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1 Introduction

In order to begin the archimedean part of automorphic theory, we want to
understand certain infinite-dimensional irreducible representations of Lie groups
G, in particular for us the group GLs = GLy(R). Two natural strategies present
themselves.

Firstly, we could mirror the proof of the classification of supercuspidal repre-
sentations in the nonarchimedean case by examining the restriction of the rep-
resentation to a maximal compact Lie subgroup K, for instance the subgroup
O3 < GLj. The reason this seems promising is that the theory of continuous
representations of compact groups is well-understood:

Lemma 1.1 (Representations of compact groups). Let (7,V) be a continuous
representation of a compact group K on a Hilbert space. Then

1. the inner product on V may be chosen, without changing the topology, so
that the K-action is unitary;

2. should V' be irreducible, it is necessarily finite-dimensional;

3. in general, V is completely reducible: it is the closure of the (orthogonal)
direct sum of some irreducible K-subrepresentations.

Most often we will write the final condition as follows: we let () be a complete
list of (finite-dimensional) irreducible representations of K, and V() the -
1sotypic component of V.. Then

V=PVvH

The second possibility is to mimic the relationship between the represen-
tations of the Lie group and the Lie algebra found in the theory of finite-
dimensional representation theory.



Lemma 1.2 (Representations of Lie groups). Let G be a Lie group with Lie
algebra g. Then

1. any finite-dimensional continuous representation (ng, V') of G can be made
a representation of g by

mg(x) - v = }gr(l)% (mg(exp(tx)) — 1) -v

2. from this representation of g, the original representation can be recovered
on the identity component of G by

rofexp(a) v = T,
r=0 '

3. for G connected, (wg, V') is irreducible iff (wg, V) is.

Example 1.3 (Finite-dimensional representations of GL7 and GLy). Recall
(modified from the representation theory of sly) that the finite-dimensional ir-
reducible representations of gl, 22 sls x R are given by the degree k& homogenous
polynomials in z,y, with gl, action given by
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for some scalar u. A more enlightened way of phrasing this is that the irre-
ducible representations are given by Symmk (V1) ® ptr where V; is the standard
2-dimensional representation.

Exponentiating up this tells us a classification of the finite-dimensional ir-
reducible representations of the identity component of GLg, namely GL;r , the
group of positive-determinant matrices. Specifically, it tells us that its irre-
ducible representations are given by Symmk(%) ® x o det, where now Vj is
the standard 2-dimensional representation of GLj and y : R** — C* is a
quasicharacter.

Finally we need to extend this to all of GL3, i.e. we need to worry about

. 1 0
the action of n = <0 1
Symm" (V1) ® x o det by specifying that

UM f(a:,y) = j:f(:c, _y)

). However, we can always extend the action on



to produce an irreducible GLy-representation. The choice of sign can be sub-
sumed into the character x, so we have again produced irreducible represen-
tations Symm” (V1) ® x o det where now V; is the standard representation of
GLs and x : R* — C* is any character. To see that this is all irreducible
representations, one can use a straightforward Frobenius argument.

The realisation (due to Harish-Chandra) that allows us to proceed with a
classification of infinite-dimensional representations is that we need to consider
both these ideas simultaneously in order to be able to get a handle on the
behaviours involved.

2 Reduction to (g, K)-modules

The general setup we will be considering is that of a continuous action 7 by a
Lie group G on a complex Hilbert space V. We will let K be a maximal compact
subgroup (so that we may assume K, but not necessarily G, acts unitarily on
V). For our purposes though, we will only need the case when G = GLs and
K = O3 (or G = GLy and K = SO,), so not all these proofs may work in
complete generality.

From hereon, a representation of a Lie group G will always mean a continuous
representation on a Hilbert space. We may occasionally assume that the action
of a maximal compact subgroup K is unitary, since this can always be ensured.

In order to make the classification problems tractable (and because these are
many of the examples we see), we introduce the following

Definition 2.1. Let (7, V') be a representation of G. We say (w, V') is admissible
just when each K-isotypic component V() is finite-dimensional. We say that
(m, V) is drreducible just when it has no non-trivial closed invariant subspaces.

Remark 2.2. All finite-dimensional representations are admissible, as are all
irreducible unitary representations. In some sense, admissibility is the smallest
sensible property which subsumes both of these.

One problem that immediately presents us is that we can’t manufacture an
action of g on all of V. For example, L?(S') with the right regular action of S*
is a representation of the circle group, and v =3 _, rT3z" is a perfectly good
element of it, but if we try to define an action of i € iR = T(S') on v, then we
should calculate this to be

lm S r3 em;lz’” = irE
=0 r>0 t 72
which is not square-integrable.

However, we can make some headway by looking at a restricted (non-closed!)

subspace of V.



Definition 2.3. Let (7, V) be a representation of G. We define the subspace
vin— PV <V =PV
gl 2l

(the K-isotypic decomposition) so that Vi < V is dense and K-stable. Equiv-
alently, V" is the set of all vectors such that 7(K) - v only spans a finite-
dimensional subspace (such vectors are called K-finite).

Proposition 2.4 (Smoothness of K-finite vectors). Let (w, V) be an admissible
representation of G, and let v € V' be a K-finite vector. Then the map G — V'
given by X — w(X)-v is smooth, i.e. it is infinitely differentiable. Such a vector
is referred to as a smooth wector.

Sketch proof, see also Bump Proposition 2.4.5: Recall that C°(G) acts on V

by
v—/f v dX

where the integral is taken in the sense of Riemann with respect to left Haar
measure. The vectors 7(f)-v are always smooth (their derivatives can be written
down explicitly in terms of those of f).

On the other hand, if we let x : K — C be the character associated to the
irreducible K-representation v, i.e. x(Y) = dim(y)tr(y(Y)), then the vector

/ XY DY) v dY
K

always lies in V(). This is the compact group version of the idempotent de-
composition.

These two identities can be combined usefully. Let ¢g € C°(G) and let
¢ = X *K ¢o be the convolution, i.e.

H(X) = /K WY )bo(XY) dY

so that ¢ is also C*° and compactly supported (it’s supported in supp(¢g)K).
Now we have the identity

w(qs)-v—/(/( Don(X 1Y) ¥ ) n(x) - X

X W)r(X) v dX dY

= L
- /K/Gx(Y‘ )po(Z (Y Z) v dZ dY
/KX(Y*WY) ~ ( /G 60(2~1)m(2) - u> ay



From the top line we see that w(¢)-v is always smooth, and from the bottom
line we see that it is always in V(). If now v € V() itself, then we shall choose
some delta-sequence of ¢y (i.e. positive smooth functions of integral 1 whose
support shrinks to {1}). Then we see that 7(¢1) - v — v, so

7(¢) - v — /KX(Y_I)w(Y) v dY =w

so we see that v is a limit of smooth vectors in V(). In other words, the smooth
vectors in V() are dense, so that every vector in V(y) is smooth, since it is
finite-dimensional. This concludes the proof. O

Corollary 2.5 (g-action on K-finite vectors). Let (mw, V) be an admissible rep-
resentation of G. Then g acts on V™ by the formula

1
m(x) v = }gr(l) n (exp(tz) —1)-v

VA 45 g-stable with this action (though it needn’t be G-stable!) and satisfies

1. for all v € Vi, the K-span of v is finite-dimensional, and the K -action
thereon is continuous;

2. the infinitesimal K-action agrees with that of g, i.e. if y € € is in the Lie
algebra of K then

1
n(y) v = lim 5 (explty) = 1) v

3. the g-action is compatible with the adjoint action of K on g, i.e. forx € g
and Y € K we have

7YY ') = n(Y)r(z)r(Y) ™

Remark 2.6. A structure obeying the above conditions is referred to as a
(g, K)-module, and is termed admissible just when the K-isotypic components
of the (g, K)-module are all finite-dimensional. Notice that the notion of a
(g, K)-module features essentially no analysis or topology.

In the absence of admissibility, one can still recover a (g, K)-module by
instead taking V" N 17°°, the space of all smooth K-finite vectors. However,
in general we will only obtain admissible (g, K)-modules from admissible G-
representations.

The main reason that this structure is useful to us is that it is sensitive to
the submodule structure of our representation. Specifically

Theorem 2.7 (G-submodules and (g, K')-submodules). Let (m, V') be an admis-
sible G-representation. Then there is a bijection between closed G-subrepresentations
of V and (g, K)-submodules of V", given on the one hand by U — U™ =
UNVi and on the other W+ W.



Proof. Proving that the operations are mutually inverse is not difficult. The
equality Ufin = U we have already seen, when we remarked that V" was dense
in V. To prove the other equality, we may suppose that 7 is unitary as a
K-representation, so that the K-isotypic decomposition

V=V

is orthogonal. We can then write W = W+, so that W(vy) = W(y)++ (where
we restrict the inner product to V(v)). Yet V(y) is finite-dimensional, so

W(y)*+ = W (y), and so we've seen W () = W (y), i.e. W= w.

The subtlety in this theorem is in proving that W is always a G-representation.
This is true for general Lie groups, but for GLy (or any GL,,) we can remove
some of the technical details, by using the identity (Exercise 2.4.2. of Bump)

o0

m(exp(x))-v = <Z :'W(gc)’> v

0

valid whenever z € g and v a smooth vector (in particular for v € W). In
particular, this directly tells us that w(exp(z)) - W C W, so that W is stable
under the action of all exp(z), i.e. the action of the identity component GL3 of
GL3. To complete the proof, just note that n = <(1) _01) € Og, so that W, and
hence W, are already stable under the action of 1, and hence of all of GL,. [

Corollary 2.8. An admissible G-representation is irreducible iff its associated
(g, K)-representation is.

Remark 2.9. Because of the utility of working with (g, K)-modules, we of-
ten only try to classify G-representations up to infinitesimal equivalence, i.e.
up to isomorphism of their associated (g, K)-modules. In fact, for GLg this
doesn’t lose us anything: two GLs-representations are isomorphic iff they are
infinitesimally equivalent (although this is highly GLg-specific).

3 Classification of GL]-representations

3.1 Understanding (gl,, SO;)-modules

With the theoretical machinery developed, we will be able to classify irreducible
admissible (gly, SO2)- and (gl,, O2)-modules, and later on see that these come
from bona fide GL3 - and GLg-representations. Since (g, K)-modules are essen-
tially algebraic objects, we are happy to consider them as modules over U, the
universal enveloping algebra of the complexification of g. The classification will
involve a degree of (in?) computation, for which we adopt the following



Notation. We use the following basis of the complexification of gl,:
10
0 1
0 —i
i 0
1/—i 1
=3 ( 1 z>

I =

H

1

1.>, the same
1

(note that (H, E, F) is the usual basis of sly conjugated by <

base-change that simultaneously diagonalises SO5). We let
-1 -1 -1
A= (H*+2BF 4 2FE) = —= (H? + 2H + 4FF) = —= (H* = 2H + 4EF)

denote the Casimir operator, so that the centre of I is a 2-variable polynomial
ring generated by I and A.

Before we launch into the calculations we’ll need a preliminary lemma:s:

Lemma 3.1 (Schur’s lemma). Let V' be an irreducible admissible (g, K)-module.
Then every endomorphism of V is given by multiplication by a scalar. In par-
ticular, the centre of U acts on V' by scalars.

Proof. Exercise. O

Proposition 3.2 (Preparatory calculations). Let V' be an admissible (gly, SO2)-
module. Since the irreducible representations of SOy are just one-dimensional,

cos 6 s1n0) — e for k € Z, we know that

given by characters ( sinf cosb

V=V
k

For all k, H acts on each V(k) by multiplication by k, and E - V (k) C
V(k+2), F-V(k) CV(k—2).

If additionally both I and A act by scalars j, A respectively (such a represen-
tation is called quasi-simple), then EF and FE on each V (k) by multiplication

by scalars, namely @ — A and —W — A\ respectively.
Proof. The crucial calculation is that of the action of H on V(k): we know that

exp(i0H) = exp (09 (9)> = <Ccs)isn90 :LI;Z) so that for v € V (k) we have

. o1 : T .
zH-v—;lg(l)g(exp(zﬁH) 1) v—glg(l)g(e 1) v =rikv



so that H - v = kv. The fact that -V (k) C V(k+2) and F - V(k — 2) is
immediate from their commutation relations with H.

In the quasi-simple case, the calculations of the actions of EF and F'E on
V (k) are immediate from the equations

—4A = H> + 2H + AFE = H?> — 2H + 4EF
and the fact that A acts like the scalar . O

Theorem 3.3 (Classification of (gly, SO2)-modules — uniqueness). Let V' be
an irreducible admissible (gly, SOz)-module, so that (by Schur) I and A act by
scalars pi, X respectively. Then in the decomposition V- = @, V(k), each V (k)
is at most one-dimensional, and the k for which V (k) # 0 all have the same
parity € (called the parity of V).

If X is not of the form k(k — 2) for k € Z of the same parity as V, then
all V(k) with k the same parity as V appear in V, and there is at most one
(gly,S802)-module with these parameters. We call this module P, (), ¢€), and if
w =0 refer to it as principal series.

If A = k(k — 2) for some k = ¢ mod 2 (we may suppose wlog k > 1), then
there are three possibilities for the set (V) of I with V(1) # 0, namely

YOk)={l=k mod2: —k <1<k}
YHk)={l=k mod2:1>k}
STk)y={l=kmod2:1< -1}

(note that the first is zero for k = 1). In this case, the parameters p, k and a
choice of * € {0, +, —} uniquely determines V', and we call this module Dy, (k).
If x = + we refer to this as discrete series for k > 1 and limit of discrete series
fork=1.

Proof. Firstly, pick some v € V(ly) non-zero. Then, since we know that SO,
H, EF and FE act by scalars on all V(l), it is clear that the C-span of
{v; Bv, E?v,...; Fv, F?v,...} is a submodule of V, hence all of V, so we have
proven the first part (note that E” -v € V(lp + 2r) and similarly for F" - v, so
that all the V(1) appearing have the same parity).

For the second part, it follows from the calculations of the action of EF on
V(1) that in this case both E and F are invertible, and so V contains a non-
zero element in each V(lp & 2r) as desired. For uniqueness, we just note that
specifying that F' acts invertibly and the (scalar) action of H and E'F on each
V(1) in enough to reconstruct V.

For the final part, we know that EF = 0 on V(k), so that either F = 0
on V(k) or E = 0 on V(k — 2). If the former held, then we can see that
Dics+ ) V() is a submodule of V', so that it is either 0 or all of V. In other
words we see that either (V) C X7 (k) or (V) C X%(k) UL~ (k). In the latter
case, the same argument pertaining to @leZO(k)UE*(k) V(1) establishes the same
conclusion.



Similarly, EF =0 on V(2 — k), so by the same argument (V) C ¥~ (k) or
(V) C20%k)ust(k).

We've seen that X(V) is certainly contained in one of the X*(k), but we
also know that EF acts invertibly on all other V(1) (I # k,2 — k), so that
(V) = E*(k).

Finally, to prove uniqueness, note that our choices specify the actions of H
and EF on each V (1), and specify exactly when F -v = 0 and when F - v = 0,
so that V' is determined by these data. O

3.2 GLj-representations

With the preceding classification result, two questions now naturally present
themselves. Firstly, do all of these supposed (gly, SO2)-modules actually occur?
Secondly, can all of these be produced from genuine GLJ -representations? It
transpires that the answer to both of these questions is “yes”, and moreover
we can produce the desired GL;‘—representations from representations induced
from the Borel subgroup of GL3 (what would be called ”principal series” in the
nonarchimedean case).

To construct these representations, we fix complex numbers s; and so, and
a parity € € {0,1}, which together uniquely specify a character of the Borel
subgroup by

a b
X: < 1 > = sgn(ay)la1|**|az|*
as

We want to induce this character up to GL;"7 so as to obtain a Hilbert space
representation of GL3 . The right way to do this is to look at the representation®

1

a0 ={rez@r((" 1)) =smlelal il o)

az

endowed with the right regular action of G and inner product
(hote) = [ £OVET) ay
K

The extra factor of |a;|2|az|~2 that has appeared comes from the module of
the Borel subgroup, and its usage makes our induction functor better behaved
— for example it will preserve unitaricity of the representation.

We can now try to analyse these representations $)(x): the important point
is that we have a strong description of a sensible basis in the following

Proposition 3.4 (Structure of $H(x)). Let V = $H(x) be as above and write
= S1 + So, 32%(51—824—1) and A = s(1 —s).

Lor, more precisely, the set of all square-integrable functions satisfying the desired identity,

identifying those that agree almost everywhere



Then the spaces V (k) are zero if k £ € mod 2, and if k = € mod 2 then they
are one-dimensional, spanned by

b 0 sing o
¢k<(a1 a2> <—C(s)isne 329))8@(@ jay |+ 3|ag|*~ 3 Tk

ﬁﬁ“(x) is quasi-simple, with I acting like 1 and A acting like X respectively.
Proof. Calculation. O

Corollary 3.5 (Irreducible admissible GLj—representations). There is a sym-
metry (up to isomorphism) in interchanging s1 and so in our definitions, so we
shall assume for simplicity that Rs; > Rsa, so that RNs > %

In light of the preceding proposition and the earlier classification theorem, we
see that if s is not of the form g where k = € mod 2, then H(x) is irreducible,
isomorphic to P,(\€). In particular, $(x) is an irreducible admissible GL3 -
representation.

If however s = % where k = € mod 2, then $H°(x) has length three, with irre-
ducible factors H(x) for x € {0, +, =} isomorphic to Dj,(k) (except that when
k = 1 the factor Hi%(x) = 0 does not appear). In particular, H(x) has length
three (or two) as a GL3 -representation, with factors $1.(x) for * € {0, +, —}.

Moreover, each pair X\, arises from a unique pair si,Ss with Ns; > RNsa,
so we see that in our classification theorem, all of the identified irreducible
(gly, SO2)-modules do actually exist, and arise from genuine GLJ -representations,
which we have an explicit description of. We have thus classified all irreducible
admissible GL;‘-representations, up to infinitesimal equivalence.

Exercise. Determine which of the factors $i"(y) in the second case appear as
submodules or as quotients of ﬁﬁn(x). How does this change when Rs; < Rso?

4 Representations of GL,

There are now a variety of ways of extending our analysis to GLa-representations.
It is possible to do a similar study of (gly, O2)-modules, but for our purposes it
is perhaps easier to just directly induce up representations from GL; .

The key point here is the representations () can naturally have their action
extended to GLg in two distinct ways. There are two distinct ways of lifting x
to a character of the Borel subgroup of GL2, namely

a1

b
e (" 0] = st ol senlan) oo

for some choice of €1, es € {0,1} with sum € mod 2. We write x; = sgn®| - |*.
Inducing this up to GL2, we obtain the representations

900 x2) = {f e 1 (M 2)9) = oo (2 f(g)}

10



Such an f is uniquely determined by its restriction to GL3, so that $(x1, x2) —
$(x) is an isomorphism of GLj -representations.

1 0

0 -1
on the representation. A key observation is that (since Og is infinite dihedral),
the action of n on the SOq-isotypic components of any (gly, O2)-module must
interchange V (k) and V(—k).

Now in the general case (s not of the form & where k = e mod 2) $(y) is an ir-
reducible GLQF -representation, so 9(x1, x2) is an irreducible GLa-representation.
In the remaining case, our calculation of the action of 7 tells us that it inter-
changes $+(x) (which are submodules of $(x) and preserves $o(x) (which
is a quotient). Thus we have in this case two GLg-representations, namely
D,u(k) = H-(x) ® H+(x), and Ho(x1,x2) = Ho(x). Again by considering the
action of 7, these two are clearly irreducible (since their underlying (gly, O2)-
modules are irreducible).

Thus we have found a large collection of irreducible admissible representa-
tions of GLg, and we want to check firstly when these are isomorphic (this
is straightforward, since most of them are already nonisomorphic as GL;—
representations), and secondly that we have found all such GLs-representations
(at least up to infinitesimal equivalence). This can be done in a variety of
ways, for example either using Frobenius reciprocity, or by using a similar ar-
gument in the world of (gly, O2)-representations to deduce that the underlying
(gly, O2)-modules of the listed representations is a complete list of the irreducible
admissible (gly, O2)-modules. After an argument of this form, we find

To understand these representations, we consider the action of n =

Theorem 4.1 (Classification of irreducible admissible GLq-representations).
Pick s1, 82 complex numbers with Rsy > Rsy and pick €1, €2 € {0,1}. Denote by

Xi the character sgn®|-|% and write s = 1 (s1 —sa+1), 1= s1+52, A = s(1—s)
and € = €1 + €. Then

e if s is not of the form g where k = € mod 2, then $(x1, x2) is an irreducible
representation;

o if s = % for some such k then $H(x1,x2) has two irreducible factors:
$o(X1,x2) is finite-dimensional and appears as a quotient; and D, (k)
is infinite-dimensional and appears as a submodule (and is referred to as
a discrete series representation;

e if k =1 in the above case, then note that H(x1, x2) = 0 and the represen-
tation ®,(k) is referred to instead as limit of discrete series.

The above are nonisomorphic except that in the second case interchanging €1
and ez does not change the representation ©,,(k), and together these constitute a
complete list of irreducible admissible representations of GLa, up to infinitesimal
equivalence (indeed isomorphism,).
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