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Abstract
We define the most basic ingredients of the decomposition theorem:

pseudomanfifolds and their intersection homology.
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1 Introduction

In the seminar, we are following [1] and heading towards the proof of the

Theorem 1. (Decomposition and semisimplicity theorems) Let f : X → Y be
a proper map of complex algebraic varieties. Then there is an isomorphism in
the constructible bounded derived category of abelian sheaves on Y :

Rf∗ICX ∼=
⊕
i∈Z

pHi(Rf∗ICX)[−i]

Moreover, the perverse sheaves pHi(Rf∗ICX) are semisimple in the sense that
there exists a decomposition Y =

⊔
Sβ of Y into disjoint locally-closed subvari-

eties equipped with local systems Lβ such that

pHi(Rf∗ICX) ∼=
⊕
β

ICSβ (Lβ)

1



Our goal in this talk is to define the most basic ingredients in this formula:
the intersection (co)homology complexes ICX . These notes roughly follow
the book [2] of Kirwan and Woolf.

Intersection homology was invented by Goresky and MacPherson in the
1970s; the goal was to produce a homology theory that behaves as well for
singular spaces as it does for manifolds, in the sense that basic properties such
as Poincaré duality and the Lefschetz theorems hold even for singular projec-
tive varieties. Intersection homology is defined for a class of spaces known as
topological pseudo-manifolds, which we now define.

2 Stratified spaces and pseudomanifolds

An m-dimensional topologically stratified space is a para-compact Hausdorff
space X equipped with a filtration

X = Xm ⊃ Xm−1 ⊃ · · · ⊃ X1 ⊃ X0

by closed subsets, where X0 is the “most singular part”. The open strata
X◦k = Xk \Xk−1 are allowed to be empty, but if they are nonempty then they
are required to be manifolds of dimension k, and, moreover, the singularities
of X in a neighbourhood of X◦k are controlled in a precise sense that we will
make clear shortly. A topological pseudo-manifold is a topological space X that
admits a stratification as above such that Xm−1 = Xm−2 and X◦m is dense.
Note that a given pseudo-manifold may admit many different stratifications.

Before giving the precise constraints on the singularities, let us look at some
low-dimensional examples:

Example 1. A 0-dimensional stratified space X = X0 is simply a countable
set with the discrete topology.

Example 2. A 1-dimensional stratified space has the form X = X1 ⊃ X0,
where X◦1 = X1 \ X0 is a 1-dimensional manifold, and X0 is a collection of
isolated points where X may fail to be a manifold. We require that every point
x ∈ X0 has a neighbourhood that is homeomorphic to the (open) cone over a
finite collection of points:

X = X1

X0 = {x}

Such an X will be a pseudo-manifold if and only if X0 = ∅. In other words,
every 1-dimensional pseudo-manifold is a 1-dimensional manifold.

Example 3. A 2-dimensional stratified space has a stratification of the form
X = X2 ⊃ X1 ⊃ X0 such that
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• X◦2 is a 2-dimensional manifold

• Every point in the 1-dimensional manifold X◦1 has a neighbourhood home-
omorphic to R×Cone(L), where L is a finite collection of points, and X◦1
corresponds to R× {the vertex}.

X◦1

X = X2

• Every point in X0 has a neighbourhood homeomorphic to Cone(L) where
L = L1 ⊃ L0 is a compact 1-dimensional stratified space. The points
in X0 correspond to the vertex of the cone over L and the points in X1

correspond to the cone over L0.

L X = Cone(L)

Figure 1: A compact 1-dimensional stratified space and the two-dimensional
stratified space that is its cone

Such a space will be a pseudomanifold exactly when we can take L to be non-
singular (otherwise X◦1 will be nonempty as above). Hence a 2-dimensional
pseudomanifold locally likes like R2 or Cone(L) where L is a disjoint union of
circles.

Figure 2: A 2-dimensional pseudomanifold
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Example 4 (Plane curves (Milnor)). Every plane algebraic curve X ⊂ C2, sin-
gular or not, is a 2-dimensional pseudomanifold: given a point x ∈ X, consider
a very small three-sphere S ⊂ C2 centred at X. Then as long as S is small
enough, the intersection X ∩S will be transverse, and hence it will be a disjoint
union of circles (a “link”). A neighbourhood of x in X is then homeomorphic
to the cone over X ∩S. For example the nodal curve {z1z2 = 0} ⊂ C2 is locally
the cone over two disjoint circles.

In general, for a filtration

X = Xm ⊃ Xm−1 ⊃ · · · ⊃ X1 ⊃ X0

by closed subsets to define a stratification, we require that for every x ∈ X◦j =
Xj \Xj−1, there is a neighbourhood Nx of x in X and a compact (m− j − 1)-
dimensional topologically stratified space L with a filtration

L = Lm−j−1 ⊃ · · · ⊃ L0

and a homeomorphism
φ : Nx → Rj × Cone(L)

that restricts to homeomorphisms

Xj ∩Nx ∼= Rj × {vertex of Cone(L)}

and
Xj+i+1 ∩Nx ∼= Rj × Cone(Li)

for all i ≥ 0.
We are interested in pseudo-manifolds because of the following

Theorem 2 (Borel, Whitney). Every quasi-projective variety X of pure dimen-
sion n over the complex numbers admits a topological stratification

X = X2n ⊃ X2n−1 ⊃ · · · ⊃ X1 ⊃ X0

where X2i = X2i+1 are closed subvarieties for all i.

3 Intersection homology

Let us begin by recalling the definition of the singular chain complex of a space
X. For i ≥ 0 a singular i-simplex in X is a continuous map σ : ∆i → X
from the standard i-simplex ∆i ⊂ Ri into X. Restricting σ to a face of ∆i

gives a singular (i− 1)-simplex in X, and summing over these restrictions with
appropriate signs we obtain the boundary operator

∂ : Ci(X)→ Ci−1(X),

giving a chain complex

· · · // C2(X)
∂ //// C1(X)

∂ // C0(X) // 0.
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If X is a pseudomanifold equipped with a stratification, the intersection
homology of X is obtained as the homology of a subcomplex of C•(X) that
consists of chains whose intersection with the strata is “not too bad”. Here by
“bad”, we essentially mean “not transverse”. Intuitively, what we want is that
only the low-dimensional faces of ∆i can map into low-dimensional strata of X.

We make this precise by introducing a function p : Z≥2 → Z≥0 called a
perversity which we will use to measure the failure of transversality. We require
that p(2) = 0 and p(k + 1) ∈ {p(k), p(k + 1)} for all k ∈ Z≥2. In other words,
we require p to be a non-decreasing function that jumps by at most 1 at every
step. We will mainly make use of the lower-middle perversity

p(k) =

⌊
k

2

⌋
− 1

although there are many others.
Given a perversity p, we say that a singular i-simplex σ : ∆i → X is p-

allowable if σ−1(X◦m−k) is contained in the (i− k+ p(k))-skeleton of ∆i for all
k ≥ 2. A singular chain ξ =

∑
j ajσj is p-allowable if every singular simplex

appearing with a nonzero coefficient in ξ or ∂ξ is allowable.

Example 5. Let us consider the algebraic curve X ⊂ P2 that is the union of two
distinct lines, which has a nodal singularity at the intersection point x0 ∈ X.
Topologically, it is a pair of spheres that meet in a point and the local model
near the singular point is the cone over a pair or circles. The stratification has
the form X = X2 ⊃ X0 so we only need to consider k = 2. Since p(2) = 0 for any
perversity, all perversities will give the same notion of allowability. Allowability
puts the following constraints on simplicies:

Dimension of simplex Pre-image of X0 contained in
0 (−2)-skeleton (empty)
1 (−1)-skeleton (empty)
2 0-skeleton
3 1-skeleton
...

...

In other words, 0- and 1-simplices are allowable if and only if they do not
intersect X0, while 2-simplices are allowable if and only if the only points where
they intersect X0 are vertices.

A similar picture is valid locally for any algebraic curve.

It follows from the definition that the set ICp• (X) ⊂ C•(X) of p-allowable
chains is actually a subcomplex, called the intersection chain complex . The
intersection homology of X with perversity p is the homology IpH•(X)
of this complex. If p is the middle perversity, we denote IpC•(X) and IpH•(X)
simply by IC•(X) and IH•(X).
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X

Figure 3: Some allowable simplices are shown in green while unallowable ones
are shown in red. Notice that the two-simplex is allowable as a simplex but not
as a chain because its boundary contains non-allowable 1-simplices.

Remark 1. The notion of allowability of chains clearly depends on the choice of
stratification. However, the groups IpH•(X) are actually topological invariants
of X for any perversity: different stratification of X produce canonically isomor-
phic intersection homology groups and hence homeomorphic pseudomanifolds
have isomorphic intersection homologies.

Remark 2. This was the definition of intersection homology via singular chains.
One can do a simplicial version using triangulations, although some care is
required to get a result that is independent of the triangulation.

Example 6. We return to the curve X ⊂ P2 that is the union of two lines. It
is homeomorphic to a pair of tetrahedra joined at a point and we will compute
IH using this triangulation.

Figure 4: A triangulation of X by 2-simplices. Allowable 0- and 1-simplices are
shown in green and unallowable ones are red. All 2-simplices are allowable.

The group of two-cycles on X is generated by the fundamental cycles of
the two tetrahedra. These two-cycles are allowable chains because all of the
two-simplices are allowable, and the boundary of each chain is trivial. (Notice,
however, that the individual simplices in the chain are not all allowable; only
their linear combination is!) Since there are no three-simplices, there are no
2-boundaries, and so we find IH2(X) = Z ⊕ Z with one copy of Z for each
irreducible component of X.
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The only allowable one-cycles in X are linear combinations of the ones shown
in green in the diagram. (All other 1-cycles pass through the singular point of
X and are therefore not allowable.) The green cycles are both boundaries of
faces and hence they are trivial in homology, giving IH1(X) = 0.

Finally, the allowable zero-cycles are the green dots—the vertices that are
not the singular point. Any two greem vertices in the leftmost tetrahedron give
the same homology class because their difference is the boundary of an allowable
1-simplex (a green line). Similarly, the green vertices on the right all defines the
same homology class. However, a green vertex on the left cannot be connected
to a green vertex on the right by a collection of allowable 1-simplices. Hence
they define distinct classes in homology and we find IH0(X) = Z ⊕ Z. We
conclude that

IHi(X) =


Z⊕ Z i = 0

0 i = 1

Z⊕ Z i = 2

the homology of a disjoint unions of two spheres. Notice that IH0 = IH2 so we
have a form of Poincaré duality.

Basically the same argument gives the more general

Proposition 1 (Prop. 4.4.1 in [2]). Suppose that X is a pseudomanifold of
dimension 2n with an isolated singular point, i.e., Xj = X0 = {x} for j <
2n. Using the proposition, we see that the lower middle perversity intersection
homology is given by

IHi(X) =


Hi(X) i > n

img(Hi(X \ {x})→ Hi(X)) i = n

Hi(X \ {x}) i < n.

One readily recovers the calculation in the example above from this result.

Example 7 (The nodal cubic). The curve {y2z = x2(x + z)} ⊂ P2, a nodal
cubic, is a pinched torus, i.e. a sphere with two points identified. Applying the
proposition we find

IHi(X) =


Z i = 0

0 i = 1

Z i = 0

the homology of a sphere. Again, Poincaré duality holds.

More generally we have the following result of Goresky–MacPherson:

Proposition 2 (see Prop. 4.5.2 in [2]). Let X be a quasi-projective complex

algebraic variety, and let X̃ be its normalization. Then we have a natural iso-
morphism IpH•(X) ∼= IpH•(X̃) for all perversities p.
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This explains the calculations above since the normalization of the union of
two distinct lines in P2 is simply P1 t P1, while the normalization of a nodal
cubic is P1.

The appearance of Poincaré duality in these example is not coincidental.
Indeed, we have the following remarkable

Theorem 3. The “Kähler package” (Poincaré duality, Lefschetz theorems,
Hodge decomposition, etc.) holds for intersection homology of projective va-
rieties.

We hope to better understand this result by the end of the seminar.

4 Generalizations and the IC sheaves

In order to get to the statement of the decomposition theorem, we need to beef
up the definition of intersection homology in two ways: first, we need to allow
for coefficients in a local system, and second, we need to sheafify everything.

4.1 Locally constant coefficients

Recall that if X is a space and A is an abelian group, then the constant sheaf AX
is the sheaf that assigns to every open set U ⊂ X the set of locally constant maps
U → A with the obvious restriction morphisms. A sheaf L of abelian groups on
X is locally constant if for every x ∈ X there exists an open neighbourhood
Nx of x in X such that L|Nx is isomorphic to a constant sheaf on Nx. (In this
case the underlying group is canonically isomorphic to the stalk Lx of L at x.)

Suppose that L is a locally constant sheaf and that σ : ∆i → X is a singular
i-simplex in X. Then the pullback σ∗L is locally constant, and since ∆i is
simply connected, it is actually constant. We denote by Γ(σ,L) the space of
global sections of σ∗L. Notice that if τ : ∆i−1 → X is a face of σ, then we have
a canonical restriction isomorphism Γ(σ,L) ∼= Γ(τ,L),

An i-chain on X with values in L is an element of the group

Ci(X,L) =
⊕

σ:∆i→X

Γ(σ,L).

In other words, it is a linear combination of simplices σ where the coefficient
of σ, rather than being a number, is a section of the local system over σ. The
boundary map ∂ is obtained by combining the usual sum-with-signs and the
restriction of section to faces.

Now suppose that X = Xm ⊃ Xm−1 = Xm−2 ⊃ · · ·X0 is a stratified
pseudomanifold and that L is a local system on the open dense stratum X◦m.
No matter which perversity we use, the image of any allowable simplex must
intersect X◦m and hence we can make the same definition as above without
extending the local system to all of X. In this way, we obtain the intersection
homology IpH•(X,L) with coefficients in L.
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4.2 Chains with locally finite support and IC sheaves

Recall that there is another version of homology called homology with locally
finite supports (aka Borel–Moore homology), in which we replace Ci(X) with
the larger group Ci((X)) which consists of possibly infinite linear combinations
of simplices that are “locally finite”. Here locally finite means that for any
point x ∈ X, there is a neighbourhood Nx that intersects only finitely many
of the simplices in the chain. When X is compact the usual homology and
the homology with locally finite support are isomorphic. Similarly, we can
talk about locally finite allowable chains, and therefore obtain the intersection
homology with locally finite supports.

Given a pseudomanfiold X with a stratification, we define a complex of
sheaves ICX on X by the formula

IC−iX (U) = IpCi((U))

the intersection chains with locally finite support on U , but with the degree
reversed to get a cochain complex instead of a chain complex. This grading
convention is chosen simply because it is typical to use cohomological gradings
in sheaf theory.

Notice that if V ⊂ U is an inclusion of open sets, it is not at all clear
why there should be a restriction map r : ICX(U) → ICX(V ). For this it is
enough to define the restriction of a single singular simplex σ, which we do by
performing a bunch of barycenctric subdivisions to break σ into pieces that lie
only in V . (We will be more precise below.) Since barycentric subdivision is a
chain map, the restriction map is a morphism of chain complexes and hence we
obtain a sheaf of cochain complexes on X. We can also make the same definition
with coefficients in a local system L on X◦m.

To define the restriction map, we begin with a singular simplex σ on U . We
will use σ to define a set J(σ) of simplices on V and set r(σ) =

∑
σ′∈J(σ) σ

′.
The procedure is inductive:

1. If the image of σ lies entirely in U \ V then J(σ) = ∅.

2. If the image of σ lies entirely in V , then J(σ) = {σ}.

3. If the image of σ intersects both V and U \ V , then we inductively define
J(σ) = J(η0) ∪ J(η1) ∪ · · · ∪ J(ηi), where the simplices η0, . . . , ηi are the
i-simplices appearing in the barycentric subdivision of σ.

This process will, in general, continue forever, which is why we need infinite
chains. It is a good exercise to convince oneself that the resulting chain, while
possibly infinite, is nevertheless locally finite as required.

Theorem 4. The sheaves IpCiX are soft for all i ≤ 0 and all perversities p, and
hence their hypercohomology is simply the cohomology of global sections

H−i(X, IpC•X) = IpHcl
i (X),

the intersection homology with locally finite supports.
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