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1 Introduction

In order to begin the archimedean part of automorphic theory, we want to
understand certain infinite-dimensional irreducible representations of Lie groups
G, in particular for us the group GL2 = GL2(R). Two natural strategies present
themselves.

Firstly, we could mirror the proof of the classification of supercuspidal repre-
sentations in the nonarchimedean case by examining the restriction of the rep-
resentation to a maximal compact Lie subgroup K, for instance the subgroup
O2 ≤ GL2. The reason this seems promising is that the theory of continuous
representations of compact groups is well-understood:

Lemma 1.1 (Representations of compact groups). Let (π, V ) be a continuous
representation of a compact group K on a Hilbert space. Then

1. the inner product on V may be chosen, without changing the topology, so
that the K-action is unitary;

2. should V be irreducible, it is necessarily finite-dimensional;

3. in general, V is completely reducible: it is the closure of the (orthogonal)
direct sum of some irreducible K-subrepresentations.

Most often we will write the final condition as follows: we let (γ) be a complete
list of (finite-dimensional) irreducible representations of K, and V (γ) the γ-
isotypic component of V . Then

V =
⊕
γ

V (γ)

The second possibility is to mimic the relationship between the represen-
tations of the Lie group and the Lie algebra found in the theory of finite-
dimensional representation theory.
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Lemma 1.2 (Representations of Lie groups). Let G be a Lie group with Lie
algebra g. Then

1. any finite-dimensional continuous representation (πG, V ) of G can be made
a representation of g by

πg(x) · v := lim
t→0

1

t
(πG(exp(tx))− 1) · v

2. from this representation of g, the original representation can be recovered
on the identity component of G by

πG(exp(x)) · v =

∞∑
r=0

πg(x)r

r!
· v

3. for G connected, (πG, V ) is irreducible iff (πg, V ) is.

Example 1.3 (Finite-dimensional representations of GL+
2 and GL2). Recall

(modified from the representation theory of sl2) that the finite-dimensional ir-
reducible representations of gl2

∼= sl2×R are given by the degree k homogenous
polynomials in x, y, with gl2 action given by(

0 1
0 0

)
= x

d

dy(
0 0
1 0

)
= y

d

dx(
1 0
0 −1

)
= x

d

dx
− y d

dy(
1 0
0 1

)
= µ

for some scalar µ. A more enlightened way of phrasing this is that the irre-
ducible representations are given by Symmk(V1)⊗µtr where V1 is the standard
2-dimensional representation.

Exponentiating up this tells us a classification of the finite-dimensional ir-
reducible representations of the identity component of GL2, namely GL+

2 , the
group of positive-determinant matrices. Specifically, it tells us that its irre-
ducible representations are given by Symmk(V1) ⊗ χ ◦ det, where now V1 is
the standard 2-dimensional representation of GL+

2 and χ : R>0 → C× is a
quasicharacter.

Finally we need to extend this to all of GL2, i.e. we need to worry about

the action of η =

(
1 0
0 −1

)
. However, we can always extend the action on

Symmk(V1)⊗ χ ◦ det by specifying that

η · f(x, y) = ±f(x,−y)
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to produce an irreducible GL2-representation. The choice of sign can be sub-
sumed into the character χ, so we have again produced irreducible represen-
tations Symmk(V1) ⊗ χ ◦ det where now V1 is the standard representation of
GL2 and χ : R× → C× is any character. To see that this is all irreducible
representations, one can use a straightforward Frobenius argument.

The realisation (due to Harish-Chandra) that allows us to proceed with a
classification of infinite-dimensional representations is that we need to consider
both these ideas simultaneously in order to be able to get a handle on the
behaviours involved.

2 Reduction to (g, K)-modules

The general setup we will be considering is that of a continuous action π by a
Lie group G on a complex Hilbert space V . We will let K be a maximal compact
subgroup (so that we may assume K, but not necessarily G, acts unitarily on
V ). For our purposes though, we will only need the case when G = GL2 and
K = O2 (or G = GL+

2 and K = SO2), so not all these proofs may work in
complete generality.

From hereon, a representation of a Lie groupG will always mean a continuous
representation on a Hilbert space. We may occasionally assume that the action
of a maximal compact subgroup K is unitary, since this can always be ensured.

In order to make the classification problems tractable (and because these are
many of the examples we see), we introduce the following

Definition 2.1. Let (π, V ) be a representation of G. We say (π, V ) is admissible
just when each K-isotypic component V (γ) is finite-dimensional. We say that
(π, V ) is irreducible just when it has no non-trivial closed invariant subspaces.

Remark 2.2. All finite-dimensional representations are admissible, as are all
irreducible unitary representations. In some sense, admissibility is the smallest
sensible property which subsumes both of these.

One problem that immediately presents us is that we can’t manufacture an
action of g on all of V . For example, L2(S1) with the right regular action of S1

is a representation of the circle group, and v =
∑
r>0 r

− 4
3 zr is a perfectly good

element of it, but if we try to define an action of i ∈ iR = T1(S1) on v, then we
should calculate this to be

lim
t→0

∑
r>0

r−
4
3
eirt − 1

t
zr =

∑
r>0

ir−
1
3 zr

which is not square-integrable.
However, we can make some headway by looking at a restricted (non-closed!)

subspace of V .
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Definition 2.3. Let (π, V ) be a representation of G. We define the subspace

V fin :=
⊕
γ

V (γ) ≤ V =
⊕
γ

V (γ)

(the K-isotypic decomposition) so that V fin ≤ V is dense and K-stable. Equiv-
alently, V fin is the set of all vectors such that π(K) · v only spans a finite-
dimensional subspace (such vectors are called K-finite).

Proposition 2.4 (Smoothness of K-finite vectors). Let (π, V ) be an admissible
representation of G, and let v ∈ V be a K-finite vector. Then the map G→ V
given by X 7→ π(X) ·v is smooth, i.e. it is infinitely differentiable. Such a vector
is referred to as a smooth vector.

Sketch proof, see also Bump Proposition 2.4.5: Recall that C∞c (G) acts on V
by

π(f) · v =

∫
G

f(X−1)π(X) · v dX

where the integral is taken in the sense of Riemann with respect to left Haar
measure. The vectors π(f)·v are always smooth (their derivatives can be written
down explicitly in terms of those of f).

On the other hand, if we let χ : K → C be the character associated to the
irreducible K-representation γ, i.e. χ(Y ) = dim(γ)tr(γ(Y )), then the vector∫

K

χ(Y −1)π(Y ) · v dY

always lies in V (γ). This is the compact group version of the idempotent de-
composition.

These two identities can be combined usefully. Let φ0 ∈ C∞c (G) and let
φ = χ ∗K φ0 be the convolution, i.e.

φ(X) =

∫
K

χ(Y −1)φ0(XY ) dY

so that φ is also C∞ and compactly supported (it’s supported in supp(φ0)K).
Now we have the identity

π(φ) · v =

∫
G

(∫
K

χ(Y −1)φ0(X−1Y ) dY

)
π(X) · v dX

=

∫
K

∫
G

χ(Y −1)φ0(X−1Y )π(X) · v dX dY

=

∫
K

∫
G

χ(Y −1)φ0(Z−1)π(Y Z) · v dZ dY

=

∫
K

χ(Y −1)π(Y ) ·
(∫

G

φ0(Z−1)π(Z) · v
)

dY
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From the top line we see that π(φ) ·v is always smooth, and from the bottom
line we see that it is always in V (γ). If now v ∈ V (γ) itself, then we shall choose
some delta-sequence of φ0 (i.e. positive smooth functions of integral 1 whose
support shrinks to {1}). Then we see that π(φ1) · v → v, so

π(φ) · v →
∫
K

χ(Y −1)π(Y ) · v dY = v

so we see that v is a limit of smooth vectors in V (γ). In other words, the smooth
vectors in V (γ) are dense, so that every vector in V (γ) is smooth, since it is
finite-dimensional. This concludes the proof.

Corollary 2.5 (g-action on K-finite vectors). Let (π, V ) be an admissible rep-
resentation of G. Then g acts on V fin by the formula

π(x) · v = lim
t→0

1

t
(exp(tx)− 1) · v

V fin is g-stable with this action (though it needn’t be G-stable!) and satisfies

1. for all v ∈ V fin, the K-span of v is finite-dimensional, and the K-action
thereon is continuous;

2. the infinitesimal K-action agrees with that of g, i.e. if y ∈ k is in the Lie
algebra of K then

π(y) · v = lim
t→0

1

t
(exp(ty)− 1) · v

3. the g-action is compatible with the adjoint action of K on g, i.e. for x ∈ g
and Y ∈ K we have

π(Y xY −1) = π(Y )π(x)π(Y )−1

Remark 2.6. A structure obeying the above conditions is referred to as a
(g,K)-module, and is termed admissible just when the K-isotypic components
of the (g,K)-module are all finite-dimensional. Notice that the notion of a
(g,K)-module features essentially no analysis or topology.

In the absence of admissibility, one can still recover a (g,K)-module by
instead taking V fin ∩ V∞, the space of all smooth K-finite vectors. However,
in general we will only obtain admissible (g,K)-modules from admissible G-
representations.

The main reason that this structure is useful to us is that it is sensitive to
the submodule structure of our representation. Specifically

Theorem 2.7 (G-submodules and (g,K)-submodules). Let (π, V ) be an admis-
sible G-representation. Then there is a bijection between closed G-subrepresentations
of V and (g,K)-submodules of V fin, given on the one hand by U 7→ Ufin =
U ∩ V fin and on the other W 7→W .

5



Proof. Proving that the operations are mutually inverse is not difficult. The
equality Ufin = U we have already seen, when we remarked that V fin was dense
in V . To prove the other equality, we may suppose that π is unitary as a
K-representation, so that the K-isotypic decomposition

V =
⊕
γ

V (γ)

is orthogonal. We can then write W = W⊥⊥, so that W (γ) = W (γ)⊥⊥ (where
we restrict the inner product to V (γ)). Yet V (γ) is finite-dimensional, so

W (γ)⊥⊥ = W (γ), and so we’ve seen W (γ) = W (γ), i.e. W
fin

= W .
The subtlety in this theorem is in proving thatW is always aG-representation.

This is true for general Lie groups, but for GL2 (or any GLn) we can remove
some of the technical details, by using the identity (Exercise 2.4.2. of Bump)

π(exp(x)) · v =

( ∞∑
0

1

r!
π(x)r

)
· v

valid whenever x ∈ g and v a smooth vector (in particular for v ∈ W ). In
particular, this directly tells us that π(exp(x)) ·W ⊆ W , so that W is stable
under the action of all exp(x), i.e. the action of the identity component GL+

2 of

GL2. To complete the proof, just note that η =

(
1 0
0 −1

)
∈ O2, so that W , and

hence W , are already stable under the action of η, and hence of all of GL2.

Corollary 2.8. An admissible G-representation is irreducible iff its associated
(g,K)-representation is.

Remark 2.9. Because of the utility of working with (g,K)-modules, we of-
ten only try to classify G-representations up to infinitesimal equivalence, i.e.
up to isomorphism of their associated (g,K)-modules. In fact, for GL2 this
doesn’t lose us anything: two GL2-representations are isomorphic iff they are
infinitesimally equivalent (although this is highly GL2-specific).

3 Classification of GL+
2 -representations

3.1 Understanding (gl2, SO2)-modules

With the theoretical machinery developed, we will be able to classify irreducible
admissible (gl2,SO2)- and (gl2,O2)-modules, and later on see that these come
from bona fide GL+

2 - and GL2-representations. Since (g,K)-modules are essen-
tially algebraic objects, we are happy to consider them as modules over U , the
universal enveloping algebra of the complexification of g. The classification will
involve a degree of (in?) computation, for which we adopt the following

6



Notation. We use the following basis of the complexification of gl2:

I =

(
1 0
0 1

)
H =

(
0 −i
i 0

)
E =

1

2

(
−i 1
1 i

)
F =

1

2

(
i 1
1 −i

)

(note that (H,E, F ) is the usual basis of sl2 conjugated by

(
i 1
1 i

)
, the same

base-change that simultaneously diagonalises SO2). We let

∆ =
−1

4

(
H2 + 2EF + 2FE

)
=
−1

4

(
H2 + 2H + 4FE

)
=
−1

4

(
H2 − 2H + 4EF

)
denote the Casimir operator, so that the centre of U is a 2-variable polynomial
ring generated by I and ∆.

Before we launch into the calculations we’ll need a preliminary lemma:

Lemma 3.1 (Schur’s lemma). Let V be an irreducible admissible (g,K)-module.
Then every endomorphism of V is given by multiplication by a scalar. In par-
ticular, the centre of U acts on V by scalars.

Proof. Exercise.

Proposition 3.2 (Preparatory calculations). Let V be an admissible (gl2,SO2)-
module. Since the irreducible representations of SO2 are just one-dimensional,

given by characters

(
cos θ sin θ
− sin θ cos θ

)
7→ eikθ for k ∈ Z, we know that

V =
⊕
k

V (k)

For all k, H acts on each V (k) by multiplication by k, and E · V (k) ⊆
V (k + 2), F · V (k) ⊆ V (k − 2).

If additionally both I and ∆ act by scalars µ, λ respectively (such a represen-
tation is called quasi-simple), then EF and FE on each V (k) by multiplication

by scalars, namely k(2−k)
4 − λ and −k(k+2)

4 − λ respectively.

Proof. The crucial calculation is that of the action of H on V (k): we know that

exp(iθH) = exp

(
0 θ
−θ 0

)
=

(
cos θ sin θ
− sin θ cos θ

)
so that for v ∈ V (k) we have

iH · v = lim
θ→0

1

θ
(exp(iθH)− 1) · v = lim

θ→0

1

θ
(eikθ − 1) · v = ikv
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so that H · v = kv. The fact that E · V (k) ⊆ V (k + 2) and F · V (k − 2) is
immediate from their commutation relations with H.

In the quasi-simple case, the calculations of the actions of EF and FE on
V (k) are immediate from the equations

−4∆ = H2 + 2H + 4FE = H2 − 2H + 4EF

and the fact that ∆ acts like the scalar λ.

Theorem 3.3 (Classification of (gl2,SO2)-modules – uniqueness). Let V be
an irreducible admissible (gl2,SO2)-module, so that (by Schur) I and ∆ act by
scalars µ, λ respectively. Then in the decomposition V =

⊕
k V (k), each V (k)

is at most one-dimensional, and the k for which V (k) 6= 0 all have the same
parity ε (called the parity of V ).

If λ is not of the form k(k − 2) for k ∈ Z of the same parity as V , then
all V (k) with k the same parity as V appear in V , and there is at most one
(gl2,SO2)-module with these parameters. We call this module Pµ(λ, ε), and if
µ = 0 refer to it as principal series.

If λ = k(k − 2) for some k ≡ ε mod 2 (we may suppose wlog k ≥ 1), then
there are three possibilities for the set Σ(V ) of l with V (l) 6= 0, namely

Σ0(k) = {l ≡ k mod 2 : −k < l < k}
Σ+(k) = {l ≡ k mod 2 : l ≥ k}
Σ−(k) = {l ≡ k mod 2 : l ≤ −l}

(note that the first is zero for k = 1). In this case, the parameters µ, k and a
choice of ∗ ∈ {0,+,−} uniquely determines V , and we call this module D∗µ(k).
If ∗ = ± we refer to this as discrete series for k > 1 and limit of discrete series
for k = 1.

Proof. Firstly, pick some v ∈ V (l0) non-zero. Then, since we know that SO2,
H, EF and FE act by scalars on all V (l), it is clear that the C-span of
{v;Ev,E2v, . . . ;Fv, F 2v, . . . } is a submodule of V , hence all of V , so we have
proven the first part (note that Er · v ∈ V (l0 + 2r) and similarly for F r · v, so
that all the V (l) appearing have the same parity).

For the second part, it follows from the calculations of the action of EF on
V (l) that in this case both E and F are invertible, and so V contains a non-
zero element in each V (l0 ± 2r) as desired. For uniqueness, we just note that
specifying that F acts invertibly and the (scalar) action of H and EF on each
V (l) in enough to reconstruct V .

For the final part, we know that EF = 0 on V (k), so that either F = 0
on V (k) or E = 0 on V (k − 2). If the former held, then we can see that⊕

l∈Σ+(k) V (l) is a submodule of V , so that it is either 0 or all of V . In other

words we see that either Σ(V ) ⊆ Σ+(k) or Σ(V ) ⊆ Σ0(k)∪Σ−(k). In the latter
case, the same argument pertaining to

⊕
l∈Σ0(k)∪Σ−(k) V (l) establishes the same

conclusion.
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Similarly, EF = 0 on V (2− k), so by the same argument Σ(V ) ⊆ Σ−(k) or
Σ(V ) ⊆ Σ0(k) ∪ Σ+(k).

We’ve seen that Σ(V ) is certainly contained in one of the Σ∗(k), but we
also know that EF acts invertibly on all other V (l) (l 6= k, 2 − k), so that
Σ(V ) = Σ∗(k).

Finally, to prove uniqueness, note that our choices specify the actions of H
and EF on each V (l), and specify exactly when E · v = 0 and when F · v = 0,
so that V is determined by these data.

3.2 GL+
2 -representations

With the preceding classification result, two questions now naturally present
themselves. Firstly, do all of these supposed (gl2,SO2)-modules actually occur?
Secondly, can all of these be produced from genuine GL+

2 -representations? It
transpires that the answer to both of these questions is “yes”, and moreover
we can produce the desired GL+

2 -representations from representations induced
from the Borel subgroup of GL+

2 (what would be called ”principal series” in the
nonarchimedean case).

To construct these representations, we fix complex numbers s1 and s2, and
a parity ε ∈ {0, 1}, which together uniquely specify a character of the Borel
subgroup by

χ :

(
a1 b

a2

)
= sgn(a1)ε|a1|s1 |a2|s2

We want to induce this character up to GL+
2 , so as to obtain a Hilbert space

representation of GL+
2 . The right way to do this is to look at the representation1

H(χ) =

{
f ∈ L2(G) : f

((
a1 b

a2

)
g

)
= sgn(a1)ε|a1|s1+ 1

2 |a2|s2−
1
2 f(g)

}
endowed with the right regular action of G and inner product

〈f1, f2〉 =

∫
K

f1(Y )f2(Y ) dY

The extra factor of |a1|
1
2 |a2|−

1
2 that has appeared comes from the module of

the Borel subgroup, and its usage makes our induction functor better behaved
– for example it will preserve unitaricity of the representation.

We can now try to analyse these representations H(χ): the important point
is that we have a strong description of a sensible basis in the following

Proposition 3.4 (Structure of H(χ)). Let V = H(χ) be as above and write
µ = s1 + s2, s = 1

2 (s1 − s2 + 1) and λ = s(1− s).
1or, more precisely, the set of all square-integrable functions satisfying the desired identity,

identifying those that agree almost everywhere
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Then the spaces V (k) are zero if k 6≡ ε mod 2, and if k ≡ ε mod 2 then they
are one-dimensional, spanned by

φk

((
a1 b

a2

)(
cos θ sin θ
− sin θ cos θ

))
= sgn(a1)ε|a1|s1+ 1

2 |a2|s2−
1
2 eikθ

Hfin(χ) is quasi-simple, with I acting like µ and ∆ acting like λ respectively.

Proof. Calculation.

Corollary 3.5 (Irreducible admissible GL+
2 -representations). There is a sym-

metry (up to isomorphism) in interchanging s1 and s2 in our definitions, so we
shall assume for simplicity that <s1 ≥ <s2, so that <s ≥ 1

2 .
In light of the preceding proposition and the earlier classification theorem, we

see that if s is not of the form k
2 where k ≡ ε mod 2, then Hfin(χ) is irreducible,

isomorphic to Pµ(λ, ε). In particular, H(χ) is an irreducible admissible GL+
2 -

representation.
If however s = k

2 where k ≡ ε mod 2, then Hfin(χ) has length three, with irre-
ducible factors Hfin

∗ (χ) for ∗ ∈ {0,+,−} isomorphic to D∗µ(k) (except that when

k = 1 the factor Hfin
0 (χ) = 0 does not appear). In particular, H(χ) has length

three (or two) as a GL+
2 -representation, with factors H∗(χ) for ∗ ∈ {0,+,−}.

Moreover, each pair λ, µ arises from a unique pair s1, s2 with <s1 ≥ <s2,
so we see that in our classification theorem, all of the identified irreducible
(gl2,SO2)-modules do actually exist, and arise from genuine GL+

2 -representations,
which we have an explicit description of. We have thus classified all irreducible
admissible GL+

2 -representations, up to infinitesimal equivalence.

Exercise. Determine which of the factors Hfin
∗ (χ) in the second case appear as

submodules or as quotients of Hfin(χ). How does this change when <s1 ≤ <s2?

4 Representations of GL2

There are now a variety of ways of extending our analysis to GL2-representations.
It is possible to do a similar study of (gl2,O2)-modules, but for our purposes it
is perhaps easier to just directly induce up representations from GL+

2 .
The key point here is the representations H(χ) can naturally have their action

extended to GL2 in two distinct ways. There are two distinct ways of lifting χ
to a character of the Borel subgroup of GL2, namely

χ1 ⊗ χ2

(
a1 b

a2

)
= sgn(a1)ε1 |a1|s1sgn(a2)ε2 |a2|s2

for some choice of ε1, ε2 ∈ {0, 1} with sum ε mod 2. We write χi = sgnεi | · |si .
Inducing this up to GL2, we obtain the representations

H(χ1, χ2) =

{
f ∈ L2(GL2) : f

((
a1 b

a2

)
g

)
= χ1(a1)χ2(a2)

(
a1

a2

) 1
2

f(g)

}
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Such an f is uniquely determined by its restriction to GL+
2 , so that H(χ1, χ2)→

H(χ) is an isomorphism of GL+
2 -representations.

To understand these representations, we consider the action of η =

(
1 0
0 −1

)
on the representation. A key observation is that (since O2 is infinite dihedral),
the action of η on the SO2-isotypic components of any (gl2,O2)-module must
interchange V (k) and V (−k).

Now in the general case (s not of the form k
2 where k ≡ ε mod 2) H(χ) is an ir-

reducible GL+
2 -representation, so H(χ1, χ2) is an irreducible GL2-representation.

In the remaining case, our calculation of the action of η tells us that it inter-
changes H±(χ) (which are submodules of H(χ) and preserves H0(χ) (which
is a quotient). Thus we have in this case two GL2-representations, namely
Dµ(k) = H−(χ) ⊕ H+(χ), and H0(χ1, χ2) = H0(χ). Again by considering the
action of η, these two are clearly irreducible (since their underlying (gl2,O2)-
modules are irreducible).

Thus we have found a large collection of irreducible admissible representa-
tions of GL2, and we want to check firstly when these are isomorphic (this
is straightforward, since most of them are already nonisomorphic as GL+

2 -
representations), and secondly that we have found all such GL2-representations
(at least up to infinitesimal equivalence). This can be done in a variety of
ways, for example either using Frobenius reciprocity, or by using a similar ar-
gument in the world of (gl2,O2)-representations to deduce that the underlying
(gl2,O2)-modules of the listed representations is a complete list of the irreducible
admissible (gl2,O2)-modules. After an argument of this form, we find

Theorem 4.1 (Classification of irreducible admissible GL2-representations).
Pick s1, s2 complex numbers with <s1 ≥ <s2 and pick ε1, ε2 ∈ {0, 1}. Denote by
χi the character sgnεi | · |si and write s = 1

2 (s1−s2 +1), µ = s1 +s2, λ = s(1−s)
and ε = ε1 + ε2. Then

• if s is not of the form k
2 where k ≡ ε mod 2, then H(χ1, χ2) is an irreducible

representation;

• if s = k
2 for some such k then H(χ1, χ2) has two irreducible factors:

H0(χ1, χ2) is finite-dimensional and appears as a quotient; and Dµ(k)
is infinite-dimensional and appears as a submodule (and is referred to as
a discrete series representation;

• if k = 1 in the above case, then note that H(χ1, χ2) = 0 and the represen-
tation Dµ(k) is referred to instead as limit of discrete series.

The above are nonisomorphic except that in the second case interchanging ε1
and ε2 does not change the representation Dµ(k), and together these constitute a
complete list of irreducible admissible representations of GL2, up to infinitesimal
equivalence (indeed isomorphism).
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