,
and will discuss some aspects of the groundbreaking work of Mazur [Maz77a, Maz78].

Theorem 6 (Mazur). Let Eq be an elliptic curve. The torsion subgroup E(Q)ors of its Mordell-Weil group
is isomorphic to one of the following groups:

Z /nZ 1<n <10, n=12
E(Q)tors—{ Z/QZXZ/QTLZ 1<n<H4

The strategy revolves around a study of the rational points on the modular curve X;(NN) by performing
a descent on a suitably choserﬂ isogeny factor A of its Jacobian J; (V). In a general descent procedure, as
reflected in the example in the previous chapter, we discern two key steps:

« Imposing only unramifiedness conditions outside a finite set of bad primes .S gives an a priori bound
on the Selmer group, which can be represented by explicit classes.

« This bound is sharpened using explicit equations for twists in the Weil-Chételet group, where classes
are excluded from the image of global points using local obstructions at places in S.

An appealing feature of modular Jacobians is that they frequently have a rational point of large order,
and they have good reduction outside of N. This makes the a priori bound arising in the first step quite
good, though ultimately not good enough. Needless to say, methods involving the Weil-Chatelet group
and explicit equations for twists are not suited to further sharpen this bound. This is already the case for
modest values of N, and certainly for general N.

To obtain sharper bounds, one may spread out the geometry over Spec(Z), and work with respect to the
more sophisticated flat topology. Concretely, Mazur shows the existence of propitious quotients A whose
p-torsion is admissible for some p t N, a stringent condition that assures the Jordan-Holder factors to be
Z /pZ or pi,. The descent formalism applied to the Néron model .27 7 then leads to a short exact sequence

1— A(Q)/pA(Q) — Hg(Spec(Z), #/ [p]) — Hg(Spec(Z), o) [p] — 1

The admissibility of the Galois module in the middle term allows Mazur to sufficiently control the corre-
sponding pieces of the cohomology, frequently using Kummer theory through the fact that

1—>un—>Gmi>Gm—>1

is an exact sequence of sheaves on the flat site (it is not generally right exact in the étale site).

Ut is the so-called “Eisenstein quotient”, whose construction is a key part of the work of Mazur [Maz78].

19
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Goal. It would be impossible to do justice to the beautiful arguments of Mazur [Maz77a] in a mere
three hours of lectures. We have therefore settled for the much more modest goal of treating the cases
of 11-torsion and 13-torsion, highlighting those aspects that represent important steps in the proof of the
general case. These notes may therefore be viewed as an introduction to the subject, and the interested
student is referred to a more complete set of lectures by Snowden [Sno13].

3.1 The flat topology

The arguments of Mazur take place in the flat topology. Anyone who wants to understand the fine print of
these techniques should consult Milne [Mil80]]. In these notes, we will take a pedestrian approach to the
inherent technicalities, and content ourselves with using the formal cohomological framework, along with
one or two black boxes. Treating the cohomological formalism as a given allows one to already appreciate
some of the beautiful ideas in the general case.

Motivation. In the previous chapter, we showed that there are no elliptic curves over Q with a rational
point of order 11, using an explicit 2-descent. But how does this approach generalise to find rational points
on X (¢) for primes ¢ > 11? A careful examination of the structures we encountered in the 2-descent
makes us desire for an alternative approach that has the following features:

« The 2-descent involved some cubic extension over which we cannot expect good control in general.
The general descent argument should involve structures that have ‘meaning’, in the sense of the
moduli problem, so as to generalise to other modular curves.

+ The descent argument should yield sharp bounds so as to avoid having to write down explicit equa-
tions for twists. Clearly, this will not be a fruitful approach for primes ¢ > 11, so we will most likely
need to engage with what happens at the finite set of bad primes S.

The ideas of Mazur achieve these goals in the following way. The first point is addressed by performing a
descent with respect to a canonical class of rational points, which in the case of X;(11) is accounted for
by the rational 5-torsion. The second point is resolved by working with flat cohomology groups, making
the cohomological framework interact with the finite set of bad places .S. In these notes, we will avoid the
additional technical complications that arise at primes of bad reduction, settling for the primes dividing the
order of the isogeny. This will be sufficient for the specific examples that we treat here.

The flat topology. Mazur replaces the étale topology by the finer flat topology which is better equipped
for dealing with group schemes of order p in characteristic p. The flat topology is a Grothendieck topology,
where the coverings of a scheme S are given by families of morphisms

{pi: T; — S}

where each morphism ¢ is flat and locally of finite presentation, and their images cover S in the sense that
S = |, ¢i(T;). This notion of coverings satisfied the axioms of a Grothendieck topology [Mil80, Chapter
II.1] and very important theorem of Grothendieck [Mil80, Theorem 1.2.17] implies that whenever G is a
commutative group scheme over S then the functor defined by

T — Homg (T, G)

is a sheaf of abelian groups with respect to the flat topology defined above. This theorem is central for the
practical usefulness of the flat site, and it gives a mechanism whereby short exact sequences of commuta-
tive group schemes give rise to long exact sequences in flat cohomology via the cohomological framework
developed by Grothendieck, see [Mil80, Chapter III].
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Kummer theory. We mention one key fact about the flat topology that is used in the descent arguments
on the Jacobians of X7 (11) and X7 (13) below. We often need to control cohomology with values in y,, when
analysing the torsion of modular Jacobians. To do this, we may use that the Kummer sequence

1—>pn—>Gm'—">Gm—>1

of abelian group schemes over any base scheme S is exact in the flat topology. To see why it is surjective, let
U be any S-scheme with a global section u € Homg(U, G) = I'(U, O;). Choose an affine Zariski covering
of U by open sets Spec(A;), and let u; € A be the restriction of u to this open subset. For each such open
set, there is a covering in the flat topology given by

Spec A;[T]/(T" — u;) —> Spec A; (3.1)

and note that the restriction (= pullback) of u; to this covering is in the image of the n-th power map, since
it is the n-th power of the unit 7'. This shows that the Kummer sequence is indeed right exact.

Remark. Note that the Kummer sequence is not generally exact in the étale topology. The problem with
the above argument is that the covering is not a covering in the étale topology. When n is invertible
on S, Hensel’s lemma for the polynomial 7" — u; does imply that the covering is étale, and therefore
the Kummer sequence is exact in such cases. Note that we already used this fact in our discussion of the
weak Mordell-Weil theorem, and it was precisely our desire to use this fact that caused us to add the primes
dividing n to the finite set S of bad places. Perhaps this strengthens our faith that we may include these
bad places, at the cost of working with the formalism of flat cohomology.

An important consequence of the exactness of the Kummer sequence, which we will use several times
in the arguments to follow, is that when the base scheme is the spectrum of the ring Og of S-integers
in a number field K, its first flat cohomology group with coefficients in j, can be computed in terms of
arithmetic invariants of the ring, as follows:

Lemma 1. Suppose S is a finite set of primes in a number field K, and n is any integer. Then we have a short
exact sequence

1— O[1/8]* /(0O[1/S])" — Hf (O[1/5], pn) — CO[1/S])[n] — 1.

Proof. By the exactness of the Kummer sequence in the flat topology, we obtain a long exact sequence
in flat cohomology from which we extract the five-term sequence

()

2 HY (O[1/5], Gyn) — HE (O[1/S], 1) — H (0[1/8], G)

HY (O[1/5], Gn) s HE (0[1/5), Gon)

The lemma now follows from the observations that

Hy (O[1/8],Gm) = O[1/5])*
Hg (O[1/8],Gm) Hg (O[1/8],Gm) = Pic(O[1/8])

where the latter equalities follow from the fact that flat cohomology agrees with étale cohomology
when valued in the sheaf G,,,, and they both compute the Picard group of the base [Mil80, Theorem
I11.4.9]. The Picard group of a number ring is its class group, consisting of invertible fractional ideals
modulo principal ones. This proves the lemma. O
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3.2 Torsion points of order 11

We will now treat the example X (11) once again, using a descent by 5-isogeny. As overkill as this may
be in this example, we use it as an excuse to explore some of the fundamental ideas in Mazur-Tate [MT73]],
and ultimately Mazur [Maz72| Maz77al [Maz78]). We begin with some preliminary facts about the modular
curves Xo(11) and X;(11) that may be calculated easily, and which will be used in our descent arguments
below. Both are elliptic curves defined over Q, and we may find their minimal Weierstrafy models:

Xo(11) : y*+y = 23 —2?—10z—20
2 3 2 (3.2)
Xi(11) : Yy’ +y = 2’ -2
The curve X((11) has two cusps 0 and oo, which are both rational. The curve X;(11) has ten cusps, of
which five are rational, and five are defined over Q((11)™. The primes 5 and 11 play a central role in our
descent argument, coming from the torsion and bad reduction respectively, which we investigate now.

Torsion. We begin with an analysis of the Galois properties of the 5-torsion on both of these elliptic
curves. Using the explicit Weierstrafy equations above, we easily check that

XO(ll)(Q)tors = {07 (57 5)’ (57 _6)’ (167 60)) (167 _61)}
Xl(ll)(Q)tors = {07 (Ov O)a (07 _1)’ (17 O)v (15 _1)}

This means we have an injection of the Galois module Z /5 Z into both X(11)[5] and X7 (11)[5]. The self-
duality of the 5-torsion furnished by the Weil pairing shows that the quotient is in both cases isomorphic
to 5. The classes defined by X[5] and X1 [5] in the space of extensions

Z /5Z
Z /5Z

~
~

[Xo(11)[5]]. [Xi(11)[5]] € Ext' (5.2 /52)

can be represented by choosing an F5-basis for either of these Galois modules whose first element is a
rational point. This yields a matrix representation of Gq, and denoting x5 : Gq — F; for the cyclotomic
character defined by the action on the primitive 5-th roots of unity;, it is of the form

1 =
0 Xxs
The nature of the extension class is precisely the nature of the upper triangular part of this matrix, which

defines a 1-cocycle of Gq with values in ,ugl. Let L/ Q be the field obtained by adjoining all 5-torsion,
then we have

Gal(L/ Q) ~ Gal(L/ Q(G)) » Gal(Q(Gs)/ Q).

We see that Gal(L/ Q((5)) must be a subgroup of F5 and Gal(Q((5)/ Q) acts by conjugation through the
character Xgl. Determining the extension L therefore determines completely the structure of the extension
class. Using the Weierstrafl equations above, we can easily compute (though please don’t do this by hand!)
the 5-division polynomials and arrive at the conclusion that

Q(Xo(1D)[5])) = Q(s)
QX1(1D)[5) = Q(¢G, ), where a® —2a* + 603 + 202 +4a + 1

so that in particular, the extension defined by X[5] =~ Z /5Z x s is split, whereas the extension defined by
X1[5] is non-split, and described by the number field above. The pair of isogenies defined by the forgetful
map on level structures and its dual have the following kernels

1 — Z/5Z — X1(11) — Xo(11)

1

—
— 1
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Néron models. We will denote the Néron models of X(11) and X (11) over Z by 2(11) and 27 (11)
respectively. For notational simplicity, we often just write 2y and 27, and likewise for their generic fibres.
The only prime of bad reduction is 11, where we may use Tate’s algorithm to find that the reduction is
semistable and has Kodaira types I5 and I; respectively. We may therefore visualise the Néron models over
Z,, as in the following picture.

Zo(11) @ Q 21(11) O<

Spec(Z11) I\I\[vw-—o— Spec(Z11) l\IWVw—o—

Qi Fi Qi Fi

Figure 3.1: The Néron models 25 (11) and 27 (11) over Spec(Z11).

Over Spec(Z[1/11]) the Néron models are abelian varieties, and the pair of dual 5-isogenies between
Xo(11) and X;(11) extends to an isogeny between the Néron models, whose kernels are therefore finite
flat group schemes over Z[1/11]. Their generic fibres (over Q) are isomorphic to the generic fibres of the
constant group scheme Z /5Z and u5 respectively. By the classification theorem of Oort-Tate [TO70] this
means that the kernels must also be isomorphic to them over Z[1/11]. In other words, over Spec(Z[1/11])
we have short exact sequences of group schemes

1 — Z/5%Z2 — 2Zi(11) —
1 —  us — Zo(11) — 271(11)

— 1
— 1.

Descent by 5-isogeny

The curve X;(11) comes equipped with a 5-torsion point, which defines the isogeny
¢ X1(11) — Xo(11)

corresponding to the forgetful map on moduli problems that sends the rigidification of the point P of order
5 to the subgroup (P) of order 5. This 5-torsion point is ‘meaningful’, in the sense that it is generated by a
cusp and similar torsion will be available on other modular curves, so it feels very natural to make use of it.
Here, we will show how to perform a 5-descent to determine the Mordell-Weil group of X;(11), showing
there are no elliptic curves over Q with a rational point of order 11 (again).

Note that by the defining properties of Néron models, we have Z4(Z[1/11]) = Xo(Q) and 271 (Z[1/11]) =
X1(Q). Therefore, considering the isogeny ¢ and the associated long exact sequence in cohomology over
Z[1/11], extract the injection

Xo(11)(Q)/é(X1(11)(Q)) = Hi(Spec(Z[1/11)),Z /5Z) ~ F,

where the target is isomorphic to F'5 because there is a unique cyclic degree 5 extension of Q unramified
outside 11, namely Q(¢11)™. Since we can produce 5 elements in the image, this injection must in fact be
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an isomorphism. We therefore find that X (11)(Q)/¢(X1(11)(Q)) ~ Z /5Z without ever having to write
down explicit elements of the Weil-Chatelet group, if such a thing would be possible in the first place.

To deal with the dual isogeny ¢ : X(11) — X (11), we face more serious difficulties. Indeed, this
time the kernel over Z[1/11] is 5, and we face the étale cohomology group Hg, (Spec(Z[1/11],Z /5Z).
This is awkward, since 5 is not smooth over Z[1/11] due to its problematic fibre over the prime ideal (5).
To gain control over this group, we note instead that the short exact sequence

1—ps — Zo(11) — 27(11) — 1

defines a perfectly valid sequence of sheaves on the flat site of Spec(Z[1/11]). The flat site is well-equipped
for controlling the cohomology of p5, since the Kummer sequence

1l—pus — G, — G, —1

is an exact sequence of flat sheaves (it is not exact on the étale site!). Therefore the long exact sequence,
where Hj (Spec(Z[1/11]), G,,) = Pic(Spec(Z[1/11])) = 0, gives us an isomorphism

Hyg (Spec(Z[1/11]), p5) ~ Fs .

Wonderful! However, we need one last ingredient, since we are trying to show that X;(Q)/¢(Xo(Q)) is
trivial. This ingredient will come from controlling the image at the final frontier: The prime 11. Indeed, the
descent sequence gives us the following commutative diagram

Xo(Q) — X1(Q) ———— H{(Spec(Z[1/11]), u5) =~ Fs

Iy Je

Xo(Qyy) —— X1(Q,) — Hy (SpeC(Q11)7N5) =~ Fg

The triviality of the group X;(Q)/$(Xo(Q)) would finally follow, if we could show that the map () is
surjective, and the map (xx) is injective. Let us check these in turn.

o Let us check first that (*) is surjective. If we denote M, and M; to be the kernels of the reduction
maps of 20(Z11) and 27(Z11) modulo 11, then the map (x) fits into the following commutative
diagram with exact rows:

0 My 2o(Z11) —— Zo(F11) — 0
Jé e E
0 M,y 21(Zy)) —— Z1(F11)) — 0

Note that to prove that () is surjective, it suffices to show that its left and right flanking maps in this
commutative diagram are surjective, by the snake lemma. For the left map, we note that [5] = ¢ o )
is an isomorphism on the pro-11 group M;, and therefore so is ngS For the right map, surjectivity
can be checked directly, by observing that it factors through the induced map on minimal Weierstrafl
models, which can be computed explicitly and shown to have trivial kernel, hence trivial cokernel
since the special fibres are both cyclic groups of order 10.
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« Finally, we note that the map () is identified via the long exact sequence of flat cohomology asso-
ciated to the Kummer exact sequence with the natural map

117/ £11°% — Q1 /(Q1)°”.

This map is clearly injective, since 11 is not a fifth power in Q1.

3.3 Torsion points of order 13

For the modular curve X;(11) we now proved twice that the set of rational point consists entirely of the
5 rational cusps. The second proof is more amenable to generalisation, though clearly there are many
obstacles to overcome. To get us a little closer to the general argument, we will use similar techniques to
prove the following theorem, due to Mazur-Tate [MT73].

Theorem 7. There are no elliptic curves £ q with a rational point of order 13.

To prove this theorem, we will exploit the existence of a rational point of order 19 on the Jacobian
A := J1(13). This was originally found by Ogg [Ogg71]] and the announcement of this result was the
impetus for the work of Mazur-Tate [MT73]], who say the following:

The possibility that this could be done occurred to us when Ogg
passed through our town and mentioned that he had discovered a point
of order 19 on the 2-dimensional abelian variety J. It seemed (to us and
to Swinnerton-Dyer) that if such an abelian variety J, which has bad
reduction at only one prime, and has a sizeable number of endomorphisms,
has a point of order 19, it is not entitled to have any other points.

The modular curve X (13)

We begin by discussing a number of facts about the arithmetic and geometry of the modular curve X7 (13)
and its Jacobian A := J;(13), for later use in the argument. The curve X;(13) has genus 2 and a model
over Q given by

X1(13) sy + (2 + 2+ 1)y =2° + 2.
It has a total of 12 cusps, six of which are rational over Q, and six of which are defined over Q(¢13)™, the
maximal real subfield of the cyclotomic field Q({13)". The curve has many automorphisms, for instance
those induced by the following maps on elliptic curves

Ym : (E,P) — (E,mP) where m € (Z /13Z)* /{+1}
e  (E,P) — (E/(P),Q) where( € ui3\{1} and (P, Q)weir = ¢.

Here, the notation @ is used for any point on F whose image on E/(P) is equal to (). Note that the
condition on the Weil pairing determines Q up to multiples of P, which makes its image well-defined. We
see that the the elements ,, form a group I" which is isomorphic to (Z /13Z)* /{£1} and is generated by
the element 2 of order 6. The elements 7 are involutions, and we check that

\
2
3

{ TEYmTe

’ymTC == TC7n
so that we exhibited a group of automorphisms

A:=Tx CQ < Auta X1(13)
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which is dihedral of order 12. In fact, this is the entire automorphism group, though we shall not use this
fact. Note that the subgroup of automorphisms I' is defined over Q, whereas the involutions 7, are defined
over Q(¢13)™. Explicitly, by the equivariance of the Weil pairing, the action of an element of the Galois
group g € Gq satisfies

Tg = T¢9 = VgT¢s

where 7, is the image of g under Gq — Gal(Q((13)"/ Q) ~ (Z /13Z)* /{£1}.

The structure of the 19-torsion

The argument of Mazur-Tate centers around the structure of the Galois module of 19-torsion points V' :=
J1(13)[19] on the Jacobian of X;(13), for which henceforth we shall use the shorthand A := J;(13). The
work of Ogg shows the following

« If we embed the curve X;(13) using the Abel-Jacobi map attached to the cusp oo (or, really, any of
the 6 rational cusps) then the 6 rational cusps generate a cyclic subgroup of order 19.

« This accounts for all the torsion in the Jacobian, and

X1(13)(Q) N A(Q)rtors = {6 rational cusps}.

The method that Ogg uses is very interesting in its own right, but a thorough discussion of it would lead us
too far. We content ourselves with mentioning that the subgroup of cuspidal divisors is always torsion by
a celebrated theorem of Manin-Drinfeld, and that explicit relations between cusps may be found using the
theory of Siegel units, which are rational functions coming from the theory of modular forms with explicit
cuspidal divisors. We will take these facts for granted here, pretending (if you will) that Ogg likewise passed
through our town and thoroughly convinced us of the veracity of these facts.

For the descent argument, it will be important to understand more precisely the structure of the Ga-
lois module of 19-torsion V' := A[19]. Note that the ring Endg A of rational endomorphism contains the
quadratic order Z[y;] ~ Z[(s] of Eisenstein integers, which has unique factorisation. We have a factorisa-
tion 19 = 77 and may consider the submodules

Ve = Ker(r: A—A),
V& Ker(m: A— A).

Since 7 and T are coprime, we must have a rational decomposition
V=Ar7 =V, & V&,

where both factors are stable under the actions of the Galois group and I' alike, whereas they are inter-
changed by any of the involutions 7¢. The subgroup Z /19Z generated by the rational point is stable under
the group T (for instance, since T preserves the set of rational cusps on X (13), which generate the rational
torsion of A), and therefore it must be contained either in the kernel of 7 or 7. Let us assume, at the cost of
interchanging our notation if necessary, that Z /19Z C V. Finally, define the line

L =1:(Z/19Z)

to be the image of the subgroup generated by the rational point of order 19 under the involution 7¢. Then
% is contained in V; and independent of the choice of primitive root of unity ¢ € p13 since the involutions
attached to two different choice are related by an element of T, which preserves the subgroup Z /19Z. Now
note that the action of I' on V,; may be diagonalised into two eigenlines on which the action of the generator
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72 is by multiplication by distinct conjugate sixth roots of unity in F7y. Since the Weil pairing is invariant
under simultaneous action of I" on both arguments, we see that V. and Vi are self-orthogonal with respect
to the Weil pairing, and therefore they are dual to each other. Therefore, the Weil pairing with the rational
point of order 19 gives a quotient V; — p19. Since the Galois action on this quotient is disjoint from that
on .Z, we must have a short exact sequence

1— L —Vi— 19 —1

We note for future reference that the Galois module . becomes trivial over the extension Q((13) ™.

The 19-descent

We are now ready to perform a 19-descent on A. More specifically, the descent will be with respect to
the rational isogeny 7 : A — A of degree 192, and follows the same formalism that we employed on the
modular curve X (11) with respect to the pair of dual 5 isogenies we obtained from the natural forgetful
map X;(11) — Xo(11).

We begin with an observation: The ring Z[(s] C Endq A is a principal ideal domain. Since the Mordell-
Weil group is a finitely generated Z[(s]-module, it suffices to show that A(Q)/mA(Q) = 0 to conclude that
the rank is zero. To achieve this, consider the Néron model A of A, then we have a short exact sequence

0— Alr] — A" A—0 over Z[1/13].

The long exact sequence in flat cohomology over both Z[1/13] and Q5 then gives rise to a commutative
diagram with exact rows, reminiscent of our arguments in the case of 11-torsion, which in this case reads

A(Q) AQ) Hg (Z[1/13], A[r])

Loy Je

AQq3) —— A(Qyz) ———— Hfli (Q13,.A[7r])

As before, we will argue that (x) is surjective, and (xx) is injective, using very similar arguments.

« The surjectivity of () follows by a very similar argument. Namely, we use the commutative diagram
whose rows are the short exact sequences that furnish the filtration on the local points of the Néron
model, given by

0 M A(Z3) ——— A(F13) —— 0
J{’/T J(*) J’R’
0 M A(Z13) ——— A(F13) —— 0

The map induced on M is a factor of multiplication by 19, which must therefore be an isomorphism
on the pro-13 group M. To show that the map 7 : A(F13) — A(F13) is surjective, it suffices to show
that it is injective, since it is an endomorphism of a finite module. By the snake lemma, it therefore
suffices that the map (%) itself, namely 7 : A(Z13) — A(Z13), is injective. This is true, since the
kernel of this morphism is precisely

Ker (A(Qq3) — A(Qq3)) = VnD13
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where D13 < Gq is a decomposition group above the prime 13. This is shown because taking D;3-
invariants yields a short exact sequence of modules

Da: D;: D
1 }g 13 ;Vﬂ' 13 3/11913

and we can argue that both flanking terms must vanish. Indeed, for .#”1# we note that it cannot be
isomorphic to F1g since this would imply (by the fact that . is constant over this extension) that 13
splits completely in Q((13). Similarly, 13 does not split completely in Q((19), so that 1119 has trivial
D13-invariants.

« The injectivity of (**) is slightly more involved, and exploits the filtration of V. The module .#" can
be thought of as a finite flat subgroup of A. We denote its Zariski closure in A by .Z, whence we
obtain a filtration

1— 7 — Alr] — g — 1 over Z[1/13].

To see that the quotient is still isomorphic to 19, we note that it is determined by its generic fibre
(which is p19) by the classification of Oort-Tate [TO70], and likewise we may conclude from this
result that .7 is constant over Z[1/13, 13 + (;3']. By the Hochschild-Serre spectral sequence, there
is an isomorphism

H}(Z[1/13], 2) = HE(Z[1/13, (i3], Z /19Z) 2 /132

where the right hand side is seen to be trivial, since Q((13) has no Z /19Z-extensions that are un-
ramified outside 13. We conclude that there is a commutative diagram

1 — H5(Z[1/13), Alr]) — H{(Z[1/13], ju19)

-

Hili(Qma Alr]) — Hé (Q137 H19)

whose upper horizontal arrow is an injection. To show that (%) is injective, it is therefore enough to
show that the right vertical arrow is injective. This follows by essentially the same argument we saw
before. Namely, this map has a very concrete description by Kummer theory, namely as the natural
map induced by inclusion:

+13%/ 41397 — Q75 /(Q5)"Y.

This map is clearly injective, since 13 is not a nineteenth power in Q5.

3.4 Mazur’s theorem on torsion

The general theorem of Mazur [Maz78] extends these arguments considerably. Most notably, we can of
course not expect the rank of the modular Jacobians .J1 (¢) to be zero when / is a large prime. For instance,
Jo(37) is a factor of J;1(37) and it is isogenous to a product of two elliptic curves, one of which has rank
1. Therefore, the best one can hope to find in general is a quotient of genus zero. Mazur finds the so-called
Eisenstein quotient

JO (ﬁ) — Jeis

which is small enough to have rank zero, but large enough to remember enough about the curve X (¥).
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More precisely, for a scheme S we say that a morphism of S-schemes f : X — Y is a formal immersion
at x € X(9) if the induced map on complete local rings

f* : (/9\Y,f(;c) —)@\X@

is surjective. Mazur shows that the only rational points on X (¢) are cusps, as long as one finds a rank zero
quotient Jo(p) — A for which the map X(p) — A induced by the Abel-Jacobi map defined by the cusp
oo is a formal immersion at co. Mazur shows that the Eisenstein quotient A = Jg;s satisfies these properties.
The hardest part is to show that it has rank zero, which proceeds using a descent argument similar to what
we encountered in our small examples, using the Shimura subgroup of Jy(¢), which is the kernel of the map
to the Jacobian of .J; (¢) and is of order

p
=N t — .
n umerator ( 12 )

It is cyclic of order n and is generated by the rational point (0) — (co). This subgroup survives in the
Eisenstein quotient, and Mazur performs an n-descent to show the rank is zero. The general arguments are
substantially more sophisticated than they were in our small examples, but after our brief foray into small
special cases, our hope is that the reader will feel more confident taking on the original paper of Mazur
[Maz78]].

Merel’s theorem on torsion

A natural question to ask is whether the methods of Mazur extend to number fields of higher degree. This
was explored by Kamienny and Mazur [Kam92bl [Kam92al KM95]], see also Edixhoven [Edi95]. The results
remained in first instance limited to particular fields, such as K/ Q quadratic. Finally, it was proved by
Merel [Mer96]] that the torsion is uniformly bounded in the strongest possible sense:

Theorem 8 (Merel). The size of the torsion subgroup E(K )iors is bounded by a constant depending only on
the degree of K over Q.

The key innovation of Merel was to pass to a different quotient of the Jacobian, namely the winding
quotient. The intricate flat descent arguments of Mazur are here replaced by the works of Gross—-Zagier
[GZ85] IGZ86] and Kolyvagin [Kol89] which establish a sufficiently large part of the Birch-Swinnerton-
Dyer conjecture to show that the rank of the winding quotient is zero. It should be pointed out however
that the Eisenstein quotient has by no means left the stage, and there has been renewed recent interest in
Eisenstein quotients, see for instance [WWZE20| Lec21].






Exercises

1. Show that X;(11) has 5 rational cusps, and is an elliptic curve with minimal Weierstraf3 equation
W4y =a® — 22
2. Let E'be an elliptic curve over Q such that the Gg-module E[2] is irreducible. Consider the morphism
v+ HH(Q, B[2]) — H' (K, u2) =~ K™ /(K*)?
constructed in (2.4). Show that ¢ is injective, and has image equal to

Im(p) = Ker (K*/(K*)* " Q* /(Q)?)

Hint: Show that the map ¢ arises in the long exact sequence in cohomology associated to an appro-
priately defined short exact sequence of G'q-modules of the form

1— E[2] — Ind$ (u2) — p2 — 1.

3. Determine the Mordell-Weil group of the curve
En : y(N —y) =2 —z.

for the case N = 6 appearing in the work of Diophantus. Show that the rank is at least two for all
but finitely many integer values of IV, and find examples where it is larger than two.

4. Prove that when p is an odd prime, we have that

« the curve X (p) has two cusps, both of which are rational,

- the curve X1 (p) has p — 1 cusps, of which

(p —1)/2 are rational,
(p —1)/2 form a full Galois orbit over Q({,)™.

- the curve X (p) has (p? — 1)/2 cusps, rational over Q((,).
5. Determine all rational solutions to
E:vy+aoy+y=a°—2?—z—14.

Bonus: Find all rational elliptic curves with a rational subgroup of order 17.

6. Prove that there are no elliptic curves over Q with a rational point of order 17.

Hint: First deduce it from the previous exercise. Then prove it using a descent on X7 (17) in the style
of Mazur-Tate. You may use that J;(17) has a rational point of order 73.
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