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These are the notes for the �rst two talks at the Gross–Zagier seminar at Oxford, October 2018. They

were hastily written, and poorly proofread. I would be grateful for any corrections or suggestions! In this

talk, we will give a very friendly introduction to the objects and statements involved in the theorem of

Gross–Zagier, based on one single example. This is essentially what is done in [Zag85] where the elliptic

curve 37.a1 is investigated. To make sure we do not get lulled into a false sense of understanding by

following Zagier’s computations, we will instead consider the curve 61.a1 and do all the computations

from scratch.

The notes are structured around the computation of this example, and the aim is to introduce some of the

main objects involved in the work of Gross–Zagier and Gross–Kohnen–Zagier guided by our excursions

around 61.a1. Whenever some object is introduced, we take the time to de�ne everything precisely,

and assume little to no familiarity with the subject. During the talk, de�nitions will be inserted as they

are needed, but for the purpose of a smooth narrative, they have been collected in the appendices in this

document.

1. The elliptic curve E = 61.a1 and its L-series

Let us consider the elliptic curve with Weierstraß equation

(1) E : y2 + xy = x3 − 2x+ 1

which has label 61.a1 in Cremona’s database. Clearly, it is de�ned over Q, and its conductor is 61. We

will now study some invariants of this elliptic curves over various base �elds.
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1.1. The curve E over C. We now compute some of the invariants of the curve E over C, most impor-

tantly its periods, which we do numerically. First, the variable transformation y 7→ 2y + x gives us the

following model for E:

(2) E : y2 = 4x3 + x2 − 8x+ 4

Now let us compute approximate generators for the lattice of periods Λ. The cubic polynomial on the right

hand side of the model (2) has precisely one real root, which is approximately

(3) γ = −1.73497012425858

and we get the following picture of E(R):

Figure 1. The set E(R) for the model y2 = 4x3 + x2 − 8x+ 4

On the minimal Weierstraß model (1), the Néron di�erential is dx/(2y + x), which is the di�erential dx/y
in the model (2). We now compute numerically that

(4)

Ω+
E = 2

∫ ∞
γ

dx√
4x3 + x2 − 8x+ 4

≈ 6.13319314839454

is an approximation of the real period of E. Likewise, we may compute the complex period by numerically

computing the two other conjugate roots

α, β = 0.742485062129292± 0.158413173442297i

and then

(5)

Ω−E = 2

∫ γ

β

dx√
4x3 + x2 − 8x+ 4

≈ 3.06659657419727 + 0.997205478384470i

Finally, we record some of the invariants of the lattice of periods. By putting E in short Weierstraß form,

which can be done by completing the cube on the right hand side of the model (2), we can read o� the

exact values of the Eisenstein series G4 and G6 on this lattice. That is, from the theory of Weierstraß

uniformisation, it follows that

(6)

{
60G4(Λ) = 10476 = 22 · 33 · 97

140G6(Λ) = −217944 = −23 · 33 · 1009
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1.2. The curve E over Fp. Let us consider a �nite prime p and investigate the reduction of E modulo p.

The curve E has good reduction at p 6= 61, and for p = 61 we reduce the equation (2) and do a simple

change of variables to move the singular point to the origin, which yields an integral model

(7) EZ : y2 = 4x3 + 433x2 + 61 · 28x+ 61 · 22 · 769.

This model clearly reduces to a nodal curve at 61. The singularity is regular, since the constant coe�cient

has 61-adic valuation 1. The equation of the reduction is

(8) y2 = 4x3 + 6x2

The tangent lines at the singularity modulo 61 have slopes±
√

6, and are hence not de�ned over F61 so that

the reduction is non-split multiplicative. This means that the Tamagawa number at 61, and hence at any

prime, is trivial. Furthermore, the local root numbers are all 1, so the L-series of E should vanish at s = 1.

We will prove in the next section (without using the modularity theorem) that it does vanish, to order 1.

By counting points modulo small primes, we obtain the �rst few terms of the L-function of E:

(9)

LE(s) = (1 + 61−s)−1 ×
∏
p 6=61

(
1 + app

−s + p1−2s
)−1

= 1− 1

2s
− 2

3s
− 1

4s
− 3

5s
+

2

6s
+

1

7s
+

3

8s
+

1

9s
+

3

10s
− 5

11s
+ . . .

If we compute the space of modular forms on Γ0(61), we �nd a newform whose q-expansion begins with

(10) f(q) = q − q2 − 2q3 − q4 − 3q5 + 2q6 + q7 + 3q8 + q9 + 3q10 − 5q11 + . . .

These coe�cients certainly seem to agree with those of LE(s)! If we use the modularity theorem of Wiles,

we may turn this observation into a rigorous proof that all the coe�cients agree, not just the �nitely many

we computed. But of course it’s ridiculous to invoke the full strength of modularity when one is working

with a concrete example! We will prove modularity of E in the next section via a direct calculation.

1.3. The curve E over Q. In this subsection, we again use the global minimal model

(11) E : y2 + xy = x3 − 2x+ 1

First, it is easy to check that E(Q) is torsion-free. Indeed, the prime to p torsion injects into the group of

points on E modulo any p 6= 61. Looking at the point counts that went into (9), we see that there are 4
points on E modulo 2, and 9 points modulo 5, which implies there can’t be any torsion.

To determine the rank, one can use the method of descent via isogeny. I confess that I did not do this

explicitly from scratch, since it is likely to be a messy calculation, but I encourage you to try! Using the

routines in Sage or Magma we can show (provably) that

(12) E(Q) = 〈(1,−1)〉 ' Z

so that E is of rank 1 over Q. Moreover, the generator P = (1,−1) of the Mordell–Weil group has a

canonical height that may readily be computed via Tate’s algorithm. In fact, I was too lazy to implement

that from scratch, and didn’t want to use anything that was already implemented, so I just used the naive

expression

(13) h(P ) = lim
n→∞

log (hnaive(2
nP )) /4n

where the naive height on the right hand side is just the maximum of the absolute values of the numerator

and denominator of the x-coordinate of the point. This is quite terrible from a computational viewpoint,

but seemed to converge fast enough if we just want a few digits. I obtained

(14) h(P ) = 0.079187731362
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which seems to agree with what the professionals compute, though this did take a while to get right to that

precision. Anyways, it’s good enough for us!

2. The modularity of E

We show that E is modular, and deduce from it a number of statements about the L-series of E. The

computations in this section will be used later, notably when we compute Heegner points on E.

2.1. Verifying modularity for E. We start by verifying that E is modular. Recall that in (10) we found

that there was a newform f whose �rst few coe�cients agree with the coe�cients of the L-series of E.

This can be done in two di�erent ways, both of which have their merits. The �rst is via an algebraic

computation and uses the fact that classical spaces of modular forms may be computed e�ciently via the

theory of modular symbols (which is not discussed here). The second is an analytic computation of the

uniformisation map, which proves modularity by establishing the equality of the two lattices of periods.

2.1.1. Method 1: Consider the congruence subgroup Γ0(61)+
which is generated by Γ0(61) and the matrix

(15) w61 =

(
0 −1/

√
61√

61 0

)
We easily check that the quotient X0(61)+ = Γ0(61)+\H is of genus 1, and has a unique cusp∞, which

is rational. We will show that E ' X0(61)+
. To do this, it su�ces to �nd two Γ0(61)+

-invariant functions

ξ and η on H such that

(16) η(τ)2 + ξ(τ)η(τ) = ξ(τ)3 − 2ξ(τ) + 1

This does not uniquely determine the functions ξ and η, so we impose in addition the condition

(17)

dξ

2η + ξ
= f(q)

dq

q

where f is the modular form (10), which is allegedly attached toE. From these conditions, we may compute

the �rst few terms of the q-expansions of ξ and η, provided they exist. We obtain

(18)

{
ξ(q) = q−2 + q−1 + 2 + 3q + 6q2 + 7q3 + 11q4 + 16q5 + 23q6 + 30q7 + . . .
η(q) = −q−3 − 2q−2 − 4q−1 − 7− 13q − 22q2 − 36q3 − 54q4 − 85q5 − 126q6 + . . .

Of course, this doesn’t show that ξ and η exist! But if they do, their q-expansions start o� like this. Now

here’s the trick. The weakly holomorphic forms ξf2
and ηf3

should be holomorphic modular forms of

weights 4 and 6 respectively, and therefore lie in �nite-dimensional spaces which are furthermore explicitly

computable. We know how their q-expansions start o�, so if we compute enough terms, we can uniquely

�nd these modular forms after a �nite computation. In this case, we compute that

(19) dimM4(Γ0(61)) = 17, dimM6(Γ0(61)) = 27

so it su�ces to construct a basis for both spaces (which can be done via the theory of modular symbols) and

�nd ξf2
and ηf3

explicitly. The condition on ξ and η is equivalent to a relation between modular forms of

weights 12, which may be checked after a �nite amount of computation. Of course, this can be done much

more cleverly, already by simply taking the action of w61 into consideration and reducing the dimensions

of the spaces involved, but the basic idea remains the same.
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2.1.2. Method 2: The second method is analytic, and numerically computes the complex uniformisation of

E. More precisely, de�ne the function

(20) φ : H−→C /Λ′, τ 7−→ 2πi

∫ i∞

τ

f(z)dz

where as before, f is the modular form found in (10), and Λ′ is some lattice of periods, which we will show

to be homothetic to the lattice of periods Λ ofE. The function φmay be e�ciently computed via the rapidly

converging power series

(21) φ(τ) = −q +
1

2
q2 +

2

3
q3 +

1

4
q4 +

3

5
q5 − 1

3
q6 − 1

7
q7 − 3

8
q8 − 1

9
q9 + . . .

It is clear that φ is almost Γ-invariant, in the sense that

(22) φ(γτ)− φ(τ) = constant.

This constant only depends on γ, and hence E induces an element of H1(Γ,C). This is the subject of

Eichler–Shimura theory, which (together with a result of Edixhoven) shows that

• The image of this morphism Γ→ C is the lattice of periods Λ′,
• The constants G4(Λ′) and G6(Λ′) are integers.

By �nding a set of generators for Γ, we can therefore approximate a pair of generators for the period lattice

Λ′ numerically, using the rapidly converging series 21. We obtain two generators

(23)

{
Ω′1 ≈ 1.02219885806576
Ω′2 ≈ 0.511099429032878 + 0.166200913064078i

Then, we compute the constantsG4(Λ′) andG6(Λ′), which we know to be integers, numerically up to some

precision. By capping the double summation over Λ′ to a box of size 2000, we obtain the approximations

(24)

{
60G4(Λ′) ≈ 10475.9998934− 0.000046670i
140G6(Λ′) ≈ −217944.000000002− .000000000089i

a careful precision analysis would show that the �rst few digits are signi�cant, yielding a rigorous proof of

the fact that 60G4(Λ′) = 10476 and 140G6(Λ′) = −217944, and hence that

Λ ∼ Λ′.

This shows modularity of E.

2.2. Consequences of modularity. The statement the elliptic curve E is modular can be de�ned in one

of many di�erent ways, all of which are equivalent. For the purpose of our discussion, there are two view-

points: One is an analytic statement about the coincidence of the L-functions attached to E and some

modular form f , while the other is geometric in the sense that there is a �nite cover X0(N) → E. It was

the latter that was proved above, while it is the former that plays the most important role for the purpose

of Gross–Zagier, and the explicit computations below.

Theorem 2.1. Suppose E is an elliptic curve over Q of conductor N . Then the following are equivalent:

• There exists a newform f ∈ S2(Γ0(N)) such that ap(f) = ap(E) for all p not dividing N ,
• There exists a �nite map X0(N)−→E de�ned over Q.

Proof. A proof can be found, for instance, in Diamond–Shurman [DS05, Section 8.8]. �
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If these equivalent conditions are ful�lled, we say thatE is modular. It is known from the work of Wiles,

and later Breuil–Conrad–Diamond–Taylor, that every elliptic curve over Q is modular. This result was

not known at the time of the work of Gross–Zagier, but it could be checked e�ciently for any particular

example E, essentially using the method above.

For us, the main importance of this statement lies in the fact that the completed L-series

(25) L̃E(s) := 61s/2(2π)−sΓ(s)LE(s)

may be analytically continued to the entire complex plane s ∈ C, through its integral representation

L̃E(s) =

∫ ∞
0

f

(
iτ√
61

)
τs−1dτ(26)

=

∫ ∞
1

f

(
iτ√
61

)
(τs−1 − τ1−s)dτ(27)

First, we note that the fact that f is �xed by the Atkin–Lehner involution w61 implies that the completed

L-function satis�es the functional equation

(28) L̃E(s) = −L̃E(2− s)

which implies that L̃E(1) = 0. If the value at s = 1 vanishes, it becomes natural to look at the derivative

of the completed L-function at s = 1, which we expect to contain relevant information as predicted by the

Birch–Swinnerton-Dyer conjecture. This quantity may be computed by di�erentiating the above integral

representation, giving the expression(
d

ds
L̃E

)
(1) = 2

∫ ∞
1

f

(
iτ√
61

)
log(τ)dτ(29)

= 2

∞∑
n=1

an

∫ ∞
1

log(τ) · exp

(
−2nπτ√

61

)
dτ.(30)

The above can be computed numerically, yielding

(31)

(
d

ds
L̃E

)
(1) ≈ 0.485673651427

If we believe the Birch–Swinnerton-Dyer conjecture, this number should be equal to Ω+h(P0), and indeed,

using the numerical approximations above we get

(32) Ω+h(P0) ≈ 0.485673651427

That’s far from a proof of the Birch–Swinnerton-Dyer conjecture in this case, but it does make for com-

pelling evidence, and a great sanity check that our computations so far are correct, or at the very least

wrong in some consistent and minor way.

3. Heegner points on E

In this section, we establish some of the basic theory of Heegner points. We start with a discussion of

the necessary background on quadratic orders, before we brie�y recall CM theory and the de�nitions of

Heegner points that are used in the work of Gross–Zagier. We note that in the literature the word Heegner
point can mean di�erent, closely related, things where various hypotheses are weakened, and one should

always be careful when using the phrase.
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3.1. The arithmetic of quadratic orders. SupposeO is an order in an imaginary quadratic �eld K . IfO
is not maximal, it is not a Dedekind domain, and therefore some care needs to be taken with class groups.

We start by recording some necessary facts. Recall that the Picard group Pic(O) is de�ned to be the group of

isomorphism classes of invertible sheaves on Spec(O), or otherwise said, the class group of Cartier divisors.

In the context of an order O, a Cartier divisor is better known under the name fractional ideal. We start by

reviewing these de�nitions, and stating the relation with the class group of the maximal order.

Suppose that disc(O) = ∆c2, where ∆ is a fundamental discriminant. We call c > 0 the conductor of

the order O. Let OK be the ring of integers in K . If OK has integral basis {1, β}, then we always have

(33) O = 〈1, cβ〉.

A fractional ideal is a subset of K which is a non-zero �nitely generatedO-module. It is an easy exercise to

show that every fractional ideal is of the form α a where α ∈ K× and aCO. There are a priori two ways

that a fractional ideal can be “nice”. First, we say a fractional ideal b is proper if

(34) O = {α ∈ K | α b ⊆ b}.

Second, we say a fractional ideal b is invertible if there is another fractional ideal b′ such that b b′ = O. Such

an ideal Note that principal fractional ideals, i.e. those of the form αO for some α ∈ K×, are automatically

invertible. The following proposition says that the two notions coincide.

Proposition 3.1. Let a be a fractional ideal inK . Then a is proper if and only if it is invertible.

Proof. Suppose �rst that a is invertible, with a′ an ideal such that a a′ = O. Let α be any element in

K such that α a ⊆ O, then we have that

(35) αO = (α a) a′ ⊆ a a′ = O

so that α ∈ O. This shows that a is proper.

Conversely, suppose that a is proper. Let α1, α2 be two generators of a. Set τ = α2/α1, and let

ax2 + bx + x be its minimal polynomial over Q, where a, b, c are integers with no common prime

factors. It is shown in [Cox89, Lemma 7.5] that the set of all elements β ∈ K such that β a ⊆ a is equal

to the order 〈1, aτ〉 in K . Since a is proper, we get that

(36) O = 〈1, aτ〉.

Denoting for complex conjugation, we calculate that

a a a = Nm(α)〈a, aτ, aτ , aττ〉(37)

= Nm(α)〈a, aτ, b, c〉(38)

= Nm(α)〈1, aτ〉 = Nm(α)O(39)

where the second equality follow from the identities a(τ+τ) = −b and aττ = c, and the third equality

follows from the coprimality of the triple (a, b, c). This shows that a is invertible. �

The Picard group Pic(O) is by de�nition the set of proper fractional O-ideals in K , modulo principal

ideals. Since it is not immediately clear how to �nd and enumerate such ideal classes, we now relate them

to ideals of the maximal order, which is more familiar territory. Recall that c denotes the conductor of O.

We start by de�ning a certain subset of the proper fractional O-ideals.

De�nition 3.2. An ideal I CO is called prime to c if I +cO = O.

The importance of this de�nition lies in the following proposition, whose proof we omit here.
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Theorem 3.3. An ideal I CO is prime to c if and only if Nm(I ) is an integer prime to c. As a consequence,
any ideal prime to c is automatically proper, and the natural inclusion induces an isomorphism

(40) {Ideals prime to c in O}/{Principal ideals} ' Pic(O).

Furthermore, there is a bijection

(41) {Ideals prime to c in O} 1:1←→ {Ideals prime to c in OK}
such that principal ideals coprime to c in O correspond to the set of ideals

(42) PK,Z(c) = {(α) | α ≡ n (mod cOK), n ∈ Z}.

Proof. The proofs of all the assertions in this theorem may be found in [Cox89, Section 7.C]. �

The main value of the above proposition is that it gives us a very concrete description of the Picard

group of the order O, entirely in terms of ideals in the maximal order OK . This makes it very amenable

to explicit calculation, and provides a concrete abstract description of this group that is frequently useful.

More precisely, we have

Pic(O) ' {Ideals prime to c in O}/{Principal ideals}(43)

' {Ideals prime to c in OK}/PK,Z(c)(44)

This implies that there is a short exact sequence relating the Picard group of O to the class group of K .

More precisely, we get the sequence

(45) 1−→ (OK /c)× /O×K(Z /cZ)×−→Pic(O)−→Pic(OK)−→ 1

where Pic(OK) is better known as the class group of K .

Example. Let us consider the example of O = Z[3
√
−3], which is the order of conductor 6 in K =

Q(
√
−3). In this case, we know that

(46) OK = Z

[
1 +
√
−3

2

]
is a UFD, so that the short exact sequence (45) gives us an isomorphism

Pic(O) ' F×4 ×
(
F3[x]/(x2)

)×
/ (Z/6Z)(47)

' Z/3Z(48)

3.2. A quick introduction to CM theory. We now quickly recall some statements from global class �eld

theory, and discuss the important notion of ring class �elds. These results are part of a subject called CM
theory, which lies at the heart of the theory of Heegner points. Historically, it is one of the most important

and beautiful achievements of number theory.

Given a number �eld K , its ring of adèles is de�ned as

(49) AK =

′∏
v

Kv

where the product runs over all places of K , and is restricted in the sense that it only contains the elements

(av)v ∈ AK for which av ∈ Ov for all but �nitely many v. We can give AK a topology by decreeing∏
v Ov with its product topology to be an open subset. There is a diagonal map

(50) ∆ : K ↪→ AK ,

which endows K with the discrete topology. The quotient AK /K is compact. The units in AK form a

group with respect to multiplication, which we will call the idèle group. We topologise it, not with the
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subspace topology from AK , but simply by declaring

∏
v O×v , with its product topology, to be open in A×K .

The image of K× under the diagonal map is again discrete, and the (non-compact) quotient

(51) CK = A×K /K
×

is called the idèle class group of K . It plays the lead role in global class �eld theory.

Fix a separable closure ofK , and take the maximal abelian subextensionKab/K . Then class �eld theory

provides a certain global Artin map

(52) ϕ : CK → Gal(Kab/K).

This map is surjective, and its kernel is the connected component of the identity. It becomes an isomorphism

of topological groups when we pass to the pro�nite completion. More precisely, we have

(53) ϕ : ĈK
∼−→ Gal(Kab/K), where ĈK = lim←−

U

CK/U,

with the limit taken over all �nite index open subgroups. This map is functorial and equivariant in a number

of important ways, which we will not recall here. The power of this isomorphism lies in the fact that it

describes a system of external objects (the �nite abelian extensions ofK) in terms of internal data (the �nite

index open subgroups ofCK ). We can be even more speci�c: A �nite abelian extensionL/K corresponds to

the �nite index open subgroup NmL/K CL of CK . This is a powerful dictionary, but it lacks a satisfactory

way to describe (i.e. �nd explicit generators) for the �nite abelian extension corresponding to a given �nite

index open subgroup of CK . This problem is known as Hilbert’s 12th problem, and remains open to this

day, except in very special examples of number �elds K .

However, a full solution of Hilbert’s 12th problem is given in the case where K is imaginary quadratic,

by CM theory. We describe a few aspects of this theory now. Let O be an order in an imaginary quadratic

�eld as above. Then we de�ne the ring class �eld KO attached to O to be the �nite abelian extension of K
corresponding under (53) to the open subgroup

(54) C××
∏
p

O×p .

Suppose a is a proper fractional ideal of O, then a ⊂ C is a lattice and we may de�ne its j-invariant

j(a) ∈ C. These are particular examples of singular moduli, i.e. values of the j-function at imaginary

quadratic �elds, which have remarkable properties. It is not so hard to see that the numbers j(a) are

algebraic. The following theorem, which lies much deeper, is one of the main statements of CM theory.

Theorem 3.4. If K is an imaginary quadratic �eld, and a is a proper ideal of an order O in K , then j(a) is
an algebraic integer which generates the ring class �eldKO overK . There is an isomorphism

(55) s : Pic(O)−→Gal(KO/K)

de�ned by b 7→ σ, where j(a)σ = j(b−1 a).

Example. As a beautiful application of these results, we obtain a very satisfactory answer to the age-old

question: If n > 0 is an integer, when is a prime p of the form x2 + ny2
? Indeed, let p be a prime not

dividing n, then we see that this question is equivalent to the splitting of p = p p into two principal prime

ideals p, p. For those familiar with the de�nition of the Artin map φ above, it is not hard to see that this is

equivalent to p splitting completely in the ring class �eld KO/Q. This implies the following result:

Theorem 3.5. Let n > 0 be an integer, and K = Q(
√
−n). De�ne the order O = Z[

√
−n] in K , and

let fn(x) ∈ Z[x] be the minimal polynomial of the algebraic integer j(O). Then for any prime p that does
not divide 2ndisc(fn) we have that p = x2 + ny2 for some integers x, y if and only if both of the following
conditions are satis�ed:
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(1) −n is a square modulo p,
(2) fn(x) has a root modulo p.

As an example, we will prove a famous conjecture of Euler about primes of the form x2 + 27y2
. The

order relevant for this problem is O = Z[
√
−27]. We showed in (48) that

(56) Pic(O) ' Z /3Z

and hence KO is a cubic Galois extension of K . Since K contains a third root of unity, Kummer theory

guarantees that KO = K( 3
√
a) for some element a of K . The extension KO/Q is generalised dihedral,

which means that

(57) Gal(KO/Q) ' Pic(O) o 〈 · 〉

where complex conjugation acts as inversion on the abelian group Pic(O). It follows that KO ∩ R is an

extension of Q of degree |Pic(O)|, so that we may assume without loss of generality that a is real.

Since KO/K is unrami�ed outside of 2, 3 we may furthermore assume without loss of generality that

a = 2, 3, 6, or 12. Now we calculate that

(58) 31OK = p p, p = (2 + 9
√
−3)

where we notice that the OK-ideal p = (2 + 9
√
−3) belongs to PK,Z(6). This implies that the associated

Frobenius element acts trivially on the residue �eld. Concretely, this means that

(59)
3
√
a = Frobp( 3

√
a) ≡ 3

√
a

31 ≡ a10 3
√
a (mod p).

This immediately rules out three of the four possibilities for a, and we conclude that KO = K( 3
√

2). This

implies, by the above theorem, that

(60) p = x2 + 27y2 ⇐⇒
{
p ≡ 1 (mod 3)
x3 − 2 has a root in Fp .

This was conjectured by Euler, but he was unable to �nd a proof during his lifetime (what a loser, amirite?).

3.3. Heegner points on X0(N). Finally, we come to the de�nition of a Heegner point. Let N ≥ 1 be

any integer, and recall that the a�ne open Y0(N) ⊂ X0(N) of the modular curve of level Γ0(N) classi�es

cyclic isogenies of degree N , in the sense that its complex points y ∈ Y0(N)(C) correspond to an isogeny

E → E′ whose kernel is isomorphic to Z /NZ. We say that y is a Heegner point if furthermore

(61) End(E) ' End(E′) ' O

for some order O in an imaginary quadratic �eld K . If we set D = Disc(O), then D = c2d for some

integer c which we call the conductor of the Heegner point. Likewise, say that the Heegner point y is of

discriminant D.

Suppose that we choose a quadratic imaginary orderO, and ask ourselves whether there exist any Heeg-

ner points at all, and if so, whether we can determine all of them explicitly. We �rst formulate a necessary

and su�cient condition for their existence.

Lemma 3.6. Suppose N ≥ 1 and O is an order in an imaginary quadratic �eld K . Then the set of Heegner
points of discriminant D is non-empty if and only if there exists an ideal nCO such that O / n ' Z /NZ.

Proof. First, let us assume that we have a Heegner point corresponding to an isogenyE → E′ whose

kernel is cyclic of order N . Then we have that

(62) E ' C / a, E′ ' C / b
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for some fractional ideals a, b in O. We may assume without loss of generality, by rescaling these

fractional ideals, that a ⊂ b and the isogeny is simply given by

(63)

{
C / a −→ C / b
z + a 7−→ z + b

Then the fractional ideal n = a b−1
is actually a subset of O, and we furthermore have that

(64) O / n = b b−1 / a b−1 ' b / a ' Z /NZ .

Conversely, suppose that there is such an ideal n. Then choose any proper fractional ideal a of O,

and set E = C / a and E′ = C / a n−1
, which are related by the isogeny

(65)

{
C / a −→ C / a n−1

z + a 7−→ z + a n−1

The kernel of this isogeny is

(66) a n−1 / a ' a / a n ' O / n ' Z /NZ .

�

So in general, Heegner points are only guaranteed to exist if we make the following additional assump-

tion, often referred to as the Heegner hypothesis:

(HH) ∃ nCO s.t. O / n ' Z /NZ .

Now suppose the Heegner hypothesis (H) is satis�ed. As in the proof of Lemma 3.6, we see that any

Heegner point (E,E′) must satisfy that E ' C / a for some fractional ideal, and E′ ' C / a n−1
for some

ideal n as in (HH). Conversely, any such choice of a and n gives rise to a Heegner point, which furthermore

only depends on the class of a in Pic(O). This shows that there is a bijection

(67) {Heegner points on X0(N)} 1:1←→ {(O, n, [a]) : O / n ' Z /NZ, [a] ∈ Pic(O)}

This bijection makes the set of Heegner points extremely concrete. We now turn to a description of the

action of the Galois group and Hecke algebra, which have concrete descriptions in terms of triples via this

bijection. Henceforth, we make the assumption that the conductor c is coprime to N .

3.3.1. The Galois action. By CM theory, we see that the set of Heegner points is algebraic, and we �rst

describe the action of Aut(C) in terms of the corresponding triples under the bijection (67). First, complex

conjugation acts via the rule

(68) (O, n, [a]) = (O, n, [a])

simply because it is a continuous automorphism of C. By CM theory, the action of any other element of

Aut(C) factors through Gal(KO/K). Using the isomorphism s with the Picard group de�ned in (55) we

may now describe the action via

(69) (O, n, [a])s(b) = (O, n, [b−1 a])
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3.3.2. The Hecke action. We �rst describe the action of the Atkin–Lehner involutions, of which there is one

for every prime divisor p of N . Write N = pkm with m coprime to p. Suppose (O, n, [a]) is a Heegner

point, then there is a unique divisor p of p which divides n, and we may likewise write n = pk m, where (p)
is coprime to m. Then the Atkin–Lehner involution wp acts via

(70) wp(O, n, [a]) = (O, pkm, [a p−k]).

The Hecke correspondences T`, for ` a prime not dividing N , also act on the set of Heegner points with

conductor prime to N . The action is given by the formula

(71) T`(O, n, [a]) =
∑

a/b=Z/̀ Z

(Ob, nb, [b]),

where the sum runs over the (`+ 1) sublattices b of index ` in a, and Ob = End(b) and nb = nOb ∩Ob.

3.4. Heegner points onE. For our guiding example, this construction gives rise to plethora of potentially

interesting rational points on E, which are furthermore explicitly computable via the uniformisation (20).

For explicit computations, we will make use of the uniformisation

(72) φ : H−→Γ\H ∼−→ E

described in the previous section, which factors throughX0(N). For computational reasons, it will therefore

be important to understand the points in the upper half plane that correspond to the Heegner points on

X0(N). To do this, we �rst establish a correspondence between proper ideals and binary quadratic forms:

Lemma 3.7. Suppose

(73) F (x, y) = ax2 + bxy + cy2

is a primitive, positive de�nite, binary quadratic form of discriminant ∆ < 0. Then

(74) a =

(
a,
−b+

√
∆

2

)
is a proper ideal of the quadratic order O of discriminant ∆. Moreover, this assignment induces a bijection

(75) {F (x, y) prim. pos. def. discriminant D}/ SL2(Z)
1:1−→ Pic(O)

Proof. A proof can be found in [Cox89, Section 7.B]. It is worth noting that the inverse map is

(76) a = (α, β) 7−→ Nm(αx+ βy)/Nm(a).

�

Remark. This bijection in particular endows the set of SL2(Z)-equivalence classes of primitive positive

de�nite quadratic forms of any discriminant with the structure of a �nite group. The description of this

group law in terms of quadratic forms was originally discovered by Gauß, and goes by the name Gauß com-
position. In 2004, Bhargava presented a new treatment of Gauß composition that allows for generalisations

to new settings. We de�ne a Bhargava cube to be a 2 × 2 × 2 cube with integers associated to its vertices.

To a Bhargava cube, we associate three quadratic forms as follows:

Q1(x, y) = −det

(
x ·
(
a e
b f

)
+ y ·

(
c g
d h

))
Q2(x, y) = −det

(
x ·
(
a c
e g

)
+ y ·

(
b d
f h

))
Q3(x, y) = −det

(
x ·
(
a b
c d

)
+ y ·

(
e f
g h

))
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Figure 2. Cubus Bhargaviensis

These three forms have the same discriminant. If two of these three quadratic forms are primitive, then so

is the third one. In this case, we say the cube is projective. It turns out thatQ3(x,−y) is a direct composition

ofQ1(x, y) andQ2(x, y) in the sense of Gauß! The language of Bhargava has the advantage of “unraveling”

some of the di�cult algebra of Gauß. �

From Lemma 3.7, it follows that the set of points τ ∈ H corresponding to elliptic curves with complex

multiplication by an order O of discriminant ∆ is the �nite set of SL2(Z)-orbits of solutions of quadratic

equations aτ2 + bτ + c where a, b, c are coprime integers such that b2 − 4ac = ∆. This may now easily be

turned into a proof of the following statement:

Lemma 3.8. Let N ≥ 1 and O an order of discriminant ∆ < 0 such that

• the conductor c of O is prime to N ,
• the Heegner hypothesis (HH) is satis�ed.

Then there is a bijection

(77) {Heegner points (O, n, [a])} 1:1←→
{
ax2 + bxy + cy2 prim. pos. de�nite

s.t. b2 − 4ac = ∆, and N | a

}
/ Γ0(N)

Proof. TODO. �

This lemma clearly results in an explicit method to determine the �nite set of Heegner points. These

points map to points in E(Q) which are de�ned over the ring class �eld KO of K , and when appropriately

averaged they give rise to rational points on E.

More precisely, is we letHO be the set of Heegner points associated toO in H, which is of size 2h, where

h is the class number ofO. As before, we denote φ : H→ E be the uniformisation map from (20). Now for

any τ ∈ HO we de�ne

(78) Pτ = φ(τ) ∈ E(Q).

Note that the set of such points Pτ is naturally acted on by the Atkin–Lehner involution w61, and the size u
of the projective stabiliser of Pτ is usually of size 1, unless ∆ = −3,−4, when u = 3, 2 respectively. Then

we de�ne P∆ ∈ E(Q) by

(79) 2uP∆ =
∑
τ∈HO

Pτ

where the rationality of the point P∆ follows from the Galois-stability of the set φ(HO) described above.

We see that if ∆ is not a square modulo 61, the set HO is empty and P∆ = 0. When ∆ is a square, the

points P∆ have the potential to be of in�nite order, and using the numerical techniques described above,

most notably the rapidly convergent series (21) for the uniformisation φ, we compute for instance that for
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∆ = −52, the class number is 2 and we get the following Heegner points on E:

(80)

τ ∈ HO φ(τ) ∈ C Pτ ∈ E(Q)

−29+
√
−13

854 −0.668988176
(

1+
√

13
2 , 2

)
−32+

√
−13

1037 −0.668988176
(

1+
√

13
2 , 2

)
−29+

√
−13

427 0.281978261 + 0.99720547i
(

1−
√

13
2 , 2

)
−93+

√
−13

4331 0.281978261 + 0.99720547i
(

1−
√

13
2 , 2

)
In this case, we get that the normalised sum P−52 is

(81) P−52 =

(
16

9
,

29

27

)
= −3P.

In general, we can set P∆ = b∆P for some b∆ ∈ Z, and we may wonder how b∆ varies as we vary ∆. The

following table ranges over all discriminants up to -200, and lists the values of b∆:

∆
(

∆
61

)
b∆ ∆

(
∆
61

)
b∆ ∆

(
∆
61

)
b∆ ∆

(
∆
61

)
b∆ ∆

(
∆
61

)
b∆

-3 1 1 -43 -1 0 -83 1 2 -123 1 3 -163 1 -5

-4 1 -1 -44 -1 0 -84 -1 0 -124 -1 0 -164 1 -1

-7 -1 0 -47 1 2 -87 -1 0 -127 1 -3 -167 1 1

-8 -1 0 -48 1 0 -88 1 1 -128 -1 0 -168 1 -4

-11 -1 0 -51 -1 0 -91 -1 0 -131 1 1 -171 1 -1

-12 1 2 -52 1 -3 -92 -1 0 -132 -1 0 -172 -1 0

-15 1 -1 -55 -1 0 -95 1 -1 -135 1 2 -175 -1 0

-16 1 0 -56 1 -1 -96 -1 0 -136 1 0 -176 -1 0

-19 1 1 -59 -1 0 -99 -1 0 -139 -1 0 -179 1 -2

-20 1 1 -60 1 2 -100 1 3 -140 -1 0 -180 1 -3

-23 -1 0 -63 -1 0 -103 1 3 -143 -1 0 -183 0 1

-24 -1 0 -64 1 0 -104 -1 0 -144 1 -2 -184 1 -1

-27 1 0 -67 -1 0 -107 1 -2 -147 1 2 -187 1 5

-28 -1 0 -68 -1 0 -108 1 2 -148 -1 0 -188 1 -4

-31 -1 0 -71 -1 0 -111 -1 0 -151 -1 0 -191 -1 0

-32 -1 0 -72 -1 0 -112 -1 0 -152 -1 0 -192 1 4

-35 -1 0 -75 1 0 -115 -1 0 -155 -1 0 -195 1 3

-36 1 0 -76 1 0 -116 -1 0 -156 1 2 -196 1 -3

-39 1 -1 -79 -1 0 -119 1 -1 -159 -1 0 -199 1 0

-40 -1 0 -80 1 -1 -120 -1 0 -160 -1 0 -200 -1 0

Table 1. The values b∆ for which P∆ = b∆P .

We will investigate the patterns suggested by this table in the next section.

4. The theorems of Waldspurger and Gross–Zagier

The theory of Heegner points discussed in the previous section clearly gives rise to a large and interesting

supply of rational points on elliptic curves. Though there have been many exciting developments since, it
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remains true that at its core, this is the only systematic supply of rational points on elliptic curves that is

known today. For applications to the Birch–Swinnerton-Dyer conjecture, it is absolutely crucial to have a

satisfactory answer to the following questions:

Q: Do the points P∆ generate E(Q)? What is their position in E(Q)?

In rank 1 situations, we will see that an answer to the �rst question is provided by the theorem of Gross–

Zagier [GZ86], in analytic terms. Whereas the second question is rather vague at this point, we will see

that a very satisfactory answer is suggested by the theorem of Waldspurger, which is made precise in the

work of Gross–Kohnen–Zagier [GKZ87].

4.1. Waldspurger. We start with a brief discussion of Waldspurger’s theorem, which relates the Fourier

coe�cients of a certain modular form of half-integral weight with the special values of the value at s = 1
of certain twists of the L-function LE(s). This seminal formula is of tremendous importance in number

theory, and though it has been generalised and re�ned considerably, we content ourselves with a discussion

of the special case relevant to our discussion of E. We �rst discuss the set of quadratic twists of E, then

the Shimura correspondence, which attaches a form of weight 3/2 to E, and then �nally the connection

between the two provided by Waldspurger’s theorem, in the form of a subsequent re�nement due to Kohnen.

4.1.1. Quadratic twists of E. The short Weierstraß model for E is given by

(82) E : y2 = x3 − 2619x+ 54486

Now suppose ∆ < 0 is a fundamental discriminant. We de�ne the quadratic twist

(83) E∆ : ∆y2 = x3 − 2619x+ 54486

which is de�ned over Q. We will now investigate the L-function of these quadratic twists, as well as their

Brich–Swinnerton-Dyer invariants. I must confess I did not rigorously work through the invariants, and in

fact I do not know how to fully justify most of the claims below. If anyone is interested in working this out

in detail with me, please do get in touch, I’d still love to do this some time.

First, we note that E∆ is always modular, a fact which follows from the modularity of E. Indeed, it is a

classical fact that for any ∆ coprime to 61 the twisted series

(84) f∆ =
∑
n≥1

(
∆

n

)
anq

n

is the q-expansion of a modular form of level N∆2
and weight 2. We now check that these Fourier coe�-

cients agree with the coe�cients of the L-series of the quadratic twist E∆.

• Suppose p - 6 · 61 ·∆: Choose a model y2 = f(x) for E that has good reduction at p. The number

of points modulo p may be counted by choosing a random value of x, and determining whether

f(x) ·∆ is a square modulo p. We see that when ∆ is a square, this yields the same point count as

E, whereas when ∆ is a non-square this gives the complement of the points counted for E. This

yields that ap(E∆) is equal to the p-th Fourier coe�cient of f∆.

• One would imagine a similar argument would work for p = 2, 3 if the curve has good reduction

there, by working with a more complicated model. I did not check.

• When p = 61 we see that the reduction is still multiplicative, but changes from non-split to split

exactly when ∆ is a square modulo 61. In that case, it is predicted by the Birch–Swinnerton-Dyer

conjecture that the rank of E∆(Q) is even, and we expect that it is generically 0.

• When p | ∆ I also did not check, but it looks fun so let’s try it over a cup of co�ee some time.
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The real period Ω+
E∆

may also be computed, and it follows from a result of Vivek Pal that we have

(85) Ω+
E∆

=
Ω−E√

∆

In this case, we can probably give a simple proof, but I did not check this. The crux of the problem is to �nd

the Néron minimal model for E∆, which seemed slightly painful. Maybe it’s not so bad, since the primes

dividing ∆ cannot divide the discriminant of the twist of the minimal model for E more than twice.

Now comes the torsion. Note thatE∆ does not have any 2-torsion, since any such point must have y = 0
in the above model, and hence the same coordinates must also de�ne a 2-torsion point on E, which does

not exist. Now suppose that there is some torsion of prime order l > 2, then we must have a congruence

between the higher coe�cients of the form f∆ and the Eisenstein series

(86) E
(61)
2 (q) =

5

2
+
∑
n≥1

σ
(61)
1 (n)qn

which, since f∆ is cuspidal, can only happen if l = 5. I’m not sure how to rule this possibility out, but one

additional thing one can show is that any such discriminant must be divisible by all of the �rst 10 or so

primes, so it seems very unlikely that this could exist.

Finally, we mention the Tamagawa numbers. This seems a little tricky. Zagier completely ignores these,

though in his example they always seem to be trivial. In our example, the product of the Tamagawa numbers

always seems to be 2, andthe contribution always happens at some prime divisor of ∆. I don’t know how

to prove this in general, or if it is even always true. Rubin has a nice paper on fudge factors of quadratic

twists where this problem is discussed, and he gives a rather explicit criterion which I could not turn into

a proof of this experimental factor 2 in this example. Again, if anyone wants to try, do get in touch.

The L-function of E∆ may now be made explicit, and is given for Re(s) > 3/2 by the expression

(87) LE,∆(s) =
∑
n≥1

(
∆

n

)
an
n−s

.

We likewise have a rapidly convergent series for the special value at 1, which may be used to compute

numerical approximations in practice, just like we did for E. The sign of the functional equation of this

L-function is given by −
(

∆
61

)
, and hence we expect the rank of E∆(Q) to be even (and in fact, most often

0) whenever the sign is equal to +1. According to the Birch–Swinnerton-Dyer conjecture, we should have

(88) LE,∆(1) = Ω+
E∆
·
∏
p

cp ·A∆, A∆ ∈ Z

and in fact, A∆ should be the order of the Tate–Shafarevich group, which, if �nite, is a square. Using the

theorem of Waldspurger, we can in fact prove that it is a square, though of course that still falls short of prov-

ing �niteness of XE . We compute explicitly the numbers A∆ for the �rst few fundamental discriminants

for which the sign of the functional equation is equal to +1, and obtain the following table.

First of all, notice that indeed A∆ always nicely seems to be a square. Ok, �ne. That’s what we expected

from Birch–Swinnerton-Dyer, and what will follow from Waldspurger’s theorem below. But now look at

the table of the quantities b∆ related to Heegner points above, and notice something truly beautiful and

amazing is happening. More on that later.
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∆ A∆ ∆ A∆ ∆ A∆ ∆ A∆

-3 1 -81 4 -136 0 -195 1

-4 1 -88 1 -163 25 -199 0

-15 1 -95 1 -164 1

-19 1 -103 9 -167 1

-20 1 -107 4 -168 4

-39 1 -119 1 - 179 4

-47 4 -123 9 -183 1

-52 9 -127 9 -184 1

-56 1 -131 1 -187 25

Table 2. The values A∆ for which LE,∆(1) = Ω+
E∆
·
∏
p cp ·A∆.

4.1.2. The Shimura correspondence. We showed in §2 that the elliptic curve E has an associated newform f
of weight 2 and level 61, whose q-expansion coe�cients we may compute up to our heart’s desire. There

is another modular form ‘attached’ to E, which is of weight 3/2 and goes through the Shimura correspon-

dence. This modular form plays a central role in the work of Waldspurger [Wal81] and Gross–Kohnen–

Zagier [GKZ87].

To state the theorem of Shimura precisely in the form we need it, de�ne S±k (Γ0(N)) to be the space of

weight k forms f for which

(89) wNf = ±f
Likewise, we de�ne S±k/2(Γ0(4N)) to be the space of half-integral weight k/2 forms of level Γ0(4N) whose

Fourier expansion is of the form

(90)

∑
n≥1

cn

Theorem 4.1 (Shimura, Kohnen). Let ε ∈ {±1}. We have that dim(Sεk+1/2(Γ0(4N)) = dim(Sε2k(Γ0(N)),
and for each Hecke eigenform

(91) f =
∑
n≥1

anq
n dim(Sε2k(Γ0(N))

there is a 1-dimensional space of forms g ∈ dim(Sεk+1/2(Γ0(4N)) whose Fourier coe�cients are related to
those of f by the rule

(92) ancm =
∑
d|n

(
−m
d

)
cmn2/d2 .

This result is usually referred to as the Shimura correspondence, and its proof is entirely analytic and quite

deep. We will not say anything about how this theorem was proved here, but note that in our case of the

modular form f attached to the elliptic curve E, the associated form through the Shimura correspondence

is of weight 3/2. So how do we compute it?

In general, it is quite di�cult to compute this Shimura lift explicitly, though there are methods available,

see for instance [Ham12]. I noticed however that Magma is able to compute bases for spaces of half-

integral weight modular forms very fast, which I suspect is happening by using a unary theta series to

reduce the problem to a computation in integral weight, and deciding which forms come from half-integral

weight, since it is really fast. From there, I was able to compute the desired Shimura lift through the Hecke
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equivariance of this correspondence. More precisely, the space S3/2(Γ0(244)) comes equipped with Hecke

operators Tp2 for every prime p 6= 2, 61, and the space of forms G such that

(93) Tp2G = apG

for almost all p is known to be 2-dimensional, and contains a unique form g in the Kohnen plus space. The

Hecke operators have a simple description in terms of q-expansions, which is more complicated than it is

in integral weight, but not overly so. To be exact, the n-th coe�cient of the modular form Tp2G, where

G =
∑
cmq

m
is given by

(94) cmp2 +

(
−1

p

)k (
n

p

)
pk−1cm + p2kcm/p2

Using this expression, I wrote some code to compute Hecke operators on the spaces of half-integral weight,

and then looks for the unique form in the Kohnen space associated to f . For the example considered above,

we get the following form of weight 3/2.

g = q3 − q4 − q15 + q16 + q19 + q20 − 2q27 + q36 − q39 + 2q47 − 2q48 − 3q52

−q56 + 2q60 + q64 − 2q75 − q80 + 2q83 + q88 − q95 +O(q100)

4.1.3. The theorem of Kohnen–Waldspurger. We now come to the statement of the theorem of Waldspurger

[Wal81], as extended and re�ned by Kohnen [Koh85].

Theorem 4.2. Suppose f ∈ Sε2(Γ0(N)) is a Hecke eigenform with rational eigenvalues, corresponding to the
elliptic curve E over Q, and g ∈ Sε3/2(Γ0(4N)) is a modular form corresponding to it under the Shimura
correspondence. If the Fourier expansion of g is

(95) g =
∑
n≥1

cnq
n

then for any fundamental discriminant ∆ < 0 with
(

∆
N

)
= ε or 0, we have that

(96) LE,∆(1) = 3π
‖f‖2

‖g‖2
·
c2|∆|√
|∆|

.

where ‖f‖ and ‖g‖ are the norms of f and g in the Petersson metric.

In our example, we get from looking at ∆ = −3 that there is an equality

3π · ‖f‖
‖g‖
· 1√

3
= Ω+

E∆
·
∏
p

cp ·A|∆|(97)

=
Ω−E√

3
· 2 · 1(98)

so that the transcendental factors on both sides, which are independent of ∆, must be equal. It follows that

for every fundamental discriminant ∆ < 0 we have an equality

(99) A|∆| = c2|∆|.
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4.2. Gross–Zagier. Recall that we de�ned the quantity b∆ to be the multiple of the generator P = (1,−1)
obtained from the Heegner point P∆ attached to a discriminant ∆. This quantity plays a central role in

the theorem of Gross–Zagier. We state it in the speci�c case under consideration, and postpone the general

statement to the next section, where we also give a short overview of the proof.

Theorem 4.3 (Gross–Zagier). Suppose ∆ < 0 is a fundamental discriminant, which is a square modulo 61.
Then

(100) h(P∆) =

√
|∆|

8π2‖f‖2
· L′E(1)LE∆(1).

Since the canonical height is a quadratic function, this gives us a very interesting concrete consequence

for the quantity b∆. Indeed, by combining equation (100) with Waldspurger’s theorem (96) for the quantity

LE∆
(1), we obtain that

(101) b2∆ · h(P ) =

(
3

8π‖g‖‖f‖
L′E(1)

)
· c2∆

Note that the factor in front of c∆ on the right hand side of this equation is independent of ∆. Therefore, we

can avoid its explicit computation by simply noting that for ∆ = −3 we get that b2−3 = c2−3, and therefore

it follows that for any fundamental discriminant ∆ < 0 we have

(102) b2∆ = c2∆ (= A∆).

4.3. The positions of Heegner points. The results above are quite striking. The quantity A∆, which

should be closely related to the order of the Tate–Shafarevich group XE , was proved to be a square in

two di�erent ways, by exhibiting two canonical square roots for it: One being the Fourier coe�cient of

a modular form of weight 3/2, the other being prescribed by the theory of Heegner points. The work of

Gross–Kohnen–Zagier shows that in fact, both of these quantities are equal, that is

(103) b∆ = c∆.

This is a fascinating result, and signi�cantly �ner than the theory of Gross–Zagier, which only captures the

“size” of Heegner points, through the quantity b2∆. The true “position” of the Heegner point is given by the

quantity b∆, which by the above theorem is given by the Fourier coe�cient of a modular form!

The proof is absolutely beautiful, and easily deserves an entire study group devoted to it. We will quickly

outline some of the ideas here, and refer the interested reader to the papers [Zag85] and [GKZ87]. Choose

an auxiliary prime p ≡ 1 (mod 4) such that 61 is a square mod p. De�ne the Hilbert modular surface

(104) Sp = (H×H /SL2(O))
∗,∼

where O is the maximal order in Q(
√
p), and the superscripts denote an appropriate compacti�cation and

desingularisation. The divisor at in�nity [+]

5. The proof of Gross–Zagier

The general statement of the Gross–Zagier theorem takes place on the Jacobian J of the modular curve

X0(N). Suppose that ∆ < 0 is a fundamental discriminant, of an imaginary quadratic �eld K . Recall that

we have an isomorphism

(105) s : ClK
∼−→ Gal(H/K)
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where H is the Hilbert class �eld of K . For any ideal class A ∈ ClK de�ne the partial theta series

θA(z) =
1

2u
+

∑
aCOK
a∈A

qNm(a)
(106)

=
1

2u
+
∑
n≥1

rA(n)qn(107)

which is a modular form of weight 1, level Γ1(∆), and nebentypus given by the quadratic character attached

to K . For any f =
∑
anq

n ∈ S2(Γ0(N))new
, we de�ne

(108) LA(f, s) =
∑
n≥1

(n,∆N)=1

(
∆

n

)
n1−2s ·

∑
n≥1

anrA(n)n−s.

We then have the following result:

Theorem 5.1 (Gross–Zagier). The series

(109) gA(z) =
∑
m≥0

〈c, Tmcs(A)〉qm

is a modular form of weight 2 and level Γ0(N), and furthermore

(110) (f, gA) =
u2
√
|∆|

8π2
· L′A(f, 1)

where

• c = (x) = (∞) ∈ J(H) where x is a Heegner point of discriminant ∆,
• (· , ·) is the Petersson inner product,
• 〈· , ·〉 is the height pairing on J(H)× J(H).

By averaging over ideal classes A, we get the most celebrated result of Gross–Zagier. Let

(111) χ : ClK −→C×

be a class group character, and de�ne the twisted L-series

(112) L(f, χ, s) =
∑
A∈ClK

χ(A)LA(f, s)

Likewise, we de�ne twisted versions of the Heegner divisor c by

(113) cχ =
∑
A∈ClK

χ−1(A)LA(f, s)

which lies in the subspace of J(H) ⊗ C where s(A) acts as multiplication by χ(A). Furthermore, the

projection of cχ onto the f -isotypic component for the action of the Hecke algebra is denoted by cf,χ.

Theorem 5.2 (Gross–Zagier). We have

(114) L′(f, χ, 1) =
‖ωf‖2

u
√
|∆|
· hK(cχ,f )

where ωf = 2πif(z)dz is the di�erential associated to f .
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5.1. The plan. The plan for the rest of the seminar is to prove the above theorems of Gross–Zagier. The

strategy will be as follows. The canonical Néron–Tate height h is the quadratic function induced by the

bilinear global height pairing

(115) 〈·, ·〉 : J(H)× J(H) −→ R .

Néron shows that this height decomposes as a sum of local symbols

(116) 〈·, ·〉v : Div0(X)×Div0(X) −→ R

for each place v of H . This local function is uniquely characterised by the following two conditions:

• It is bi-additive, symmetric, and continuous,

• Suppose that we have two divisors

(117) a =
∑
P

mPP, b = div(f)

then if a and b have disjoint support, the local symbol is given by

(118) 〈a, b〉v = log|f(a)|v :=
∑
P

mP log|f(P )|v.

The plan for the rest of this seminar is to set c = (x) − (∞) and d = (x) − (0), for x a Heegner point

as above, and compute in very explicit terms the global pairing

(119) 〈c, Tmcσ〉 = 〈c, Tmdσ〉

where the equality is satis�ed because the divisor (∞)− (0) is torsion by the theorem of Manin–Drinfeld.

This switch from c to d is to increase the number of cases where the two divisors in question are disjoint,

which will greatly aid the computation. The global pairing is then computed by computing for every place

v of H the local symbol

(120) 〈c, Tmdσ〉v

When v is archimedean, this involves a careful construction of an appropriate Green’s function, and we

will see how to do this in Tiago’s talk. Then Netan and Francesca will tell us how to compute the local

symbol when v is non-archimedean. There, the problem is reduced to certain counting problems for norm

equations in quaternion algebras, which are tackled using the theory of quasi-canonical liftings.

Once the global pairing is computed in very explicit terms, we will see in the talk of Tom and Alex

that one can construct a form gA with the required properties using Rankin’s method. After it has been

constructed, its Fourier coe�cients are computed, and the computation reveals that we end up with the

same expression as the one we obtained for 〈c, Tmdσ〉. This will prove the theorem, and almost conclude

our seminar.

In addition to the above talks, we will start o� with a talk by Nils, who will explain the proof of the

Gross–Zagier theorem in level 1. In this case, the statement above is of course vacuous, but what is meant

is that the local contribution to the height of a Heegner divisor is computed, �rst for all the non-archimedean

places, and then at the archimedean place. Since the height is trivial, both expressions must be the same.

Finally, to end the seminar, we have a talk by Francesco, which is aimed at reinterpreting the statements

and proofs of the Gross–Zagier and Waldspurger theorems in the adelic language. This is more akin to the

modern viewpoint of these theorems, and provides an extremely �exible language which is adopted in the

proofs of subsequent generalisations in the literature.
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Appendix A. Elliptic curves

In this appendix, we will collect some basic facts about elliptic curves. We will content ourselves with

an extremely concise description, and for full details and proofs we refer the reader to standard texts such

as [Sil09].

An elliptic curve over a �eld K is de�ned to be a smooth projective algebraic curve of genus 1, endowed

with a distinguished point 0 ∈ E(K). Riemann–Roch implies that every such curve has an algebraic

equation of the form

(121) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K.

Elliptic curves are most easily understood when K = C through the theory of Weierstraß uniformisation,

which we discuss �rst. Over other base �elds, notably the �eld of rational numbers Q, the arithmetic of

elliptic curves is extremely complex, and continues to hold many mysteries today.

A.1. Weierstraß uniformisation. Suppose that Λ ⊂ C is a lattice, then the quotient C /Λ is an algebraic

variety. This can be shown by explicitly constructing an algebraic model for it. De�ne �rst the Weierstraß

℘-function by

(122) ℘Λ(z) =
1

z2
+

∑
λ∈Λ\{0}

1

(z − λ)2
− 1

λ2
.

The following facts are proved easily by a direct computation, see [Sil09, Section VI].

• The series (122) converges absolutely, and uniformly on compact open subsects of C,

• Its Laurent series expansion around z = 0 is given by

(123) ℘Λ(z) =
1

z2
+
∑
k≥1

(2k + 1)G2k(Λ)z2k, where G2k(Λ) =
∑

λ∈Λ\{0}

1

λ2k
.

A short argument shows that the �rst statement implies that the function℘(z) is invariant under translation

by Λ. We say that ℘Λ is an elliptic function for Λ. Furthermore, by computing the �rst few coe�cients of

the Laurent series expansion of both sides, we obtain the relation

(124) ℘′Λ(z) = 4℘Λ(z)3 − 60G4(Λ)℘Λ(z)− 140G6(Λ).

The functions ℘Λ, ℘′Λ generate the function �eld of C /Λ, so that (124) provides an algebraic equation for

the elliptic curve C /Λ.

The converse. The Weierstraß uniformisation theorem states that also conversely, for every elliptic

curve E/C, there exists a unique lattice Λ such that E is isomorphic to C /Λ. Concretely, if

(125) {α, β} is a basis for H1(E(C),C)

then the quantities

(126) Ω1 =

∫
α

dx

y
, Ω2 =

∫
β

dx

y

are independent over R, and if Λ = 〈Ω1,Ω2〉 is the lattice generated by these two periods, then we have a

complex analytic isomorphism

(127) E(C)−→C /Λ : z 7−→
∫ z

0

dx

y
(mod Λ).
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The real period. When E is de�ned over a sub�eld of R, it makes sense to consider E(R), which is a

real Lie group, and hence isomorphic to either

(128) E(R) '
{

S1
if

S1 × Z /2Z if

Given a minimal Weierstraß model of the form (121) above, we de�ne the Néron di�erential to be

(129) ωNér =
dx

2y + a1x
.

The real period is then de�ned to be

(130) Ω+
E =

∫
E(R)

ωNér.

A.2. Elliptic curves over a local �eld.

A.3. The Birch–Swinnerton-Dyer conjecture.

A.3.1. The Tate–Shafarevich group. Mordell-Weil Proof via Selmer, de�ne Tate–Shafarevich.

A.3.2. The Néron canonical height.

A.3.3. The root number and functional equation.

A.3.4. The BSD conjecture. Having de�ned all these various quantities above, we can now state the Birch–

Swinnerton-Dyer conjecture, which predicts a deep relation between the analytically de�ned L-function of

an elliptic curve E over Q, and various pieces of arithmetic data, most notably the rank of E(Q). More

precisely, it states that

Conjecture A.1. Let E be an elliptic curve over Q, with Mordell–Weil group of rank r. Then its L-function
analytically continues to the entire complex plane, and the order of vanishing at s = 1 is precisely equal to r.
The leading term in its Taylor expansion at that point is given by

(131)

L
(r)
E (1)

r!
=
|XE | · Ω+

E ·RE ·
∏
p cp

|E(Q)tor|2
.

This conjecture is wide open, though many partial results exist in the cases where the rank is 0 or 1.

The theorem of Gross–Zagier, as well as its various subsequent generalisations, remains one of the more

signi�cant results towards this conjecture, as it manages to show the existence of points of in�nite order in

case the analytic rank is equal to 1. These points are provided by the theory of Heegner points.

Appendix B. Modular forms and the Hecke algebra

B.1. Modular forms of integral weight. Suppose k ∈ Z and Γ is a congruence subgroup of SL2(Z). A

weakly holomorphic modular form of weight k and level Γ is a holomorphic function f : H→ C such that

(132) f

(
aτ + b

cτ + d

)
(cτ + d)−k = f(τ), for all

(
a b
c d

)
∈ Γ.

The cusps of Γ are the �nitely many Γ-orbits on P1(Q). If in addition, f is holomorphic at the cusps of Γ,

then we call f a holomorphic modular form or simply modular form. The space of modular forms of weight

k and level Γ is denoted by Mk(Γ), and the subspace spanned by forms that vanish at all the cusps (which
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are called cusp forms) is denoted by Sk(Γ). Assume for simplicity that the translation matrix T belongs to

Γ (in general, some power of it always does) then any modular form f has a Fourier expansion

(133) f(q) = a0 + a1q + a2q
2 + a3q

3 + a4q
4 + . . . ai ∈ C, q = e2πiτ

which is referred to as its q-expansion.

The following basic facts about modular forms will be used without further mention, their proofs can be

found in [Ser77, DS05].

• The spaces Mk(Γ) are �nite-dimensional, and trivial for k < 0,

• The space S2(Γ) is isomorphic to the space of di�erentials on the modular curve X(Γ) (for de�ni-

tions, see next section) via the map f(τ) 7→ f(τ)dτ (mod Γ),

• The spaces Sk(Γ) are endowed with an inner product, called Petersson inner product, de�ned by

(134) 〈f, g〉 =

∫
Γ\H

f(x+ iy)g(x+ iy)yk−2dxdy.

B.2. Modular curves.

B.3. Hecke algebras. The reason that modular forms enter in number theory at all, is probably the fact

that modular curves are de�ned over Q (or some number �eld that depends on the level structure), and that

there exist Hecke operators which are de�ned over the same �eld.

Hecke

Diamond, Atkin-Lehner

B.4. Modular forms of half-integral weight. Let us �rst de�ne the prototypical example of a form of

weight 1/2, on which our general de�nition will be modelled. De�ne

(135) θ(z) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + . . .

which is a holomorphic form on H such that θ2
is a weight 1 modular form for Γ1(4) with non-trivial

nebentypus χ4. This means that θ itself should be considered a modular form of weight 1/2, a notion

which we now formalise.

Let k be an integer, and de�ne Gk+1/2 to be the group consisting of pairs (γ, φ(z)) where γ ∈ GL+
2 (R)

and φ(z) is a complex valued holomorphic function on H satisfying

(136) |φ(z)| = (det γ)−k/2−1/4|cz + d|k+1/2

where the group law is de�ned by the rule

(137) (γ1, φ1(z)) · (γ2, φ2(z)) = (γ1γ2, φ1(γz)φ2(z)) .

We de�ne an action of Gk+1/2 on the set of functions f : H→ C by setting

(138) f |(γ, φ(z)) = φ(z)−1f(γz).

We let Γ̃(4N)χ be the subgroup of Gk+1/2 consisting of pairs (γ, φ(z)) where γ ∈ Γ0(4N) and

(139) φ(z) = χ(d)
( c
d

)(−4

d

)−k−1/2

(cz + d)k+1/2.
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A modular form of weight k + 1/2 on Γ0(4N) with nebentypus χ is a holomorphic function f : H → C
which is holomorphic at the cusps and satis�es

(140) f |(γ, φ(z)), ∀(γ, φ(z)) ∈ Γ̃0(4N)

Remark. It should be noted that geometric de�nitions remain di�cult, and are the subject of much

recent research.
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