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1Introduction
These are notes of a mini-course at the summer school at Baskerville Hall (Hay-on-Wye) held on 8-12 August
2022, organised by Vladimir Dokchitser and Céline Maistret. The meeting marks the 100th anniversary of
the Mordell–Weil theorem. The lectures focus on the torsion subgroup of the Mordell–Weil group of elliptic
curves over Q, speci�cally two landmark results proved in the 1970’s on this topic:

• Mazur’s theorem on torsion [Maz77a].
• Serre’s open image theorem [Ser72].

The lectures are intended to be a �rst initiation to some ideas in these papers. The full extent of these re-
sults is too ambitious to treat satisfactorily in three hours of lectures. These written notes are intended to
complement the lectures and provide slightly more context, details, and references for the more technical
parts of our discussion of Mazur’s theorem. Ultimately, their scope remains limited, and students aspiring
to study these results seriously are referred to the original sources, which are both masterfully crafted.

1.1 The Mordell–Weil theorem

The study of rational points on elliptic curves has a long and rich tradition that stretches across di�erent
historical eras, languages, and geographical borders. Today we celebrate the centenary of the Mordell–Weil
theorem, whose development followed e�orts of many mathematicians. In this motivational introduction,
we discuss a few of them. We do not attempt to give an exhaustive, or even adequate, historical treatment.
Instead, we cherry-pick precedents for the later developments we wish to discuss in these notes.

The method of ascent

We begin with (perhaps) the earliest reference to an elliptic curve in recorded history. Already, it involves
the mechanism of ‘ascent’, a way to proliferate solutions to cubic equations. In Diophantus’ Artihmetika
[DioAD] Problem 24 of Book IV, taken here from the late 19th century reproduction [Dio93], poses the
following question:

Diophantus asks the reader to “divide a given number into two numbers whose product is a cube minus
its side”. By means of an example, the book of Diophantus explains how to solve this problem for the number
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4 CHAPTER 1. INTRODUCTION

6, by �nding a rational solution1 to the equation

y(6− y) = x3 − x. (1.1)

The method used by Diophantus is remarkable. It makes in a purely algebraic way use of the doubling
formula of a point on an elliptic curve. More precisely, Diophantus considers solutions to the equation (1.1)
that satisfy the additional equation x = 3y − 1. By substitution, we �nd the relation

27y3 − 26y2 = 0.

This cubic polynomial has a double root at y = 0 and another one at y = 26/27 from which Diophantus
obtains the solution

6 = 26/27 + 136/27.

This construction may be summarised in modern language by saying that Diophantus notes the existence
of an obvious (but in his eyes utterly unacceptable) solution (x, y) = (−1, 0) and computes that the tangent
line to the elliptic curve E de�ned by (1.1) intersects E again in a rational point with coordinates

(x, y) =

(
17

9
,

26

27

)
.

The tangent line construction of Diophantus is visualised in Figure 1.1.
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Figure 1.1: The elliptic curve E : y(6− y) = x3 − x

It is quite remarkable that the �rst widely known historical occurrence of an elliptic curve already
uses its group law implicitly, e�ectively doubling a point (or rather, multiplying it by −2) to obtain a new
point. Since typically the complexity of the coordinates grows by applying this procedure of producing new
solutions from old ones, we might call it the method of ‘ascent’. The true signi�cance of this construction
of Diophantus took many centuries to obtain its modern formulation. One of the �rst explicit modern

1We should note that for Diophantus, only positive rational solutions would be considered valid.



1.1. THE MORDELL–WEIL THEOREM 5
descriptions of the group law on elliptic curves and Jacobians of curves may be found in the work of Poincaré
[Poi01] at the beginning of the 20th century. In this paper, Poincaré makes the following comments:

The realisation that the group law on elliptic curves gives a proliferation of rational solutions begs the
question (which is precisely what Poincaré ponders here) what minimum amount of fundamental solutions
is needed to produce all solutions in this way, a quantity for which Poincaré coins the term “rank”.

Fundamentally, we should wonder whether the rank is always �nite? At its core, this problem asks us
to reverse the process of ascent occurring in Diophantus, and backtrack all the way to a fundamental set of
generators. The question of �niteness of the rank remained open until the groundbreaking paper of Mordell
[Mor22], which develops the important method of descent.

The method of descent

The origins of the method of descent occur in the work of Fermat, who applies it to a variety of problems
which he describes in his 1659 letter to Pierre de Carcavi [dF59]. Perhaps his most famous application of
this principle survives in the only complete proof of the hand of Fermat that survived today, where he
shows that congruent numbers (areas of right angled triangles with rational side lengths) are never squares
[Fer70]. Fermat reduces this problem to showing there are no non-trivial solutions to the equation

x4 − y4 = z2. (1.2)

In the reduction of the problem to this Diophantine equation, Fermat makes use of the explicit parametrisa-
tion of Pythagorean triples, a classical result that was certainly well known to him. To solve (1.2) however,
Fermat uses a truly remarkable and original method, which we recognise in contemporary language as a
descent by 2-isogeny on an elliptic curve. Fermat sounds rather pleased with his argument, stating that
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“This type of demonstration will provide excellent progress in arithmetic." The proof appears entirely in
prose in the following paragraph of the 1670 edition [Fer70] containing his observations.

In modern language, we may describe the proof of Fermat as follows. Suppose we have a non-trivial
solution (x, y, z) to the quartic equation (1.2), then we may assume x, y and z are coprime positive integers.
From this coprime solution, Fermat constructs a new (smaller) solution, in two steps.

Step 1. We factorise the equation (1.2) as follows:

z2 = x4 − y4 = (x2 − y2)(x2 + y2).

Note that the factors on the right hand side are coprime to each other. This implies that they must both be
squares, i.e. there are positive integers s, t such that{

x2 − y2 = s2

x2 + y2 = t2.

Observe that s and t must both be odd integers, and by changing the sign of s if necessary we may assume
that s − t ≡ 0 (mod 4). We then note that y must be even, and that we therefore have the following
decomposition into integer factors: (

t+ s

2

)(
t− s

4

)
=
(y

2

)2

.



1.1. THE MORDELL–WEIL THEOREM 7
The factors on the left hand side are coprime positive integers. We may once again conclude they are both
perfect squares, so that we �nd odd coprime positive integers u, v that satisfy the equalities{

s = u2 − 2v2

t = u2 + 2v2.
(1.3)

Note that we have now produced a triple (u, v, x) that satis�es u4 +4v4 = x2. Moreover, the triple (x, y, z)
may be recovered from the triple (u, v, x) by the identities y = 2uv and z = u4 − 4v4.

Step 2. Note that the relation
u4 + 4v4 = x2

satis�ed by the triple (u, v, x) constructed in step 1 implies in particular that (u2, 2v2, x) is a Pythagorean
triple. As such, we may �nd coprime positive integers m,n satisfying u2 = m2 − n2

2v2 = 2mn
x = m2 + n2

(1.4)

Since v2 = mn we see that m and n are both squares. Writing m = a2, n = b2 with a, b > 0 we �nd
that the triple (a, b, u) is a solution to (1.2), i.e. a4 − b4 = u2. We see that a < a4 + b4 = x so that we
constructed a new solution whose �rst coordinate is strictly smaller than that of the original solution. This
shows that if a non-trivial solution exists, we can keep descending ad in�nitum, which is absurd.

If we unpack Fermat’s argument a little further, we see that it considers two genus 1 curves de�ned by
homogeneous equations in the weighted projective plane, namely

E1 :
{

(x, y, z) ∈ P2
[1,1,2] : x4 − y4 = z2

}
E2 :

{
(u, v, w) ∈ P2

[1,1,2] : u4 + 4v4 = w2
} (1.5)

They de�ne elliptic curves after the choice of base points (1, 0, 1) ∈ E1(Q) and (1, 0, 1) ∈ E2(Q). These
elliptic curves admit a pair (φ1, φ2) of dual rational 2-isogenies, described by:

−4 −2 0 2 4
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4

φ1 = (z, xy, x4 + y4)

φ2 = (w, 2uv, u4 − 4v4)
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The argument of Fermat produces for any purported non-trivial point (x, y, z) ∈ E1(Q) a preimage (a, b, u)
for the multiplication by 2 map [2] = φ2 ◦ φ1. The procedure consists of two steps, and �rst constructs
a preimage for φ2, then a preimage for φ1. When taken to its natural conclusion, Fermat therefore really
shows two things: First, his arguments su�ce to show that

E1(Q)/φ2(E2(Q)) ' Z /2Z ' E2(Q)/φ1(E1(Q)),
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and second, his descent argument on the ever shrinking �rst coordinate of a solution may be used to deduce
that any solution must have one of its coordinates equal to zero. From this, one concludes that

E1(Q) = {(1, 0, 1), (1, 0,−1), (1, 1, 0), (1,−1, 0)} ' Z /4Z
E2(Q) = {(1, 0, 1), (1, 0,−1), (0, 1, 2), (0, 1,−2)} ' Z /2Z×Z /2Z .

Nearly three centuries later, Mordell showed in his landmark paper [Mor22] how an argument of this
sort can be carried out for general elliptic curves E over Q. Mordell shows how to establish �niteness of
the group E(Q)/2E(Q) and deduces by an in�nite descent that the group E(Q) is �nitely generated. The
�rst paragraph of the paper of Mordell [Mor22] reads as follows.

Today another century has passed, and we might make a remark similar to what Mordell observes
above. Indeed, the method for obtaining �niteness pioneered by Mordell remains essentially the only known
approach. The work of Weil [Wei29] represents a very important step in the process of developing this
approach. What Weil observes is that the in�nite descent procedure depends on a notion of “size” which
may be formalised in the notion of heights, extending the argument to general number �elds, and abelian
varieties. The theory of heights is the subject of Joseph Silverman’s mini-course at this summer school, and
I will therefore leave its discussion in his far more capable hands. The insight of Weil yielded the statement
that is nowadays most commonly referred to as the Mordell–Weil theorem.

Theorem 1 (Mordell–Weil). Let A be an abelian variety de�ned over a number �eld K . The Mordell–Weil
group A(K) is �nitely generated, i.e. there exist a �nite subgroup A(K)tors ⊂ A(K) and r ≥ 0 such that

A(K) ' A(K)tors × Zr .

Suppose we are given an abelian variety A de�ned over a number �eld K . The determination of its
Mordell–Weil group in practice is a widely studied computational problem. There is a striking dichotomy
between the determination of the torsion subgroup, and the determination of the rank.

To �x ideas, let us consider the case of an elliptic curve E de�ned over K , given (say) by an explicit
Weierstraß equation. The torsion subgroup E(K)tors is usually easily determined in practice, for instance
using Silverman [Sil09, VII.3, VIII.7]. Determining the rank r ≥ requires a comparatively much deeper
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analysis, and an elaboration of the arguments appearing in Mordell [Mor22] has given us the celebrated
method of descent, which in its present form is the most e�ective and systematic (essentially, the only one)
to determine the Mordell–Weil group of particular examples. We assume here the reader is familiar with
computations of a 2-descent as appearing in Silverman [Sil09, Chapters VIII and X], though we will recall
the method in Chapter 2 and illustrate it on an explicit example.

1.2 Classi�cation of torsion

We may wonder, for a given number �eld K , what the possible torsion subgroups E(K)tors of an elliptic
curve over K are. A folklore conjecture, whose origins are di�cult to track down, states that the size of
this torsion group is bounded by an absolute constant B(K). A breakthrough on this question came from
Manin [Man69], who built on methods of Demjanenko to show the following:

In other words, Manin shows that for a �xed number �eld K and a �xed prime `, the `-part of the
torsion of an elliptic curve over K is bounded by a constant. This constant depends on K and `. While this
falls short of establishing the boundedness conjecture stated above, the proof is rather simple and contains
many ingenious ideas. The setup is to prove the theorem by showing that X1(`n) has �nitely many K-
rational points when n is large enough. This is a trivial consequence of the Mordell conjecture, since the
genus ofX1(`n) is unbounded as n grows. However, Manin proved his theorem before Faltings showed the
Mordell conjecture, by showing that its Jacobian contains a K-simple isogeny factor A with multiplicity m
satisfying

m > rkZ A(K) / rkZ EndK(A)

using the theory of heights. To �nish the proof, Manin then shows that the `-torsion of elliptic curves E
over K with �xed j-invariant j = j(E) ∈ K is bounded. The proof is striking: Suppose that for any n ≥ 1
there is a twist of E with a rational point of order `n. Choosing isomorphisms over an algebraic closure,
Manin transports these points to the `-adic Tate module of E, and shows the existence of a non-trivial
submodule

L ⊂ T`(E) = lim←−
n

E[`n], as GK-modules.

Then, he can invoke methods of Serre [Ser68] to show that if E does not have complex multiplication, then
the `-adic Tate module must be irreducible. We will return to these ideas later.

ForK = Q, the spectacular work of Mazur [Maz77b, Maz77a, Maz78] completely settles these questions.
Mazur brings a wealth of new ideas to the table. Like Manin, it considers the modular Jacobians J1(N) and
J0(N) for su�ciently largeN . We will discuss his proof in more detail in Chapter 3, and mention here only
that a crucial ingredient is the existence of a nontrivial Eisenstein quotient

J0(N)−→ Jeis(N)



10 CHAPTER 1. INTRODUCTION

which is of rank zero. The methods of Mazur and subsequent developments by Kamienny [Kam92b, KM95,
Edi95] developed into the work of Merel [Mer96], who showed the famous strong uniform boundedness
conjecture:

Theorem 2. For any d ∈ Z≥1 there exists a constant B(d) such that for all elliptic curves E over a number
�eldK with [K : Q] = d we have

E(K)tors ≤ B(d).

This result completely settles the question of boundedness in the strongest possible sense, since the
bound appearing does not depend onK , only on its degree over Q. This leaves open the question of giving
an explicit list of possible torsion groups, whose determination for number �elds of small degree is an
ongoing e�ort, see for instance [KM88, Kam92a] for d = 2, and [JKL11, DN19, DKSS21].

The key innovation of Merel was to pass to a di�erent quotient of the Jacobian, namely the winding
quotient. The intricate �at descent arguments of Mazur are here replaced by the works of Gross–Zagier
[GZ85, GZ86] and Kolyvagin [Kol89] which establish a su�ciently large part of the Birch–Swinnerton-
Dyer conjecture to show that the rank of the winding quotient is zero. It should be pointed out however
that the Eisenstein quotient has by no means left the stage, and there has been renewed recent interest in
Eisenstein quotients, see for instance [WWE20, Lec21].

1.3 Galois modules of torsion points

The argument of Manin we discussed above in the context of torsion crucially relied on investigations of
Serre [Ser68]. These investigations resulted in his famous open image theorem, a landmark result that shows
that when ` is a large prime, a given elliptic curve E/K is not only free of `-torsion, but in fact the Galois
module E[`] is as irreducible as possible. More precisely, for any m ≥ 1 we have an action of the Galois
group of K on the m-torsion E[m], which gives a morphism

ρE,m : Gal(K/K)−→Aut(E[m]) = GL2(Z /mZ).

Suppose that the elliptic curve has a cyclic subgroup of order m de�ned over K , then the image of the
morphism is contained in a Borel subgroup. In other words, with respect to a suitable choice of basis for
E[m], it is of the form

ρE,m : GK −→
(
∗ ∗
0 ∗

)
≤ GL2(Z /mZ).

Likewise, if it has a rational point of orderm de�ned overK , the diagonal entries must furthermore be zero,
i.e. the Galois group GK acts by transvections. The morphisms ρE,m de�ned in this way are compatible
in the choice of m under the natural transition maps Aut(E[m1])−→Aut(E[m2]) for m2 | m1 and hence
result in a representation

ρE : Gal(K/K)−→ lim←−
m

Aut(E[m]) = GL2(Ẑ).

The following theorem was proved in [Ser72].

Theorem 3 (Serre). If E/K is an elliptic curve that does not have complex multiplication, the image of the
morphism Gal(K/K)−→GL2(Ẑ) has �nite index.

The techniques utilised by Serre [Ser68, Ser72] are highly original and clever, and rely on subtle proper-
ties of `-adic Galois representations that would easily merit an entire mini-course (or several) by themselves.



1.3. GALOIS MODULES OF TORSION POINTS 11

The work of Serre proves in particular that for any given elliptic curve without CM, the Galois represen-
tation on E[`] has surjective image for ` > C(E), for some constant C(E) depending only on the elliptic
curve. Serre raises the question whether this constant can be taken independently of the elliptic curve over
K . For K = Q one suspects that ` > 37 should always su�ce. This question remains open, though much
is known. To solve this question, we might reverse it by picking an open subgroup H ≤ GL2(Ẑ) and ask
for a classi�cation of all elliptic curves E such that the image of ρE is contained in H . The work of Mazur
[Maz77a, Maz78] e�ectively solves the cases where H is de�ned to be maximal at all primes except a single
prime `, where the image on the `-adic Tate module is

Im (ρE,l∞) ≤
(

1 ∗
0 ∗

)
≤ GL2(Z`), Im (ρE,l∞) ≤

(
∗ ∗
0 ∗

)
≤ GL2(Z`),

respectively, which amount to �nding all rational points on the modular curves X1(`) and X0(`) respec-
tively. For Serre’s uniformity question, we see that whenever the map from GQ to Aut(E[`]) = GL2(F`)
is not surjective, the image of its quotient ρE,` must be contained in a maximal subgroup of GL2(F`) for
some prime `. The maximal subgroups of GL2(F`) may be classi�ed, and are as follows:

• Borel subgroups, conjugate to (
∗ ∗
0 ∗

)
≤ GL2(Z`)

As we noted before, the work of Mazur [Maz77a, Maz78] completely classi�es the elliptic curves
whose Galois image is contained in this subgroup. In other words

• Exceptional subgroups: These are subgroups with projective image A4, S4 or A5, which Serre settles
in his original paper [Ser72]. This question turns out to be approachable purely locally at `, and Serre
shows that when ` > 13 the curves XS4

(`) have no Q`-points, so in particular it has no Q-points.
The case XS4(13) was settled more recently [BDM+21].

• Normalisers of split Cartan subgroups F×
` ×F×

` ≤ GL2(Fl), which are conjugate to(
∗ 0
0 ∗

)⊔(
0 ∗
∗ 0

)
This case was settled much more recently in the beautiful work of Bilu–Parent [BP11] and Bilu–
Parent–Rebolledo [BPR13] using Runge’s method, for ` > 13. The case ` = 13 has genus 3 and
became known as the cursed modular curve. It was settled in [BDM+19].

• Normalisers of non-split Cartan subgroups F×
`2 ≤ GL2(Fl). This case remains very mysterious

today, and essentially we only know the rational points on a handful of examples. Historically, the
�rst success came from Heegner [Hee52] and Stark [Sta66], who e�ectively determined all the integral
points on Y +

ns (24), which is an elliptic curve, to prove the famous class number one problem of Gauss.
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This Diophantine interpretation was pointed out retrospectively by Serre [Ser97]. The �rst ` for which
the curve does not have genus 0 is ` = 11, and we have

X+
ns(11) : y2 + y = x3 − x2 − 7x+ 10.

The rational points were �rst determined by Ligozat [Lig77], but do not take anything for granted
and solve this problem yourself, using a 2-descent as we do below for a di�erent modular curve of
level 11. For ` > 11 very little is known about the set of rational points. The only examples where
the set was fully determined are the genus 3 curve X+

ns(13) in [BDM+19] and the genus 6 curve
X+

ns(17) in [BDM+21]. The methods rely on the non-abelian Chabauty techniques developed by Kim
[Kim05, Kim09, Kim10] and they are at present only equipped to deal with speci�c examples, relying
on explicit equations.

Even after the many results obtained by all these people, many open questions remain. The possible
ambitions one can have in this direction are unlimited, and encapsulated in what is typically referred to as
Mazur’s Program B, see for instance [Maz77b].

Program B. Given a number �eld K and a subgroup H of GL2(Ẑ) =
∏
p GL2(Zp), classify all elliptic

curves E overK whose associated Galois representation on torsion points maps GK into H ≤ GL2(Ẑ).

This program may be paraphrased as �nding all the rational points over all number �elds K on all the
modular curves XH associated to any congruence subgroup H . Needless to say, it is di�cult to imagine
that Mazur’s Program B will ever be able to be fully settled, and clearly we are only at the beginning of this
journey. This goes especially when we start to consider also higher dimensional abelian varieties in place
of elliptic curves, and it is clear that there is work for several future generations in this program.

1.4 Outline and preprequisites

As all other courses during this meeting, this course is aimed at graduate students who are already familiar
with the basic theory of elliptic curves, at the level of Silverman [Sil09]. In addition, the chapter discussing
the work of Mazur on torsion of elliptic curves over Q will assume familiarity with some more advanced
algebro-geometric notions such as sheaves and cohomology on the �at site. Students familiar with Milne
[Mil80] will have knowledge that far surpasses what we need here, and in any case we recall some of the
language that is required in the appendices.



2Descent and the Mordell–Weil theorem
In this chapter, we quickly review the Mordell–Weil theorem and the method of descent on elliptic curves,
which we illustrate in a few explicit examples. All the material here is classical, and is discussed in much
more detail in Silverman [Sil09, Chapter VIII, X], which we assume students to be familiar with. The aim
is to recap the necessary results, and o�er a slightly more technological treatment that foreshadows the
algebro-geometric considerations in the next chapter.

2.1 Selmer groups

Let A be an abelian variety de�ned over a number �eld K , and let n ≥ 1 be an arbitrary integer. The short
exact sequence of GK-modules de�ned by the multiplication by n map

0−→A[n]−→A
·n−−−→ A−→ 0 (2.1)

de�nes a long exact sequence in Galois cohomology, from which we extract the following short exact se-
quence

0−→A(K)/nA(K)−→H1(K,A[n])−→H1(K,A)[n]−→ 0 (2.2)

The group A(K)/nA(K) is usually called the weak Mordell–Weil group. The �rst step towards the proof
of the Mordell–Weil theorem is to show that the weak Mordell–Weil group is �nite. If A(K) is �nitely
generated, this must clearly be true. The converse is shown using the theory of heights, which will be
abundantly studied in the lectures of Silverman at this summer school.

Since the cohomology group H1(K,A[n]) is in�nite, the sequence (2.2) does not yet prove the �niteness
of the weak Mordell–Weil group. To this end, we consider also the local variants of (2.2), and obtain the
following commutative diagram with exact rows, where the products are taken over all places v of K , and
the vertical maps are the product of the corresponding localisation maps.

0

0

A(K)/nA(K)

∏
v A(Kv)/nA(Kv)

H1(K,A[n])

∏
v H1(Kv, A[n])

H1(K,A)[n]

∏
v H1(Kv, A)[n]

0

0

ϕ

By the commutativity of this diagram and the exactness of the rows, we see that the image of the weak
Mordell–Weil group must lie in the kernel of the map ϕ. This observation allows us to re�ne the sequence

13
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(2.2), by de�ning the Selmer group Seln(A) and the Tate–Shafarevich group X(A) as the kernels of the
natural localisation maps

Seln(A) := Ker
(
H1(K,A[n]) −→

∏
v H1(Kv, A)

)
X(A) := Ker

(
H1(K,A) −→

∏
v H1(Kv, A)

)
so that we obtain a short exact sequence

0−→A(K)/nA(K)−→ Seln(A)−→X(A)[n]−→ 0. (2.3)

2.2 The weak Mordell–Weil theorem

The �niteness of the weak Mordell–Weil group follows from the �niteness of the Selmer group. For this
latter fact, many excellent resources exist, see for instance Silverman [Sil09, Chapter VIII] and Milne [Mil06,
Chapter IV.3]. Since the target audience is assumed to be acquainted with these proofs, we take this as an
opportunity to sketch a proof that relies on algebro-geometric language. This proof will prepare us for the
arguments of Mazur to come.

Theorem 4. Let A be an abelian variety de�ned over a number �eld K . For any integer n ≥ 1, the weak
Mordell–Weil group A(K)/nA(K) is �nite.

Proof. Let U be the Zariski open subset of Spec(OK) obtained by inverting the set S consisting of
all the primes of bad reduction of A, and the primes dividing n. Then A extends to an abelian variety
A over U , and we have an exact sequence of sheaves on the étale site of U de�ned by

0−→A [n]−→A
·n−−−→ A −→ 0

and since A (U) = A(K) we extract from the long sequence in cohomology that

0−→A(K)/nA(K)−→H1
ét(U,A [n])

and therefore it su�ces to show that H1
ét(U,A [n]) is �nite. By the Hochschild–Serre spectral sequence

[Mil80, Theorem 2.20], it su�ces to show this after replacingU by a �nite étale coveringV −→U . Since
the �nite �at group scheme A [n] has invertible order on U , we may take V = SpecOL[1/S], where
L/K is a �nite Galois extension over which

A [n] ' (Z /nZ)g

is constant. We may furthermore assume that OL contains the n-th roots of unity, so that also µn '
Z /nZ. The short exact Kummer sequence

0−→µn−→Gm
·n−−−→ Gm−→ 0

over V induces a long exact sequence of étale cohomology groups, from which we extract the following
short exact sequence:

0−→OL[1/S]×/(OL[1/S]×)n−→H1
ét(V,Z /nZ)−→Pic(V )[n]−→ 0.

Note that H1
ét(V,Z /nZ) is �anked by two terms that are �nite: the left follows from Dirichlet’s unit

theorem, whereas the right follows from the �niteness of class groups.
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In the above proof, it is shown that when U is a Zariski open of SpecOK where A has good reduction

and n is invertible, then the étale cohomology group H1
ét(U,A [n]) is �nite. This group consists of classes

of the Galois cohomology group

H1(K,A[n]) ' H1
ét(Spec(K), A[n])

that are unrami�ed at all �nite places of the set S containing the primes of bad reduction of A, and the
prime divisors of n. Therefore the Selmer group Seln(A) is contained in it. It is described by the additional
�niteness conditions at the bad places in S as explained in § 2.1.

The proof of the weak Mordell–Weil theorem may often be turned into an algorithm for determining the
weak Mordell–Weil group, or in any case, the Selmer group. Depending on the chosen example, the setup
may be a variation of the above, replacing multiplication by n by another isogeny. For practical reasons, it
is typically most convenient to use a 2-isogeny, as explained in Silverman [Sil09, Chapter X]. In general, and
certainly for the examples we will consider, one typically does not expect to have any rational 2-isogenies.
When E[2] is irreducible, one typically follows the procedure in Silverman [Sil09, Exercise 10.9], which we
will now review. In the language used in the above proof of the weak Mordell–Weil theorem, it consists
of identifying a minimal V , the spectrum of the ring of S-integers in an extension of Q that trivialises a
conveniently chosen submodule M ⊂ A[n], and describing the classes su�ciently explicitly to be able to
disqualify many from lying in the image of a global point, by local considerations.

2.3 The method of 2-descent on elliptic curves

Let E be an elliptic curve over Q such that the GQ-module E[2] is irreducible. Consider a cubic extension
K/Q such that theGK-moduleE[2] is reducible. In other words, we takeK to be the number �eld obtained
by adjoining the coordinates of a 2-torsion point P ∈ E[2]. Complete this point P to a basis {P,Q} ofE[2].
Then with respect to this basis, the GK-module E[2] is of the form

E[2] '
(

1 ∗
0 1

)
.

By restriction to GK and projection to the lower right entry, we now obtain a morphism

ϕ : H1(Q, E[2])−→H1(K,µ2) ' K×/(K×)2 (2.4)

This morphism ϕ has two important properties (see exercises):

• It has kernel Ker(ϕ) = 1.
• It has image Im(ϕ) = Ker

(
K×/(K×)2 Nm−→ Q× /(Q×)2

)
.

Already, these two facts allow us to �nd a bound, purely in terms of number �eld arithmetic, on the order
of the weak Mordell–Weil group E(Q)/2E(Q), since

E(Q)/2E(Q) ≤ Im(ϕ).

Indeed, the classes obtained from global points in the image of ϕmust be squares at all places not contained
in the set S, consisting of all places of K lying above the in�nite place, the places of bad reduction of E,
and the places dividing 2. Together with the above description of Im(ϕ), this yields a �nite computable
subgroup of K×/(K×)2 containing the weak Mordell–Weil group E(Q)/2E(Q).
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The second part of the 2-descent then proceeds to eliminate individual classes of this explicitly computed
subgroup of K×/(K×)2, showing they cannot lie in the image of E(Q)/2E(Q) due to a local obstruction.
In order to do this, it is necessary to give an explicit description of the map

E(Q)−→H1(K,µ2) ' K×/(K×)2.

Note that this map is constructed by projection to the line spanned by the point Q, and therefore proceeds
by taking the principal homogeneous space of E[2] given by the �bre of [2] : E−→E at the point Q, and
taking the Weil pairing e2(−,−) with theK-rational pointP . By the explicit description of the Weil pairing
[Sil09], we see that the image of a point R ∈ E(Q) coincides with the class of

x(R)− x(P ) ∈ K×/(K×)2.

This explicit description allows us to further restrict the image of rational points in Im(ϕ), by local consid-
erations. To digest this method, we illustrate it on the same example that appeared in the introduction.

Example

Consider the elliptic curve E de�ned over Q by the a�ne equation

E : y2 + y = x3 − x2 (2.5)

which has conductor NE = 11, and we quickly �nd that the torsion subgroup of E(Q) is isomorphic to
Z /5Z, generated by the rational point (0, 0). We will show that the rank of this elliptic curve is zero.

Step 1: The image of ϕ. The curve has short Weierstraß equation given by y2 = x3 − 432x + 8208,
and the 2-torsion E[2] is irreducible. It acquires a rational point over the number �eld K de�ned by the
cubic equation on the right hand side. A simple presentation is given by K = Q(α) where

α3 − α2 + α+ 1 = 0.

This is a cubic number �eld of signature (r, s) = (1, 1) and discriminant ∆ = −22 · 11. Its ring of integers
is the monogenic order OK = Z[α] which has trivial class group ClK = 1 and rank one unit group

O×
K = 〈−1〉 × 〈α〉.

Let S be the �nite set of places ofK consisting of all archimedean places, and all places dividing 2NE = 22.
More precisely, the following places are contained in S:

• There are two archimedean places and K ⊗Q R ' C×R, and the corresponding local elements
modulo squares are represented by

C× /(C×)2 = 1,
R× /(R×)2 = ±1.

• There is a unique 2-adic place and K ⊗Q Q2 ' Kp where (2) = p3 in OK is totally rami�ed, and
p = (α+ 1). The corresponding local �eld modulo squares is represented by

K×
p /(K

×
p )2 = 〈−1, 5, α, α− 2, α+ 1〉 ' F5

2 .

• There are two 11-adic places and K ⊗Q Q11 ' Kq1
×Kq2

where (11) = q1q
2
2 in OK , and we have

q1 = (2α− 1) and q2 = (α2 + α− 1). The local �elds modulo squares are represented by

K×
q1
/(K×

q1
)2 = 〈11,−1〉 ' F2

2

K×
q2
/(K×

q2
)2 = 〈α2 + α− 1, α〉 ' F2

2
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Since K has trivial class group, any class in K×/(K×)2 that is a square locally at all places v 6∈ S is
represented by an element which is, up to a unit inO×

K , a product of the generators of p, q1 and q2. In other
words, an element in the subgroup

F5
2 ' 〈−1, α, α+ 1, 2α− 1, α2 + α− 1〉 ⊂ K×/(K×)2.

The image of the weak Mordell–Weil group is contained in the kernel of the norm map to the subgroup
F3

2 ' 〈−1, 2, 11〉 ⊂ Q× /(Q×)2. With respect to these chosen bases, we easily compute that the norm
map induces a linear transformation Nm : F5

2−→F2
2 described by the following matrix representation,

where the matrix acts on column vectors:1 1 0 1 1
0 0 1 0 0
0 0 0 1 1

 since

 Nm(−1) = Nm(α) = −1
Nm(α+ 1) = 2
Nm(2α− 1) = Nm(α2 + α− 1) = −11

We see that the kernel of this matrix is of rank two spanned by the column vectors (1, 1, 0, 0, 0)ᵀ and
(0, 0, 0, 1, 1)ᵀ. We may therefore conclude that the image of the global points E(Q) is contained in the
rank 2 submodule

〈−α, 3α2 − 5α− 1〉 ⊂ K×/(K×)2. (2.6)

Step 2: Local obstructions. The upper bound obtained above is not sharp enough to conclude that the
rank of E is zero. We will now use the explicit description of the Weil pairing and �nd local obstructions
at primes in S to exclude classes of (2.6) as possible elements of the image of a global point. Consider the
short Weierstraß model for E given by

E : y2 = x3 − 432x+ 8208

then E[2] has a unique non-trivial K-rational point

P = (x, y) = (−18α2 + 18α− 12, 0)

and the image of a rational point R = (x, y) ∈ E(Q) is given by the class of the element x − x(P ) ∈
K×/(K×)2. The subgroup (2.6) has three non-trivial elements, each of which we can consider in turn. For
instance, the group E(Q2)/2E(Q2) is cyclic of order two, generated by the class of

(x, y) = (1,
√

7777) ∈ E(Q2)

which maps to the class of

13− 18α+ 18α2 ≡ 3α2 − 5α− 1 mod (K×
p )2.

We conclude that in the rank 2 submodule (2.6), the non-trivial classes −α and −α(3α2 − 5α− 1) are not
contained in the image of a global point. A similar argument shows that the remaining non-trivial class has
an 11-adic obstruction to coming from a global point. We conclude that E(Q)/2E(Q) = 1 and hence

E(Q) ' Z /5Z .

2.4 Modular curves

The elliptic curve whose Mordell–Weil group we just determined is one of special signi�cance. It is a model
of the modular curve X1(11), and the determination of the rational points implies that there are no elliptic
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curves overQwith a rational point of order 11. To explain why, we brie�y review some important properties
of modular curves, which will be used later.

The (a�ne) modular curves Y0(N) and Y1(N) are moduli spaces for isomorphism classes of elliptic
curves E endowed with the following additional structures

Y0(N) : (E,H) H is a cyclic subgroup order N ,
Y1(N) : (E,P ) P is a point order N .

They have natural compacti�cations by a �nite set of cusps, indexed by the corresponding level structures
on the Tate curve Tate(q)/Z((q)). Concretely, the N -torsion submodule is spanned by elements ζN and
q1/N , and the action of the automorphism group onE[N ] is generated by ζN 7→ ζ−1

N and q1/N 7→ ζaNq
±1/N .

This is explained in detail in [DI995], and perhaps best illustrated on an example.

Example. As in Silverman [Sil09, Exercise VIII.8.12], one shows that any elliptic curve E over a Q-
algebra with a rational point P of order 5 can be put in the form

Ea : y2 + (1− a)xy − ay = x3 − ax2

for some value of a. This curve has discriminant ∆ = a5(a2 − 11a− 1). The curve X1(5) has genus 0 and
the cusps are given by the orbits of the points ζa5 qb/5 of order 5 under the automorphism group. Concretely,
we �nd the following orbits, grouped by distinct colours.

(a, b) 0 1 2 3 4

0 • • • •
1 • • • • •
2 • • • • •
3 • • • • •
4 • • • • •

There are hence 4 cusps onX1(5), of which two (• and •) are rational over Q, and two (• and •) are rational
over Q(ζ5)+ = Q(

√
5), the maximal real sub�eld of the cyclotomic �eld Q(ζ5).

Increasing the level structure, one may prove (see exercises) that the modular curve X1(11) is of genus
1 and has a familiar looking minimal Weierstraß model over Q, given by

X1(11) : y2 + y = x3 − x2.

It has precisely 10 cusps, of which 5 are rational over Q and 5 are rational over Q(ζ5)+. We now see that
the example of 2-descent we treated in the previous section has special signi�cance. We proved there that
there are 5 rational points on X1(11), which are all accounted for by the cusps. As a consequence, we see
that we proved the following:

Theorem 5. There is no elliptic curve E/Q with a rational point of order 11.

Whereas this is but a modest part of the torsion theorem of Mazur, it may make us bold enough to wonder
whether these methods may be extended to modular curves X1(`) for ` > 11 prime. This is precisely what
Mazur does, though there are clearly many formidable obstacles to overcome. In the next chapter, we will
analyse the structures we encountered in the 2-descent, and see whether there may be a better version of
the descent argument that is more amenable to generalisation.



3Modular curves and �at descent
In this chapter, we turn to the systematic study of torsion points of prime order N on elliptic curves EQ,
and will discuss some aspects of the groundbreaking work of Mazur [Maz77a, Maz78].

Theorem 6 (Mazur). Let EQ be an elliptic curve. The torsion subgroup E(Q)tors of its Mordell–Weil group
is isomorphic to one of the following groups:

E(Q)tors '
{

Z /nZ 1 ≤ n ≤ 10, n = 12
Z /2Z×Z /2nZ 1 ≤ n ≤ 4

The strategy revolves around a study of the rational points on the modular curveX1(N) by performing
a descent on a suitably chosen1 isogeny factor A of its Jacobian J1(N). In a general descent procedure, as
re�ected in the example in the previous chapter, we discern two key steps:

• Imposing only unrami�edness conditions outside a �nite set of bad primes S gives an a priori bound
on the Selmer group, which can be represented by explicit classes.

• This bound is sharpened using explicit equations for twists in the Weil–Châtelet group, where classes
are excluded from the image of global points using local obstructions at places in S.

An appealing feature of modular Jacobians is that they frequently have a rational point of large order,
and they have good reduction outside of N . This makes the a priori bound arising in the �rst step quite
good, though ultimately not good enough. Needless to say, methods involving the Weil–Châtelet group
and explicit equations for twists are not suited to further sharpen this bound. This is already the case for
modest values of N , and certainly for general N .

To obtain sharper bounds, one may spread out the geometry over Spec(Z), and work with respect to the
more sophisticated �at topology. Concretely, Mazur shows the existence of propitious quotients A whose
p-torsion is admissible for some p - N , a stringent condition that assures the Jordan–Hölder factors to be
Z /pZ or µp. The descent formalism applied to the Néron model A Z then leads to a short exact sequence

1−→A(Q)/pA(Q)−→H1
fl(Spec(Z),A [p])−→H1

fl(Spec(Z),A )[p]−→ 1

The admissibility of the Galois module in the middle term allows Mazur to su�ciently control the corre-
sponding pieces of the cohomology, frequently using Kummer theory through the fact that

1−→µn−→Gm
·n−→ Gm−→ 1

is an exact sequence of sheaves on the �at site (it is not generally right exact in the étale site).
1It is the so-called “Eisenstein quotient”, whose construction is a key part of the work of Mazur [Maz78].

19
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Goal. It would be impossible to do justice to the beautiful arguments of Mazur [Maz77a] in a mere
three hours of lectures. We have therefore settled for the much more modest goal of treating the cases
of 11-torsion and 13-torsion, highlighting those aspects that represent important steps in the proof of the
general case. These notes may therefore be viewed as an introduction to the subject, and the interested
student is referred to a more complete set of lectures by Snowden [Sno13].

3.1 The �at topology

The arguments of Mazur take place in the �at topology. Anyone who wants to understand the �ne print of
these techniques should consult Milne [Mil80]. In these notes, we will take a pedestrian approach to the
inherent technicalities, and content ourselves with using the formal cohomological framework, along with
one or two black boxes. Treating the cohomological formalism as a given allows one to already appreciate
some of the beautiful ideas in the general case.

Motivation. In the previous chapter, we showed that there are no elliptic curves over Q with a rational
point of order 11, using an explicit 2-descent. But how does this approach generalise to �nd rational points
on X1(`) for primes ` > 11? A careful examination of the structures we encountered in the 2-descent
makes us desire for an alternative approach that has the following features:

• The 2-descent involved some cubic extension over which we cannot expect good control in general.
The general descent argument should involve structures that have ‘meaning’, in the sense of the
moduli problem, so as to generalise to other modular curves.

• The descent argument should yield sharp bounds so as to avoid having to write down explicit equa-
tions for twists. Clearly, this will not be a fruitful approach for primes ` > 11, so we will most likely
need to engage with what happens at the �nite set of bad primes S.

The ideas of Mazur achieve these goals in the following way. The �rst point is addressed by performing a
descent with respect to a canonical class of rational points, which in the case of X1(11) is accounted for
by the rational 5-torsion. The second point is resolved by working with �at cohomology groups, making
the cohomological framework interact with the �nite set of bad places S. In these notes, we will avoid the
additional technical complications that arise at primes of bad reduction, settling for the primes dividing the
order of the isogeny. This will be su�cient for the speci�c examples that we treat here.

The �at topology. Mazur replaces the étale topology by the �ner �at topology which is better equipped
for dealing with group schemes of order p in characteristic p. The �at topology is a Grothendieck topology,
where the coverings of a scheme S are given by families of morphisms

{ϕi : Ti−→S}

where each morphism ϕ is �at and locally of �nite presentation, and their images cover S in the sense that
S =

⋃
i ϕi(Ti). This notion of coverings satis�ed the axioms of a Grothendieck topology [Mil80, Chapter

II.1] and very important theorem of Grothendieck [Mil80, Theorem I.2.17] implies that whenever G is a
commutative group scheme over S then the functor de�ned by

T 7→ HomS(T,G)

is a sheaf of abelian groups with respect to the �at topology de�ned above. This theorem is central for the
practical usefulness of the �at site, and it gives a mechanism whereby short exact sequences of commuta-
tive group schemes give rise to long exact sequences in �at cohomology via the cohomological framework
developed by Grothendieck, see [Mil80, Chapter III].
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Kummer theory. We mention one key fact about the �at topology that is used in the descent arguments

on the Jacobians ofX1(11) andX1(13) below. We often need to control cohomology with values inµp when
analysing the torsion of modular Jacobians. To do this, we may use that the Kummer sequence

1−→µn−→Gm
·n−→ Gm−→ 1

of abelian group schemes over any base scheme S is exact in the �at topology. To see why it is surjective, let
U be any S-scheme with a global section u ∈ HomS(U,G) = Γ(U,O×

U ). Choose an a�ne Zariski covering
of U by open sets Spec(Ai), and let ui ∈ A×

i be the restriction of u to this open subset. For each such open
set, there is a covering in the �at topology given by

SpecAi[T ]/(Tn − ui) −→ SpecAi (3.1)

and note that the restriction (= pullback) of ui to this covering is in the image of the n-th power map, since
it is the n-th power of the unit T . This shows that the Kummer sequence is indeed right exact.

Remark. Note that the Kummer sequence is not generally exact in the étale topology. The problem with
the above argument is that the covering (3.1) is not a covering in the étale topology. When n is invertible
on S, Hensel’s lemma for the polynomial Tn − ui does imply that the covering (3.1) is étale, and therefore
the Kummer sequence is exact in such cases. Note that we already used this fact in our discussion of the
weak Mordell–Weil theorem, and it was precisely our desire to use this fact that caused us to add the primes
dividing n to the �nite set S of bad places. Perhaps this strengthens our faith that we may include these
bad places, at the cost of working with the formalism of �at cohomology.

An important consequence of the exactness of the Kummer sequence, which we will use several times
in the arguments to follow, is that when the base scheme is the spectrum of the ring OS of S-integers
in a number �eld K , its �rst �at cohomology group with coe�cients in µp can be computed in terms of
arithmetic invariants of the ring, as follows:

Lemma 1. Suppose S is a �nite set of primes in a number �eldK , and n is any integer. Then we have a short
exact sequence

1−→O[1/S]×/(O[1/S]×)n−→H1
fl (O[1/S], µn)−→Cl(O[1/S])[n]−→ 1.

Proof. By the exactness of the Kummer sequence in the �at topology, we obtain a long exact sequence
in �at cohomology from which we extract the �ve-term sequence

H0
fl (O[1/S],Gm)

(−)n−→ H0
fl (O[1/S],Gm)−→H1

fl (O[1/S], µn)−→H1
fl (O[1/S],Gm)

(−)n−→ H1
fl (O[1/S],Gm)

The lemma now follows from the observations that

H0
fl (O[1/S],Gm) = O[1/S]×

H1
fl (O[1/S],Gm) = H1

ét (O[1/S],Gm) = Pic(O[1/S])

where the latter equalities follow from the fact that �at cohomology agrees with étale cohomology
when valued in the sheaf Gm, and they both compute the Picard group of the base [Mil80, Theorem
III.4.9]. The Picard group of a number ring is its class group, consisting of invertible fractional ideals
modulo principal ones. This proves the lemma.
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3.2 Torsion points of order 11

We will now treat the example X1(11) once again, using a descent by 5-isogeny. As overkill as this may
be in this example, we use it as an excuse to explore some of the fundamental ideas in Mazur–Tate [MT73],
and ultimately Mazur [Maz72, Maz77a, Maz78]. We begin with some preliminary facts about the modular
curves X0(11) and X1(11) that may be calculated easily, and which will be used in our descent arguments
below. Both are elliptic curves de�ned over Q, and we may �nd their minimal Weierstraß models:

X0(11) : y2 + y = x3 − x2 − 10x− 20
X1(11) : y2 + y = x3 − x2 (3.2)

The curve X0(11) has two cusps 0 and ∞, which are both rational. The curve X1(11) has ten cusps, of
which �ve are rational, and �ve are de�ned over Q(ζ11)+. The primes 5 and 11 play a central role in our
descent argument, coming from the torsion and bad reduction respectively, which we investigate now.

Torsion. We begin with an analysis of the Galois properties of the 5-torsion on both of these elliptic
curves. Using the explicit Weierstraß equations above, we easily check that

X0(11)(Q)tors = {0, (5, 5), (5,−6), (16, 60), (16,−61)} ' Z /5Z
X1(11)(Q)tors = {0, (0, 0), (0,−1), (1, 0), (1,−1)} ' Z /5Z

This means we have an injection of the Galois module Z /5Z into both X0(11)[5] and X1(11)[5]. The self-
duality of the 5-torsion furnished by the Weil pairing shows that the quotient is in both cases isomorphic
to µ5. The classes de�ned by X0[5] and X1[5] in the space of extensions[

X0(11)[5]
]
,
[
X1(11)[5]

]
∈ Ext1(µ5,Z /5Z)

can be represented by choosing an F5-basis for either of these Galois modules whose �rst element is a
rational point. This yields a matrix representation of GQ, and denoting χ5 : GQ → F×

5 for the cyclotomic
character de�ned by the action on the primitive 5-th roots of unity, it is of the form(

1 ∗
0 χ5

)
The nature of the extension class is precisely the nature of the upper triangular part of this matrix, which
de�nes a 1-cocycle of GQ with values in µ−1

5 . Let L/Q be the �eld obtained by adjoining all 5-torsion,
then we have

Gal(L/Q) ' Gal(L/Q(ζ5)) o Gal(Q(ζ5)/Q).

We see that Gal(L/Q(ζ5)) must be a subgroup of F5 and Gal(Q(ζ5)/Q) acts by conjugation through the
character χ−1

5 . Determining the extensionL therefore determines completely the structure of the extension
class. Using the Weierstraß equations above, we can easily compute (though please don’t do this by hand!)
the 5-division polynomials and arrive at the conclusion that

Q(X0(11)[5]) = Q(ζ5)
Q(X1(11)[5]) = Q(ζ5, α), where α5 − 2α4 + 6α3 + 2α2 + 4α+ 1

so that in particular, the extension de�ned byX0[5] ' Z /5Z×µ5 is split, whereas the extension de�ned by
X1[5] is non-split, and described by the number �eld above. The pair of isogenies de�ned by the forgetful
map on level structures and its dual have the following kernels

1 −→ Z /5Z −→ X1(11) −→ X0(11) −→ 1
1 −→ µ5 −→ X0(11) −→ X1(11) −→ 1
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Néronmodels. We will denote the Néron models ofX0(11) andX1(11) over Z by X0(11) and X1(11)

respectively. For notational simplicity, we often just write X0 and X1, and likewise for their generic �bres.
The only prime of bad reduction is 11, where we may use Tate’s algorithm to �nd that the reduction is
semistable and has Kodaira types I5 and I1 respectively. We may therefore visualise the Néron models over
Z11 as in the following picture.

Q11 F11

Spec(Z11)

X0(11)

Q11 F11

Spec(Z11)

X1(11)

Figure 3.1: The Néron models X0(11) and X1(11) over Spec(Z11).

Over Spec(Z[1/11]) the Néron models are abelian varieties, and the pair of dual 5-isogenies between
X0(11) and X1(11) extends to an isogeny between the Néron models, whose kernels are therefore �nite
�at group schemes over Z[1/11]. Their generic �bres (over Q) are isomorphic to the generic �bres of the
constant group scheme Z /5Z and µ5 respectively. By the classi�cation theorem of Oort–Tate [TO70] this
means that the kernels must also be isomorphic to them over Z[1/11]. In other words, over Spec(Z[1/11])
we have short exact sequences of group schemes

1 −→ Z /5Z −→ X1(11) −→ X0(11) −→ 1

1 −→ µ5 −→ X0(11) −→ X1(11) −→ 1.

Descent by 5-isogeny

The curve X1(11) comes equipped with a 5-torsion point, which de�nes the isogeny

φ : X1(11)−→X0(11)

corresponding to the forgetful map on moduli problems that sends the rigidi�cation of the point P of order
5 to the subgroup 〈P 〉 of order 5. This 5-torsion point is ‘meaningful’, in the sense that it is generated by a
cusp and similar torsion will be available on other modular curves, so it feels very natural to make use of it.
Here, we will show how to perform a 5-descent to determine the Mordell–Weil group of X1(11), showing
there are no elliptic curves over Q with a rational point of order 11 (again).

Note that by the de�ning properties of Néron models, we have X0(Z[1/11]) = X0(Q) and X1(Z[1/11]) =
X1(Q). Therefore, considering the isogeny φ and the associated long exact sequence in cohomology over
Z[1/11], extract the injection

X0(11)(Q)/φ(X1(11)(Q)) ↪→ H1
ét(Spec(Z[1/11]),Z /5Z) ' F5,

where the target is isomorphic to F5 because there is a unique cyclic degree 5 extension of Q unrami�ed
outside 11, namely Q(ζ11)+. Since we can produce 5 elements in the image, this injection must in fact be
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an isomorphism. We therefore �nd that X0(11)(Q)/φ(X1(11)(Q)) ' Z /5Z without ever having to write
down explicit elements of the Weil–Châtelet group, if such a thing would be possible in the �rst place.

To deal with the dual isogeny φ̂ : X0(11)−→X1(11), we face more serious di�culties. Indeed, this
time the kernel over Z[1/11] is µ5, and we face the étale cohomology group H1

ét(Spec(Z[1/11],Z /5Z).
This is awkward, since µ5 is not smooth over Z[1/11] due to its problematic �bre over the prime ideal (5).
To gain control over this group, we note instead that the short exact sequence

1−→µ5−→X0(11)−→X1(11)−→ 1

de�nes a perfectly valid sequence of sheaves on the �at site of Spec(Z[1/11]). The �at site is well-equipped
for controlling the cohomology of µ5, since the Kummer sequence

1−→µ5−→Gm−→Gm−→ 1

is an exact sequence of �at sheaves (it is not exact on the étale site!). Therefore the long exact sequence,
where H1

fl(Spec(Z[1/11]),Gm) = Pic(Spec(Z[1/11])) = 0, gives us an isomorphism

H1
fl

(
Spec(Z[1/11]), µ5

)
' F5 .

Wonderful! However, we need one last ingredient, since we are trying to show that X1(Q)/φ̂(X0(Q)) is
trivial. This ingredient will come from controlling the image at the �nal frontier: The prime 11. Indeed, the
descent sequence gives us the following commutative diagram

X0(Q)

X0(Q11)

X1(Q)

X1(Q11)

H1
fl

(
Spec(Z[1/11]), µ5

)

H1
fl

(
Spec(Q11), µ5

)
' F5

' F2
5

(∗)
(∗∗)

The triviality of the group X1(Q)/φ̂(X0(Q)) would �nally follow, if we could show that the map (∗) is
surjective, and the map (∗∗) is injective. Let us check these in turn.

• Let us check �rst that (∗) is surjective. If we denote M0 and M1 to be the kernels of the reduction
maps of X0(Z11) and X1(Z11) modulo 11, then the map (∗) �ts into the following commutative
diagram with exact rows:

0

0

M0

M1

X0(Z11)

X1(Z11)

X0(F11)

X1(F11)

0

0

φ̂ (∗) φ̂

Note that to prove that (∗) is surjective, it su�ces to show that its left and right �anking maps in this
commutative diagram are surjective, by the snake lemma. For the left map, we note that [5] = φ ◦ φ̂
is an isomorphism on the pro-11 group M1, and therefore so is φ̂. For the right map, surjectivity
can be checked directly, by observing that it factors through the induced map on minimal Weierstraß
models, which can be computed explicitly and shown to have trivial kernel, hence trivial cokernel
since the special �bres are both cyclic groups of order 10.
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• Finally, we note that the map (∗∗) is identi�ed via the long exact sequence of �at cohomology asso-

ciated to the Kummer exact sequence with the natural map

±11Z/± 115Z−→Q×
11 /(Q

×
11)5.

This map is clearly injective, since 11 is not a �fth power in Q×
11.

3.3 Torsion points of order 13

For the modular curve X1(11) we now proved twice that the set of rational point consists entirely of the
5 rational cusps. The second proof is more amenable to generalisation, though clearly there are many
obstacles to overcome. To get us a little closer to the general argument, we will use similar techniques to
prove the following theorem, due to Mazur–Tate [MT73].

Theorem 7. There are no elliptic curves E/Q with a rational point of order 13.

To prove this theorem, we will exploit the existence of a rational point of order 19 on the Jacobian
A := J1(13). This was originally found by Ogg [Ogg71] and the announcement of this result was the
impetus for the work of Mazur–Tate [MT73], who say the following:

The modular curve X1(13)

We begin by discussing a number of facts about the arithmetic and geometry of the modular curve X1(13)
and its Jacobian A := J1(13), for later use in the argument. The curve X1(13) has genus 2 and a model
over Q given by

X1(13) : y2 + (x3 + x+ 1)y = x5 + x4.

It has a total of 12 cusps, six of which are rational over Q, and six of which are de�ned over Q(ζ13)+, the
maximal real sub�eld of the cyclotomic �eld Q(ζ13)+. The curve has many automorphisms, for instance
those induced by the following maps on elliptic curves

γm : (E,P ) 7−→ (E,mP ) where m ∈ (Z /13Z)×/{±1}
τζ : (E,P ) 7−→ (E/〈P 〉, Q) where ζ ∈ µ13\{1} and 〈P, Q̃〉Weil = ζ.

Here, the notation Q̃ is used for any point on E whose image on E/〈P 〉 is equal to Q. Note that the
condition on the Weil pairing determines Q̃ up to multiples of P , which makes its image well-de�ned. We
see that the the elements γm form a group Γ which is isomorphic to (Z /13Z)×/{±1} and is generated by
the element γ2 of order 6. The elements τζ are involutions, and we check that{

τζγmτζ = γ−1
m = γm−1

γmτζ = τζm

so that we exhibited a group of automorphisms

∆ := Γ o C2 ≤ AutQ X1(13)
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which is dihedral of order 12. In fact, this is the entire automorphism group, though we shall not use this
fact. Note that the subgroup of automorphisms Γ is de�ned over Q, whereas the involutions τζ are de�ned
over Q(ζ13)+. Explicitly, by the equivariance of the Weil pairing, the action of an element of the Galois
group g ∈ GQ satis�es

τgζ = τζg = γgτζ ,

where γg is the image of g under GQ−→Gal(Q(ζ13)+/Q) ' (Z /13Z)×/{±1}.

The structure of the 19-torsion

The argument of Mazur–Tate centers around the structure of the Galois module of 19-torsion points V :=
J1(13)[19] on the Jacobian of X1(13), for which henceforth we shall use the shorthand A := J1(13). The
work of Ogg shows the following

• If we embed the curve X1(13) using the Abel–Jacobi map attached to the cusp∞ (or, really, any of
the 6 rational cusps) then the 6 rational cusps generate a cyclic subgroup of order 19.

• This accounts for all the torsion in the Jacobian, and

X1(13)(Q) ∩A(Q)tors = {6 rational cusps}.

The method that Ogg uses is very interesting in its own right, but a thorough discussion of it would lead us
too far. We content ourselves with mentioning that the subgroup of cuspidal divisors is always torsion by
a celebrated theorem of Manin–Drinfeld, and that explicit relations between cusps may be found using the
theory of Siegel units, which are rational functions coming from the theory of modular forms with explicit
cuspidal divisors. We will take these facts for granted here, pretending (if you will) that Ogg likewise passed
through our town and thoroughly convinced us of the veracity of these facts.

For the descent argument, it will be important to understand more precisely the structure of the Ga-
lois module of 19-torsion V := A[19]. Note that the ring EndQA of rational endomorphism contains the
quadratic order Z[γ2] ' Z[ζ6] of Eisenstein integers, which has unique factorisation. We have a factorisa-
tion 19 = ππ and may consider the submodules{

Vπ := Ker (π : A−→A) ,
Vπ := Ker (π : A−→A) .

Since π and π are coprime, we must have a rational decomposition

V = A[ππ] = Vπ ⊕ Vπ,

where both factors are stable under the actions of the Galois group and Γ alike, whereas they are inter-
changed by any of the involutions τζ . The subgroup Z /19Z generated by the rational point is stable under
the group Γ (for instance, since Γ preserves the set of rational cusps onX1(13), which generate the rational
torsion of A), and therefore it must be contained either in the kernel of π or π. Let us assume, at the cost of
interchanging our notation if necessary, that Z /19Z ⊂ Vπ . Finally, de�ne the line

L := τζ(Z /19Z)

to be the image of the subgroup generated by the rational point of order 19 under the involution τζ . Then
L is contained in Vπ and independent of the choice of primitive root of unity ζ ∈ µ13 since the involutions
attached to two di�erent choice are related by an element of Γ, which preserves the subgroup Z /19Z. Now
note that the action of Γ on Vπ may be diagonalised into two eigenlines on which the action of the generator



3.3. TORSION POINTS OF ORDER 13 27
γ2 is by multiplication by distinct conjugate sixth roots of unity in F×

19. Since the Weil pairing is invariant
under simultaneous action of Γ on both arguments, we see that Vπ and Vπ are self-orthogonal with respect
to the Weil pairing, and therefore they are dual to each other. Therefore, the Weil pairing with the rational
point of order 19 gives a quotient Vπ → µ19. Since the Galois action on this quotient is disjoint from that
on L , we must have a short exact sequence

1−→L −→Vπ −→µ19−→ 1

We note for future reference that the Galois module L becomes trivial over the extension Q(ζ13)+.

The 19-descent

We are now ready to perform a 19-descent on A. More speci�cally, the descent will be with respect to
the rational isogeny π : A → A of degree 192, and follows the same formalism that we employed on the
modular curve X1(11) with respect to the pair of dual 5 isogenies we obtained from the natural forgetful
map X1(11)→ X0(11).

We begin with an observation: The ring Z[ζ6] ⊂ EndQA is a principal ideal domain. Since the Mordell–
Weil group is a �nitely generated Z[ζ6]-module, it su�ces to show thatA(Q)/πA(Q) = 0 to conclude that
the rank is zero. To achieve this, consider the Néron model A of A, then we have a short exact sequence

0−→A[π]−→A π−→ A−→ 0 over Z[1/13].

The long exact sequence in �at cohomology over both Z[1/13] and Q13 then gives rise to a commutative
diagram with exact rows, reminiscent of our arguments in the case of 11-torsion, which in this case reads

A(Q)

A(Q13)

A(Q)

A(Q13)

H1
fl

(
Z[1/13],A[π]

)

H1
fl

(
Q13,A[π]

)(∗)
(∗∗)

As before, we will argue that (∗) is surjective, and (∗∗) is injective, using very similar arguments.

• The surjectivity of (∗) follows by a very similar argument. Namely, we use the commutative diagram
whose rows are the short exact sequences that furnish the �ltration on the local points of the Néron
model, given by

0

0

M

M

A(Z13)

A(Z13)

A(F13)

A(F13)

0

0

π (∗) π

The map induced on M is a factor of multiplication by 19, which must therefore be an isomorphism
on the pro-13 groupM . To show that the map π : A(F13)→ A(F13) is surjective, it su�ces to show
that it is injective, since it is an endomorphism of a �nite module. By the snake lemma, it therefore
su�ces that the map (∗) itself, namely π : A(Z13) → A(Z13), is injective. This is true, since the
kernel of this morphism is precisely

Ker (A(Q13)−→A(Q13)) = V D13
π
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where D13 ≤ GQ is a decomposition group above the prime 13. This is shown because taking D13-
invariants yields a short exact sequence of modules

1−→LD13 −→V D13
π −→µD13

19

and we can argue that both �anking terms must vanish. Indeed, for LD13 we note that it cannot be
isomorphic to F19 since this would imply (by the fact that L is constant over this extension) that 13
splits completely in Q(ζ13). Similarly, 13 does not split completely in Q(ζ19), so that µ19 has trivial
D13-invariants.

• The injectivity of (∗∗) is slightly more involved, and exploits the �ltration of Vπ . The module L can
be thought of as a �nite �at subgroup of A. We denote its Zariski closure in A by L , whence we
obtain a �ltration

1−→L −→A[π]−→µ19−→ 1 over Z[1/13].

To see that the quotient is still isomorphic to µ19, we note that it is determined by its generic �bre
(which is µ19) by the classi�cation of Oort–Tate [TO70], and likewise we may conclude from this
result that L is constant over Z[1/13, ζ13 + ζ−1

13 ]. By the Hochschild–Serre spectral sequence, there
is an isomorphism

H1
fl(Z[1/13],L ) = H1

fl(Z[1/13, ζ13],Z /19Z)(Z /13Z)×

where the right hand side is seen to be trivial, since Q(ζ13) has no Z /19Z-extensions that are un-
rami�ed outside 13. We conclude that there is a commutative diagram

1 H1
fl(Z[1/13],A[π])

H1
fl(Q13,A[π])

H1
fl

(
Z[1/13], µ19)

H1
fl

(
Q13, µ19)

(∗∗)

whose upper horizontal arrow is an injection. To show that (∗∗) is injective, it is therefore enough to
show that the right vertical arrow is injective. This follows by essentially the same argument we saw
before. Namely, this map has a very concrete description by Kummer theory, namely as the natural
map induced by inclusion:

±13Z/± 1319Z−→Q×
13 /(Q

×
13)19.

This map is clearly injective, since 13 is not a nineteenth power in Q×
13.

3.4 Mazur’s theorem on torsion

The general theorem of Mazur [Maz78] extends these arguments considerably. Most notably, we can of
course not expect the rank of the modular Jacobians J1(`) to be zero when ` is a large prime. For instance,
J0(37) is a factor of J1(37) and it is isogenous to a product of two elliptic curves, one of which has rank
1. Therefore, the best one can hope to �nd in general is a quotient of genus zero. Mazur �nds the so-called
Eisenstein quotient

J0(`)−→ Jeis

which is small enough to have rank zero, but large enough to remember enough about the curve X0(`).
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More precisely, for a scheme S we say that a morphism of S-schemes f : X −→Y is a formal immersion

at x ∈ X(S) if the induced map on complete local rings

f∗ : ÔY,f(x)−→ÔX,x

is surjective. Mazur shows that the only rational points onX1(`) are cusps, as long as one �nds a rank zero
quotient J0(p)−→A for which the map X0(p)−→A induced by the Abel–Jacobi map de�ned by the cusp
∞ is a formal immersion at∞. Mazur shows that the Eisenstein quotientA = Jeis satis�es these properties.
The hardest part is to show that it has rank zero, which proceeds using a descent argument similar to what
we encountered in our small examples, using the Shimura subgroup of J0(`), which is the kernel of the map
to the Jacobian of J1(`) and is of order

n = Numerator

(
p− 1

12

)
.

It is cyclic of order n and is generated by the rational point (0) − (∞). This subgroup survives in the
Eisenstein quotient, and Mazur performs an n-descent to show the rank is zero. The general arguments are
substantially more sophisticated than they were in our small examples, but after our brief foray into small
special cases, our hope is that the reader will feel more con�dent taking on the original paper of Mazur
[Maz78].

Merel’s theorem on torsion

A natural question to ask is whether the methods of Mazur extend to number �elds of higher degree. This
was explored by Kamienny and Mazur [Kam92b, Kam92a, KM95], see also Edixhoven [Edi95]. The results
remained in �rst instance limited to particular �elds, such as K/Q quadratic. Finally, it was proved by
Merel [Mer96] that the torsion is uniformly bounded in the strongest possible sense:

Theorem 8 (Merel). The size of the torsion subgroup E(K)tors is bounded by a constant depending only on
the degree ofK overQ.

The key innovation of Merel was to pass to a di�erent quotient of the Jacobian, namely the winding
quotient. The intricate �at descent arguments of Mazur are here replaced by the works of Gross–Zagier
[GZ85, GZ86] and Kolyvagin [Kol89] which establish a su�ciently large part of the Birch–Swinnerton-
Dyer conjecture to show that the rank of the winding quotient is zero. It should be pointed out however
that the Eisenstein quotient has by no means left the stage, and there has been renewed recent interest in
Eisenstein quotients, see for instance [WWE20, Lec21].





4Exercises
1. Show that X1(11) has 5 rational cusps, and is an elliptic curve with minimal Weierstraß equation

y2 + y = x3 − x2.

2. LetE be an elliptic curve overQ such that theGQ-moduleE[2] is irreducible. Consider the morphism

ϕ : H1(Q, E[2])−→H1(K,µ2) ' K×/(K×)2

constructed in (2.4). Show that ϕ is injective, and has image equal to

Im(ϕ) = Ker
(
K×/(K×)2 Nm−−−−→ Q× /(Q×)2

)
Hint: Show that the map ϕ arises in the long exact sequence in cohomology associated to an appro-
priately de�ned short exact sequence of GQ-modules of the form

1−→E[2]−→ IndQ
K(µ2)−→µ2−→ 1.

3. Determine the Mordell–Weil group of the curve

EN : y(N − y) = x3 − x.

for the case N = 6 appearing in the work of Diophantus. Show that the rank is at least two for all
but �nitely many integer values of N , and �nd examples where it is larger than two.

4. Prove that when p is an odd prime, we have that

• the curve X0(p) has two cusps, both of which are rational,
• the curve X1(p) has p− 1 cusps, of which

(p− 1)/2 are rational,
(p− 1)/2 form a full Galois orbit over Q(ζp)

+.

• the curve X(p) has (p2 − 1)/2 cusps, rational over Q(ζp).

5. Determine all rational solutions to

E : y2 + xy + y = x3 − x2 − x− 14.

Bonus: Find all rational elliptic curves with a rational subgroup of order 17.

6. Prove that there are no elliptic curves over Q with a rational point of order 17.
Hint: First deduce it from the previous exercise. Then prove it using a descent onX1(17) in the style
of Mazur–Tate. You may use that J1(17) has a rational point of order 73.

31





Bibliography
[BDM+19] J. Balakrishnan, N. Dogra, S. Müller, J. Tuitman, and J. Vonk. Explicit Chabauty–Kim for the

split Cartan modular curve of level 13. Ann. of Math. (2), 189(3):885–944, 2019. ↑11, 12.
[BDM+21] J. Balakrishnan, N. Dogra, S. Müller, J. Tuitman, and J. Vonk. Quadratic Chabauty for modular

curves. arXiv:2101.01862, 2021. ↑11, 12.
[BP11] Y. Bilu and P. Parent. Serre’s uniformity problem in the split Cartan case. Ann. of Math. (2),

173(1):569–584, 2011. ↑11.
[BPR13] Y. Bilu, P. Parent, and M. Rebolledo. Rational points on x+

0 (pr). Ann. Inst. Fourier, 63(3):957–984,
2013. ↑11.

[dF59] P. de Fermat. Letter to Pierre de Carcavi. 14 August 1659. ↑5.
[DI995] Modular Curves and Modular Forms. Amer. Math. Soc., 1995. ↑18.
[Dio93] Diophantus. Diophanti Alexandrini Opera omnia: cum Graecis commentariis, volume 1. Lipsiae

: In aedibus B.G. Teubneri, 1893. ↑3.
[DioAD] Diophantus. Arithmetika. Alexandria, 3rd Century AD. ↑3.
[DKSS21] M. Derickx, S. Kamienny, W. Stein, and M. Stoll. Torsion points on elliptic curves over number

�elds of small degree. arXiv:1707.00364, 2021. ↑10.
[DN19] M. Derickx and F. Najman. Torsion of elliptic curves over cyclic cubic �elds. Math. Comp.,

88:2443–2459, 2019. ↑10.
[Edi95] B. Edixhoven. Rational torsion points of elliptic curves over number �elds (after Kamienny and

Mazur). Astérisque, 227:209–227, 1995. ↑10, 29.
[Fer70] S. Fermat. Diophanti Alexandrini Arithmeticorum Libri Sex: cum commentariis C.G. Bacheti et

observationibus D.P. de Fermat. 1670. ↑5, 6.
[GZ85] B. Gross and D. Zagier. On singular moduli. J. Reine Angew. Math., 355:191–220, 1985. ↑10, 29.
[GZ86] B. Gross and D. Zagier. Heegner points and derivatives of L-series. Invent. Math., 84(2):225–320,

1986. ↑10, 29.
[Hee52] K. Heegner. Diophantische Analysis und Modulfunktionen. Math. Z., 59:227–253, 1952. ↑11.
[JKL11] D. Jeon, C. H. Kim, and Y. Lee. Families of elliptic curves over cubic number �elds with pre-

scribed torsion subgroups. Math. Comp., 80:579–591, 2011. ↑10.
[Kam92a] S. Kamienny. Torsion points on elliptic curves and q-coe�cients of modular forms. Invent.

Math., 109(221–229), 1992. ↑10, 29.
[Kam92b] S. Kamienny. Torsion points on elliptic curves over �elds of higher degree. Int. Math. Res. Not.,

(6):129–133, 1992. ↑10, 29.
[Kim05] M. Kim. The motivic fundamental group of P1\{0, 1,∞} and the theorem of Siegel. Invent.

Math., 161:629–656, 2005. ↑12.
[Kim09] M. Kim. The unipotent Albanese map and Selmer varieties for curves. Publ. RIMS, 45:89–133,

2009. ↑12.
[Kim10] M. Kim. Massey products for elliptic curves of rank 1. J. Amer. Math. Soc., 23(3):725–747, 2010.

↑12.
[KM88] M. A. Kenku and F. Momose. Torsion points on elliptic curves de�ned over quadratic �elds.

Nagoya Math. J., 109:125–149, 1988. ↑10.
[KM95] S. Kamienny and B. Mazur. Rational torsion of prime order in elliptic curves over number �elds.

Astérisque, 228(3):81–100, 1995. ↑10, 29.
[Kol89] V. Kolyvagin. Finiteness of e(q) and x(e,q) for a class of Weil curves. Math. USSR-Izv., 32(3):523–

541, 1989. ↑10, 29.
[Lec21] E. Lecouturier. Higher Eisenstein elements, higher Eichler formulas and rank of Hecke algebras.

Invent. Math., 223:485–595, 2021. ↑10, 29.

33



34 BIBLIOGRAPHY

[Lig77] G. Ligozat. Courbes modulaires de niveau 11. In J.-P. Serre and D. Zagier, editors, Modular
functions in one variable V, volume 601 of Lecture Notes in Math. Springer-Verlag, Berlin, 1977.
↑12.

[Man69] Yu. I. Manin. The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk. CCCP,
33:459–465, 1969. ↑9.

[Maz72] B. Mazur. Rational points of abelian varieties with values in towers of number �elds. Invent.
Math., 18:183–266, 1972. ↑22.

[Maz77a] B. Mazur. Modular curves and the Eisenstein ideal. IHÉS Publ. Math., 47:33–186, 1977. ↑3, 9, 11,
19, 20, 22.

[Maz77b] B. Mazur. Rational points on modular curves. In Modular functions in one variable V, volume
601 of Lecture Notes in Math., pages 107–148. Springer-Verlag, 1977. ↑9, 12.

[Maz78] B. Mazur. Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math.,
44(2):129–162, 1978. ↑9, 11, 19, 22, 28, 29.

[Mer96] Loï c Merel. Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent.
Math., 124(1-3):437–449, 1996. ↑10, 29.

[Mil80] J. Milne. Étale cohomology. Princeton University Press, 1980. ↑12, 14, 20, 21.
[Mil06] J.S. Milne. Elliptic Curves. BookSurge Publishers, 2006. ↑14.
[Mor22] L. J. Mordell. On the rational solutions of the indeterminate equations of the third and fourth

degrees. Proc. Cambridge Phil. Soc., 21:179–192, 1922. ↑5, 8, 9.
[MT73] B. Mazur and J. Tate. Points of order 13 on elliptic curves. Invent. Math., 22:41–49, 1973. ↑22,

25.
[Ogg71] A. Ogg. Rational points on �nite order on elliptic curves. Invent. Math., 12:105–111, 1971. ↑25.
[Poi01] H. Poincaré. Sur les propriétés arithmétiques des courbes algébriques. Journal demathématiques

pures et appliqueés, 5e série, 7:161–234, 1901. ↑5.
[Ser68] J.-P. Serre. Abelian `-adic representations and elliptic curves. Benjamin, New York, 1968. ↑9, 10.
[Ser72] J.-P. Serre. Propriétés galoisiennes des points d’ordre �ni des courbes elliptiques. Invent. Math.,

15(4):259–331, 1972. ↑3, 10, 11.
[Ser97] J.-P. Serre. Lectures on the Mordell-Weil theorem. Aspects of Mathematics. Friedr. Vieweg &

Sohn, Braunschweig, third edition, 1997. ↑12.
[Sil09] J. Silverman. The arithmetic of elliptic curves, 2nd edition, volume 106 of GTM. Springer-Verlag,

2009. ↑8, 9, 12, 13, 14, 15, 16, 18.
[Sno13] A. Snowden. Course on Mazur’s theorem. http://www-personal.umich.edu/ asnow-

den/teaching/2013/679/, 2013. ↑20.
[Sta66] H. M. Stark. On complex quadratic �elds with class number equal to one. Trans. Amer. Math.

Soc., 122:112–119, 1966. ↑11.
[TO70] J. Tate and F. Oort. Group schemes of prime order. Ann. Sci. ENS, 3(1):1–21, 1970. ↑23, 28.
[Wei29] A. Weil. L’arithmétique sur les courbes algébriques. Acta Mathematica, 52(1):281–315, 1929. ↑8.
[WWE20] P. Wake and C. Wang-Erickson. The rank of Mazur’s Eisenstein ideal. Duke Math. J., 169(1):31–

115, 2020. ↑10, 29.


	Introduction
	The Mordell–Weil theorem
	Classification of torsion
	Galois modules of torsion points
	Outline and preprequisites

	Descent and the Mordell–Weil theorem
	Selmer groups
	The weak Mordell–Weil theorem
	The method of 2-descent on elliptic curves
	Modular curves

	Modular curves and flat descent
	The flat topology
	Torsion points of order 11
	Torsion points of order 13
	Mazur's theorem on torsion

	Exercises
	Bibliography

