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Preliminaries remarks on representations: the algebraic case

G/K reductive algebraic group over an algebraically closed field K
of characteristic zero.

The Borel-Weil-Bott theorem classifies algebraic representations of
G , that is, algebraic homomorphisms

ρ : G - Aut(V ),

where V is a finite-dimensional K -vector space.

In fact, suffices to classify irreducible ones, since G is reductive
(e.g. GLn).



Preliminary remarks on representations: the algebraic case

Let T ⊂ B ⊂ G be a maximal torus and a Borel subgroup (e.g.
Gn

m ⊂ {upper triangular matrices} ⊂ GLn).

Because B ' U o T , any character

χ : T - Gm

or weight can be extended to B .

Define
Vχ := {f : G - V | f (bg) = χ(b)f (g)}.

Then Vχ has a G -action defined by

f g (h) = f (hg).

Here, f is required to be algebraic. Thus, this construction could be
called algebraic induction.



Preliminary remarks on representations: the algebraic case

BWB theorem:

Suppose χ is a dominant weight. Then Vχ is a non-zero irreducible
representation. All irreducible representations are obtained this way.
If χ 6= χ′ are dominant, then Vχ is not isomorphic to Vχ′ .

Thus, the set of irreducible reps of G are parametrized by X ∗(T )+,
the set of dominant weights of T .

Example: G = GLn.

χ =
∏
i

twi
i : Gn

m
- Gm

is dominant if w1 ≥ w2 ≥ · · · ≥ wn,



Preliminary remarks on representations: some notation

T : torus.

The weight lattice X ∗(T ) denotes the group of characters

T - Gm.

The coweight lattice X∗(T ) denotes the group of cocharacters

Gm
- T .

Note that there is a pairing

〈·, ·〉 : X ∗(T )× X∗(T ) - Z.

Remark: T = Spec(K [X ∗(T )]).



Preliminary remarks on representations: some notation

The roots Φ ⊂ X ∗(T ) of G are the characters appearing in the
representation of T on g = LieG .

One can define a set coroots Φ∗ ⊂ X∗(T ) together with a bijection

Φ ' Φ∗,

α 7→ α∗

such that sα(x) = x − 〈x , α∗〉α is a reflection of the weight lattice.

The quadruple
(X ∗(T ),Φ,X∗(T ),Φ∗)

is the root datum of G .



Preliminary remarks on representations: some notation

Example:
G = GLn.
X ∗(T ) ' Zn, Φ = {ei − ej}.
X∗(T ) ' Zn, Φ∗ = {ei − ej}.

In general, B determines a notion of positivity for roots via

b = t⊕α∈Φ+ gα,

as well as a notion of dominance:
A weight χ is dominant if

〈χ, α∗〉 ≥ 0

for all positive α.



Preliminary remarks on representations: alternative
description of the parametrisation

The Weyl group
W = N(T )/T

acts on X ∗(T ) by conjugation, and for every weight χ, there is a
unique dominant weight in its W orbit.

That is, we can identify the set of dominant weights with the W
orbits in X ∗(T ), which then gives another description of the
parameter space for representations.

The dual torus T ∗ is defined as

T ∗ = Spec(K [X∗(T )]).

Thus,
X ∗(T ∗) = X∗(T ); X∗(T

∗) = X ∗(T ).



Preliminary remarks on representations: alternative
description of the parametrisation

So representations of G are parametrized by W orbits of
homomorphisms

Gm
- T ∗.

In fact, there is a Langlands dual group G ∗ ⊃ T ∗ such that the
root datum for G ∗ is

(X∗(T ),Φ∗,X ∗(T ),Φ)

and W = N(T ∗)/T ∗.

The union of the conjugates of T ∗ are exactly the semi-simple
elements [G ∗]ss of G ∗. Thus, we can view the representations as
being parametrized by G ∗-orbits of homomorphisms

Gm −→ [G ∗]ss .

Denote a homomorphism corresponding to the representation ρ by
`(ρ).



Preliminary remarks on representations: ‘functoriality’

Algebraic functoriality:

For reductive groups G1 and G2, a homomorphism

f : G ∗1 - G ∗2

induces a transfer
ρ 7→ f∗(ρ)

from irreducible representations of G1 to irreducible representations
of G2

Gm
`(ρ)

- [G ∗1 ]ss
f
- [G ∗2 ]ss .



Preliminary remarks on representations: ‘functoriality’

A subtle point:

Suppose G is define over a number field F and we are interested in
F -rational representations

ρ : G - Aut(V ).

Clearly, we need to start with a χ defined over F to get Vχ defined
over F . Thus, we need to consider the action of ΓF := Gal(F̄/F ) on

(X ∗(T ),Φ,X∗(T ),Φ∗).

This induces an action on G ∗/F̄ , and it becomes useful to consider
the L-group

LG = G ∗ o ΓF .



Langlands functoriality: big picture

G/F reductive algebraic group over a number field F . We are
interested in complex automorphic representations of G (AF ).

We will also denote G (AF ) by just G and the set of isomorphism
classes of irreducible automorphic representations of G by

A(G ).

Goal (fantasy): Parametrize automorphic representations of G via
conjugacy classes of admissible homomorphisms

L - LG (C) = G ∗(C) o ΓF ,

where L is the Langlands group.
If G is quasi-split, then every continuous algebraic homomorphism
should be admissible.



Langlands functoriality: big picture

The Langlands group is supposed the have quotient groups as
follows:

L -- GM
-- ΓF ,

where GM is the motivic Galois group over F .

Thus, Galois representations

ΓF
- GLn(C)

and more general motives

GM
- GLn(C)

over F are supposed to have automorphic representations

L - GLn(C)

of GLn(AF ) associated to them.



Langlands functoriality: big picture

If the goal were realized, then given a homomorphism

f :L G1 - LG2,

the parameter
L - LG1,

for any automorphic representation could be composed

L - LG1
f- LG2.

Langlands Functoriality

A homomorphism f :L G1 - LG2 with G2 quasi-split, induces a
map

f∗ : A(G1) - A(G2).



Langlands functoriality: big picture

Examples include

– Jacquet Langlands correspondence: G1 = D∗ for a quaternion
algebra D and G2 = GL2.

– Base-change.

–Symmetric powers: f : GL(V ) - GL(Symk(V )), e.g.
GL2 - GLk+1.



Big picture: small improvement
Break up G (AF ) as

′∏
v

G (Fv ).

Representation π ∈ A(G ) can be written as a restricted tensor
product

π ' ⊗′vπ(v),

where π(v) is an admissible representation of Gv = G (Fv ) and
most of them are unramified.

Local Langlands correspondence

Proposes to parametrize admissible representations of G (Fv ) in
terms of admissible homomorphisms

WDv
- LG (C),

where WDv is the Weil-Deligne group of Fv .



Local Langlands correspondence: a few definitions

A representation
π : Gv

- Aut(V )

on a complex vector space V is admissible if

(1) For any compact open subgroup J ⊂ Gv , V J is
finite-dimensional.

(2) For any v ∈ V , the stabilizer of v is open in Gv .



Local Langlands correspondence: a few definitions
The Weil group of Fv is

Wv = Ivσ
Z ⊂ Gal(F̄v/Fv ),

where Iv is the inertia subgroup and σ is a Frobenius element.

Topologize as Wv ' IFv o Z. Note that

W ab ' I abFv
× Z ' O∗v × Z ' F ∗v .

The Weil-Deligne group is

WDv = Ga oWFv ,

where w ∈WFv acts on Ga by

wx = |w |x .

Here, | · |, the norm on WFv , is defined by

WFv
- W ab

Fv
' F ∗v - qZ,

where q = |Ov/mv |.



Local Langlands correspondence: a few definitions

A homomorphism ρ : WDv
- LG is admissible if

(1)
WDv

- LG - ΓF

is the composition

WDv
- Wv ↪→Gal(F̄v/Fv )↪→ΓF .

(2) ρ is continuous;
(3) ρ(Ga) is unipotent;
(4) ρ(σ) is semi-simple;
(5) A certain relevance condition having to do with the field of
definition of parabolic subgroups. (Ignore for quasi-split groups.)



Local Langlands correspondence: a few definitions

An admissible ρ is in bijection with pairs

(φ,N)

in G ∗ such that φ is semi-simple, N is nilpotent, and

φNφ−1 = qN.



Local Langlands correspondence for GLn

There is a bijection:

Irreducible admissible representations π of GLn(Fv )

l

Admissible homomorphisms ρ : WDv
- GLn(C) .

l

(φ,N) ∈ GLn(C), φ semi-simple, N nilpotent, φNφ−1 = qN .

Denote by (φ(π),N(π)) the pair, the Langlands parameter
corresponding to an admissible representation π.

For a general group, one Langlands parameter is supposed to
correspond to several admissible representations, an L-packet.



Local Langlands correspondence: a few definitions

Remark:

A continuous l-adic Galois representation

Gal(F̄v/Fv ) - GLn(Q̄l)

gives rise to a complex WD representation. When it arises from H1

of a variety, it is admissible. Hence, there is a corresponding
admissible representation of GLn(Fv ).



Local Langlands correspondence: Examples

n = 1.

The objects are supposed to be irreducible admissible reps of
GL1(Fv ) = F ∗v and continuous homomorphisms Wv

- GL1(C),
which all factor to W ab

v
- C∗.

But irreducible admissible reps of F ∗v are necessarily 1-dim, so the
correspondence in this case reduces to local class field theory
W ab

v ' F ∗v .

Note that for F ∗v , the admissible 1-dim reps are those characters
χ : F ∗ - C∗ such that χ(1 + mn

v ) = 1 for some n.

Also, for any GLn(Fv ), we have the admissible rep

χ ◦ det .



Local Langlands correspondence: Examples

For n = 2, need to construct a substantial family of admissible
representations of Gv .

K = GL2(OV )
Jn = I + tnvM2(Ov ), where tv ∈ mv ⊂ Ov denotes a generator of
the maximal ideal.
T : diagonal matrices
B : upper-triangular matrices.
U: (identity)+(strictly upper-triangular).
Thus, B = U o T . Also Gv = BK .
For

b =

(
a b
0 c

)
,

δ(b) = |a/c |1/2.



Local Langlands correspondence: Examples

From χ1, χ2, two admissible characters of F ∗v , we can form the
character χ = χ1χ2 of T and hence B .

Then P(χ1, χ2) consists of the locally constant functions

f : Gv
- C

such that
f (bg) = χ(b)δ(b)f (g).

The action of Gv is defined by (gf )(h) = f (hg).



Local Langlands correspondence: Examples

Theorem
P(χ1, χ2) is an admissible representation.

Proof.
P(χ1, χ2) injects by restriction into the locally constant functions
on K . Since K is compact, for each f , there is an open J such that
f is constant on the left coset of J. Hence, f is fixed by J.

On the other hand, for any open J, let f ∈ P(χ1, χ2)J . Then f |K
factors through K/J, which is finite. Thus, P(χ1, χ2)J is
finite-dimensional.



Local Langlands correspondence: Examples
In fact, P(χ1, χ2) is irreducible if χ1/χ2 6= | · |±1. We then denote
the representation by π(χ1, χ2). Call these the principal series.

If χ1/χ2 = | · |, then

P(χ1, χ2) = P(χ| · |1/2, χ| · |−1/2) ' P(| · |1/2, | · |−1/2)⊗ (χ ◦ det).

Similarly, if χ1/χ2 = | · |−1, then

P(χ1, χ2) = P(χ| · |−1/2, χ| · |1/2) ' P(| · |−1/2, | · |1/2)⊗ (χ ◦ det).

The representation P(| · |1/2, | · |−1/2) has an irreducible quotient by
a one-dim subspace, called the Steinberg representation, denoted

St.

Similarly, P(| · |−1/2, | · |1/2) has a one-dim quotient and an
irreducible subspace also isomorphic to St. Thus, we get a
collection of special irreducible representations

π(χ) = St ⊗ (χ ◦ det).



Local Langlands correspondence: Examples

There is another family of supercuspical representations for Gv that
do not occur in the principal series in any way. They correspond to
admissible characters χ of L∗, where L/Fv is a quadratic extension,
where χ is required not to come from F ∗v .



Local Langlands correspondence: Examples

The Langlands correspondence in this case works as follows:

1. χ ◦ det corresponds to χ| · |1/2 ⊕ χ| · |−1/2 .

2. π(χ1, χ2) for χ1/χ2 6= | · |±1 correspond to the rep. χ1 ⊕ χ2 of
Wv , (N = 0).

3. St ⊗ (χ ◦ det) corresponds to χ⊕ χ| · | with N =

(
0 1
0 0

)
,

4. The supercuspidal representation associated to a character χ of
L∗ corresponds to IndWv

Wv (L).



Local Langlands correspondence: Examples

V = TlE ⊗Qp: Galois representation corresponding to an elliptic
curve E over Q.

l-adic representation of Gal(Q̄p/Qp);

- admissible represention WDp
- GL2(C);

- admissible representation π of GL2(Qp).



Local Langlands correspondence: Examples

Facts:

(1) π is an unramified principal series iff E has good reduction at p.

(2) π is special iff E has potentially semi-stable reduction at p;

(3) π is unramified special iff E has semi-stable reduction at p;

(4) π is ramified principal or supercuspidal iff E has bad but
potentially good reduction at p.

(4’) π is a ramified principal series iff E has good reduction over an
abelian extension of Qp.



Local Langlands correspondence: Examples

Even for a fairly general group G , there is one family of
representations relatively easy to parametrize.

These are the unramified representations. That is, we assume
K ⊂ Gv is a hyperspecial subgroup, i.e., like GLn(Ov ) ⊂ GLn(Fv ).

An irreducible representation V is unramified if VK 6= 0. In fact,
VK must be an irreducible representation of the spherical Hecke
algebra H(Gv ,K ) consisting of locally constant functions on G that
are bi-invariant under K .

Thus, V determines

c : H(G ,K ) - C∗

and is determined by it.



Local Langlands correspondence: Examples

But in fact,
H(G ,K ) ' C[X∗(T )]W .

To get a sense of this when G = GLn, note the Cartan
decomposition

GLn(Fv ) = ∪wKwK ,

where w consists of matrices of the form

w = diag(tw1
v , tw2

v , . . . , twn
v )

with
w1 ≥ w2 · · · ≥ wn.



Local Langlands correspondence: Examples

Thus,

unramified representations V of Gv are in bijection with

algebra homomorphisms H(Gv ,K ) - C, which are in bijection
with

algebra homomorphisms C[X∗(T )]W - C, which are in bijection
with

points of T ∗/W , which are in bijection with

conjugacy classes of semi-simple elements in G ∗.



Back to global conjectures

Recall that the functoriality conjecture proposes that

f :L G1 - LG2

induces a map
f∗ : A(G1) - A(G2)

as least for G2 quasi-split.

How to think of this in absence of Langlands group?



Back to global conjectures

Given an automorphic rep π1 of G1, can associate a family of local
admissible reps

(π1(v)) ∈
′∏
v

A([G1]v )

Thus, get a collection of Langlands parameters

(φ(π1(v)),N(π1(v))),

in G ∗1 .

Using f , we then get a collection

(f (φ(π1(v))), f (N(π1(v)))

of Langlands parameters in G ∗2 .



Back to global conjectures

We would like to know that (f (φ(π1(v))), f (N(π1(v))) corresponds
to a global π2 ∈ A(G2).

This might follow from converse theorems.

-Hecke

-Weil

-Cogdell, Piatetskii-Shapiro, H. Kim

-Applications to functoriality due to Cogdell, Piatetskii-Shapiro,
Shahidi, H. Kim



Back to global conjectures

That is, if r : GL - GLn(C) is a representation and π(v) is a
local admissible rep, then have an L-function

L(π(v), r , s) = det(I − q−sv r(φ(π(v)))|E r(N(π(v)))−1.

Conjecture: If ∏
v

L(π(v), r , s)

is nice for every r , then the collection π(v) comes from a global
representation. (See, for example, the conjecture of
Piatetskii-Shapiro.)



Back to global conjectures

However, the transfer f∗ preserves local L-functions, that is, for a
representation

r :L G2 - GLn(C)

of LG2,
r ◦ f :L G1 - GLn(C)

is a representation of LG1.



Back to global conjectures

Furthermore,

L(π1(v), r ◦ f , s) = L(f∗(π1(v)), r , s).

So, nice properties for ∏
v

L(f∗(π1(v))), r , s)

should follow from those for∏
v

L(π1(v)), r ◦ f , s) = L(π1, r , s).



Back to global conjectures

That is, we are supposed to have something like a fiber product
diagram

A(G )
L
- Nice entire functions

′∏
v

A(Gv )

?

L
- Euler products

?



Back to global conjectures

A(G1) A(G2)
L
- Nice entire functions

′∏
v

A(Gv )

?

f∗-
∏
v

A(Gv )

?
L

- Euler products
?



Back to global conjectures

A(G1)
f∗- A(G2)

L
- Nice entire functions

′∏
v

A(Gv )

?

f∗-
′∏
v

A(Gv )

?

L
- Euler products

?



Back to global conjectures

In practice, Langlands expects the implication to go the other way:
Use functoriality to show that general automorphic L-functions are
nice.

He also seems to place much more hope in the trace formula
approach to functoriality than converse theorems.



Motivation: Diophantine geometry

X/F variety.
We would like to understand

X (F ) ⊂ X (AF ).

Construct a family of motives parametrized by X :

Z - X

A point (xv ) ∈ X (AF ) gives a family of motives (Zxv ) over AF .

If (xv ) = x ∈ X (F ), then there is a global motive Zx such that
Zxv = Zx ⊗ Fv .

So the local-to-global principle becomes encoded into the problem
of whether or not the adelic collection (Zxv ) is global.



Motivation: Diophantine geometry
If all of Langlands work out, there is a reductive group G (for
example GLn) and for each Zxv an admissible representation π(v)
of Gv .

But then, if (xv ) = x ∈ X (F ), then there should be a global
automorphic π corresponding to it.
That is, we get the following kind of obstruction theory

X (F ) - A(G ) - Nice entire functions

X (AF )
?

-
′∏
v

A(Gv )

?

- Euler Products
?

Currently, desirable to generalize Z to a family of mixed motives.
But then, the automorphic theory doesn’t work so well, so needs to
be generalized to non-reductive groups.



Motivation from Diophantine geometry

More precisely, the Langlands-Hasse-Weil diagram is supposed to
be like

{global pure motive} - Nice entire functions

{family of local pure motives}
?

- Euler products
?

What we more or less understand is the situation where M is a
global motive and we would just like to understand the extensions
Ext(1,M). Then we know an obstruction theory for

Ext(1,M) -
′∏
Extv (1,M) ........-



Motivation: Diophantine geometry

Would like an amalgamation like

{global mixed motives} - ?

{family of local mixed motives}
?

- ?
?


