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These are the notes for the first two talks at the Gross—Zagier seminar at Oxford, October 2018. They
were hastily written, and poorly proofread. I would be grateful for any corrections or suggestions! In this
talk, we will give a very friendly introduction to the objects and statements involved in the theorem of
Gross—Zagier, based on one single example. This is essentially what is done in [Zag85|]] where the elliptic
curve |37 . allis investigated. To make sure we do not get lulled into a false sense of understanding by
following Zagier’s computations, we will instead consider the curve 61 . a1 and do all the computations
from scratch.

The notes are structured around the computation of this example, and the aim is to introduce some of the
main objects involved in the work of Gross—-Zagier and Gross-Kohnen-Zagier guided by our excursions
around 61.a1, Whenever some object is introduced, we take the time to define everything precisely,
and assume little to no familiarity with the subject. During the talk, definitions will be inserted as they
are needed, but for the purpose of a smooth narrative, they have been collected in the appendices in this
document.

1. THE ELLIPTIC CURVE F =61 .a1 AND ITS L-SERIES

Let us consider the elliptic curve with Weierstrafy equation
(1) E:ytay=a®—22+1

which has label |61 . a1|in Cremona’s database. Clearly, it is defined over Q, and its conductor is 61. We
will now study some invariants of this elliptic curves over various base fields.
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1.1. The curve F over C. We now compute some of the invariants of the curve E over C, most impor-
tantly its periods, which we do numerically. First, the variable transformation y — 2y + x gives us the
following model for E:

(2) E:y? =42+ 2% -8z +4

Now let us compute approximate generators for the lattice of periods A. The cubic polynomial on the right
hand side of the model (2) has precisely one real root, which is approximately

3) v = —1.73497012425858
R):

and we get the following picture of E(

-4 2 0 2 4

FIGURE 1. The set F(R) for the model y? = 423 + 2% — 8z + 4

On the minimal Weierstrafl model (1), the Néron differential is dz /(2y + z), which is the differential dz/y
in the model (2). We now compute numerically that
O = 2 / da
(4) Y VA3 + 22 —8xr+4
~ 6.13319314839454

is an approximation of the real period of E. Likewise, we may compute the complex period by numerically
computing the two other conjugate roots

«, B = 0.742485062129292 + 0.158413173442297i

and then

v d
O 2/ i
(5) 5 VAr3 + 22 —8xr+4

~ 3.06659657419727 + 0.997205478384470¢

Finally, we record some of the invariants of the lattice of periods. By putting E in short Weierstrafy form,
which can be done by completing the cube on the right hand side of the model (2), we can read off the
exact values of the Eisenstein series G4 and G on this lattice. That is, from the theory of Weierstrafl
uniformisation, it follows that

©) 60G4(A) = 10476 = 22.33.97
140G¢(A) —217944 = —23.33.1009



A FRIENDLY INTRODUCTION TO THE RESULTS OF GROSS-ZAGIER 3

1.2. The curve E over F,. Let us consider a finite prime p and investigate the reduction of E modulo p.
The curve E has good reduction at p # 61, and for p = 61 we reduce the equation (2) and do a simple
change of variables to move the singular point to the origin, which yields an integral model

(7) Eyz :y? = 42 + 43322 + 61 - 2%2 4 61 - 2% - 769.

This model clearly reduces to a nodal curve at 61. The singularity is regular, since the constant coefficient
has 61-adic valuation 1. The equation of the reduction is

(8) y? = 423 + 622

The tangent lines at the singularity modulo 61 have slopes +1/6, and are hence not defined over F41 so that
the reduction is non-split multiplicative. This means that the Tamagawa number at 61, and hence at any

prime, is trivial. Furthermore, the local root numbers are all 1, so the L-series of F should vanish at s = 1.
We will prove in the next section (without using the modularity theorem) that it does vanish, to order 1.

By counting points modulo small primes, we obtain the first few terms of the L-function of E:

LE(S) = (1+61_5)_1x H (1_|_app—s +p1—23)71
©) p#61
1 2 1 3 2 1 3 1 3 5
R T T e R

25 35 45 55 65 75 8 95 10° 11°
If we compute the space of modular forms on I'y(61), we find a newform whose g-expansion begins with
p p b g
(10) fl@)=a—a"—2¢"—¢" =3¢ +2¢° + ¢" +3¢° + ¢" + 3¢ — 5¢"" + ...

These coefficients certainly seem to agree with those of Lg(s)! If we use the modularity theorem of Wiles,
we may turn this observation into a rigorous proof that all the coefficients agree, not just the finitely many
we computed. But of course it’s ridiculous to invoke the full strength of modularity when one is working
with a concrete example! We will prove modularity of E in the next section via a direct calculation.

1.3. The curve E over Q. In this subsection, we again use the global minimal model
(11) E:y+ay=a>—2c+1

First, it is easy to check that E(Q) is torsion-free. Indeed, the prime to p torsion injects into the group of
points on F modulo any p # 61. Looking at the point counts that went into (9), we see that there are 4
points on £ modulo 2, and 9 points modulo 5, which implies there can’t be any torsion.

To determine the rank, one can use the method of descent via isogeny. I confess that I did not do this
explicitly from scratch, since it is likely to be a messy calculation, but I encourage you to try! Using the
routines in Sage or Magma we can show (provably) that

(12) EQ) =((1,-1)) =7

so that F is of rank 1 over Q. Moreover, the generator P = (1, —1) of the Mordell-Weil group has a
canonical height that may readily be computed via Tate’s algorithm. In fact, I was too lazy to implement
that from scratch, and didn’t want to use anything that was already implemented, so I just used the naive
expression

(13) h(P) = 1i_>m 1og (Pyaive (27 P)) /4™
where the naive height on the right hand side is just the maximum of the absolute values of the numerator

and denominator of the z-coordinate of the point. This is quite terrible from a computational viewpoint,
but seemed to converge fast enough if we just want a few digits. I obtained

(14) h(P) = 0.079187731362
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which seems to agree with what the professionals compute, though this did take a while to get right to that
precision. Anyways, it’s good enough for us!

2. THE MODULARITY OF F/

We show that E is modular, and deduce from it a number of statements about the L-series of £. The
computations in this section will be used later, notably when we compute Heegner points on E.

2.1. Verifying modularity for E. We start by verifying that E' is modular. Recall that in we found
that there was a newform f whose first few coefficients agree with the coefficients of the L-series of F.

This can be done in two different ways, both of which have their merits. The first is via an algebraic
computation and uses the fact that classical spaces of modular forms may be computed efficiently via the
theory of modular symbols (which is not discussed here). The second is an analytic computation of the
uniformisation map, which proves modularity by establishing the equality of the two lattices of periods.

2.1.1. Method 1: Consider the congruence subgroup I'g(61)" which is generated by I'y(61) and the matrix

15) et — (\/06>1 1/0¢67>

We easily check that the quotient X (61)* = T'o(61)"\ $ is of genus 1, and has a unique cusp oo, which
is rational. We will show that F ~ X,(61)™. To do this, it suffices to find two ['g(61) " -invariant functions
& and 7 on ) such that

(16) n(r)* +€&(m)n(r) = &§(7)° = 26(7) + 1
This does not uniquely determine the functions £ and 7, so we impose in addition the condition
d¢ dq
(17) & _
i ! ()7

where f is the modular form (10), which is allegedly attached to E. From these conditions, we may compute
the first few terms of the g-expansions of £ and 7, provided they exist. We obtain

(18) €q = ¢ 2+q1+2+3¢+6¢%+7¢ + 11¢* + 16¢° + 23¢° + 30¢" + . ..
n(g) = —q2—2¢2—4¢7" —7—13q— 22¢®> — 36¢> — 54¢* — 85¢° — 126¢° + . ..

Of course, this doesn’t show that £ and 7 exist! But if they do, their g-expansions start off like this. Now
here’s the trick. The weakly holomorphic forms ¢ f2 and 7f3 should be holomorphic modular forms of
weights 4 and 6 respectively, and therefore lie in finite-dimensional spaces which are furthermore explicitly
computable. We know how their g-expansions start off, so if we compute enough terms, we can uniquely
find these modular forms after a finite computation. In this case, we compute that

(19) dimMy(To(61)) =17,  dimMg(To(61)) = 27

so it suffices to construct a basis for both spaces (which can be done via the theory of modular symbols) and
find £ f2 and 1) f2 explicitly. The condition on & and 7 is equivalent to a relation between modular forms of
weights 12, which may be checked after a finite amount of computation. Of course, this can be done much
more cleverly, already by simply taking the action of we; into consideration and reducing the dimensions
of the spaces involved, but the basic idea remains the same.
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2.1.2. Method 2: The second method is analytic, and numerically computes the complex uniformisation of
E. More precisely, define the function
(20) ¢:H—C/N, T — 27 f(2)dz
where as before, f is the modular form found in , and A’ is some lattice of periods, which we will show
to be homothetic to the lattice of periods A of E. The function ¢ may be efficiently computed via the rapidly
converging power series

L g 73 3

1, 2, 1, 34 1 1,
21 =g+ =P+ P 2 - -2 -2 - 0+
(21) 1) =+ 50"+ 30"+ 10"+ 30 20— ¢ — ¢+

It is clear that ¢ is almost I'-invariant, in the sense that

(22) ¢(y7) — ¢(7) = constant.

This constant only depends on ~, and hence F induces an element of H'(T', C). This is the subject of
Eichler-Shimura theory, which (together with a result of Edixhoven) shows that

e The image of this morphism I' — C is the lattice of periods A/,
e The constants G4(A’) and G¢(A’) are integers.

By finding a set of generators for I', we can therefore approximate a pair of generators for the period lattice
A’ numerically, using the rapidly converging series[21] We obtain two generators

{Q’l ~  1.02219885806576

(23) Q 0.511099429032878 4- 0.1662009130640783

Then, we compute the constants G4(A") and G(A’), which we know to be integers, numerically up to some
precision. By capping the double summation over A’ to a box of size 2000, we obtain the approximations

(24) 60G4(A) 10475.9998934 — 0.0000466704
140Gg(A) —217944.000000002 — .000000000089¢

a careful precision analysis would show that the first few digits are significant, yielding a rigorous proof of
the fact that 60G4(A’) = 10476 and 140G4(A’) = —217944, and hence that
A~A.

This shows modularity of E.

2.2. Consequences of modularity. The statement the elliptic curve E is modular can be defined in one
of many different ways, all of which are equivalent. For the purpose of our discussion, there are two view-
points: One is an analytic statement about the coincidence of the L-functions attached to F and some
modular form f, while the other is geometric in the sense that there is a finite cover Xo(N) — E. It was
the latter that was proved above, while it is the former that plays the most important role for the purpose
of Gross—Zagier, and the explicit computations below.

Theorem 2.1. Suppose E is an elliptic curve over Q of conductor N. Then the following are equivalent:

o There exists a newform f € So(Lo(IN)) such that ap(f) = ap(E) for all p not dividing N,
o There exists a finite map Xo(N) — E defined over Q.

Proof. A proof can be found, for instance, in Diamond-Shurman [DS05] Section 8.8]. O
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If these equivalent conditions are fulfilled, we say that E is modular. It is known from the work of Wiles,
and later Breuil-Conrad-Diamond-Taylor, that every elliptic curve over Q is modular. This result was
not known at the time of the work of Gross—Zagier, but it could be checked efficiently for any particular
example E, essentially using the method above.

For us, the main importance of this statement lies in the fact that the completed L-series
(25) Lg(s) := 61°/2(2m)~°I'(s)Lg(s)

may be analytically continued to the entire complex plane s € C, through its integral representation
~ o iT
26 Le(s) = / — ) lar
(26) £(s) ; f ( JGT)
o T
27 = — ) (= = dr
@) | (=) )

First, we note that the fact that f is fixed by the Atkin-Lehner involution wg; implies that the completed
L-function satisfies the functional equation

(28) Lg(s) = —Lp(2-s)

which implies that L (1) = 0. If the value at s = 1 vanishes, it becomes natural to look at the derivative
of the completed L-function at s = 1, which we expect to contain relevant information as predicted by the
Birch-Swinnerton-Dyer conjecture. This quantity may be computed by differentiating the above integral
representation, giving the expression

(29) (;iiE) (1) = 2/1°of<\%> log(r)dr

> & 2nmT
2 an log(7) -exp | — dr.
> /1 g(7) p< = >

n=1

(30)

The above can be computed numerically, yielding

d~
(31) (dSLE) (1) =~ 0.485673651427

If we believe the Birch-Swinnerton-Dyer conjecture, this number should be equal to QT h(P,), and indeed,
using the numerical approximations above we get

(32) QT h(Py) ~ 0.485673651427

That’s far from a proof of the Birch-Swinnerton-Dyer conjecture in this case, but it does make for com-
pelling evidence, and a great sanity check that our computations so far are correct, or at the very least
wrong in some consistent and minor way.

3. HEEGNER POINTS ON F/

In this section, we establish some of the basic theory of Heegner points. We start with a discussion of
the necessary background on quadratic orders, before we briefly recall CM theory and the definitions of
Heegner points that are used in the work of Gross—Zagier. We note that in the literature the word Heegner
point can mean different, closely related, things where various hypotheses are weakened, and one should
always be careful when using the phrase.
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3.1. The arithmetic of quadratic orders. Suppose O is an order in an imaginary quadratic field K. If O
is not maximal, it is not a Dedekind domain, and therefore some care needs to be taken with class groups.
We start by recording some necessary facts. Recall that the Picard group Pic(O) is defined to be the group of
isomorphism classes of invertible sheaves on Spec(Q), or otherwise said, the class group of Cartier divisors.
In the context of an order O, a Cartier divisor is better known under the name fractional ideal. We start by
reviewing these definitions, and stating the relation with the class group of the maximal order.

Suppose that disc(O) = Ac?, where A is a fundamental discriminant. We call ¢ > 0 the conductor of
the order O. Let O be the ring of integers in K. If Ok has integral basis {1, 3}, then we always have

(33) O = (1,¢f).

A fractional ideal is a subset of K which is a non-zero finitely generated O-module. It is an easy exercise to
show that every fractional ideal is of the form o a where & € K> and a <O. There are a priori two ways
that a fractional ideal can be “nice”. First, we say a fractional ideal b is proper if

(34) O={a€eK | abCb}.

Second, we say a fractional ideal b is invertible if there is another fractional ideal b’ such that b b’ = O. Such
an ideal Note that principal fractional ideals, i.e. those of the form o O for some o« € K *, are automatically
invertible. The following proposition says that the two notions coincide.

Proposition 3.1. Let a be a fractional ideal in K. Then a is proper if and only if it is invertible.

Proof. Suppose first that a is invertible, with a’ an ideal such that aa’ = O. Let « be any element in
K such that aa C O, then we have that

(35) aO=(aa)a’ Cad =0

so that & € O. This shows that a is proper.

Conversely, suppose that a is proper. Let a1, @ be two generators of a. Set 7 = ag/a1, and let
ax? + bxr + x be its minimal polynomial over Q, where a, b, ¢ are integers with no common prime
factors. It is shown in [Cox89, Lemma 7.5] that the set of all elements 5 € K such that 5 a C ais equal
to the order (1, a7) in K. Since a is proper, we get that

(36) O = (1,ar).
Denoting ~ for complex conjugation, we calculate that
(37) aad = Nm(a){a,ar,aT,arT)
(38) = Nm(a){(a,ar,b,c)
(39) = Nm(a)(l,a7) = Nm(«a) O

where the second equality follow from the identities a(7+7) = —band a77 = ¢, and the third equality
follows from the coprimality of the triple (a, b, ¢). This shows that a is invertible. O

The Picard group Pic(O) is by definition the set of proper fractional O-ideals in K, modulo principal
ideals. Since it is not immediately clear how to find and enumerate such ideal classes, we now relate them
to ideals of the maximal order, which is more familiar territory. Recall that ¢ denotes the conductor of O.
We start by defining a certain subset of the proper fractional O-ideals.

Definition 3.2. An ideal .# <1 O is called prime to ¢ if & +cO = O.

The importance of this definition lies in the following proposition, whose proof we omit here.
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Theorem 3.3. Anideal . <1 O is prime to ¢ if and only if Nm(.#) is an integer prime to c. As a consequence,
any ideal prime to c is automatically proper, and the natural inclusion induces an isomorphism

(40) {Ideals prime to ¢ in O} /{ Principal ideals} ~ Pic(O).
Furthermore, there is a bijection

(41) {Ideals prime to ¢ in O} LN {Ideals prime to ¢ in O }
such that principal ideals coprime to c in O correspond to the set of ideals

(42) Pxz(c)={(a) | a=n (mod cOk), n € Z}.

Proof. The proofs of all the assertions in this theorem may be found in [[Cox89 Section 7.C]. O

The main value of the above proposition is that it gives us a very concrete description of the Picard
group of the order O, entirely in terms of ideals in the maximal order O . This makes it very amenable
to explicit calculation, and provides a concrete abstract description of this group that is frequently useful.
More precisely, we have

(43) Pic(0)
(44)

12

{Ideals prime to ¢ in O} /{Principal ideals}
{Ideals prime to ¢ in Ok }/Pxk z(c)

R

This implies that there is a short exact sequence relating the Picard group of O to the class group of K.
More precisely, we get the sequence

(45) 1— (Ok [¢)" | OR(Z [cZ)* — Pic(O) — Pic(Of) — 1
where Pic(Ok) is better known as the class group of K.

Example. Let us consider the example of O = Z[3+/—3]|, which is the order of conductor 6 in K =
Q(+v/—3). In this case, we know that

1++v-3
(46) Ok =Z [+2}
is a UFD, so that the short exact sequence gives us an isomorphism
(47) Pic(0) =~ Fj x (Fslz]/(2%)" / (Z/6Z)
(48) ~ Z/3Z

3.2. A quick introduction to CM theory. We now quickly recall some statements from global class field
theory, and discuss the important notion of ring class fields. These results are part of a subject called CM
theory, which lies at the heart of the theory of Heegner points. Historically, it is one of the most important
and beautiful achievements of number theory.

Given a number field K, its ring of adéles is defined as

!/

where the product runs over all places of K, and is restricted in the sense that it only contains the elements
(ay)y € Ak for which a, € O, for all but finitely many v. We can give Ak a topology by decreeing
[1, O, with its product topology to be an open subset. There is a diagonal map

(50) A K < Ay,

which endows K with the discrete topology. The quotient A i /K is compact. The units in A form a
group with respect to multiplication, which we will call the idéle group. We topologise it, not with the
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subspace topology from A g, but simply by declaring [, O.¢, with its product topology, to be open in A J.
The image of K * under the diagonal map is again discrete, and the (non-compact) quotient

(51) Cx =Ag /K*
is called the idéle class group of K. It plays the lead role in global class field theory.

Fix a separable closure of K, and take the maximal abelian subextension K2 /K. Then class field theory
provides a certain global Artin map

(52) ¢ : Cx — Gal(K*/K).

This map is surjective, and its kernel is the connected component of the identity. It becomes an isomorphism
of topological groups when we pass to the profinite completion. More precisely, we have

(53) o: Ok =5 Gal(K®/K), where Cx :@CK/U,
U

with the limit taken over all finite index open subgroups. This map is functorial and equivariant in a number
of important ways, which we will not recall here. The power of this isomorphism lies in the fact that it
describes a system of external objects (the finite abelian extensions of K) in terms of internal data (the finite
index open subgroups of C'’). We can be even more specific: A finite abelian extension L/ K corresponds to
the finite index open subgroup Nmy /i C'r, of Ck. This is a powerful dictionary, but it lacks a satisfactory
way to describe (i.e. find explicit generators) for the finite abelian extension corresponding to a given finite
index open subgroup of C'x. This problem is known as Hilbert’s 12th problem, and remains open to this
day, except in very special examples of number fields K.

However, a full solution of Hilbert’s 12th problem is given in the case where K is imaginary quadratic,
by CM theory. We describe a few aspects of this theory now. Let O be an order in an imaginary quadratic
field as above. Then we define the ring class field K attached to O to be the finite abelian extension of K
corresponding under to the open subgroup

(54) c*x[Joy.
p

Suppose a is a proper fractional ideal of O, then a C C is a lattice and we may define its j-invariant
j(a) € C. These are particular examples of singular moduli, i.e. values of the j-function at imaginary
quadratic fields, which have remarkable properties. It is not so hard to see that the numbers j(a) are
algebraic. The following theorem, which lies much deeper, is one of the main statements of CM theory.

Theorem 3.4. If K is an imaginary quadratic field, and a is a proper ideal of an order O in K, then j(a) is
an algebraic integer which generates the ring class field Ko over K. There is an isomorphism

(55) s : Pic(0) — Gal(Kp/K)
defined by b — o, where j(a)” = j(b™' a).

Example. As a beautiful application of these results, we obtain a very satisfactory answer to the age-old
question: If n > 0 is an integer, when is a prime p of the form 2% + ny?? Indeed, let p be a prime not
dividing n, then we see that this question is equivalent to the splitting of p = pp into two principal prime
ideals p, p. For those familiar with the definition of the Artin map ¢ above, it is not hard to see that this is
equivalent to p splitting completely in the ring class field Ko/ Q. This implies the following result:

Theorem 3.5. Let n > 0 be an integer, and K = Q(y/—n). Define the order O = Z[\/—n] in K, and
let f(x) € Z[x] be the minimal polynomial of the algebraic integer j(O). Then for any prime p that does
not divide 2ndisc(f,,) we have that p = x2 + ny? for some integers .,y if and only if both of the following
conditions are satisfied:
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(1) —n is a square modulo p,
(2) fn(x) has a root modulo p.

As an example, we will prove a famous conjecture of Euler about primes of the form 22 + 27y2. The
order relevant for this problem is O = Z[/—27]. We showed in that
(56) Pic(0) ~Z /3Z

and hence K is a cubic Galois extension of K. Since K contains a third root of unity, Kummer theory
guarantees that Ko = K(+/a) for some element a of K. The extension Kn/ Q is generalised dihedral,
which means that

(57) Gal(Ko/ Q) ~ Pic(O) x ()

where complex conjugation acts as inversion on the abelian group Pic(O). It follows that Ko N R is an
extension of Q of degree |Pic(O)], so that we may assume without loss of generality that a is real.

Since K/ K is unramified outside of 2, 3 we may furthermore assume without loss of generality that
a = 2,3,6, or 12. Now we calculate that
(58) 310k =pp, p=(2+9V-3)

where we notice that the Ok -ideal p = (2 + 94/—3) belongs to Pk 7z(6). This implies that the associated
Frobenius element acts trivially on the residue field. Concretely, this means that

(59) {/a = Frob,({/a) = Ya"' =a"¥a  (mod p).

This immediately rules out three of the four possibilities for a, and we conclude that Ko = K( \“‘/5) This
implies, by the above theorem, that

p=1 (mod 3)

_ .2 2
(60) p=x"+ 27y = { 23 — 2 has a root in F,.

This was conjectured by Euler, but he was unable to find a proof during his lifetime (what a loser, amirite?).

3.3. Heegner points on X((NN). Finally, we come to the definition of a Heegner point. Let N > 1 be
any integer, and recall that the affine open Y, (V) C X (V) of the modular curve of level I'y (V) classifies
cyclic isogenies of degree N, in the sense that its complex points y € Y;(V)(C) correspond to an isogeny
E — E' whose kernel is isomorphic to Z /NZ. We say that y is a Heegner point if furthermore

(61) End(E) ~ End(E’) ~ O

for some order O in an imaginary quadratic field K. If we set D = Disc(O), then D = ¢2d for some
integer ¢ which we call the conductor of the Heegner point. Likewise, say that the Heegner point y is of
discriminant D.

Suppose that we choose a quadratic imaginary order O, and ask ourselves whether there exist any Heeg-
ner points at all, and if so, whether we can determine all of them explicitly. We first formulate a necessary
and sufficient condition for their existence.

Lemma 3.6. Suppose N > 1 and O is an order in an imaginary quadratic field K. Then the set of Heegner
points of discriminant D is non-empty if and only if there exists an idealn < O such that O /n ~ Z /[N'Z.

Proof. First, let us assume that we have a Heegner point corresponding to an isogeny £ — E’ whose
kernel is cyclic of order IN. Then we have that

(62) E~C/aq, E'~C/b
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for some fractional ideals a,b in . We may assume without loss of generality, by rescaling these
fractional ideals, that a C b and the isogeny is simply given by

C/a — C/b
(63) {z+a — z+b

Then the fractional ideal n = a b~ is actually a subset of O, and we furthermore have that
(64) O/n=0bb"/ab'~b/a~Z/NZ.
Conversely, suppose that there is such an ideal n. Then choose any proper fractional ideal a of O,

and set E = C/aand E' = C/an™!, which are related by the isogeny

(65)

C/a — C/an’!
z4+a — z4+an’!

The kernel of this isogeny is
(66) an'/a~a/an~0/n~7Z/NZ.

O

So in general, Heegner points are only guaranteed to exist if we make the following additional assump-
tion, often referred to as the Heegner hypothesis:

(HH) “n<0O st O/n~Z/NZ.

Now suppose the Heegner hypothesis (H) is satisfied. As in the proof of Lemma we see that any
Heegner point (F, E’) must satisfy that £ ~ C / a for some fractional ideal, and £’ ~ C / an~! for some
ideal n as in (HH). Conversely, any such choice of a and n gives rise to a Heegner point, which furthermore
only depends on the class of a in Pic(Q). This shows that there is a bijection

(67) {Heegner points on Xo(N)} LN {(O,n,[a]) : O/n~Z/NZ,|a] € Pic(O)}

This bijection makes the set of Heegner points extremely concrete. We now turn to a description of the
action of the Galois group and Hecke algebra, which have concrete descriptions in terms of triples via this
bijection. Henceforth, we make the assumption that the conductor c is coprime to N.

3.3.1. The Galois action. By CM theory, we see that the set of Heegner points is algebraic, and we first
describe the action of Aut(C) in terms of the corresponding triples under the bijection (67). First, complex
conjugation acts via the rule

(68) (07 n, [CID = (O,ﬁ7 [a])

simply because it is a continuous automorphism of C. By CM theory, the action of any other element of
Aut(C) factors through Gal(K¢/K). Using the isomorphism s with the Picard group defined in we
may now describe the action via

(69) (0.0, [a])*™ = (O,n, [0 " q])
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3.3.2. The Hecke action. We first describe the action of the Atkin-Lehner involutions, of which there is one
for every prime divisor p of N. Write N = p*m with m coprime to p. Suppose (O, n, [a]) is a Heegner
point, then there is a unique divisor p of p which divides n, and we may likewise write n = p*¥ m, where (p)
is coprime to m. Then the Atkin-Lehner involution w,, acts via

(70) wy(O,n, [a]) = (O,p"m, [ap~")).

The Hecke correspondences Ty, for ¢ a prime not dividing [V, also act on the set of Heegner points with
conductor prime to N. The action is given by the formula

(71) Te(O,n, [a]) = Z (O, 15, [b]),
a/b=Z/NZ
where the sum runs over the (¢ + 1) sublattices b of index £ in a, and Oy = End(b) and np, = nOp N O.

3.4. Heegner points on E. For our guiding example, this construction gives rise to plethora of potentially
interesting rational points on F, which are furthermore explicitly computable via the uniformisation (20).

For explicit computations, we will make use of the uniformisation
(72) p:H—I\H-—>E

described in the previous section, which factors through X (V). For computational reasons, it will therefore
be important to understand the points in the upper half plane that correspond to the Heegner points on
Xo(N). To do this, we first establish a correspondence between proper ideals and binary quadratic forms:

Lemma 3.7. Suppose
(73) F(z,y) = ax? + bxy + cy?
is a primitive, positive definite, binary quadratic form of discriminant A < 0. Then

(74) a= <a, _(”;/Z>

is a proper ideal of the quadratic order O of discriminant /. Moreover, this assignment induces a bijection
(75) {F(x,y) prim. pos. def. discriminant D}/ SLo(Z) RN Pic(0O)
Proof. A proof can be found in [[Cox89, Section 7.B]. It is worth noting that the inverse map is
(76) a = (@, ) — Nm(az + Sy)/ Nm(a).
O

Remark. This bijection in particular endows the set of SLs(Z)-equivalence classes of primitive positive
definite quadratic forms of any discriminant with the structure of a finite group. The description of this
group law in terms of quadratic forms was originally discovered by Gauf}, and goes by the name Gauf3 com-
position. In 2004, Bhargava presented a new treatment of Gaufl composition that allows for generalisations
to new settings. We define a Bhargava cube to be a 2 X 2 X 2 cube with integers associated to its vertices.
To a Bhargava cube, we associate three quadratic forms as follows:

. . . a & . c g

a ¢ b d

QQ(x7y) = —det|x- e g +y- f h
_ a b e f

Q?)(xvy) = —det|x- c d +y g h
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F1GURE 2. Cubus Bhargaviensis

These three forms have the same discriminant. If two of these three quadratic forms are primitive, then so
is the third one. In this case, we say the cube is projective. It turns out that Q3(x, —y) is a direct composition
of Q1(x,y) and Q2 (x, y) in the sense of Gaufl! The language of Bhargava has the advantage of “unraveling”
some of the difficult algebra of Gauf3. |

From Lemma it follows that the set of points 7 € §) corresponding to elliptic curves with complex
multiplication by an order O of discriminant A is the finite set of SLo(Z)-orbits of solutions of quadratic
equations a72 + bt + ¢ where a, b, ¢ are coprime integers such that b> — 4ac = A. This may now easily be
turned into a proof of the following statement:

Lemma 3.8. Let N > 1 and O an order of discriminant A < 0 such that

e the conductor c of O is prime to N,
e the Heegner hypothesis (HH) is satisfied.

Then there is a bijection

. 1:1 ax? + bxy + cy? prim. pos. definite
(77) {Heegner points (O, n, [a])} +— { SEB —dac— A, and N | a / To(N)

Proof. TODO. O

This lemma clearly results in an explicit method to determine the finite set of Heegner points. These

points map to points in F(Q) which are defined over the ring class field K of K, and when appropriately
averaged they give rise to rational points on F.

More precisely, is we let H o be the set of Heegner points associated to O in 3, which is of size 2h, where
h is the class number of O. As before, we denote ¢ : ) — E be the uniformisation map from (20). Now for
any 7 € Ho we define

(78) P = ¢(7—) € E(Q)
Note that the set of such points P is naturally acted on by the Atkin-Lehner involution wg;, and the size u
of the projective stabiliser of P; is usually of size 1, unless A = —3, —4, when u = 3, 2 respectively. Then
we define Pa € E(Q) by
(79) QUPA = Z ]3,r

T€Ho

where the rationality of the point Pa follows from the Galois-stability of the set ¢(H ) described above.
We see that if A is not a square modulo 61, the set Hp is empty and Po = 0. When A is a square, the
points Pa have the potential to be of infinite order, and using the numerical techniques described above,
most notably the rapidly convergent series for the uniformisation ¢, we compute for instance that for
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A = —52, the class number is 2 and we get the following Heegner points on E:
[ 7€Ho | ¢(r) e C [P eE@Q ]
=294 y/138 —0.668988176 1+y13 9
—32+4+/—13 V13
(80) =813 —0.668988176 Lv13 9
“24ZT5 | 0.281978261 + 0.99720547i || (1213 2
“98VIS | 0.281978261 + 0.99720547i || (1213, 2
In this case, we get that the normalised sum P_39 is
16 29
(81) P_52 - <97 27) - 73P

In general, we can set Pa = ba P for some ba € Z, and we may wonder how b varies as we vary A. The
following table ranges over all discriminants up to -200, and lists the values of ba:

A h[A @k 2 @k & @k & @]
-3 1 1| -43 -1 0 -83 1 2| -123 1 3| -163 1 -5
-4 1 -1 -44 -1 0 -84 -1 01| -124 -1 0| -164 1 -1
-7 -1 0 || -47 1 2 -87 -1 0| -127 1 -3 || -167 1 1
-8 -1 0| -48 1 0 -88 1 11l -128 -1 0| -168 1 -4
-11 -1 0| -51 -1 0 -91 -1 0| -131 1 1| -171 1 -1
-12 1 2 || -52 1 -3 -92 -1 0| -132 -1 0| -172 -1 0
-15 1 -11-55 -1 0 -95 1 -1]-135 1 2| -175 -1 0
-16 1 0| -56 1 -1 -96 -1 0| -136 1 0| -176 -1 0
-19 1 11|l -59 -1 0 -99 -1 0| -139 -1 0| -179 1 -2
-20 1 1| -60 1 21| -100 1 3 || -140 -1 0| -180 1 -3
-23 -1 0| -63 -1 0| -103 1 3| -143 -1 0| -183 0 1
-24 -1 0 || -64 1 0|l -104 -1 0| -144 1 -2 || -184 1 -1
=27 1 0 || -67 -1 0 || -107 1 -2 || -147 1 2| -187 1 5
-28 -1 0 || -68 -1 0 || -108 1 2| -148 -1 0| -188 1 -4
-31 -1 0| -71 -1 0| -111 -1 0| -151 -1 0| -191 -1 0
-32 -1 0| -72 -1 0| -112 -1 0 || -152 -1 0 || -192 1 4
-35 -1 0| -75 1 0| -115 -1 0 || -155 -1 0 || -195 1 3
-36 1 0| -76 1 0| -116 -1 0 || -156 1 2 || -196 1 -3
-39 1 -11| -79 -1 0|l -119 1 -1 1| -159 -1 0| -199 1 0
-40 -1 0 || -80 1 -1 -120 -1 0| -160 -1 0 | -200 -1 0

TABLE 1. The values ba for which Pn = ba P.

We will investigate the patterns suggested by this table in the next section.

4. THE THEOREMS OF WALDSPURGER AND GROSS—ZAGIER

The theory of Heegner points discussed in the previous section clearly gives rise to a large and interesting
supply of rational points on elliptic curves. Though there have been many exciting developments since, it
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remains true that at its core, this is the only systematic supply of rational points on elliptic curves that is
known today. For applications to the Birch-Swinnerton-Dyer conjecture, it is absolutely crucial to have a
satisfactory answer to the following questions:

Q: Do the points Pa generate F(Q)? What is their position in E(Q)?

In rank 1 situations, we will see that an answer to the first question is provided by the theorem of Gross—
Zagier [GZ86]], in analytic terms. Whereas the second question is rather vague at this point, we will see
that a very satisfactory answer is suggested by the theorem of Waldspurger, which is made precise in the
work of Gross—Kohnen-Zagier [GKZ87].

4.1. Waldspurger. We start with a brief discussion of Waldspurger’s theorem, which relates the Fourier
coefficients of a certain modular form of half-integral weight with the special values of the value at s = 1
of certain twists of the L-function Lg(s). This seminal formula is of tremendous importance in number
theory, and though it has been generalised and refined considerably, we content ourselves with a discussion
of the special case relevant to our discussion of E. We first discuss the set of quadratic twists of E, then
the Shimura correspondence, which attaches a form of weight 3/2 to E, and then finally the connection
between the two provided by Waldspurger’s theorem, in the form of a subsequent refinement due to Kohnen.

4.1.1. Quadratic twists of E. The short Weierstraff model for E is given by

(82) E:y? = 2% — 2619z + 54486

Now suppose A < 0 is a fundamental discriminant. We define the quadratic twist
(83) Ea : Ay? = 2% — 26192 + 54486

which is defined over Q. We will now investigate the L-function of these quadratic twists, as well as their
Brich-Swinnerton-Dyer invariants. I must confess I did not rigorously work through the invariants, and in
fact I do not know how to fully justify most of the claims below. If anyone is interested in working this out
in detail with me, please do get in touch, I'd still love to do this some time.

First, we note that F'a is always modular, a fact which follows from the modularity of E. Indeed, it is a
classical fact that for any A coprime to 61 the twisted series

A
(84) fa=Y" (n) ang"

n>1

is the g-expansion of a modular form of level NA? and weight 2. We now check that these Fourier coeffi-
cients agree with the coeflicients of the L-series of the quadratic twist Ea.

e Suppose p{ 6 - 61 - A: Choose a model y?> = f(z) for E that has good reduction at p. The number
of points modulo p may be counted by choosing a random value of =, and determining whether
f(z) - A is a square modulo p. We see that when A is a square, this yields the same point count as
E, whereas when A is a non-square this gives the complement of the points counted for F. This
yields that a,(EA) is equal to the p-th Fourier coefficient of fa.

e One would imagine a similar argument would work for p = 2, 3 if the curve has good reduction
there, by working with a more complicated model. I did not check.

e When p = 61 we see that the reduction is still multiplicative, but changes from non-split to split
exactly when A is a square modulo 61. In that case, it is predicted by the Birch-Swinnerton-Dyer
conjecture that the rank of Fa (Q) is even, and we expect that it is generically 0.

e When p | A Ialso did not check, but it looks fun so let’s try it over a cup of coffee some time.
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The real period QJLCA may also be computed, and it follows from a result of Vivek Pal that we have
Qp
VA

In this case, we can probably give a simple proof, but I did not check this. The crux of the problem is to find
the Néron minimal model for Ea, which seemed slightly painful. Maybe it’s not so bad, since the primes
dividing A cannot divide the discriminant of the twist of the minimal model for F more than twice.

(85) af. =

Now comes the torsion. Note that EA does not have any 2-torsion, since any such point must have y = 0
in the above model, and hence the same coordinates must also define a 2-torsion point on F, which does
not exist. Now suppose that there is some torsion of prime order [ > 2, then we must have a congruence
between the higher coefficients of the form fa and the Eisenstein series

61 5 61 n
(36) B (g) = 5+ ) o1 ()

n>1

which, since fa is cuspidal, can only happen if | = 5. 'm not sure how to rule this possibility out, but one
additional thing one can show is that any such discriminant must be divisible by all of the first 10 or so
primes, so it seems very unlikely that this could exist.

Finally, we mention the Tamagawa numbers. This seems a little tricky. Zagier completely ignores these,
though in his example they always seem to be trivial. In our example, the product of the Tamagawa numbers
always seems to be 2, andthe contribution always happens at some prime divisor of A. I don’t know how
to prove this in general, or if it is even always true. Rubin has a nice paper on fudge factors of quadratic
twists where this problem is discussed, and he gives a rather explicit criterion which I could not turn into
a proof of this experimental factor 2 in this example. Again, if anyone wants to try, do get in touch.

The L-function of Ea may now be made explicit, and is given for Re(s) > 3/2 by the expression

(87) Lpa(s) =Y. (j) -

n>1

We likewise have a rapidly convergent series for the special value at 1, which may be used to compute
numerical approximations in practice, just like we did for E. The sign of the functional equation of this
L-function is given by — ( 6%), and hence we expect the rank of FA(Q) to be even (and in fact, most often
0) whenever the sign is equal to +1. According to the Birch-Swinnerton-Dyer conjecture, we should have

(88) Lea()=Qf, [[er-4a, AncZ
p

and in fact, Ax should be the order of the Tate-Shafarevich group, which, if finite, is a square. Using the
theorem of Waldspurger, we can in fact prove that it is a square, though of course that still falls short of prov-
ing finiteness of Il . We compute explicitly the numbers Aa for the first few fundamental discriminants
for which the sign of the functional equation is equal to 41, and obtain the following table.

First of all, notice that indeed A always nicely seems to be a square. Ok, fine. That’s what we expected
from Birch-Swinnerton-Dyer, and what will follow from Waldspurger’s theorem below. But now look at
the table of the quantities ba related to Heegner points above, and notice something truly beautiful and
amazing is happening. More on that later.
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S A 8 ] A A 8 A

-3 1 -81 4] -136 01 -195 1
-4 1 -88 1| -163 25| -199 0
-15 1 -95 1| -164 1
-19 1| -103 91 -167 1
-20 1 -107 4 || -168 4
-39 14 -119 11 -179 4
-47 4 || -123 91 -183 1
-52 9| -127 91 -184 1
-56 14 -131 1| -187 25

TaBLE 2. The values A for which Lg A(1) = QJLCA . Hp cp - Aa.

4.1.2. The Shimura correspondence. We showed in §2|that the elliptic curve E has an associated newform f
of weight 2 and level 61, whose g-expansion coefficients we may compute up to our heart’s desire. There
is another modular form ‘attached’ to E, which is of weight 3/2 and goes through the Shimura correspon-
dence. This modular form plays a central role in the work of Waldspurger [Wal81] and Gross-Kohnen-
Zagier [GKZ87].

To state the theorem of Shimura precisely in the form we need it, define S’,:f (To(N)) to be the space of
weight k forms f for which
(89) U)Nf = :|:f
Likewise, we define S,:ct/2 (T'o(4N)) to be the space of half-integral weight k/2 forms of level I'g(4N') whose
Fourier expansion is of the form

(90) Z Cn

n>1
Theorem 4.1 (Shimura, Kohnen). Lete € {£1}. We have that dim(S}_, /,(T'o(4NV)) = dim(S5, (I'o(IV)),
and for each Hecke eigenform

(91) f=> ang"  dim(S5,(To(N))

n>1
there is a I-dimensional space of forms g € dim(S¢,, ,(I'o(4N)) whose Fourier coefficients are related to
those of f by the rule

—m
(92) A, Cryy = Z (d> Cmn?/d2-
d|n

This result is usually referred to as the Shimura correspondence, and its proof is entirely analytic and quite
deep. We will not say anything about how this theorem was proved here, but note that in our case of the
modular form f attached to the elliptic curve F, the associated form through the Shimura correspondence
is of weight 3/2. So how do we compute it?

In general, it is quite difficult to compute this Shimura lift explicitly, though there are methods available,
see for instance [Ham12]]. I noticed however that Magma is able to compute bases for spaces of half-
integral weight modular forms very fast, which I suspect is happening by using a unary theta series to
reduce the problem to a computation in integral weight, and deciding which forms come from half-integral
weight, since it is really fast. From there, I was able to compute the desired Shimura lift through the Hecke
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equivariance of this correspondence. More precisely, the space S3/5(I'0(244)) comes equipped with Hecke
operators 7,2 for every prime p # 2,61, and the space of forms G such that

(93) Tp2 G = apG

for almost all p is known to be 2-dimensional, and contains a unique form g in the Kohnen plus space. The
Hecke operators have a simple description in terms of g-expansions, which is more complicated than it is
in integral weight, but not overly so. To be exact, the n-th coefficient of the modular form T, G, where
G =) ¢mq™ is given by

k
-1 n
(94) Cmp? + (> <) pk_lcm —l—p%cm 2
P p P /P

Using this expression, I wrote some code to compute Hecke operators on the spaces of half-integral weight,
and then looks for the unique form in the Kohnen space associated to f. For the example considered above,
we get the following form of weight 3/2.

g = P =g =g+ ¢+ 20 — 27 + % — 70+ 24T — 2™ — 3472
— g% + 2450 4 g8 — 24T — ¢ 1+ 2433 + ¢®8 — ¢% + 0(¢')

4.1.3. The theorem of Kohnen—-Waldspurger. We now come to the statement of the theorem of Waldspurger
[Wal81], as extended and refined by Kohnen [Koh85]].

Theorem 4.2. Suppose f € S5(To(NN)) is a Hecke eigenform with rational eigenvalues, corresponding to the
elliptic curve E over Q, and g € 55, (To(4N)) is a modular form corresponding to it under the Shimura
correspondence. If the Fourier expansion of g is

(95) 9= cnd"

n>1

then for any fundamental discriminant A < 0 with (%) = ¢ or 0, we have that

2
If1I” Ca

lgll*  VIAT

where || f|| and ||g|| are the norms of f and g in the Petersson metric.

(96) Lpa(l) =3m

In our example, we get from looking at A = —3 that there is an equality
(A +
(97) Jm- - — = Q '”C'AA
loll V3 Pt LU A
0=
(98) = —£.2.1

V3

so that the transcendental factors on both sides, which are independent of A, must be equal. It follows that
for every fundamental discriminant A < 0 we have an equality

(99) Aja) = cfay-
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4.2. Gross-Zagier. Recall that we defined the quantity ba to be the multiple of the generator P = (1, —1)
obtained from the Heegner point Pa attached to a discriminant A. This quantity plays a central role in
the theorem of Gross—Zagier. We state it in the specific case under consideration, and postpone the general
statement to the next section, where we also give a short overview of the proof.

Theorem 4.3 (Gross—-Zagier). Suppose A < 0 is a fundamental discriminant, which is a square modulo 61.
Then

A
(100) h(Pa) = &T2||\/|7|||2 Lp(1) L, (1).

Since the canonical height is a quadratic function, this gives us a very interesting concrete consequence
for the quantity ba. Indeed, by combining equation (100) with Waldspurger’s theorem for the quantity
Lg, (1), we obtain that

3
(101) b4 - h(P) = (L’ (1)) -
. sxllgllllfI* °
Note that the factor in front of ca on the right hand side of this equation is independent of A. Therefore, we
can avoid its explicit computation by simply noting that for A = —3 we get that b ; = ¢2 5, and therefore
it follows that for any fundamental discriminant A < 0 we have
(102) ba=cA  (=A4a)

4.3. The positions of Heegner points. The results above are quite striking. The quantity Aa, which
should be closely related to the order of the Tate—Shafarevich group Il g, was proved to be a square in
two different ways, by exhibiting two canonical square roots for it: One being the Fourier coefficient of
a modular form of weight 3/2, the other being prescribed by the theory of Heegner points. The work of
Gross—Kohnen-Zagier shows that in fact, both of these quantities are equal, that is

(103) ba = ca.

This is a fascinating result, and significantly finer than the theory of Gross—Zagier, which only captures the
“size” of Heegner points, through the quantity b% . The true “position” of the Heegner point is given by the
quantity ba, which by the above theorem is given by the Fourier coefficient of a modular form!

The proof is absolutely beautiful, and easily deserves an entire study group devoted to it. We will quickly
outline some of the ideas here, and refer the interested reader to the papers [Zag85]] and [[GKZ87]. Choose
an auxiliary prime p = 1 (mod 4) such that 61 is a square mod p. Define the Hilbert modular surface

(104) S, = (Hx$H/SLe(0))"~

where O is the maximal order in Q(,/p), and the superscripts denote an appropriate compactification and
desingularisation. The divisor at infinity [+]

5. THE PROOF OF GROSS—ZAGIER

The general statement of the Gross—Zagier theorem takes place on the Jacobian J of the modular curve
Xo(N). Suppose that A < 0 is a fundamental discriminant, of an imaginary quadratic field K. Recall that
we have an isomorphism

(105) s:Clg — Gal(H/K)
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where H is the Hilbert class field of K. For any ideal class A € Clg define the partial theta series

1 Nm(a)
(106) 0ale) = 5=+ D q
a0k
acA
1
107 - n
(107) 5o+ ,;”(n)q

which is a modular form of weight 1, level T'; (A), and nebentypus given by the quadratic character attached
to K. Forany f = > anq"™ € S2(To(N))™"V, we define

(108) La(f.9)= > (i)nl_%-Zanm\(n)n—s.

n>1 n>1
(n,AN)=1
We then have the following result:
Theorem 5.1 (Gross-Zagier). The series
(109) ga(z) = > (e, Tpne®)g™

m>0

is a modular form of weight 2 and level T'y(N), and furthermore

w?/|A]
872

(110) (f,94) =

where

’ L./A(fv 1)

o ¢ = (x) = (c0) € J(H) where x is a Heegner point of discriminant A,
e (-, ) is the Petersson inner product,
*

-, -) is the height pairing on J(H) x J(H).
By averaging over ideal classes A, we get the most celebrated result of Gross—-Zagier. Let
(111) x : Clg — C*
be a class group character, and define the twisted L-series
(112) L(f.x:8)= D X(A)La(f,s)
AeClg
Likewise, we define twisted versions of the Heegner divisor ¢ by
(113) = > X "ALalfs)
AeClg

which lies in the subspace of J(H) ® C where s(A) acts as multiplication by x(A). Furthermore, the
projection of ¢, onto the f-isotypic component for the action of the Hecke algebra is denoted by cy .

Theorem 5.2 (Gross—Zagier). We have

2
(114 L(fix1) = % (o)

where wy = 2mi f(2)dz is the differential associated to f.
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5.1. The plan. The plan for the rest of the seminar is to prove the above theorems of Gross-Zagier. The
strategy will be as follows. The canonical Néron-Tate height h is the quadratic function induced by the
bilinear global height pairing

(115) (v JIH)x JH) — R.

Néron shows that this height decomposes as a sum of local symbols

(116) (-, : DiV'(X) x Div'(X) — R

for each place v of H. This local function is uniquely characterised by the following two conditions:

e It is bi-additive, symmetric, and continuous,
e Suppose that we have two divisors

(117) a=Y» mpP,  b=div(f)
P

then if a and b have disjoint support, the local symbol is given by

(118) (a,b), =log|f(a)|, =Y mplog| f(P)l,.
P

The plan for the rest of this seminar is to set ¢ = () — (00) and d = () — (0), for = a Heegner point
as above, and compute in very explicit terms the global pairing

(119) (¢, Tinc?) = (¢, Timd”)

where the equality is satisfied because the divisor (co) — (0) is torsion by the theorem of Manin-Drinfeld.
This switch from c to d is to increase the number of cases where the two divisors in question are disjoint,
which will greatly aid the computation. The global pairing is then computed by computing for every place
v of H the local symbol

(120) (¢, Tnd?)y

When v is archimedean, this involves a careful construction of an appropriate Green’s function, and we
will see how to do this in Tiago’s talk. Then Netan and Francesca will tell us how to compute the local
symbol when v is non-archimedean. There, the problem is reduced to certain counting problems for norm
equations in quaternion algebras, which are tackled using the theory of quasi-canonical liftings.

Once the global pairing is computed in very explicit terms, we will see in the talk of Tom and Alex
that one can construct a form g4 with the required properties using Rankin’s method. After it has been
constructed, its Fourier coefficients are computed, and the computation reveals that we end up with the
same expression as the one we obtained for (¢, T},d?). This will prove the theorem, and almost conclude
our seminar.

In addition to the above talks, we will start off with a talk by Nils, who will explain the proof of the
Gross—Zagier theorem in level 1. In this case, the statement above is of course vacuous, but what is meant
is that the local contribution to the height of a Heegner divisor is computed, first for all the non-archimedean
places, and then at the archimedean place. Since the height is trivial, both expressions must be the same.
Finally, to end the seminar, we have a talk by Francesco, which is aimed at reinterpreting the statements
and proofs of the Gross-Zagier and Waldspurger theorems in the adelic language. This is more akin to the
modern viewpoint of these theorems, and provides an extremely flexible language which is adopted in the
proofs of subsequent generalisations in the literature.
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APPENDIX A. ELLIPTIC CURVES

In this appendix, we will collect some basic facts about elliptic curves. We will content ourselves with
an extremely concise description, and for full details and proofs we refer the reader to standard texts such
as [Sil09].

An elliptic curve over a field K is defined to be a smooth projective algebraic curve of genus 1, endowed
with a distinguished point 0 € FE(K). Riemann-Roch implies that every such curve has an algebraic
equation of the form

(121) y? + ar1zy + agy = 2° + asx? + auz + ag, a; € K.

Elliptic curves are most easily understood when K = C through the theory of Weierstrafy uniformisation,
which we discuss first. Over other base fields, notably the field of rational numbers Q, the arithmetic of
elliptic curves is extremely complex, and continues to hold many mysteries today.

A.1. Weierstraf3 uniformisation. Suppose that A C C is a lattice, then the quotient C /A is an algebraic
variety. This can be shown by explicitly constructing an algebraic model for it. Define first the Weierstrafy
p-function by

1 1 1
122 -+ > _ L
( ) @A(z) 22 + (Z — )\)2 22
AeA\{0}

The following facts are proved easily by a direct computation, see [Sil09] Section VI].

e The series (122) converges absolutely, and uniformly on compact open subsects of C,
e Its Laurent series expansion around z = 0 is given by

(123) @A(z):?12+Z(2k+1)G2k(A)z2k, where Gop(A)= %

k>1 AeA\{o}

A short argument shows that the first statement implies that the function @(z) is invariant under translation
by A. We say that pp is an elliptic function for A. Furthermore, by computing the first few coefficients of
the Laurent series expansion of both sides, we obtain the relation

(124) Pr(2) = 4pa(2)? — 60G4 (A)pa(2) — 140Gs(A).

The functions pA, p/, generate the function field of C /A, so that provides an algebraic equation for
the elliptic curve C /A.

The converse. The Weierstrafl uniformisation theorem states that also conversely, for every elliptic
curve E/ C, there exists a unique lattice A such that F is isomorphic to C /A. Concretely, if

(125) {a,B} isabasisfor H;(E(C),C)
then the quantities
(126) 0 = dﬁ, 0y = dz

a ¥ B Yy

are independent over R, and if A = (21, Q) is the lattice generated by these two periods, then we have a
complex analytic isomorphism

(127) E(C)— C/A: zr—>/ch; (mod A).
0
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The real period. When F is defined over a subfield of R, it makes sense to consider E(R), which is a
real Lie group, and hence isomorphic to either

St if
(128) E(R) 2{ S'xZ /27 if
Given a minimal Weierstrafl model of the form above, we define the Néron differential to be
d
(129) WNér = 71.
29+ arx

The real period is then defined to be

(130) Qg:/ Wer-
E(R)

A.2. Elliptic curves over a local field.

A.3. The Birch-Swinnerton-Dyer conjecture.

A.3.1. The Tate—Shafarevich group. Mordell-Weil Proof via Selmer, define Tate—Shafarevich.
A.3.2. The Néron canonical height.

A.3.3. The root number and functional equation.

A.3.4. The BSD conjecture. Having defined all these various quantities above, we can now state the Birch-
Swinnerton-Dyer conjecture, which predicts a deep relation between the analytically defined L-function of
an elliptic curve E over Q, and various pieces of arithmetic data, most notably the rank of F(Q). More
precisely, it states that

Conjecture A.1. Let E be an elliptic curve over Q, with Mordell-Weil group of rank r. Then its L-function
analytically continues to the entire complex plane, and the order of vanishing at s = 1 is precisely equal to r.
The leading term in its Taylor expansion at that point is given by

Ly (1) _ M| Q- Re-T1, ¢
v E(Q)tor?

(131)

This conjecture is wide open, though many partial results exist in the cases where the rank is 0 or 1.
The theorem of Gross—-Zagier, as well as its various subsequent generalisations, remains one of the more
significant results towards this conjecture, as it manages to show the existence of points of infinite order in
case the analytic rank is equal to 1. These points are provided by the theory of Heegner points.

APPENDIX B. MODULAR FORMS AND THE HECKE ALGEBRA

B.1. Modular forms of integral weight. Suppose k € Z and I" is a congruence subgroup of SLy(Z). A
weakly holomorphic modular form of weight k and level I is a holomorphic function f : §§ — C such that

(132) f (Z;i;) (cr+d)~F = f(r), forall (Z 2) eT.

The cusps of T" are the finitely many I'-orbits on P*(Q). If in addition, f is holomorphic at the cusps of T,
then we call f a holomorphic modular form or simply modular form. The space of modular forms of weight
k and level T is denoted by My (T"), and the subspace spanned by forms that vanish at all the cusps (which
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are called cusp forms) is denoted by Sk (I"). Assume for simplicity that the translation matrix 7" belongs to
I (in general, some power of it always does) then any modular form f has a Fourier expansion

(133) f(q@) = a0 + a1q + a2q® + asq® + asq* + . .. a; € C,q=¢€"""
which is referred to as its g-expansion.

The following basic facts about modular forms will be used without further mention, their proofs can be
found in [Ser77, [DS05]].

e The spaces M}, (I") are finite-dimensional, and trivial for k& < 0,

o The space S3(T") is isomorphic to the space of differentials on the modular curve X (I") (for defini-
tions, see next section) via the map f(7) — f(7)dr (mod T),

e The spaces S (I") are endowed with an inner product, called Petersson inner product, defined by

(134) (f,9) = /r\g flz+iy)g(z + iy)y"2dady.

B.2. Modular curves.

B.3. Hecke algebras. The reason that modular forms enter in number theory at all, is probably the fact
that modular curves are defined over Q (or some number field that depends on the level structure), and that
there exist Hecke operators which are defined over the same field.

Hecke
Diamond, Atkin-Lehner

B.4. Modular forms of half-integral weight. Let us first define the prototypical example of a form of
weight 1/2, on which our general definition will be modelled. Define

(135) e(z)zzqn2:1+2q+2q4+,,,
nez

which is a holomorphic form on ) such that 62 is a weight 1 modular form for I';(4) with non-trivial
nebentypus x4. This means that 6 itself should be considered a modular form of weight 1/2, a notion
which we now formalise.

Let k be an integer, and define G}, 1 /2 to be the group consisting of pairs (7, ¢(z)) where v € GL (R)
and ¢(z) is a complex valued holomorphic function on $) satisfying

(136) |6(2)] = (dety) "2 ez + d|*+1/2
where the group law is defined by the rule

(137) (71, #1(2)) - (92, 2(2)) = (V172, P1(72)P2(2)) -
We define an action of G112 on the set of functions f : § — C by setting

(138) Fl(v,6(2) = 6(2) 7 £ (72)-
We let f(4N)X be the subgroup of G, /o consisting of pairs (7, ¢(z)) where v € I'g(4N) and

(139) o(2) = x(d) () (‘d“)k/ (cz + d)F+172.
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A modular form of weight k£ 4+ 1/2 on I'g(4N) with nebentypus ¥ is a holomorphic function f : $§ — C
which is holomorphic at the cusps and satisfies

(140)

fI(8(2),  ¥(1,6(2)) € To(4N)

Remark. It should be noted that geometric definitions remain difficult, and are the subject of much
recent research.

[Cox89]
[DS05]

[GKZ87]
[GZ86]
[Ham12]
[Koh85]
[Ser77]
[Silo9]
[Wal81]

[Zag85]
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