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1 Introduction

These notes are based heavily on Kevin Buzzard’s excellent notes on the
Langlands Correspondence. The aim is to give an overview of the following
theorem (which is stated before explaining any of the terms!).

Theorem (Local Langlands Correspondence). Let K be a non-Archimedean
local field of characteristic 0, and n > 0 an integer. There is a canonical
bijection between admissible irreducible complex representations of GL,(K)
and n-dimensional complex F-semi-simple Weil-Deligne representations.

We will only talk about the cases n = 1 and 2, and essentially nothing will
be proved. The case n = 1 of the correspondence will be motivated from local
class field theory, and the case n = 2 will be illustrated through examples.
Later we will introduce parameters on both sides of this correspondence, and
then by canonical it will be meant that these match up.

1.1 Notation

We will normally let K be a non-Archimedean local field of characteristic 0
(i.e. a finite extension of Q,), with ring of integers O, unique maximal ideal
p, and residue field k = O/p.



2 Admissible irreducible representations for
GL,(K)

Definition. A compler admissible representation of GL,(K) is a complex
vector space V' equipped with an action of GL,(K), i.e. a group homomor-
phism m : GL,(K) — Autc(V), such that

1. if U C GL,(K) is an open subgroup, then VU, the set of vectors of
V' fized by every u € U is a finite-dimensional vector space. This is
admassibility.

2. if v € V then the stabiliser of v in GL,(K) is open. This is normally
called smoothness.

We further call the admissible representation irreducible if V' is nonzero, but
the only stable subspaces are O and V.

21 n=1

If n = 1, then an irreducible admissible representation (m, V') of GLi(K) =
K> is one-dimensional, by Schur’s lemma (since K is commutative). We
therefore have a character

m: K* — C*.

The admissibility condition translates into having open kernel, which means
that 1 + @™O is contained in the kernel for some n > 0.

22 n=2

When n = 2 we have spent a lot of time building up a theory of all admissible
irreducible representations of GLy(K) (away from residue characteristic 2).
Here is what we know:

e Principal series (infinite-dimensional case). If x1, x2 are two admissible
complex characters of K* (i.e. admissible as representations), such that
X1/Xx2 is not equal to the norm character or its inverse, then we can
define an admissible irreducible infinite-dimensional representation

PS(x1, x2) : GLa(K) — GL(V).



e Principal series (one-dimensional case). In some sense these corre-
spond to the case above where x1/x2 is the norm character or its in-
verse. Let y be an admissible complex character of K*, then we get
an admissible irreducible representation of GLy(K) by composing with
the determinant map

x o det : GLy(K) — C*.

e Special representations (or Steinberg representations). If x is an ad-
missible character of K, then we can define an admissible irreducible
character

S(x) : GLa(K) — GL(V).

o Supercuspidal representations. If we avoid p = 2, then these can be
described as follows. Choose L/K a quadratic field extension and let 7
be the nontrivial element in the Galois group. Then let x an admissible
character of L* with x # x7. We can define a supercuspidal (“base
change”) representation of GLy(K) from x. Two such BC(L/K, x) and
BC(L'/K, x") are isomorphic if and only if the induced representations
Ind%f (x) and Ind%f (x') are isomorphic.

If p = 2 then there are more — called extraordinary. We don’t talk about
them here.

Our aim is now to discuss the Weil group side of the Langlands Corre-
spondence.

3 Weil-Deligne representations

We start with a brief overview of the Weil group.

3.1 The Weil Group Wy

As before, let K be a non-Archimedean local field of characteristic 0 (so a fi-
nite extension of Q). Let O denote the ring of integers and p a maximal ideal.
Then the residue field is a finite extension of I, of order ¢ = p" for some n.
We would like to relate the absolute Galois group of K to the absolute Galois



group of its residue field. There is a natural map Gal(K/K) — Gal(F,/F,)
defined as follows. Given an automorphism ¢ € Gal(K/K), we see that
o(p) = p, since ¢ has to send a prime ideal to a prime ideal. Thus o de-
scends to an automorphism of Gal(F,/F,). Let Ix be the kernel of this map,
called the inertia group; then there is a short exact sequence

1 — Ix — Gal(K/K) — Gal(F,/F,).

By definition, the absolute Galois group of the residue field is an inverse
limit
Gal(E/Fq) = 1.glGal(Fq"/F(1>~
n>1
Here the limit is over all n with F,» a Galois extension of F,. Moreover,

Gal(F, /F,) is cyclic of order n generated by the Frobenius automorphism
a +— a?. So we see that the residue field has absolute Galois group

Gal(F,/F,) = lim Z/nZ =: Z.
a/Tq %
We can finally introduce the Weil group Wi as the subgroup of Gal(K/K)
of elements mapping into the copy of Z in Z. Such elements are powers of

the Frobenius automorphism. This clearly contains Ix (which is the set of
all elements mapping to 0), so we get the following commutative diagram:

1 y I > Wik > L > 1
1 s Iy s Gal(K/K) s 7 1

3.2 Local class field theory

Many of the references seem to just suggest that certain results hold “by
local class field theory”, so we will content ourselves with just a sketch here.
The following theorem is from [JHO6] Section 29.

Theorem (Local class field theory). There is a canonical continuous group
homomorphism

(9[( : WK — K~
such that



1. The map O induces a topological isomorphism W = K*.

2. An element x € W is a geometric Frobenius if and only if Ok (x) is a
uniformiser of K.

3. We have that 0 (Ix) = O*.

The homomorphism 0 is called the Artin reciprocity map. Note that a
geometric Frobenius element is one that is sent to the inverse of the Frobenius
element in the absolute Galois group of the residue field. An important
consequence is that we have an isomorphism

X x o0k,

of the group of characters of K* with that of Wy. This statement is
precisely the Local Langlands Correspondence for n = 1. But we haven’t yet
defined Weil-Deligne representations, so this will become clear in the next
section!

In fact the last statement in the theorem says that it maps unramified
characters of K* to unramified characters of Wi.

3.3 Weil-Deligne representations

Now that we have a description of the Weil group, let us see what an n-
dimensional complex F-semi-simple Weil-Deligne representation is. Let K
be a finite extension of Q,. We give the Weil group Wy the topology such
that the subgroup Ix of Wi is open with its profinite topology.

Definition. A Weil-Deligne representation of K is a pair (p, N) where

1. p: Wxg — GL,(C) is continuous with respect to the discrete topology
on GL,(C)
o

(
2. p(6)Np(o)™' = |o|7'N, where N is a nilpotent n by n matriz, and
lo| := q~"9). Here q is the order of the residue field of K and v is the
valuation map.

}.
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4 Langlands Correspondence for n =2

The Local Langlands Correspondence says for n = 2 that there is a bijection
between isomorphism classes of admissible irreducible complex representa-
tions of GLo(K'), and isomorphism classes of 2-dimensional complex F-semi-
simple Weil-Deligne representations of Wi

Let | -|'/? denote the character which is the root of the norm character,
ie. |o|/? = ¢ v@)/2 where ¢ is the order of the residue field of K and v is
the valuation on K.

e For the 1-dimensional principal series, we have the associated Weil—
Deligne representation

xodet ¢ x| ["2@ x| [T,
with N = 0. Recall that y is an admissible character of K*.
e To the infinite-dimensional principal series, we have N = 0 also and
PS(x1;x2) <= x1 @ X2.

Here x1, x2 are two admissible representations with y;/x2 not the norm
character, or its inverse. Note that the principal series have similar
looking Weil-Deligne representations.

e To the special representation we have the association
SO) «— x & x|,
with N = (J{). This is the only case with N nonzero.
e To the “base change” representation we associate
BO(L/K, x) ¢ Indy(x),

which is induced from the 1-dimensional representation of W which
corresponds to x, and N = 0.

e The extraordinary supercuspidal admissible representations that we
didn’t talk about much before correspond to a Weil-Deligne repre-
sentation with NV = 0, but with more complicated image than before.
These do not arise if p # 2.



Note that principal series correspond to semi-simple but reducible Weil—~
Deligne representations with N = 0, special representations correspond to
semi-simple reducible Weil-Deligne representations with N # 0, and super-
cuspidal representations correspond to irreducible Weil-Deligne representa-
tions.

Chapter 4.9 of [Bum98] essentially talks about the correspondence be-
tween the irreducible representations of the Weil group Wik and the super-
cuspidal GLy(K') admissible irreducible representations.

5 Canonical Bijection

We would now like to say something about what the word ‘canonical” means
in this bijection.

5.1 Conductors
5.1.1 Weil-Deligne representations

For Weil-Deligne representations we mainly follow [Ulm13].

Ramification groups Let E/K be a finite extension of fields, where K is
a non-Archimedean local field of characteristic zero. To define the conductor
of a representation p : Gal(E/K) — GL,(C), it is necessary to introduce
ramification groups of G = Gal(E/K). These are defined as follows.

The ramification groups G_1, Gg, Gy, ... are defined by

O'GGi < UE<U($)—$) Zz’—l—l,Vwe OK.

We have that G_; = G, (G is the inertia subgroup of G, and for all sufficiently
large ¢ we have G; = 0.

For representations of Gal(E/K) Given arepresentation p : Gal(E/K) —
GL,(C), we define the conductor of p as

> codimV &
)= TGar
i=0 !

Here, if H is a subgroup of G, then V# = {v € V | p(h)(v) = v,Yv € H}
is the H-fixed subspace of V.



For Weil-Deligne representations We notice that this definition of con-
ductor does not depend on N. Suppose (p, N) is a Weil-Deligne representa-
tion, then we define its conductor to be

a(p, N) = a(p) + dim V5 — dim dimV3¥.
Here Vi is the kernel of N on V, so that
Vik ={v e V| N() =0, p(w)(v) = v,Vw € I}

5.1.2 Representations of GLy(K)

In [Buz98|, there is an ad hoc definition of conductor for admissible repre-

sentations of GL,(K) for n =1,2.

n =1 In this case, we define a decreasing sequence of subgroups of K* by
V(0) =07, V(t)=1+ (=)

for each positive integer ¢.

Definition. Let x be an admissible character of K*. Then the conductor of

X, denoted a(x) in these notes, is the smallest integer t such that x is trivial
on V(t).

n =2 We deal with everything case by case here.

e [-dimensional principal series. Here the representation 7 factors through
the determinant as m = y odet, for some admissible character x of K*.
Define

a(m) = 2a(x).

e [Infinite-dimensional principal series. Then m = PS(x1, x2) for some
admissible characters xi, x2. Define

a(m) = a(x1) + a(xa).
o Special representation. If m1 = S(x), then define

1, ifyis unramified
a(m) = DO
2a(y), ifxis ramified.



e Supercuspidal. If m = BC(x), where x is an admissible character of a
quadratic extension L/K of K, then

( 2a(x), if L / Kis unramified
a(r) ==
a(x) + a(p), ifxis unramified,

where p is the quadratic character of the absolute Galois group of K
corresponding to L/K.

Again, things are more complicated if p = 2, so we avoid this case.

We could also have defined the conductor as follows, for any infinite-
dimensional irreducible admissible representation of GLo(K). For any ¢ a
non-negative integer, let

Ur(t) = {g € GLo(0) | g = (31) mod ='}.

Theorem. There is a minimal non-negative integer t such that VU(®) s
non-zero.

Define the conductor of the representation to be this minimal ¢.

5.2 The automorphic representations associated to new-
forms

Given an eigenform f of weight & on Si(I';(N)), we can associate to f an
admissible irreducible representation Vy, of GL2(Q,) for all primes p. This
was done last week. An important thing to keep in mind is that f has a
character, and we will use this throughout the next section, denoted by Y.

Proposition. If f is a newform of level N, then the conductor of Vi, is t,
where pt exactly defines N.

Here, Local Langlands gives an F'— semi — simple complex Weil-Deligne
representation of Wq,, and one can show that this is the same as the restric-
tion to the local Galois group of the global representation constructed by
Deligne. But we haven’t talked about any of that here.

We now investigate V;, using the conductor.



5.3

If a(Vy,) = 0, so that p does not divide the level of f, then Vy, is
principal series of infinite dimension, and both of its characters are
unramified. They can be specified by their value on a uniformiser, and
these values are the two roots of X2 — a,X + x(p)p*~!, where k is the
weight and y is the character of f.

If a(Vy,) = 1, then there are two cases. (a) If a(x) is coprime to p,
then V}, is special; (b) otherwise V},, is a principal series representation
associated to two characters; an unramified one x; such that y;(w) =
ap, and a tamely ramified one.

If a(Vy,) > 1, then things are more complicated.

Buzzard’s recipe for elliptic curves

Now that we have defined the conductor, let us see what it gives us for elliptic
curves.

Suppose we are given a modular elliptic curve E coming from a modular
form f. We can ask how the possible local behaviours of F at a prime p
correspond to the admissible representation V.

V}p is unramified principal series if and only if £ has good reduction
at p. This is because these are the only ones with conductor 0.

Vyp is special if and only if E has potentially multiplicative reduction
at p. This is because these are the only cases having image of inertia
in the associated Galois representation infinite.

A subcase of the former: V}, is special associated to an unramified
character if and only if £ has multiplicative reduction. This is because
these are the only ones with conductor 1.

V}p is ramified principal series or supercuspidal if and only if £ has
bad, but potentially good, reduction. These are the only cases left.

To distinguish them, V}, is ramified principal series if and only if £
attains good reduction over an abelian extension of Q,,.
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5.4 [-functions and e-factors

We now introduce the L-functions and e-factors which are also part of the
canonical bijection. They are a pair of invariants which will help to charac-
terise the representation. It seems that the L-functions are much more easily
described than the e-factors, so we do that first.

It will turn out that L(s, 7) is an elementary function of the form f(q=*)~,
where f(t) is a complex polynomial of degree at most two. The local constant
€(s,m, 1) is of the form c¢g~™* for a nonzero constant ¢ and integer m. Defin-
ing these properly would involve deriving a functional equation involving the
L-function, which is all done in [JHO06] Ch. 6.

The Converse Theorem tells us that an irreducible admissible repre-
sentation 7 of G is determined, up to equivalence, by x +— L(s, x7) and
X > €(s, xm, 1) where x ranges over all characters of F'*.

For n =1 In [JHO6] we have the following definition

Definition. If x : K* — C* is a character of K*, then we define

L(s.x) (1 —x(@)q %), ifxis unramified,
s, X) = :
X 1, otherwise.

Note that this says nothing about the case when y is ramified.

For n =2 Here we assume that we are working with K = Q,, for simplicity,
so the g from the n = 1 case will simply be p here. We make the following
definition.

Definition. For irreducible admissible representations m of GLy(Q,), we de-
fine the local L-factor L(s, ) as follows.

1. For irreducible principal series m(x1, X2), we set

1
(1 —a1p=*)(1 — agp=)’

L(s,7) =

where a; = x;(p) if xi is unramified and o; = 0 otherwise.

11



2. For a special representation, written 7(x| - "2, x| - |7Y/?) = St ® x, we
set
1

L(s,m) = 1_—04),8,

1/2

where o = X(p)|p\;/2 = p~2x(p) if x| - |V/? is unramified, and o = 0

otherwise.

3. For m supercuspidal, we set

L(s,m) = 1.

Note that, as expected, L plays no role in the cuspidal representations.

Following [Marl1], we only define the e-factors on PGLy(Q,). Let ¢ be
the standard additive character of Q,. That is, 1 (z) = e2™{=}» where {2},
is the fractional part of x, defined as all terms with p-adic valuation negative.
Note that given any nonconstant additive character x of Q,, then any other
additive character is x(ax) for some a € Q,, so we only need to fix one such
character.

Definition. Let m be an irreducible admissible representation of PGLy(Q)).
The local e-factor €(s,m, 1) attached to m is

6(87 7T7 ¢) = EPC(W)(1/2_8)7

where € = 1.
In [JHO6], we have the following theorem.

Theorem (Converse Theorem). Let ¢ be an nonconstant additive charac-
ter of K*, and let m,ms be irreducible admissible representations of G =
GLy(K). Suppose that

L(X7T1, 5) = L(X7T2,S)a and E(S,Xﬁﬂ/)) = 5(57X7T2,¢)

for all characters x of K*. Then m = 5.

12



For Weil-Deligne representations We have so far only defined L and e
for representations of GL,(Q,) for n = 1,2. To define them for Weil-Deligne
representations the hard part is n > 2, since by the local class field theory
theorem we have an isomorphism y +— x o 0, and we simply define

L<8>X © QK) = L(87X>
€(S7X o 9Ka¢) - E(S7X71/J)‘

It is unsurprising that these match up correctly.

Extending to n > 2 For the L-function, we simply make the definition
L(s,0) =1,

for an irreducible admissible Weil-Deligne representation ¢ of dimension n >
2. For a semi-simple o, we define

L(s,01 ® 03) = L(s,01)L(s,02).

The local constant is more complicated though, and we don’t go into it
here.

6 The Langlands Correspondence

We now quote the theorem from [JH06]. Let Go(K) denote the set of isomor-
phism classes of 2-dimensional, F-semi-simple Weil-Deligne representations,
and let Ay(K) denote the set of isomorphism classes of irreducible admissible
representations of G = GLy(K).

Theorem (The Langlands Correspondence). Let ¢ be a nonconstant additive
character of K. There is a unique map

T Go(K) = Ay(K),

such that

L(s,xm(p)) = L(s,x ® p)
€(s,xm(p),¥) = (s, x @ p, )

for all p € Go(K) and all characters x of K*. The map is a bijection.
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