JACQUET-LANGLANDS FOR GL,
BEN P. GREEN

DiscLAIMER. These are rough notes I wrote for a series of four talks I gave in
Oxford in Hilary Term 2015 sketching a proof of the Jacquet-Langlands correspon-
dence for GLy. None of the material is my own work, my only contribution is the
way the material is presented. There may be typos and mistakes in the notes so a
person wishing to get a greater insight into the proof should consult the refererences
at the end of the notes.

1. BACKGROUND

1.1. The Global Langlands Correspondence and Langlands Functoriality.

Let G be a reductive group over Q. The global Langlands correspodence is a con-
jectural correspondence between

{¢): Ly — “G(C)} +— {automorphic representations on G'(A)}

There also needs to be compatibility with the local theory. The biggest problem is
that the existence of Lg is not known and in fact is one of the deepest problems in
the theory. One of the consequences of this conjectural correspodence is Langlands
functoriality; this says if we have two connected reductive groups H, G over a field
Q with G quasi-split and an L-homomorphism between them, i.e. a map s.t. the
following diagram commutes,

L H L G
I'o
then there is a transfer map from
{automorphic forms on H(A)} — {automorphic forms on G(A)}

This is obvious if one has the appropriate Langlands correspondence as there is a
map from

{tp: Lo = "H(C)} — {¢: Lg — "G(C)}
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We will be interested in a proving a specific instance of Langlands funcotoriality.
To do this we briefly describe the theory of forms of reductive groups over a field
k of characteristic zero. An algebraic group H is a k-form of G if H is defined
over k and is isomorphic to G over k. T acts on Aut(Gy)) (by conjugation), and
this action preserves the subgroup Inn(Gy). One can show that the k-forms of G
are parametrised by the cohomology set H'(T', Aut(Gy)), H is said to be an inner
form of G if the associated cocycle actually lies in the image of the natural map
from H'(T,Inn(Gy)) — H'(T',Aut(Gy)). When G is split this map is injective,
so inner forms can be thought of as elements of H*(T',Inn(G%)). Given a cocycle
c € HYT', Aut(Gy)), we can define H(k) = {h € G(k) : (c(y) - y)h =h Yy € [}, }.

A crucial fact about reductive groups G over k is the following; there exists a unique
(up to isomorphism) quasi-split inner form G’. Since *G = LG’, Langlands func-
toriality predicts a map from automorphic representations of G to those of G'. If
G’ = GL, then it is split, so one can take G’ = GL, as there is a trival Galois
action.

1.2. Inner forms of GL,.

We need to determine what the inner forms G of G’ = GLs are. Let k be a field.
A central simple algebra A/k is a finite dimensional associative unital k-algebra in
which there are no non-trivial two sided ideals (i.e. none except for 0, A), and such
that the center of A is k = k- 1. For example, M, (k) is a CSA over k. A division
algebra D /k is an associative unital k-algebra where for each non-zero a € D 3b € D
s.t. ab = ba = 1. One defines a quarternion algebra as a 4-dimensional central
simple algebra. Wedderburn’s theorem tells us that quarternion algebras are either
isomorphic to My(k) or a division algebra. Provided char(k) # 2 they have the
following form

b
(%) ={x+iy+jz+ijw:i®=a,j>=0bij =—ji}

In particular we have the following proposition.

Proposition: Let B/k be a quaternion algebra. Then G = B* is an inner form of
G'/k (the converse also holds).

Proof. Let B = (%b) Let E = k(y/a). Given ¢ = z + iy + jz + ijw € B we can
embed B — My(FE)

o= (0% LR € anie
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Clearly we have ¢ : GLy(E) = G(E). As GLs is split the map from its inner forms are
parametrised by the cocycles which are actually inner automorphisms. We therefore
want to consider the cocycle c(t) = ¢! - t¢ -t~ where t(z + yy/a) = x — yy/a and t
is the non-trivial element of Gal(E/k). As t~! =t we have that

(20 G - (i SR

ot [z —yya (z—wya)b

. - Lot . . ..
—zy—l—jz—zywn—>x—zy—|—jz—zywn———><Z+w\/a 2 +ur/a )

In other words we have that

g mh=0% W)= o) (@ 2) (o)

We set v = ((1) 8) and see that y~! = (b(_)1 é) Therefore GG is an inner form of

KU

N

G’ as required. d

We now state some facts about quaternion algebras we will need for later. It is not
hard to show that quaternion algebras which are division algebras simply correspond
to order 2 elements in the Brauer group. For local fields £ = @Q, or R we see that
there is a unique such quarternion algebras as Br(Q,) = Q/Z and Br(R) = 1Z/Z.
For k = Q, global class field theory gives us the exact sequence

0 — Br(Q) — P Br(Q,) = Q/Z — 0

Restricting to order 2 elements shows us that quaternion algebras are uniqually
paramterised by an even set of places where they are non-split (i.e. not isomorphic
to a matrix algebra over Q,).

1.3. The Jaquet-Langlands Correspondence.

We now have enough terminology to state the Jacquet-Langlands correspodence. Let
G = B* for some rational quaternion algebra B, and let G’ = GLy/Q. Let S be the
finite set of places where G(Q,) 2 GL2(Q,).

Theorem: Let 7 be a cuspidal automorphic representation of G. Then 3 a unique
cuspidal automorphic representation 7’ of G’ s.t. 7, = 7w, Vv ¢ S.
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2. THE TRACE FORMULA

In order to prove the Jacquet-Langlands correspodence we need to use the trace
formula, we follow [1][§1]. Let H be a locally compact unimodualr (where left and
right Haar measure agree) toplogical group, and I' a discrete subgroup of H. Consider
the unitary representation R given by right translation on L*(T'\ H);

(R(y)f)(z) = f(zy) fe LX(T\H), z,yc H
If H=G(A), T = G(Q), one can ‘roughly’ define an automorphic representation 7

of G as an irreducible unitary representation occurring in the decomposition of R.
We study R by integrating against a test function f € C.(H), so define

- [ fRGdy w220\
We obtain the following for ¢ € L*(T\H), x € H

<mmmw=ﬂum @—/f 1@@=Lﬂw@dww

/F\H (me 'yy> y)dy

vyel
Therefore R(f) is an integral operator with kernel

= flz ")

yel’
This sum is always finite as it can be taken over in the intersection of the discrete
group I' N (z - supp(f) -y ™).
2.1. The Compact Trace Formula. We now assume that ['\H is compact. In

our situation this occurs when G = B* where B is a non-split quaternion algebra,
i.e. when G(Q) 2 GLy(Q) and we consider the quotient G(Q)\G(A)! where

G(A)' = {2 € G(A) : |a7| = 1}

This assumption means that R decomposes discretely into irreducible representa-
tions 7 with finite multiplicty (this follows from the spectral theorem for compact
operators). Moreover, R(f) is of trace class with

trR(f) = K(x,z)dx
I\H
Let {I'} be a set of representatives for the conjugacy classes of I, and for any v € I'
let
Iy =Cr(7), Hy = Cu(7)
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We find that
_ _ -1
trR(f) = /F\H K(z,z)dx = /F\H E flz™ vya)dx

:/F\HZ > fla'o T yo)de

~e{l'} 6el,\T'

= Z /D,\H f(z™ yr)da

ve{l'}

/ / f(z v yur)dudz
~e{r} Y HA\H JTy\Hy

= Z VOI(FV\Hv)/ flx™ ya)da

ve{l'} H\H

Here the (x) step uses Fubini’s theorem and a fact concerning measures of unimodular
groups. By restricting R(f) to irreducible subspaces of L*(T\H) we obtain the
spectral expansion of R(f) in terms of irreducible unitary representations 7 of H.
Thus we get the following formula

(2.1.1) Zar Z“F

where the right sum is over representatives of conjugacy classes in I" and 7 is summed
over equivalence classes of irreducible unitary representations of H. The constant
afl () is the multiplicty of 7 in the decomposisiton of R, a&(7y) = vol(G,(Q)\G,(A)),

and the linear forms are defined as follows

fu(y) = /H s

fu(m) = tn(f) = tn ( / f(y>7r(y)dy>

Note if H = R, I' = Z then (2.1.1) is just the Poisson summation formula. We now
apply this to the situation where I' = G(Q) and H = G(A)!, for G = B* where B
is a non-split quaternion algebra. Let I'(G) denote the set of conjugacy classes of
G(Q) and let II(G) be the set of equivalence classes of automorphic representations
of G (or more accurately their restrictions to G(A)'). Then we have

(2.1.2) Yo aWfe(n) = Y a(mfalr)  feCZ(G(A)

veIl'(G) (e

= (%)
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where we are restricting the test functions to G(A)!.

Note that for a general reductive group G/Q, we have that G(Q)\G(A)! is compact
iff the maximal split torus in the center of G is a maximal split torus of G over Q.
In fact this is also equivalent to not having any proper parabolic subgroups defined
over Q. We would like to apply the above arguments to the case of G’ = GL,. The
problems are twofold; R no longer decomposes discretely and R(f) is no longer of
trace class.

2.2. Eisenstein Series and Different Types of Spectra.

We need to construct a trace formula for GLy. The primary reference for the following
is [3, pgs. 162-179]. Set Z1 to be the group of real scalar matrices with positive
coefficicents. Set

X = Z;GL2(Q>\GL2<A)

It will be easier but no less general to look at the space L?*(X) instead, this con-
tains all cuspidal automorphic forms. Let 7" C N C B denote the subgroups of
diagonal /strictly upper triangular/upper triagular matrices respectively. We define

Tt = {(‘61 Cg) ca; > 0}, THA) = TL\T(A)

) is not unimodular but we can define left and right Haar measures by

/ o(b dlb_/T(A N(Agbtndtdn/ o(b db_/ / é(nt)dndt

Recall d,.b = 65(b)d;b where
ap n .
()=

One defines an injection R < 7% by

e 0
r— h, = (0 e"")

We write x = nth,kz for n € N(A), t € T'(A), k € K and z € ZI. r is uniquely
determined by z so we set H(z) = r. One has that

i (5 ) -os

a1

a2

1/2
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so 6p(b) = *(® . We now consider certain induced representations from the sub-
group N(A)T(Q)Tt C B(A), defined as follows for z € C

_ G'(4) zH(b)
R(z,z) = IndN(A)T(Q)Tote

This acts by right translation on the Hilbert space H(z) consisting of complex-valued
measurable functions ¢ on G'(A) s.t.

(2.2.1) /K |p(k)|?dk < oo

(2.2.2) (ntg) = e=THMg(g)

One finds that if we let H be the Hilbert space of measurable functions ¢ on
N(A)T(Q)TE\G'(A) satistying (2.2.1), then R/(z,z) defined by

R/(2,2)6(g) = d(ge)el-+DH)~ (DA

acting on H is equivalent to R(x,z). One finds that R(z, 2z) is unitary if ®(z) = 0.
The aim is to show that the integral

R(z, z)d|z|
R(2)=0,3(2)>0

is equivalent to a subrepresentation of R(z). One uses the space H to define Eisen-
stein series, the Eisenstein series associated to ¢ is

E(g,¢,2)= Y,  ¢lyg)eH09
1EBONC©@

If p =1and g =

g f is real with y > 0, then we have a classical Eisenstein
series. It turns out that the map

¢ = E(z,0,2)

intertwines the space of R(x, z) with a subrepresentation of R(z). This comes from
the fact that

E(z,R(g,2)¢,2) = R(9)E(z, ¢, 2)
so the above map from H to the space of automorphic forms on G'(A) commutes
with G’(A). There is a problem that E(z, ¢, z) is not square integrable. However, we

can use the E to define a different Hilbert space using an altered Fourier transform
and obtain a map from this space to a certain subspace of L?(X). One obtains the
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following.

Theorem: The Hilbert space L?(X) has a decomposition
L2(X) = L3(X) & L3(E) & L3(E)
and R comes with a corresponding decomposition
R=Ry®R"®R, =R{ ®R,

where Rf = Ry @ R" is the restriction of R to the discrete spectrum, and

Ri(z) = /0 " R(w,it)dt

Of course a lot of details has been left out of this theorem but the crucial point is
the following, we have an explicit formula for R, and R.

2.3. The Trace Formula for GL,.

We now follow [3, pgs. 186-226]. We have a decomposisiton R = R{ & R;, the idea
is to see if Ry (f) is of trace class for suitable test functions. We will be interested
in functions satisfying the following;

Assumption: f is a convolution of two bi- K-finite functions f’' & f” in C°(ZL\G(A)).

Recall the convolution is defined as follows

(' f)(a /fw”ﬂ@zéf@ﬂyl

The assumption is needed for the next theorem. We need to analyse the operator
Ri(f). If Ki is the kernel of R{(f) then in fact K = K — K; where K; is the
kernel of Ry(f). The reason this is helpful is that K has an explicit description in
terms of Eisenstein series. We pick a ‘suitable’ orthonormal basis {¢;};c; for H and
let R;;(f,2) denote the matrix coefficient (R(f, z)¢;, i) of R(f, z). One defines

szI
We find that R;(f) is an integral operator with kernel

100

K1($,y>: Kl(x7y7f7z)d”z’

—100
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Moreover, we have the following.

Theorem: R7(f) is an integral operator in L3(X) with kernel K (z,z) = K (z,x)—
Ki(x, ). Morover, it possesses a trace, K is integrable over the diagonal and one
has that

:/){K&“(m,x)dx:/X(K(l’J)—K1<xax))dx

We’d now like to refine this identity. The strategy is to first break K(x,z) up
into elliptic and parabolic parts. One then breaks K;(z,z) into a component ‘at
infinity’ and its complement, regroup terms and then integrate. Because our goal is
the Jacquet-Langlands correspondence we will only need to describe part of this in
detail. We say v € G'(Q) is parabolic if it is G'(Q) conjugate to some element of
B(Q), and say it is elliptic otherwise. We let G, denote the set of elliptic elements.
Recall that R(f) has kernel K (z,y) where

= ) [l
166/

We shall be interested in two parts of this sum, the elliptic part and the singular
part; i.e. the sum over elements in the center. We get two series

(2.3.1) Z flz tyx) Z Z fx 1o 1yox)

~veGL ve{G.} 6€GL(Q\G'(Q)

(2.3.2) = > flu

HEZ(Q)

We wish to prove both of these are integrable. Of course for equation (2.3.2) this
follows as X has finite measure. For equation (2.3.1) it follows immediately provided
F(z) = > cq |f(xyx)| is compactly supported, which is a consequence of the
following lemma.

Lemma: Let C be a compact subset of ZX\G'(A). Then 3dc > 0 s.t. if v € G'(Q)
and 7 'yz € C for some z € G'(A) with H(z) > logdc then v € B(Q).

Proof. If x = ntk then o~ 'yz € C implies t™'n"'ynt € KCK. But if y = (Ccl b)

d
tl * -1 a b tl * . * *
0 9 c d 0 9 o ttl—; *

we see that
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Therefore |ctit5 | is bounded, so

2
is sufficiently

t1
to

-1
Therefore if ‘i—;‘ is sufficiently small, or equivalently H(z) = log
large, then ¢ = 0 and v € B(Q).

Set C' = supp(f) and we see that F(z) = 0 if H(x) > logds so it is indeed
compactly supported. Consequently we can 1ntegrate (2.3.1). Moreover, we get

/ (x, f d:c—/ Z Z f(z 1o yox)dx

1e{Ge} 6€GL (Q\G'(Q)

= Z / f(z ™ yx)dx
o e e

= > vl ZLG NG ®) [ fa s
ye{GL} GL(ANG'(A)
Summing this up with the integral of the singular term we get
(2.33) vol(X) Y f(w+ Y vol(ZLGL(Q\G,(A)) / flaz™Yyr)da
uez«@) 7e{GL} Gy ANG'(A)

This is not unlike the trace formula for compact quotient. However, we will also have
contribution from parabolic conjugacy classes and Eisenstein series which make the
formula more complicated. Luckily by choosing suitable test functions we can get
rid of this problem.

Theorem: Let f =[], f, and suppose that for at least two places v

(2.3.4) /N /K fo(k™'tnk)dndk = 0

for all t € T,,. Then trR§ (f) is equal to the expression (2.3.3).

The condition (2.3.4) happens for quite general test functions, indeed it happens if
fp is a K-finite matrix coefficient of a supercuspidal representation of G},.
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3. PROOF OF THE CORRESPODENCE

3.1. A Comparision of Two Trace Formulae.

We now want to compare the two trace formulae for G = B* for B a non-split
quaternion algebra and G’ = GL,. Let S be the even set of places where G(Q,) 2
G'(Q,). For G we have the trace formula

(3.1.1) Y W) = ) a%m)falr)
yel' (@) €ll(G)
Where

fot) = [ faads, fa(m) = ()
Gy (AN\G(A)
Functions f € C2°(G(A)) are a finite linear combination of products

f:va fv,eCsO(G(@v))

Suppose f is of the above form, then fg(7) is just a product of the local orbital
integrals f, ¢(7,) where 7, is the image of v in I'(G, ), and fe(m) is a product of local
characters f, ¢(m,) where 7, is the local component of 7 in II(G,) (the equivalence
classes of irreducible representations of G(Q,)). For v ¢ S the Q,-isomorphism is
determined up to inner-automorphism so we have canonical bijections

N(Gy) — T(G), w7,
(G,) — II(G), 7, +—m,
For v ¢ S we can define a function f] € C*(G)) s.t. Vv, € I'(Gy), m, € II(G,)
foer (1) = foa(w)s foe(m) = foa(m)
We want to be able to define a version of this for v € S.
Proposition: For v € S there is a canonical bijection v, + 7/ from I'(G,) to the

set I'en(G),) of semisimple conjugacy classes in G'(Q,) that are either central or don’t
have eigenvalues in Q,.

Proof. Recall that B, = B(Q,) is a division algebra. An element has the form
qg = x + iy + jz + tjw and can be realised as a matrix by letting B = (%),
E =Q,(v/a), and then

0= (220 CUR) emie
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This has characteristic polynomial
mo(A) = A2 — 22\ + (2% — ay® — b2* + abw?) = A\* — 22\ + N(q)
Note that
N(q)=qi=(z+iy+ jz +ijw)(x —iy — jz — ijw)
Therefore ¢ is invertible iff N(q) # 0. As B(Q,) is a division algebra this occurs for
all ¢ # 0. However, looking at the discriminant of mg(\) gives
B? —4AC = 42* — 4(2* — ay® — b2* + abw?) = 4(ay® + bz* — abw?)

This is in Q2 <= 3s € Q, s.t. s* — ay? — bz? + abw? = 0 which happens iff
s =y =2z =w = 0. Hence in this case ¢ = = € Q,, so is central. Therefore
the conjugacy class of () which is described by its characteristic polynomial is either
central or has characteristic polynomial with no roots in Q,. O

This proof also shows there is a canonical bijection v — ~' from I'(G) onto the
semisimple conjugacy classes 7/ € I'(G') s.t. Yo € S 4, € T'an(G)). Jacquet and
Langlands used this to be able to transfer test functions for v € S. For regular
element v/ € I'(G)) (those whose centraliser is a maximal torus) they defined an

fl e C(G'(Qy)) s.t.
(3.1.2) Flan(h) = { é"v,G(%) if v, € Ten(GY)

otherwise

This was achieved using a result of Langlands; one simply defines the function above
and then shows such a function must come from an orbital integral. We now have a
function

f=11recx@m)
s.t. for any class 7/ € I'(G")

v n | fa(y) if4' is the image of some v € I'(G)
(313) fo V) = { 0 otherwise

We claim that for v € S the f] satisfy (2.3.4). Indeed we have for regular non-elliptic
v = (g 2) with a # b that

0= o)) = / f(a Aa)de = / fi(a ) de
G, (Qu)\G' (@) T(Qu\G' (@)

:/ / f;(klnlfy;nk)dndk:/ / fr (k™ nk)dndk
Ny J Ky Ny, JK,
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The last equality comes from the following conjugacy relation for regular elements

66966

One obtains a similar result for the non-regular non-elliptic elements. The final
crucial observation is that for v — +/

vol(G(Q)\G,(A)") = vol(GL (Q\G (A)Y)

For central « this just comes from a fact about Tamagawa numbers. For regular +,
first consider one of the form

_(r+yva 0 .
”y—( 0 x_y\/a)<—>x+zy

This has characteristic polynomial A>—2zA+(x?—ay?), so gets mapped to a conjugacy

class in GL,
r_ (T ay
T (y fﬂ)

Both elements have centraliser consisting of elements like themselves, and in fact
G, =g G4. For a different non-central element, note we can write it in the form
x + q where ¢ is a pure quaternion (one where ¢*> € Q but ¢ ¢ Q). Therefore up to
change of basis, we can take ¢ = ¢ and apply the above result.

All this gives the equality
Ry (f) = > a®()falv)
v€T(G)
Using the trace formulae for G and G’ we get the spectral identity
(3.1.4) S dEmun(f) = Y al@)ur(f)
T€ll(G) 7' €T(G")

where a$,..(7') is the multiplicity of 7’ in the decomposition of Ry .
3.2. Characters.

The main purpose of this section is to sketch the proof of the following statement; let
(7, V;) be inequivalent irreducible admissible representations of G a locally profinite
toplogical group, then their characters are linearly independent. The statement is
also true for GL,, over R.

Let (m, V) be an irreducible admissible representation of G and let K be an open
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compact subgroup of GG. We have the space VX and
V(K)={v—mn(k)v:ke K}
One can define an action of a double coset KgK on VE by

T(KgK)-v = Zw(gi)v where KgK = |_|giK
i=1 i=1

One can then define its action on V by first projecting to V¥, the projection operator
is T(K1K) = m(K). In fact we get the direct sum decomposition

vV =VEaV(K)

To see this note that any v € V is fixed by some K’, and set K" = K N K’. Thus

we have that .

m Z 7T(]€>U :W(K) 0
K/Kl/
This is clear as the map on the left clearly fixes VX, and has image contained in it
so has the correct image. Trivially we also have

1
e 2 v=v
K/K//
Thus we see that

ﬁ > (w—m(k) € V(K)
’ K/K"

v—n(K)-v=

We use this fact to show that V¥ is irreducible. If it were not then suppose U < V&
was K\G/K-stable and non-zero. Then as V is irreducible U must G-generate V,
thus we can write any v € V' in the form

v = Z c;m(g;)u;
J

If v € VX then we have that

v=n(K) -v= chﬂ'([() - (m(g5)uy)

Now for g € G, u € U, we have that
(3.2.1)

n

W) (rlgh) =5 Y wnlohu = - wllhghu = w(KgK) ue U

K/(KngKg™) i=1
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Thus VX = U so it is irreducible. Now suppose we have a pair of inequivalent
irreducible representations (m;, V;) for i = 1,2, with K open compact s.t. V& # 0.
Suppose VX and VX were equivalent under the K\G/K action. Then we’'d have an
invertible linear map 7' : VX — VK s.t.

T(m(KgK)-v) =m(KgK)-Tv

As VK generates V; we can define a G-isomorphism®

T(v) = T(Z c;mi(gj)v;) == chﬂg(gj)T(vj) where v; € V|
J J

This means V; and V5, would be equivalent as G-representations which is a contra-

diction, so the V& must also be inequivalent.

We have shown that distinct irreducible (7, V;) give rise to distinct irreducible VX
Note that for any v € VE

T(lggr)v = /K Kw(x)vdx = vol(K)m(KgK)v

Therefore the distinct irreducible (7;, V;) give rise to distinct irreducible representa-
tions of the Hecke algebra H (G, K ), where K is chosen s.t. each VX # 0. As distinct
irreducible finite dimensional representations of an aleghra have linearly independent
characters, the result is proved (the key fact for algebras is that if p is irreducible
and finite dimensioanl the map p : A — End(V) is surjective).

3.3. The Proof.

We are now ready to prove the Jacquet-Langlands correspodence. Let 7 be a cuspidal
automorphic representation of G. We know that outside our set S we have an
isomorphism to GL,. We therefore break the representation down into two parts;

T =17g ® 7 where
TS = ®7TU
vES

We are looking for an automorphic representation 7’ of G’ = GL2 where ' & 1@ 7
for some 7. Using the decomposition trr(f) = trrg(fs)trm(f*) and the definition
of f/ for v ¢ S we have re-writing (3.1.4) that

YD alms @ ri)ums(fo)ur(f5) =Y Y af(ns © 7%)ums(fo)ter (f%)

5 Ts S Ty

IThere is something to check here, the important thing is it sends any representative of the zero
vector to zero.
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which re-arranges to

(33.1) Y Y a%(ms @ ) trms(fs) — Y afe (s @ ) trml(f8) ¢ trr(f) =0

75 TS T

The previous subsection means we can use linear independence of characters to obtain

(3.3.2) > af(ms @ T)tems(fs) = ) alfu(ms @ 7%)trms(f5)

/
s Tg

The correspondence follows immediately from this; we know there is an automorphic
7 =75 ® 75 s0 the left hand side of (3.3.2) is not identically zero. We can therefore
pick fs s.t. it doesn’t vanish, and again using (3.3.2) we know this transfers to a
function f§ so the right hand side doesn’t vanish. In particular there must be at
least one non-zero term on the right hand side,

OGisc(ms @ T)trms(f5) # 0
We have therefore found an automorphic 7’ = 7 ® 7°, this is our transfer. It is
unique by strong multiplicity one.

A more careful analysis of the transfer can refine it to tell us exactly which automor-
phic representations of GLy come from inner forms. One can also use the result to
give a local transfer, by letting G = B* be non-split at {r, co}.
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