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1. Introduction

1.1. The Mordell conjecture. Many important developments in arithmetic geometry were motivated by

the Mordell conjecture, stated nearly a century ago. Let X be a smooth projective curve, de�ned over the

�eld of rational numbers Q. Its set of rational points X(Q), which consists of all the projective solutions

with rational coordinates to a �nite set of equations de�ning X in some projective space, is an interesting

arithmetic quantity. In 1922, Mordell [Mor22] made the following conjecture:

Conjecture 1.1 (Mordell). Suppose that X is of genus at least two. Then X(Q) is �nite.

In a monumental paper, Faltings [Fal83] proved this conjecture. The method of Faltings is ingenious, and

merits a thorough treatment on its own. Indeed, many such are available in the literature, see for instance

[CS86] for an early account. In this paper, we wish to give an introductory account of two recent alternative

approaches towards this conjecture, due to Lawrence–Venkatesh [LV18] and Kim [Kim05, Kim09, Kim10].

The latter method, which is usually called the method of Chabauty–Kim or non-abelian Chabauty in the

literature, has the advantage that in some cases it has been turned into an e�ective method to determine
the set of rational points X(Q), and we illustrate this by presenting three new examples of modular curves

where this set can be determined, due to Best, Bianchi, and Trianta�llou.

Remark 1.2. Mordell’s conjecture, as well as many of the results discussed below, admit analogues where

X is replaced by a smooth hyperbolic curve, including also the cases of a punctured elliptic curve and
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P1 \{0, 1,∞}, when the set of rational points X(Q) is replaced by the set of S-integral points, where

S is a �nite set of primes. In this setting, the �niteness of S-integral points is known as Siegel’s theorem.

Both methods presented here are expected to apply to non-proper hyperbolic curves as well. We discuss

the S-unit equation in the context of [LV18] below. Kim [Kim05] proved the �niteness of integral points on

P1 \{0, 1,∞}, and explicit Chabauty-Kim methods for S-unit equations are due to Dan-Cohen and Wew-

ers [DCW15, DCW16, DC17]. Chabauty-Kim theory for integral points on punctured elliptic curves of rank

0 and 1 is discussed in [Kim10] and [BDCKW18].

Remark 1.3. For the purpose of exposition, we only consider the base �eld Q. It should be noted that many

results admit appropriate generalizations to number �elds [Sik13, Dog19, BBBM19]. The only exception is

our discussion of the method of Lawrence–Venkatesh, where �eld extensions play an essential role.

1.2. Two recent approaches. After Faltings’ proof, two notable new methods for proving �niteness of

X(Q) for X of genus g ≥ 2 have emerged. In broad strokes, they follow a similar strategy: We start by

choosing a prime p at which the curveX has good reduction, and we study the set of rational points through

the inclusion

(1) X(Q) ⊂ X(Qp).

For any �eld K , we write GK = Gal(K/K) for its absolute Galois group. The starting point of both

the methods of Chabauty–Kim and Lawrence–Venkatesh is the association of a certain �nite-dimensional

Galois representation over Qp to every point on the curve, giving maps

(2) ρ : X(K) −→ Rep(GK),

for K equal to Q or Qp. In both the approaches of Lawrence–Venkatesh and Chabauty–Kim, �niteness of

the set X(Q) is obtained from the consideration of a commutative diagram of the following shape:

(3)

X(Q) X(Qp)

Rep(GQ) Rep(GQp
) MFφ/ '.

ρ ρ

resp D
cris

perp

While the nature of ρ is very di�erent in the two approaches, the horizontal maps are the same. First of

all, the map from X(Q) to X(Qp) is simply the natural inclusion, and resp is the restriction of Galois

representations, making the diagram commutative in both approaches. The map Dcris is de�ned using

p-adic Hodge theory. More precisely, it is Fontaine’s crystalline Dieudonné functor from p-adic Galois

representations to �ltered φ-modules. Finally, perp is de�ned to be the composite of this map with ρ, and

will be referred to as the (p-adic) period map.

As mentioned above, the maps ρ which feature in the methods of Lawrence–Venkatesh and Chabauty–

Kim are of a very di�erent nature, and are responsible for the drastic di�erences between the two ap-

proaches. They may roughly be described as follows:

• The method of Lawrence–Venkatesh starts by considering a family of curves C −→ X . This is a

so-called Parshin family, where the �bre Cx of a point x in X(K) is itself a disjoint union of �nite

coverings of X , unrami�ed away from the point x. The association ρ is then simply

ρ : x 7−→ H1
ét

(Cx,Qp).

A lemma of Faltings can be used to show that the number of global representations in ρ(X(Qp))

is �nite. The main part of the argument of Lawrence–Venkatesh is to establish that the map perp
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is �nite-to-one. The argument starts by realizing perp as the quotient of the Hodge �ltration map

Φp : X(Qp)−→Gr(g, 2g) by the Frobenius centralizer, and showing that on every residue disk

(1) every orbit of the Frobenius centralizer has positive codimension in Gr(g, 2g), and

(2) the image of Φp is Zariski dense.

The former is established via carefully extending the base �eld and exploiting the semi-linearity

of the Frobenius operator, whereas the latter is established using a monodromy calculation for the

family C. The �niteness of X(Q) follows easily from the above commutative diagram.

• In the method of Chabauty–Kim, one chooses a rational base point b ∈ X(Q) and obtains the asso-

ciation ρ by considering certain well-chosen unipotent quotients U(b) of the algebraic fundamental

group πét

1 (X; b). This choice of quotient typically depends on the speci�cs of the curve X under

consideration. The association ρ in the method of Chabauty–Kim is then of the form

ρ : x 7−→ U(b, x)

where U(b, x) is obtained by twisting the unipotent quotient U(b) by the path torsor πét

1 (X; b, x).

This carries the structure of a Qp-representation of GK whenever x is in X(K). All these Galois

representations are twists of U(b), whose unipotence provides a certain rigidity that is crucial for

arithmetic applications. More precisely, Kim shows that the image of ρ is contained in a set that

naturally carries the structure of an algebraic variety, which is usually referred to as a Selmer variety,

such that the map resp between the global and local Selmer varieties is algebraic.

This rigidity provides us with a clear strategy to prove �niteness, in the style of the classical

method of Chabauty (see below). Indeed, if we can establish that

(1) the global Selmer variety has positive codimension in the local Selmer variety, and

(2) the image of X(Qp) is Zariski dense,

then the intersection of the two sets (which contains the set of rational points) must be �nite. Prop-

erty (2) is true in great generality, whereas (1) typically requires additional information. Note the

amusing similarity with the two steps in the proof of Lawrence–Venkatesh discussed above.

In spite of the apparent similarity of the two strategies, the di�erent nature of the maps ρ already lays

bare a crucial di�erence: In contrast with the unconditional proof of Lawrence–Venkatesh, an additional

piece of information is needed to deduce �niteness from the method of Chabauty–Kim. Typically this either

takes the form of a geometric assumption, such as having a large Néron–Severi rank [BD18, BD19a], or the

assumption of a geometric conjecture, such as the Bloch–Kato conjecture, see [Kim09].

1.3. Finding rational points explicitly. At �rst glance, it may seem from the above comments that the

conditional nature of the proof of �niteness obtained from the method of Chabauty–Kim puts the method at

a signi�cant disadvantage, especially when compared to the unconditional proof of Lawrence–Venkatesh.

However, recent developments [BD18, BD19a, BDM
+

19] have shown that in certain examples where ad-

ditional geometric information is known, the method for proving �niteness can in fact be turned into a

method to explicitly determine the �nite set X(Q).

To explain the ideas, we brie�y remind the reader of the method of Chabauty–Coleman [Cha41, Col85],

of which an excellent exposition may be found in McCallum–Poonen [MP12]. In this method, one chooses

a rational base point b in X(Q) and attaches to every other point a torsor of the p-adic Tate module V of

the Jacobian J . More precisely, if K is either Q or Qp, this torsor is obtained by the composition

(4) ρ : X(K) −→ J(K) −→ H1
f (GK , V )
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where the �rst map is the Abel–Jacobi embedding attached to the choice of base point b, and the second

map attaches to a point x in J(K) the torsor of V obtained from the inverse limit of the preimages of x

under the multiplication-by-pn map on the Jacobian, i.e.

(5) Qp⊗Zp

(
lim←−
n

[pn]−1(x)

)
.

Such torsors are classi�ed by the cohomology group H1(GK , V ) and satisfy certain Selmer conditions1
which

are denoted by the subscript f . This association ρ is familiar from the context of the classical method of

descent, used to compute the Mordell–Weil group of the Jacobian.

We now obtain the commutative diagram:

(6)

X(Q) X(Qp)

H1
f (GQ, V ) H1

f (GQp
, V ) H0(X,Ω1

X)∨

ρ ρ

resp ∼

perp

representing perhaps the simplest instance of the Chabauty–Kim strategy towards the Mordell conjecture

discussed above, where U is taken to be the abelianization V of the fundamental group. In this situation, the

relevant �ltered φ-modules are classi�ed by the dual to the space of holomorphic di�erentials on X , which

is of dimension g, and the isomorphism is provided by the Bloch–Kato logarithm. With suitable �niteness

conditions f , the dimension of H1
f (GQ, V ) can be bounded above by the rank r of the Q-rational points of

the Jacobian of X . The discussion of how to prove �niteness of X(Q) using the method of Chabauty–Kim

then specializes to the classical argument of Chabauty, who deduces �niteness under the assumption that

r < g.

Going one step further, we note that the p-adic period map perp has the following concrete description:

(7) perp(x) =

(
ω 7−→

∫ x

b

ω

)
where the integration is taken in the sense of Coleman [Col85]. Our ability to compute Coleman integrals

[BBK10, Bal15, BT19] often results in an explicit determination of the set X(Q). Since there already exist

several excellent expositions of this method [MP12], we will simply explain the method by showing it in

action for a single example.

Example. Let X be the genus 3 hyperelliptic curve with minimal model
2

w2 + (z4 + z2 + z + 1)w = −z5 − z2.

A search for points with small coordinates gives that

(8)

{
∞±, (−1,−2), (−1, 0), (0,−1), (0, 0)

}
⊆ X(Q),

where∞+ = (1 : 0 : 0) and∞− = (1 : −1 : 0) are the points at in�nity. In order to determine the full set

of rational points X(Q), we apply the Chabauty–Coleman method with p = 3; for convenience, we work

with the following model for X :

X ′ : w2 = z8 + 2z6 − 2z5 + 3z4 + 2z3 − z2 + 2z + 1.

1
We are deliberately vague about these �niteness conditions here, but mention that the discussion below can be made unconditional

on the �niteness of the Tate–Shafarevich group of the Jacobian.

2
Here X is the curve of absolute discriminant and conductor both equal to 60329 = 23 · 43 · 61 from the database [BPSS].
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We embed X ′ into its Jacobian J via the Abel–Jacobi map corresponding to the base point b = (0, 1) in

X ′(Q). A computation in Magma [BCP97] shows that the Mordell–Weil rank of J is equal to 1, and the

above discussion then implies that the codimension of the image of res3 is at least 2. In fact, it is precisely

equal to 2: the set

{
ωi = zi dzw : 0 ≤ i ≤ 2

}
is a basis for H0(X ′,Ω1

X′) and we have

per3(0,−1)(ω0) ≡ 3(3 + 33 + 2 · 34) mod 36

per3(0,−1)(ω1) ≡ 3(1 + 33 + 34) mod 36

per3(0,−1)(ω2) ≡ 3(1 + 32 + 2 · 33 + 2 · 34) mod 36.

Thus, we may choose generators α = a0ω0 − a1ω1 and β = b0ω0 − b2ω2 for the Q3-vector space{
ω ∈ H0(X ′,Ω1

X′) : res3(c)(ω) = 0 for all c ∈ H1
f (GQ, V )

}
such that

(9)

a0 ≡ 1 + 33 + 34 mod 35 a1 ≡ 3 + 33 + 2 · 34 mod 35

b0 ≡ 1 + 32 + 2 · 33 + 2 · 34 mod 35 b2 ≡ 3 + 33 + 2 · 34 mod 35.

By construction, we have

(10) X ′(Q) ⊆ {x ∈ X ′(Q3) : per3(x)(α) = 0 and per3(x)(β) = 0} =: T ;

a computation shows that T contains precisely 6 points and hence that the inclusion in (8) is in fact an

equality. Explicitly, suppose for instance that we want to compute all x ∈ T which reduce to the point

(1 : 1 : 0) in X ′(F3). For γ ∈ {α, β} we have

per3(x)(γ) = per3(1 : 1 : 0)(γ) +

∫ x

(1:1:0)

γ =

∫ x

(1:1:0)

γ;

expanding in terms of the local parameter t = z(x)−1 and formally integrating yields

per3(x)(α) = (2 · 3 + 32) · t2 + (2 · 3−1 + 2 + 2 · 3 + 32) · t3 mod (33, t4)

per3(x)(β) = 3 · t+ (2 · 3−1 + 1 + 3 + 2 · 32) · t3 mod (33, t4).

The i-th coe�cient of the local expansion of per3(x)(α) or per3(x)(β) has valuation bounded from below

by −ord3(i); from Newton polygon considerations, we deduce that

• per3(x)(α) has a double zero at t = 0, a simple zero at some t ∈ Z3 which satis�es t ≡ 2·32 mod 33,

and no other zero in 3 Z3;

• per3(x)(β) has a simple zero at t = 0, two simple zeros congruent modulo 32 to 2 · 3 and 3,

respectively, and no other zero in 3 Z3.

Therefore, the intersection of the zero sets of per3(x)(α) and per3(x)(β) in the residue disk of the point

(1 : 1 : 0) in X ′(F3) is precisely {(1 : 1 : 0)} ⊂ X ′(Q).

We emphasize that neither α nor β on their own would have su�ced to determine X(Q), as each of

per3(x)(α) and per3(x)(β) vanishes at some points x ∈ X ′(Q3) \ X ′(Q) which we can only compute

modulo 3n for a choice of n. More generally, for curves X of genus g with rank g − 1 Jacobians, the

Chabauty–Coleman method typically provides us with only one locally analytic function whose zero set T
contains X(Q). It is then often the case that T contains some points that we cannot recognize as points

in X(Q). In such situations, the Mordell–Weil sieve (see §6.7 for a discussion) can often be used to prove

that the p-adic approximations of these points that we have computed cannot be approximations of points

in X(Q).
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1.4. Integral points onhigher-dimensional varieties. Both methods (Lawrence–Venkatesh and Chabauty–

Kim) could be applied to the problem of �nding integral points on higher-dimensional varieties as well. To

�x ideas, let X be a smooth variety over Q. If X has large nonabelian fundamental group, one can hope

to construct a nontrivial p-adic local system on X . This will attach a Galois representation to every point

x ∈ X(Q), giving rise to a period map ρ as above. In the higher-dimensional setting, one can no longer con-

clude �niteness of integral points; rather, these methods give the weaker result that X(Z) is not dense for

the p-adic analytic topology. See [Had11, Section 9] for a result of this form. (In dimension one, non-density

for the analytic topology is equivalent to �niteness.)

It is sometimes possible to strengthen p-adic non-density to Zariski using tools from transcendence

theory. In [LV18, Section 9] it is shown that in certain moduli spaces of hypersurfaces, the integral points

are not Zariski dense. The key input is a recent transcendence result for period mappings, due to Bakker

and Tsimerman [BT17]. This opens the possibility that one might prove �niteness of integral points by an

inductive approach: taking X ′ to be the Zariski closure of the integral points in X , one would hope to use

the method of [LV18] to prove that, if dimX ′ ≥ 1, the integral points cannot be dense in X ′. To make this

work one would need uniform control on the monodromy of the given family, restricted to all subvarieties

X ′ ⊆ X .

2. The method of Lawrence–Venkatesh: Finiteness

In this section, we will discuss the main ideas of the approach towards Mordell’s conjecture due to

Lawrence and Venkatesh. For simplicity, our main focus will be to explain the method in the case of X =

P1 \{0, 1,∞} where the proof is especially simple. Finally, we make some comments about the obstacles

one faces in making this approach e�ective, in the example of the 2-unit equation.

Recall from the introduction that we start by constructing a map ρwhich attaches a Galois representation

to any point on X . In the method of Lawrence–Venkatesh, the map ρ arises from the cohomology of the

�bres of a certain Parshin family C −→X , see §2.2. In the case of X = P1 \{0, 1,∞}, which we discuss

�rst, this family is a simple modi�cation of the classical Legendre family of elliptic curves.

2.1. The S-unit equation. To explain some of the ideas in the proof, we discuss the case of the S-unit

equation in more detail. This has the bene�t of being substantially simpler, while still containing many of

the main ideas that go into the proof of the Mordell conjecture. To illustrate the ideas of the proof, we will

start with a version of the Parshin family for which the period map perp fails to be �nite-to-one. Then we

will give a correct argument, in which a nontrivial Galois action on H0
of the �bers supplies the key missing

ingredient.

Take K = Q and S a �nite set of primes. We denote the set of S-units by O×S and will consider the

S-unit equation given by

(11) x+ y = 1, x, y ∈ O×S ,

whose solution set is �nite by Siegel’s theorem. This statement represents an attractive toy case for the

Mordell conjecture; its geometric proof along the lines sketched above takes place on X = P1 \{0, 1,∞}.
Note that we may enlarge S without loss of generality, so that we may as well assume that S contains 2.
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The role of the Parshin family is played by the Legendre family over OS . Denoting x for the coordinate

on X = P1
OS
\{0, 1,∞}, this family C −→X is given by the equation

(12) C : w2 = z(z − 1)(z − x).

This family gives us a Galois representation ρ(x) on the étale cohomology group H1
ét

(Cx,Qp), where p is a

prime not below any places in S, which is unrami�ed in K . This gives the following diagram:

(13)

X (OS) X (Ov)

{Iso classes ρ} {Iso classes ρv} MFφ/ ' .

ρ ρ

D
cris

perp

Let us now make a �rst attempt to deduce �niteness from the above diagram. There are two major consid-

erations to the strategy, corresponding to global and local aspects. The local considerations revolve around

a careful analysis of the period map, via a monodromy calculation.

a. Global representations. The Mordell conjecture will ultimately be reduced to a �niteness statement

about a certain set of global Galois representations, due to Faltings. More precisely, the proof of [Fal83, Satz

5] deduces the following consequence from the classical theorem of Hermite–Minkowski:

Lemma 2.1. Fix integers w, d > 0, and �x a number �eld K and a �nite set S of primes of OK . There are,
up to conjugation, only �nitely many semisimple Galois representations ρ : GK → GLd(Qp) such that

(a) ρ is unrami�ed outside S, and
(b) ρ is pure of weight w, i.e. for every prime p /∈ S all the eigenvalues of Frobenius at p are algebraic

integers, all of whose conjugates have complex absolute value | OK /p|w/2.

It should be noted that this does not make the approach of Lawrence–Venkatesh depend on the work of

Faltings in an essential way, as this lemma is comparatively simple in Faltings’ overall argument.

The semisimplicity hypothesis in Faltings’ lemma is essential: there can be in�nitely many nontrivial ex-

tensions between Galois representations.
3

In fact, Faltings shows that all the representations we consider—

which arise as subquotients of the étale cohomology of a curve—are semisimple. This fact requires the full

weight of Faltings’ argument in [Fal83]. In order to give an independent proof of Mordell’s conjecture, it

is necessary to contemplate the possibility that some of these representations might not be semisimple. In

potential algorithmic applications, we know this situation cannot arise, so we will content ourselves here

with mentioning that in [LV18] this is addressed by showing that all but �nitely many representations in

our family must be simple. This is a consequence of results of the following form:

(1) If the global representation ρ(x) has a (global) subrepresentation, then the local representation must

be of a particularly special form.

(2) There are �nitely many x in X(Qp) where the local representation ρ(x) takes this special form.

b. The period map. The more subtle points of the argument of Lawrence–Venkatesh lie in the study

of the period map perp, where one systematically enlarges the base �eld to gain control over the Frobe-

nius centralizers. Let us explain the need for this step, by �rst approaching the problem naively using the

unadjusted Legendre family above.

3
As we will see in the next section, the existence of families of non-trivial extensions of a �xed set of Galois representations is

precisely what underlies the method of Chabauty–Kim.
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Recall that we want to show �niteness of the set of solutions to the S-unit equation. Since we already

established the �niteness of the set of isomorphism classes of global representations ρ(x) that can arise, it

is tempting to try and show that the �bres of the period map perp are �nite. However, this is not true: The

�ltered φ-modules that arise in the image of perp necessarily are of the form H1
dR

(Cx,Qp), and on every

good residue disk of X(Qp) the Frobenius operator φ has a constant characteristic polynomial

(14) f = aT 2 + bT + c ∈ Zp[T ]

which has two roots in Cp whose valuations sum up to 1. The number of residue disks is �nite, and for

each of these �nitely many polynomials f , the �ltered φ-module belongs to a �nite number of possible

isomorphism classes, which is most easily seen with a simple case-by-case analysis:

• If f is irreducible, then we may pick a basis e1 for Fil1 and set e2 = φ(e1). Then {e1, e2} is a basis

for H1
dR

. With respect to this basis, we have Fil1 = 〈e1〉 and

φ =

(
0 −b
1 −a

)
.

• If f is reducible, then it must have distinct roots of valuations 0 and 1, corresponding to eigenvectors

e1, e2 which necessarily span H1
dR

. Then we either have Fil1 = 〈e1〉 or 〈e2〉, or we can rescale the

eigenvectors to obtain Fil1 = 〈e1 + e2〉.

In conclusion, we see that there is only a �nite number of possible isomorphism classes of �ltered φ-modules

attached to the representations ρ(x), and therefore the period map appearing in (13) cannot possibly have

�nite �bres! Furthermore, we see from this discussion exactly what the problem is, since we had in each

case so much freedom in choosing our basis, so as to move around the Hodge �ltration Fil1 while respecting

the Frobenius operator.

We can rephrase the problem as follows. Fix a pair (V, φ) of a two-dimensional vector space and linear

endomorphism; in our situation, (V, φ) will arise as the crystalline cohomology H1
cris

(Cx /Zp), which only

depends on the reduction of x modulo p. The possible �ltrations Fil1 ⊆ V are classi�ed by the Grassman-

nian Gr(Fil1 ⊆ V ). The centralizerZ(φ) acts on Gr(Fil1 ⊆ V ), and the orbits of this action are in bijection

with isomorphism classes (V, φ,Fil1) of �ltered φ-module with underlying φ-module (V, φ). In the setting

just described, Z(φ) has a Zariski-dense orbit on Gr(Fil1 ⊆ V ), so most such �ltered φ-modules belong to

a single isomorphism class.

Interlude: Semilinearity. Let us take a short break to recall some crystalline theory. So far we have

been applying p-adic Hodge theory, in particular the crystalline comparison theorem, to schemes Cx over

Qp. In general, suppose Lp is an unrami�ed extension of Qp, and Cx is a scheme over Lp, admitting a

smooth model over OLp
. Then Lp is Galois over Qp, with cyclic Galois group generated by a Frobenius

element Fr that acts as the p-th power map on the residue �eld. The crystalline-de Rham cohomology

H1
dR

(Cx /Lp) has the structure of a �ltered φ-module, where φ is now a semilinear operator: it satis�es

(15) φ(λv) = Fr(λ)φ(v).

This is important because semilinear automorphisms have small centralizers: it’s not easy for an auto-

morphism of V to both respect the action of Lp and commute with φ. This is made precise in the following

lemma, which was proved in Lawrence–Venkatesh [LV18, Lemma 2.1].

Lemma 2.2. Let Lp be an unrami�ed extension of Qp of degree e, and let Fr : Lp → Lp be the Frobenius
endomorphism that acts as the p-th power map on the residue �eld. Let V be an Lp-vector space of dimension
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d, and φ : V → V a Fr-semilinear automorphism. De�ne the centralizer Z(φ) of φ in the ring of Lp-linear
endomorphisms of V via

Z(φ) = {f : V −→ V an Lp-linear map, fφ = φf};

it is a Qp-vector space. Then
dimQp

Z(φ) = dimLp Z(φe),

where φe : V → V is now Lp-linear. In particular, dimQp
Z(φ) 6 (dimLp

V )2.

c. Finiteness. Armed with this tool, we now return to the failed �niteness argument above, and take

advantage of semilinearity to resolve the issues we were having. More precisely, we bound the size of

Frobenius centralizers by considering instead the modi�ed Parshin family

(16) E : w2 = z(z − 1)(z − t), t8 = x.

For every �eldK and x inX(K), the �berEx is a geometrically disconnected curve whose H0
is the algebra

K[t]/(t8 − x). Suppose K = Qp and x is a unit in Qp which is not a square
4
. Then Ex is a curve de�ned

over Lp = Qp[x
1/8], the degree-8 unrami�ed extension of Qp. We want to show that the map

perp : X (Ov) −→ (MFφ/ ')

is �nite-to-one. On each p-adic residue disk Ωv ⊆ X (Ov), the φ-module (V, φ) = H1
cris

(Ex) is constant;

only the �ltration varies. Thus we can regard perp as a map

perp : Ωv −→ Gr(Fil1 ⊆ V ) −→ Gr(Fil1 ⊆ V )/Z(φ) .

Since perp is an analytic map from a one-dimensional source, to show it is �nite-to-one, we need only show

that it is not constant; in other words, that the image of Φp : Ωv → Gr(Fil1 ⊆ V ) is not contained in a

single orbit of Z(φ). This follows from the following two results:

(1) Every orbit of Z(φ) has positive codimension in Gr(Fil1 ⊆ V ).

(2) The image of Φp is Zariski dense.

The �rst of these two follows from the bound in Lemma 2.2; the second, from a complex monodromy

calculation. It is essential that Lp have large degree over Qp, which comes from the assumption that x is

not a square in Qp.

The Zariski density of the image of Φp is obtained by comparing it with the complex period map ΦC.

Let’s recall the construction of ΦC. The family E of elliptic curves over X gives rise to a variation of

Hodge structure on X . Let ΩC be a contractible open subset of Xan
, containing some basepoint x0 in

X(K), for K a number �eld. Over ΩC, the family E splits as the disjoint union of eight families of elliptic

curves E(1), . . . , E(8)
. (The monodromy action of π1(X) preserves the splitting but permutes the eight

components.) Choose an integral basis B for the �berwise Betti cohomology of each elliptic curve V
(i)
C =

H1
B(E

(i)
x0 ) over x0. With respect to this basis, the Hodge �ltration is described by a map

ΦC : ΩC −→
8∏
i=1

Gr(Fil1 ⊆ V (i)),

where the Grassmannian classi�es one-dimensional subspaces of the two-dimensional V (i)
.

4
It is enough to consider x of this form by an elementary argument based on the fact that, if x is both a square and a solution to

the S-unit equation in some number �eldK , then±
√
x satisfy the S-unit equation as well. However, this does necessitate some care

in the choice of p.
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The importance of ΦC to us comes from the fact that ΦC and Φp are, in a suitable sense, the same. (See

[LV18, Section 3.4] for details.) Both period maps satisfy the same algebraic di�erential equation, coming

from the Gauss–Manin connection. It follows that in suitable local coordinates, the (complex) power series

representation of ΦC and the (p-adic) power series representation of Φp both have all their coe�cients in

the number �eld K , and the two power series agree. This means we can compare the images of the two

period maps, and Lemmas 3.1 and 3.2 of [LV18] yield the following result:

Lemma 2.3. The image of ΦC is Zariski dense if and only if the image of Φp is Zariski dense.

The advantage of this result is that establishing the Zariski-density of the map ΦC boils down to an

explicit monodromy calculation, see [LV18, Eqn. 3.11].

Lemma 2.4. If the image of the monodromy representation of E contains a Zariski-dense subset of Spd2 , then
the image of ΦC is Zariski dense in Gr(Fil1 ⊆ V ).

Proof. Let X̃ be the universal cover of X , and extend ΦC to a map

ΦC : X̃ −→ Gr(Fil1 ⊆ V ).

This map ΦC is π1(X)-equivariant, where π1(X) acts on the Grassmannian through the monodromy

representation. Since the image of monodromy is Zariski dense, the extended ΦC has Zariski-dense

image. By analytic continuation, the restriction of ΦC to ΩC has Zariski-dense image as well. �

Lemma 2.5. The image of the monodromy representation

π1(X,x0) −→ Aut

(
8∏
i=1

H1
B(E(i)

x0
)

)
contains a Zariski-dense subset of Sp2(Z)8.

Proof. This is a calculation in classical topology, see [LV18, Lemma 4.3]. �

2.2. TheMordell conjecture over generalK. After our discussion of the S-unit equation, we now make

a brief foray into the general case, and outline how to adapt this argument to prove Mordell’s conjecture.

Suppose X is a smooth projective curve of genus at least 2 over K . We will de�ne the Parshin family over

X , implicitly dependent on a parameter q. It will replace the Legendre family in the S-unit argument.

Let q ≥ 3 be a prime number, and let Aff(q) be the non-abelian group of a�ne-linear transformations

x 7→ ax+ b over Fq . The action of Aff(q) on Fq realizes Aff(q) as a subgroup of the symmetric group Sq .

Note also that Aff(q) surjects onto F×q .

De�nition 2.6. LetX be a curve overK , and x ∈ X(K) a point ofX . An Aff(q)-cover ofX , branched at x,
is a curve Z and a map Z → X , satisfying the following properties.

• Z → X is étale over X − {x}, but not étale over x.
• Z → X is of degree q.
• For any choice of basepoint x0, and for an appropriate identi�cation of the �ber over x0 with Fq , the
monodromy map π1(X,x0)→ Sq corresponding to the cover Z has image Aff(q).

For every x in X(K), there are �nitely many isomorphism classes of Aff(q)-covers Z → X branched

at x. The Parshin family Y → X is characterized by the property that the �ber Yx is geometrically the

disjoint union of these �nitely many curves.
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In the S-unit argument, the key semilinearity bound came from taking an 8-th root of x (along with

the elementary assumption that x is not a square). Here the corresponding bound comes from the torsion

on the Jacobian J of X , which is guaranteed to have a nontrivial Galois structure. Speci�cally, for any

Aff(q)-cover of X , the composed map

π1(X − {x}) −→ Aff(q) −→ F×q

gives a degree-(q − 1) cover of X that turns out to be unrami�ed everywhere, even over x. This cover

in turn corresponds to a (q − 1)-torsion point on the dual of the Jacobian. We choose q and p so that the

Frobenius at p acts with su�ciently large orbits on J [q − 1]; this in turn guarantees that the components

of each �ber Yx are de�ned over large p-adic �elds, so we can leverage the semilinearity lemma 2.2.

As with the S-unit equation, a calculation in the classical topology is needed to show that the Parshin

family has big monodromy. Fix X and x, and let Z1, . . . , ZN be the Aff(q)-covers of X branched at x. We

want to determine the image of the monodromy action

Mon: π1(X,x) −→ Aut

(∏
i

H1
B(Zi)

)
as an algebraic group. The cohomology of each Zi contains a copy of H1

B(X); de�ne
5

H1
Pr(Zi) = H1

B(Zi)/H1
B(X).

The map Mon descends to an automorphism of

∏
i H1

Pr(Zi). We need the following big monodromy result.

Theorem 2.7. The Zariski closure of the image of

Mon: π1(X,x) −→ Aut

(∏
i

H1
Pr(Zi)

)
contains the group ∏

i

Sp(H1
Pr(Zi)).

This theorem is really saying that the image of monodromy is as big as possible: we know for abstract

reasons that the identity component of the Zariski closure of the image is no larger than the product of

symplectic groups. We say a few words about the main ideas that go into the proof:

The monodromy action of π1(X,x) on the coversZi extends to an action of the full mapping class group
6

MCG(X − {x}). By the Birman exact sequence, π1(X,x) is a normal subgroup of MCG(X − {x}). Since

the symplectic group is simple modulo center, we can deduce Theorem 2.7 if we know that the Zariski

closure of the image of

Mon: MCG(X − {x}) −→ Aut

(∏
i

H1
Pr(Zi)

)
contains said product of symplectic groups. The bene�t to working with the full mapping class group is

that we now have access to Dehn twists, a particularly simple class of automorphism that is amenable to

explicit calculation. Dehn twists map to unipotent automorphisms via Mon, and the proof concludes by

producing a collection of unipotent automorphisms that generates the full symplectic group.

5
The symbol “Pr” stands for “primitive.”

6
The mapping class group is the group of topological automorphisms of the topological surfaceX �xing the point x, up to isotopy

�xing x. The book of Farb and Margalit [FM12] is an excellent introduction and reference on mapping class groups.
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The study of mapping class group representations like Mon is a big subject in geometric topology.

Looijenga [Loo97] studied the analogous question for abelian covers. Grunewald, Larsen, Lubotzky, and

Malestein [GLLM15] study (unrami�ed) covers of compact surfaces, and in a recent paper [ST18] Salter and

Tshishiku study covers whose covering group is the Heisenberg group. These results are stronger than

ours: they all show that the image of the representation has �nite index in an appropriate arithmetic group,

rather than merely being Zariski dense.

3. The method of Lawrence–Venkatesh: Effectivity

We now discuss the extent to which we expect the work of Lawrence–Venkatesh to yield a method for

explicitly determining the set X(K) in examples. Since it is so recent, it is unsurprising that this aspect of

the method of Lawrence–Venkatesh does not yet seem to be addressed in the literature. In this section we

adopt a more speculative tone, merely making some brief comments about various ingredients that would

likely be needed to parlay this method into an algorithm for bounding the number of rational points on a

curve over a number �eld; which would yield, in a weak sense, a form of “algorithmic Mordell.”

Roughly speaking, a potential form of such a hoped-for algorithm is as follows.

Algorithm 3.1. Take as input a number �eld K , a smooth projective curve X over K , and a power vn of a

good
7

prime ideal v ofOK . Return as output a �nite list of points
8

in X (Ov), to any desired �nite precision

which is guaranteed to include all the rational points of X .

It should be mentioned that such an algorithm, until an e�cient implementation proves the contrary, is at

risk of being prohibitively slow so as to be useless from a practical standpoint. The essential di�culty lies in

enumerating Galois representations with prescribed rami�cation; modularity results for the representations

in question, if known, could speed up the algorithms signi�cantly. One possible approach to the calculation

is proposed in what follows. It has four essential components, each of which we brie�y discuss below.

It should be noted that whereas many of the separate ingredients have been extensively studied in the

literature, the method of Lawrence–Venkatesh has so far not been made e�ective, and therefore the ideas

in this section are tentative. It would be very interesting to explore the e�ectivity of this method further,

and make a serious attempt at a computational version of this method.

Remark 3.2. An algorithm of the above form may return extraneous points, not corresponding to a rational

point. This phenomenon arises also in Chabauty’s method, though in the example in §1 it was circumvented

by exhibiting two independent analytic sets, which was possible since g− r = 2. Likewise, it is conceivable

that one can circumvent in the method of Lawrence–Venkatesh by varying the choice of q in the covering

group Aff(q). Alternatively, one could attempt to apply the Mordell–Weil sieve, see §6.7.

3.1. Enumerating global Galois representations. Faltings’s �niteness lemma for Galois representations

(Lemma 2.1) can be made e�ective; we expect this to be the most computation-intensive part of the algo-

rithm. Recall that we want to enumerate all global Galois representations

ρ : GK −→ GLd(Zp)

that could arise from our family, in the sense of Lemma 2.1. We know the following about ρ:

7
The method of LV requires p to satisfy a certain Galois-theoretic condition; here we will simply call primes satisfying that condition

“good” primes. The condition is needed to guarantee that a certain extension of Kp is of large degree, and is analogous to the

requirement in the S-unit equation above that x not be a square in Qp. Choosing a good p presents no algorithmic di�culty.

8
possibly with multiplicities
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• We are given a �nite set S of places of K , outside of which ρ is unrami�ed.

• For every prime p /∈ S, all the eigenvalues of Frobenius at p are Weil numbers of weight 1/2.

• The representation ρ is semisimple.

On the one hand, we can list all possible mod-pn representations for any n. First, one enumerates all

possible residual representations

ρ1 : GK −→ GLd(Fp).

This is a straightforward application of Hermite–Minkowski �niteness. The residual representation has

�nite image, so it corresponds to an extension L1 of K of degree at most |GLd(Fp)|. The rami�cation

condition translates to a bound on the discriminant of L1. One can �nd all possible number �elds L1 by a

targeted Hunter search [Coh00, §9.3]. However, the time complexity of such a search (for �xed K and S) is

doubly exponential in the degree [L1 : K], so it may be necessary to further re�ne the search using more

speci�cs of the situation at hand.

Second, for each residual representation, one lifts successively to mod-pn representations

ρn : GK −→ GLd(Z /p
n),

which correspond to a tower of �elds Ln. The successive extensions Ln+1/Ln are abelian, so they can be

found by class �eld theory. (Everything we need from class �eld theory can be done algorithmically; see

[Coh00].) To do this, we need to compute ideal class groups and unit groups of number �elds whose degrees

grow exponentially in n; this is again a computationally expensive task.

On the other hand, given the residual representation ρ1, the Faltings–Serre method (see for example

[Del85]) allows one to compute e�ectively a �nite set of primes p1, . . . , ps such that for any semisimple ρ

lifting ρ0, the rational representation

GK −→ GLd(Qp)

is determined by the Frobenius traces

Tr(Frpi
|ρ)

at these �nitely many primes. (In general, there may be multiple isomorphism classes of integral representa-

tion, as the rational representation may have more than one stable Zp-lattice.) The condition on Frobenius

eigenvalues guarantees that there are only �nitely many possible values for Tr(Frpi
|ρ), for each i. We can

choose n0 large enough that, for each �xed i ∈ {1, . . . , s}, no two of these possible values are congruent

modulo pn0
. Then any mod-pn0

representation ρn0
can lift to at most one semisimple p-adic representation.

The strategy, then, is as follows. First, make a list of all (�nitely many) possible tuples

(Tr(Frpi
|ρ))i∈{1,...,s};

we’ll call such a tuple a candidate. As described above, we can enumerate all mod-pn representations for

some n ≥ n0. We compute their Frobenius traces and match them with candidates, discarding candidates

that don’t match any representation, and vice-versa. We can repeat this procedure for any desired n; the

list of candidates will get shorter, as spurious candidates are deleted.

3.2. Computing the Parshin family. Before we get to the purely local part of the computation, which

consists of describing the p-adic period map perp, we are faced with the problem of �nding an explicit set

of algebraic equations de�ning the Parshin family

C −→ X,
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whose �bres are �nite covers of X branched over the variable point x. This is an instance of the Riemann–

Hurwitz problem. Computational work on branched covers of curves is particularly well-developed in the

case of Belyı̆ covers of P1
; see [SV14] for an overview. The covers appearing in our setting are solvable,

and we expect that explicit calculations on the Jacobian could provide a fruitful approach.

The solvability of the covering group Aff(q) has the following geometric interpretation. SupposeZ → X

is an Aff(q)-cover, branched at x. Let ZGal
be the Galois closure of Z ; this is a cover ofX of degree q(q−1),

rami�ed only above x and having Galois group Aff(q). The quotient map Aff(q)→ F×q gives a curve Zab
,

corresponding by the Galois correspondence to F×q . Thus we have the tower of covers

ZGal −→ Zab π−→ X.

In this tower, Zab
is an unrami�ed abelian cover of X of degree q − 1, and ZGal

is an abelian cover of Zab

of degree q, rami�ed at exactly the points of π−1(x). The curve Z can be recovered as a quotient of ZGal
.

This suggests the following strategy to compute the Parshin family Y , each of whose �bers is a union of

Aff(q)-covers Z . First, we attempt to compute abelian covers (both unbranched and branched) of arbitrary

curves, by �nding torsion points on algebraic generalized Jacobians. To describe one strategy
9
, we will

restrict attention to unrami�ed covers and the (ungeneralized) Jacobian. In this setting, we want to �nd a

divisor D on the curve X , along with a meromorphic function f on X such that

div(f) = rD,

which amounts to looking for r-torsion on the Jacobian of X . The Jacobian has an algebraic incarnation

as a variety classifying divisor classes on X and an analytic incarnation as a complex torus. It is of course

trivial to identify torsion points on the analytic Jacobian; what we need is to describe them as points on the

algebraic Jacobian.

Fix a basepoint b ∈ X(C). By integration we can compute coordinates on the analytic torus JacX ,

along with the analytic Abel–Jacobi map

X −→ JacX.

In the other direction, let g be the genus of X . We want to invert the map

(17) SymgX −→ JacX,

to realize a point of the analytic Jacobian as a divisor on X . This map is a birational equivalence, but

not an isomorphism. On a Zariski-dense subset of JacX , the map can be inverted, for example, by theta

function methods [Mum83, Theorem II.3.1], by Puiseux series methods [CMSV19], or by computations

in Grassmannians arising from Riemann-Roch theory [KM04, CMSV19]. A general algorithm appears in

[CMSV19, §3.3].

If we can compute arbitrary abelian covers, we could try to determine all the covers ZGal
for any �xed

point x; from there one computes Z by Galois theory on the function �eld. In other words, we can compute

the �ber Yx of the Parshin family over any given point x ∈ X . To compute the Parshin family as an algebraic

family, we are faced with the need to interpolate these �bers, perhaps by Puiseux series methods.

9
An alternative approach to computing covers of curves is by Hensel lifting from a �nite �eld, as in [Mas19].
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3.3. Computing the p-adic period map. We now come to the local part of the computation, where a

description of the p-adic period map perp reduces to a computation with p-adic cohomology in families.

There is a vast literature on this subject, and this step is therefore likely to be more accessible and e�cient

than the others
10

. We give a brief overview of some results in the literature, for more detailed treatments

that address also the history of the subject, see Kedlaya [Ked09, Ked07].

The basic problem is the following: Suppose we are given a curve Cx over a p-adic �eld Kv and want

to compute the �ltered φ-module structure of H1
dR

(Cx /Kv). Representing this space by di�erentials of the

second kind, the Hodge �ltration is easily worked out, and it is the Frobenius operator φ that forms the

essence of this problem. When Cx is hyperelliptic, Kedlaya [Ked01] introduced an e�cient algorithm, a

variant of which we will see in action for the examples of the genus 2 curves in §6. There are two main

ingredients for the computation:

• An appropriate lift of Frobenius on the functions in a (p-adic analytic) open subset of Cx,

• A reduction algorithm in de Rham cohomology, that writes an arbitrary di�erential as the sum of

an exact di�erential and a linear combination of our basis di�erentials.

By applying the reduction in cohomology to the image of a set of basis di�erentials under this Frobenius

lift, we may obtain a matrix of the Frobenius operator φ, up to some precision vn.

This method has seen extensive developments since [Ked01], notably by Lauder [Lau04, Lau06] who

introduced the �bration method. This method makes use of the Frobenius structure on the sheaf of relative

q-th de Rham cohomology Hq
dR

(X/S) of a smooth morphism X −→S between smooth varieties over Kv .

The variation of the de Rham cohomology of the �bres in this family is described by the Gauß–Manin

connection

∇GM : Hq
dR

(X/S) −→Ω1
X/S ⊗H

q
dR

(X/S),

which gives a system of di�erential equations known as the Picard–Fuchs equations, whose study was taken

up in the 19
th

century. Suppose we �nd a local lift of Frobenius φ on S, then the pullback of the relative de

Rham cohomology Hq
dR

(X/S) by φ is isomorphic as a vector bundle with connection to the original one. In

concrete terms, let us suppose that S is a curve, then we may express this in matrix form as

(18) NFdt+
∂

∂t
F =

(
∂

∂t
φ(t)

)
Fφ(N)dt

by choosing a local coordinate t on S, and a basis of the relative de Rham cohomology, with respect to

which we obtain a matrix F (t) describing the Frobenius operator on the �bres, and N(t)dt describing the

Gauß–Manin connection. This equation is very useful. For instance, if F (t) can be computed for a single

value of t = t0, then we may solve these p-adic di�erential equation using F (t0) as an initial condition.

Lauder [Lau04, Lau06] uses this idea to compute the Frobenius action in families. It is surprisingly versatile,

applying both to individual curves with a map to P1
as well as families of curves. It has been developed

in many subsequent papers of which we mention the recent algorithms of Tuitman [Tui16, Tui17], and the

references contained therein, which vastly extend the range of applicability of these ideas.

3.4. Compare the global Galois representationswith the p-adic periods. We suggest two approaches.

The �rst is to use p-adic Hodge theory, along the lines of Fontaine–La�aille theory [FL82]. We are given a

mod-pn global Galois representation, presented as a polynomial whose splitting �eld is its kernel. We can

determine the corresponding local representation at p, in terms of extensions of Qp. Fontaine and La�aille

10
Indeed, the algorithms mentioned here are crucial ingredients for the e�ective method of Chabauty–Kim, as we will see in §6.
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de�ne a functor US from a certain category of �nite-length �ltered φ-modules to the category of Galois

representations [FL82, §0.6]. One expects that Fontaine–La�aille theory can be made algorithmic: given a

mod-pn Galois representation, we should be able to determine whether it is in the image of this functor, and

if so, describe the underlying �ltered φ-module. We can then compare these φ-modules with the φ-modules

arising from the p-adic period map, to determine a list of candidate points.

Our second approach avoids �ltered φ-modules entirely, by working directly with Galois representations.

It is a consequence of Fontaine–La�aille theory that the mod-pn local Galois representation ρx depends only

on the reduction of x modulo vn+1
. Using this, we can compute explicitly all the possibilities for the local

Galois representation at p, and match them explicitly with the list of “candidates” from the global Galois

calculation. In other words, for each candidate ρ, we obtain a list of mod-vn+1
points of X , the local

representations at which agree modulo pn with ρ. For each of these mod-vn+1
residue classes, we then use

the period map perp to compute a bound on the number of rational points in the class.

4. The method of Chabauty–Kim: Finiteness

In this section, we discuss the approach to Mordell’s conjecture due to Minhyong Kim. It follows the

same pattern as the method of Chabauty–Coleman discussed in the introduction, and as such it depends

on some geometric input, replacing the condition r < g by something weaker, which may be done at the

cost of replacing the p-adic Tate module V by a more sophisticated quotient of the fundamental group. We

discuss in some detail the particular case of a quotient arising from a geometric correspondence [BD18,

BD19a, BDM
+

19] using the geometric language of Edixhoven–Lido [EL19].

4.1. Quotients of the fundamental group. To motivate an interest in unipotent quotients of the algebraic

fundamental group for Diophantine applications, it is instructive to �rst recall the section conjecture of

Grothendieck [Gro97], which states that the map

ρ : X(Q) −→ H1
(
GQ, π

ét

1 (X, b)
)
,

x 7−→ [ πét

1 (X; b, x) ]

which attaches to every rational point the class of the Galois representation de�ned by the corresponding

path torsor of the algebraic fundamental group, should be an isomorphism. In other words, every torsor of

the fundamental group should necessarily arise from a rational point. This provides us with the tantalizing

possibility of studying the set of such torsors in lieu of the set X(Q). Unfortunately, the cohomology set

that classi�es these torsors does not seem to have much structure with which we can work.

On the other end of the spectrum, we already saw that the twists of the p-adic Tate module V of the

Jacobian J of X , which is essentially the abelianization of the fundamental group, are classi�ed by an

object which is very closely related to J , and which therefore has a tremendous amount of structure. That

said, this association only gives us enough information under the additional assumption that r < g.

In summary, we could roughly describe the situation by saying that the association

(19) ρ : X(Q) −→ H1
(
GQ, π

ét

1 (X, b)
)

in the section conjecture has a target with too little structure, whereas the association

(20) ρ : X(Q) −→ H1
f (GQ, V )

appearing in the method of Chabauty–Coleman has a target with too much structure. The latter statement

is meant in the sense that ρ factors through the Jacobian, and in situations where r ≥ g this kills some
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crucial non-abelian information needed to understand X(Q). In the method of Chabauty–Kim, we allay

the di�culties inherent to both settings by working with a suitable intermediate quotient, balancing the

availability of structure on the sets H1
against our ability to explicitly describe the target. We consider

quotients of the fundamental group that are unipotent.
11

The strategy for proving �niteness follows the same pattern as our discussion of the method of Lawrence–

Venkatesh. First, one attempts to gain su�cient control over the set of global representations involved, and

second, one studies the local representations via the analytic properties of an associated period map.

a. Global representations. A general theorem of Kim ([Kim05, Proposition 2] and [Kim09, p. 118])

states that if U is a unipotent quotient satisfying certain technical assumptions which we will not state

here, the set H1
f (GK ,U) carries the structure of an algebraic variety, dubbed Selmer variety, such that the

localization map

(21) H1
f (GQ,U) −→ H1

f (GQp
,U)

between the global and local Selmer varieties is algebraic. The algebraic nature of this map allows us to gain

control over the image of the global Selmer variety, typically by showing that the global Selmer variety is

of lower dimension than the local Selmer variety, so that the image cannot be Zariski dense.

b. The period map. As was the case in the method of Lawrence–Venkatesh, the control of global

representations can be turned into a proof of �niteness by controlling a p-adic period map. In the method

of Chabauty–Kim, this means concretely that one establishes that the association

(22) ρ : X(Qp) −→ H1
f (GQp

,U),

of the path torsor of U attached to a point, has an image which is Zariski dense. Typically, the quotient U

is of a “motivic” nature, in which case the association ρ in (22) has a de Rham realisation

(23) perp : X(Qp) −→ MFφ

which can be expressed as a linear combination of iterated Coleman integrals of di�erentials. A general

theorem of Kim [Kim09, Theorem 1] establishes the linear independence of such iterated integrals, which

often implies the Zariski density of the image of (22) by p-adic Hodge theory.

c. Finiteness. In conclusion, we are left with the following attractive strategy to study the set of rational

points X(Q): Suppose that we can construct a speci�c �nite-dimensional unipotent quotient U satisfying

the technical hypotheses required for the representability of the Selmer varieties, such that furthermore

(1) we can prove that dim H1
f (GQ,U) < dim H1

f (GQp
,U),

(2) the quotient is “motivic”, so that we have a p-adic period map

perp : X(Qp) −→ MFφ

which is a linear combination of iterated integrals of di�erentials on X , and

(3) we can �nd a computable condition on elements of the image of perp to come from a point inX(Q).

11
Strictly speaking, quotients of the Qp-unipotent étale fundamental group studied in Deligne [Del89].
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Once we manage to �nd a quotient U satisfying these conditions, we consider the diagram

(24)

X(Q) X(Qp)

H1
f (GQ,U) H1

f (GQp
,U) MFφ.

ρ ρ

D
cris

perp

The �rst two conditions on U are the active ingredients for deducing �niteness. The �rst condition is the

analogue of the condition “r < g” appearing in the method of Chabauty–Coleman, and allows us to control

the image of the global Selmer variety. When combined with a concrete understanding of the period map

perp provided by the second condition (for instance, enough to show Zariski-density of (22), see [Kim09,

Theorem 1]) the above commutative diagram implies that X(Qp) intersects the image of the global Selmer

variety in a �nite set of points. In particular, this shows that X(Q) is �nite.

Finding suitable quotients that satisfy the �rst two conditions is the subject of many works, and is typi-

cally done by considering quotients U arising from powers of the augmentation ideal, see for instance Kim

[Kim05, Kim09], Coates–Kim [CK10] and Ellenberg–Hast [EH17]. The third condition is relevant for the

explicit determination of X(Q) and will reappear later.

4.2. Geometric correspondences on X . We now discuss one instance where such a quotient can be

constructed, under the additional assumption that the Jacobian J of X has non-trivial Néron–Severi rank,

following [BD18, BDM
+

19]. To o�er a di�erent perspective on the constructions in loc. cit. we opt for

the more geometric reformulation of this theory following the beautiful work of Edixhoven–Lido [EL19].

It should be noted that in [EL19] this geometric viewpoint is retained to �nd a method for the e�ective

determination of X(Q), but in §5 we instead opt for the cohomological language of [BD18, BDM
+

19].

Recall that the Néron–Severi group of a smooth proper variety is the group of components of its Picard

scheme. In the situation at hand, we have chosen a base point b in X(Q), which gives us an associated

Abel–Jacobi map X −→ J . By functoriality, we obtain the following diagram:

(25)

Pic0(J)

Pic0(X)

Pic(J)

Pic(X)

NS(J)

Z

0

0.

1

1

The Néron–Severi group NS(J) is a �nitely generated group, of rank rkNS which is called the Néron–Severi
rank of J . Now suppose (see Remark 4.1) that we have a non-trivial class Z in NS(J) which maps to zero in

Z ' NS(X) in the above diagram. Then, by the identi�cation of Pic0(J) with Pic0(X) there is a unique lift

of Z to an element of Pic(J) which is trivial when restricted to X . In other words, Z uniquely determines

a (non-trivial) line bundle LZ on J which is trivial when restricted to X , and hence we obtain a lift of the

Abel–Jacobi map

(26)

X J .

LZ

This lifting of the Abel–Jacobi map, or equivalently this trivialization of the line bundle LZ restricted toX ,

is a priori uniquely determined up to multiplication by elements of Q×. As explained in Edixhoven–Lido

[EL19], one can determine it up to Z× = {±1}, and hence essentially uniquely, at the cost of taking a
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small
12

tensor power of LZ by spreading out the geometry over Z and working with the Néron model of

J . In conclusion, we obtain an essentially unique lift

(27) X −→ L ×Z := IsomJ(O,LZ).

The scheme L ×Z is a Gm-torsor
13

over the Jacobian J . We de�ne U to be the Qp-étale fundamental

group of L ×Z . This group is non-abelian, and may be understood geometrically as follows. One can show

(see for instance Bertrand–Edixhoven [BE19, § 4] for the arguments in the C-analytic setting) that there is

a co-�nal system of étale coverings

πn : (L ×Z )⊗n −→ L ×Z
obtained by composing the pullback of the map [n] on the Jacobian with the nth

power map on �bres. The

Galois group Un of this étale cover is a central extension

1 −→ µn −→ Un −→ J [n] −→ 0,

so that U is a Heisenberg group, and as a Galois representation it is an extension of V by Qp(1). Suppose

that x is a point in X(K) for K equal to Q or Qp. Then in analogy with (5) we obtain a torsor of U from

the inverse limit of the preimages of x under the maps πn, i.e.

(28) Qp⊗Zp

(
lim←−
n

π−1n (x)

)
, πn : (L ×Z )⊗n −→ L ×Z .

Such torsors are classi�ed by the cohomology group H1(GK ,U) and satisfy certain local conditions which

we will not make explicit here. In conclusion, we obtain an association ρ analogous to (4):

(29) ρ : X(K) −→ L ×Z (K) −→ H1
f (GK ,U).

Remark 4.1. Note that the above discussion hinges on the assumption that we can �nd a non-trivial class

Z in NS(J) which maps to zero in NS(X). Such a class always exists when rkNS > 1, which is true for

many examples of interest. Notably, this includes modular curves, which typically have a large supply of

such classes induced by Hecke correspondences. See Siksek [Sik17] for more details.

Remark 4.2. The work of Alexander Betts [Bet17] establishes a precise relationship between the association

of path torsors to points in L ×Z and the theory of p-adic heights. He proves that a certain quotient

L ×Z (Qp) −→ H1
f (GK ,U) −→ Qp

de�ned by purely Galois theoretic conditions coincides with the Néron log-metric on the pointed line bundle

(LZ , b), in the language of loc. cit. In section § 5, the theory of p-adic heights will play a central role.

4.3. Finiteness of X(Q). The quotient U attached to a Néron–Severi class Z as above has dimension

2g + 1 as a Qp-vector space. More precisely, as a Galois representation, it is an extension of the form

(30) 0 −→ Qp(1) −→ U −→ V −→ 0,

where Qp(1) is the one-dimensional representation given by the cyclotomic character. The simple nature of

this one-dimensional graded piece is responsible for the proof that the quotient U satis�es the �rst condition

on our wish list in §4.1. Indeed, this can be deduced from the statements

(31)

H1
f (GQ ,Qp(1)) = Z× ⊗̂Qp = 0,

H1
f (GQp

,Qp(1)) = Z×p ⊗̂Qp = Qp

12
It su�ces to take the least common multiple of the exponents of the Néron component groups at all primes of bad reduction.

13
Since the class of its line bundle in Pic(J) maps to a non-zero element of NS(J), this Gm-torsor is not a group.
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which result, via the simple argument in [BD18, Lemma 3.1], in the statements

(32)

dim H1
f (GQ ,U) ≤ r,

dim H1
f (GQp

,U) = g + 1.

The quotient U is also motivic in nature, as its geometric de�nition via the Gm-torsor L ×Z shows. In

particular, besides the Galois representation U, there is also a de Rham realisation UdR

, which is a quotient

of the de Rham fundamental group of X , see [Kim05, Kim09] for more precise de�nitions. The theorem of

Kim [Kim09, Theorem 1] discussed in §4.1 then implies that the image of X(Qp) under ρ is Zariski dense.

This allows us to deduce �niteness of X(Q) for certain curves X . Suppose that r = g, so that we are

just outside of the range where the method of Chabauty–Coleman applies, and assume furthermore that

the Néron–Severi rank rkNS of J is at least 2, so that there exists a quotient U as above. The diagram (25)

implies, via the two properties we just discussed, that the intersection of X(Qp) with the global Selmer

variety is �nite. Since this set contains X(Q), �niteness of the latter set follows.

In fact, one can re�ne the above discussion by constructing a quotient which is an extension of V by

the direct sum of characters Qp(1)⊕(rkNS−1)
, resulting via the same reasoning in the following �niteness

statement, which is a special case of Balakrishnan–Dogra [BD18, Lemma 3.2].

Theorem 4.3. Suppose that X is a smooth projective curve over Q. Then X(Q) is �nite whenever

(33) r < g + rkNS − 1.

Many other instances of �niteness are known to follow from the method of Chabauty–Kim, and in gen-

eral �niteness was proved by Kim [Kim09] under the assumption of the Bloch–Kato conjecture. We will

not discuss these results here, but rather turn to the question of how to explicitly determine the set X(Q).

5. The method of Chabauty–Kim: Effectivity

In this section, we discuss how to use the method of Chabauty–Kim to compute the rational points

on X in the simplest instance of Theorem 4.3: the case r = g and rkNS > 1. Whereas the method of

Chabauty–Coleman relies on detecting global points via linear relations in the image of perp, we will provide

a computable condition on �ltered φ-modules in the image of perp to come from a point inX(Q) via bilinear
relations, thereby addressing the third item in our wish list in §4.1.

5.1. Heights on Selmer varieties. Looking for bilinear relations, one is naturally led to p-adic heights.

Classically, these were de�ned as bilinear pairings on J(Q) but since it is crucial that the non-abelian

method of Chabauty–Kim factors through a non-abelian Selmer variety rather than the abelian variety J ,

we instead prefer to utilize a more general approach due to Nekovář [Nek93, §2]. Namely, he constructs a

continuous bilinear pairing

(34) h : H1
f (GQ, V )×H1

f (GQ, V
∗(1))−→Qp,

depending on some auxiliary choices, including the choice of a splitting of the Hodge �ltration

(35) s : VdR/Fil0 VdR−→VdR .

The global height h decomposes as a sum of local heights hv , where v runs through the �nite primes

of Q. Brie�y, the idea is to lift a pair in H1
f (GQ, V ) × H1

f (GQ, V
∗(1)) to a mixed extension of p-adic
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Galois representations with graded pieces Qp, V and Qp(1) and to de�ne hv on it. As explained in [BD18,

Section 5], we can construct such a representation from a torsor P ∈ H1
f (GQ,U), where U is attached to a

Néron–Severi class as in §4.2, by twisting a certain quotient of the universal enveloping algebra of the Qp-

unipotent étale fundamental group by P . There is an analogous local construction for P ∈ H1
f (GQv

,U).

We will assume throughout that r = g and that the p-adic closure of J(Q) has �nite index in J(Qp).
14

Then there are isomorphisms

H1
f (GQ, V )

resp−−−−→ H1
f (GQp

, V )
log−−−−→ H0(XQp

,Ω1)∨.

By Poincaré duality we obtain maps

π : H1
f (GK ,U)−→H0(XQp

,Ω1)∨ ⊗H0(XQp
,Ω1)∨

for K ∈ {Q,Qp}.

For ease of exposition, we shall assume for all v 6= p that hv = 0 for torsors coming from X(Qv). The

local height hp will be discussed in more detail below. The main point is that it factors through Dcris, so we

obtain the following re�nement of diagram (24):

(36)

X(Q)

H1
f (GQ,U)

X(Qp)

H1
f (GQp

,U)

H0(XQp
,Ω1)∨ ⊗H0(XQp

,Ω1)∨

MFφ

Qp ,

ρ

res

h

π
π

ρ

hp

D
cris

perp

where hp is now de�ned on the image of H1
f (GQp

,U).

If (ψi) is a basis of the dual space of H0(XQp
,Ω1)∨⊗H0(XQp

,Ω1)∨, then there are constants αi ∈ Qp

such that h =
∑
i αiψi. We deduce that the locally analytic function

(37) Q : X(Qp)−→Qp ; x 7→
∑
i

αiψi(π(ρ(x)))− hp(perp(x))

vanishes along X(Q); furthermore, one can show that it has only �nitely many zeroes (see [BD19a]). We

can use this function for the explicit computation of X(Q) if we have algorithms to

(i) compute the αi for a suitable explicitly computable basis ψi.

(ii) expand the function x 7→ hp(perp(x)) into convergent power series on residue disks.

We can easily solve (i) given x1, . . . , xm ∈ X(Q) such that

{π(ρ(xi))}i=1,...,m is a basis for H0(XQp
,Ω1)∨ ⊗H0(XQp

,Ω1)∨;

in this case we only need to compute hp(perp(xi)) and π(ρ(xi)). If we choose an End0(J)-equivariant

splitting in (35), then the global height is also End0(J)-equivariant, thus reducing the number of points

xi required. Nevertheless, there need not exist enough points xi, in which case we can solve (i) using

generators of J(Q)⊗Q and a construction of p-adic heights on J due to Coleman and Gross [CG89].

14
If the latter condition fails, we may apply classical Chabauty as in §1.3.
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Remark 5.1. It is possible to write down functions vanishing in X(Q) with �nitely many zeroes when

r < g+ rkNS− 1 using p-adic heights [BD18, Proposition 5.9]. More generally, one can extend Nekovář’s

construction to construct such functions when r < g2, conditional on the conjecture of Bloch–Kato,

see [BD19a, §4]. This has only been made explicit in the special case of the Kulesz–Matera–Schost family

of bielliptic genus 2 curves, see the (unconditional) Theorem 1.2 of [BD19a].

5.2. Local heights. In the remainder of this section we focus on (ii). We �rst discuss in more detail the local

height hp, following [Nek93, §4]. Let P ∈ H1
f (GQv

,U) and denote by MP the mixed extension of π(P )

mentioned above. Then hp(MP ) is constructed using Dcris(MP ), which is a mixed extension of �ltered

φ-modules with graded pieces Qp, VdR
:= H1

dR
(XQp

)∨ = Dcris(V ) and Qp(1).

For simplicity, we only describe hp on the image of X(Qp). The family (Dcris(Mρ(x)))x interpolates in

the following sense: There is a �ltered connectionAZ = AZ(b) with Frobenius structure such that we have

(38) Dcris(Mρ(x)) ' x∗AZ for all x ∈ X(Qp).

Suppose that we have isomorphisms

sφ(b, x) : Qp⊕VdR ⊕Qp(1)
∼−→ x∗AZ

sFil(b, x) : Qp⊕VdR ⊕Qp(1)
∼−→ x∗AZ

where sφ is Frobenius-equivariant, and sFil respects the �ltrations, and suppose we can write them as

(39) sφ(b, x) =

 1 0 0

αφ(b, x) 1 0

γφ(b, x) βᵀ
φ(b, x) 1

 sFil(b, x) =

 1 0 0

0 1 0

γFil(b, x) βᵀ
Fil(b) 1

 .

Note that we make a choice of basis di�erentials on the a�ne open Y (see § 5.3) so that sφ(b, x) and sFil(b, x)

are of this form. The splitting s in (35) induces idempotents

s1 : VdR −→ s(VdR/Fil0 VdR)

s2 : VdR −→ Fil0 VdR.

With respect to our choices, Nekovář’s local height at p is

(40) hp(perp(x)) = γφ(b, x)− γFil(b, x)− βᵀ
φ(b, x) · s1(αφ)(b, x)− βᵀ

Fil(b) · s2(αφ)(b, x).

So in order to solve (ii) we need to compute the entries of (39), which means computing the Hodge

�ltration and the Frobenius structure on AZ . For (i), we also need to explicitly compute the composition

π ◦ ρ. With respect to the dual basis of our chosen basis di�erentials on Y , the map π ◦ ρ is given by

π ◦ ρ : Y (Qp)→ H0(XQp
,Ω1)∨ ⊗H0(XQp

,Ω1)∨(41)

x 7→ αφ(b, x)ᵀ ·
(
Ig
0g

)
⊗ (βᵀ

φ(b, x)− βᵀ
Fil(b)) ·

(
0g
Ig

)
.

Note in particular that the �rst factor is the Abel-Jacobi map AJb(x), sending x to the functional ω 7→
∫ x
b
ω.

5.3. Computing the Hodge �ltration. We work in an a�ne open subset Y of X . Suppose that we have

#(X \ Y )(Q) = d and choose di�erentials ω0, . . . , ω2g+d−2 ∈ H0(YQ,Ω
1) on Y such that the following

conditions are satis�ed:
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(1) The di�erentials ω0, . . . ω2g−1 are of the second kind (residue zero) on X and form a symplectic

basis of H1
dR

(XQ) with respect to the cup product pairing. We let ω denote the column vector

(ω0, . . . ω2g−1)ᵀ.

(2) The di�erentials ω2g, . . . , ω2g+d−2 are of the third kind (all poles have order one) on X .

Universal properties give that the rank 2g + 2 vector bundle AZ has a connection, a Hodge �ltration,

and a Frobenius structure, as discussed in [BDM
+

19, §4,5]. Here, we give algorithms that describe these

objects.

Recall that we have a non-trivial class Z in NS(J) mapping to 0 in NS(X). This is equivalent to the

choice of an endomorphism of H1
dR

(X) satisfying several conditions (see [BDM
+

19, §4.4]), and we describe

a method to compute this in the case of modular curves in Section 6. We denote the matrix of the corre-

spondence Z on H1
dR

(X/Q) also by Z , where we act on column vectors.

Choose a trivialization

s0 : OY ⊗ (Qp⊕VdR ⊕Qp(1)) → AZ |Y
such that, with respect to this trivialization, the connection ∇ on AX is given by

∇ = d+ Λ,

where

Λ = −

 0 0 0

ω 0 0

η ωᵀZ 0

 ,

where η is a di�erential of the third kind onX that is uniquely determined by the following two properties:

(1) It is in the space spanned by ω2g, . . . , ω2g+d−2, and

(2) The connection∇ extends to a holomorphic connection on all of X .

The Hodge �ltration on AZ is determined completely from the Hodge �ltration on its graded pieces, via

universal properties. Here is an algorithm to compute the Hodge �ltration:

Algorithm 5.2 (Computing the Hodge �ltration on AZ ).

(1) Let L/Q denote a �nite extension over which all the points of X \ Y are de�ned. Compute local

coordinates at each x ∈ (X\Y )(L).

(2) For each x ∈ (X\Y )(L), compute power series for ωx, the expansion of the vector of di�erentials

ω at x to large enough precision, which means at least mod tdxx , where dx is the order of the largest

pole occurring.

(3) Compute the vector Ωx, de�ned by

dΩx = −ωx.

(4) Compute η as the unique linear combination of ω2g, . . . , ω2g+d−2 such that

dΩᵀ
xZΩx − η

has residue zero at all x ∈ (X\Y )(L). To do this, carry out the following:

(a) Using local coordinates at each x ∈ (X\Y )(L), rewrite ω2g, . . . , ω2g+d−2.

(b) Solve for η by comparing residues.

(5) Solve the system of equations for gx in L((tx))/L[[tx]] such that

dgx = Ωᵀ
xZdΩx − η.
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(6) Compute the vector of constants bFil = (bg, . . . , b2g−1) ∈ Qg
and the function γFil characterized

by γFil(b) = 0 and

gx + γFil − bᵀ
FilN

ᵀΩx −Ωᵀ
xZNN

ᵀΩx ∈ L[[tx]](42)

where N is the 2g × g matrix which has the zero matrix of dimension g and the identity matrix of

dimension g as blocks. Set βFil = βFil(b) = (0, . . . , 0, bg, . . . , b2g−1)ᵀ.

Remark 5.3. We note that [BD19a, Lemma 6.5] simpli�es some of the calculations in the case of a hyperel-

liptic curve X : in this case, we have that η = 0 and βFil = (0, . . . , 0)ᵀ.

5.4. Computing the Frobenius structure. The Frobenius structure on AZ can be determined explicitly

in terms of double Coleman integrals, as discussed in [BDM
+

19, §5]. Here is an algorithm to compute it:

Algorithm 5.4 (Computing the Frobenius structure on AZ ).

(1) Use Tuitman’s algorithm [Tui16, Tui17] to compute the matrix of Frobenius F and a vector f of

overconvergent functions such that

φ∗ω = df + Fω,

where φ is a certain lift of Frobenius.

(2) Let b0, x0 be Teichmüller representatives of b, x respectively. Compute the matrix

A = I(x, x0)+ · I(b0, b)−,

where we de�ne for any pair x1, x2 ∈ X(Qp) the parallel transport matrices

I±(x1, x2) =

 1 0 0∫ x2

x1
ω 1 0∫ x2

x1
η +

∫ x2

x1
ωᵀZω ±

∫ x2

x1
ωᵀZ 1

 ,

where η is as computed in Algorithm 5.2 (see also Remark 5.3).

(3) Explicitly solve the system
dgᵀ = dfᵀZF,

dh = ωᵀF ᵀZf + dfᵀZf − gᵀω + φ∗η − pη,
h(b) = 0.

Then compute the matrix

M(b0, x0) =

 1 0 0

(I − F )−1f 1 0
1

1−p
(
gᵀ(I − F )−1f + h

)
gᵀ(F − p)−1 1

 (x0).

(4) Finally, compute the matrix

s−10 (b, x) ◦ sφ(b, x) = A ·M(b0, x0) =

 1 0 0

αφ(b, x) 1 0

γφ(b, x) βᵀ
φ(b, x) 1

 .

Remark 5.5. IfX is a hyperelliptic curve, say the smooth projective model of the a�ne curve Y : y2 = f(x),

where f is monic and has no repeated roots, then we can use Kedlaya’s algorithm [Ked01] or Harrison’s

generalization [Har12] in Step (1) above. In fact, Tuitman’s approach generalizes the approach of Kedlaya

and Harrison. Note that the SageMath implementation of Kedlaya’s algorithm takes the convention that

Frobenius acts on columns, while the Magma implementation of Tuitman’s algorithm as used here takes

the convention that Frobenius acts on rows and thus di�ers by a transpose.
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Remark 5.6. Computing the action of Frobenius in Step (1) gives us a way to compute Coleman integrals:

in particular, if b0 = φ(b0) and x0 = φ(x0) are Teichmüller points, we compute the Coleman integral as∫ x0

b0

ω = (1− F )−1 (f(x0)− f(b0)) .

6. Examples

We illustrate the practicality of the method of Chabauty–Kim discussed in Section 5 by applying it to

three new examples of curves whose rational points were previously unknown. They are all curves of the

form

(43) X0(N)+ := X0(N)/wN

where N is prime and wN is the Atkin–Lehner involution, and therefore they have a unique rational cusp,

and their non-cuspidal rational points classify unordered pairs of elliptic curves that are related by an N -

isogeny. The (non-)existence of non-CM points is of great interest, as it was shown by Elkies [Elk04] that

every non-CM Q-curve is isogenous to one parametrised by a rational point on some X0(M)+.

We consider the cases N = 67, 73, and 103. For each value of N , the curve X0(N)+ is of genus 2 and

its Jacobian has real multiplication. Thus, the rank of the Néron–Severi group is equal to 2, and the method

outlined in Section 5 produces exactly one non-trivial locally analytic function on X0(N)+(Qp) vanishing

on the set of rational points X0(N)+(Q). Hence, unlike in the Chabauty–Coleman example at the end of

Section 1, we need in addition the Mordell–Weil sieve (see §6.7) to extract the set of rational points from

the larger quadratic Chabauty set.

We discuss the computation for N = 67 in some detail and brie�y summarize the cases N = 73 and

N = 103. These computations use the computer algebra system Magma [BCP97] and were started by

Best, Bianchi, and Trianta�llou at the workshop “Arithmetic Statistics and Diophantine Stability” at the

Fondation des Treilles in July 2018. More details can be found at https://ngtriant.github.io/
papers/BBBLMTV_Data.pdf

Remark 6.1. In [BGX19], the authors apply a combination of elliptic curve Chabauty with covering tech-

niques to determine the rational points on X0(N)+ for several composite squarefree values of N such

that X0(N)+ has genus 2. It would be interesting to determine the rational points on the 13 remaining

hyperelliptic curves X0(N)+ for squarefree N ; all of them have genus 2.

6.1. An explicit model for X0(67)+. As is explained in [Mur92, Gal96], an a�ne model for the genus

2 curve X0(67)+ can be found explicitly as follows. Let f be the unique, up to conjugation, newform of

level 67, weight 2, which is furthermore invariant under the Atkin–Lehner involution w67. The complex

vector space spanned by f and its Galois conjugate f c is isomorphic to the space of regular di�erentials on

X0(67)+, and we may choose a basis g1 and g2 for this space such that g1 = q+ · · · and g2 = q2+ · · · . Note

that f and f c can be computed up to arbitrary q-adic precision using Magma [BCP97]. Then x = g1
g2

and

y = q
g2
dx
dq are related by an equation of the form y2 = p(x), for some monic polynomial p(x) of degree 6

whose coe�cients can be determined from the q-expansions. Such an equation gives a model for X0(67)+;

while g2 is unique, a certain choice of g1 yields

Y : y2 = x6 + 2x5 + x4 − 2x3 + 2x2 − 4x+ 1 [ =: f67(x) ] .

https://ngtriant.github.io/papers/BBBLMTV_Data.pdf
https://ngtriant.github.io/papers/BBBLMTV_Data.pdf
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Figure 1. The reduction of X0(N)+ at N .

See [Mur92] for more details; for other examples of computations of models of higher genus modular curves,

see [Gal96]. The projective closure X adds two points at in�nity,∞+
and∞−, corresponding to (1 : 1 : 0)

and (1 : −1 : 0) respectively. By an explicit search, we quickly �nd several points in X(Q). Indeed,

(44) X(Q) ⊃ {∞+,∞−, (0,±1), (−1,±3), (1,±1), (−2,±7)} .

Leprevost [Lep99] also found these points and conjectured that we have equality in (44).

Our goal is to use the machinery set up in Section 5, combined with the Mordell–Weil sieve, to show that

X(Q) consists precisely of these 10 points.

Using the explicit model Y , several arithmetic properties of X0(67)+ can be deduced. For instance,

Magma’s implementation of 2-descent shows that the rank
15

of J0(67)+(Q) is exactly 2. Alternatively, one

can avoid the use of a model and draw the same conclusion from the Gross–Zagier–Kolyvagin–Logachev

theorem [GZ86, KL89], by computing that (provably [Ste00, Chapter 3]) L(f, 1) = 0 and (numerically

[Cre97, Dok04]) L′(f, 1) 6= 0.

6.2. The reduction of X0(N)+. Recall that the method outlined in Section 5 uses some global and local

p-adic heights in the sense of Nekovář. Although these depend on some auxiliary choices that we have not

made yet at this stage, we have already remarked that we can always ignore all the local heights at primes

v 6= p of potential good reduction. More generally, by work of Betts–Dogra [BD19b, Corollary 1.2.2], the

map X(Qv) → Qp induced by the local height at v 6= p takes at most as many values as the number of

irreducible components of a regular semi-stable model at v. Note that X0(N)+ has good reduction at all

primes away from N . Using an argument analogous to [BDM
+

19, Theorem 6.6], we can show that for all

primes N there is a regular semi-stable model X0(N)+ of X0(N)+ whose special �bre is isomorphic to a

projective line intersecting itself g times, where g is the genus of X0(N)+ (see Figure 1). The proof, which

will be contained in [BDM
+

20], constructs such a model starting from the semi-stable Deligne–Rapoport

model of X0(N), and showing that the quotient by the Atkin–Lehner involution remains semi-stable due

to a lemma of Raynaud. The self-intersections correspond to conjugate pairs of supersingular j-invariants

in FN2 \FN (see [DR73, V, §1] and [Ogg75, §3]). In particular, the special �bre of X0(N)+ consists of only

one component, so the work of Betts–Dogra implies that there are no non-trivial contributions at v 6= p.

6.3. Preliminary choices.

A prime p and a base point b. Since by §6.2 the curve X0(N)+ has good reduction at all primes away from

N , we could let our �xed p be any prime di�erent from N ; we pick p = 11. This choice may seem slightly

peculiar to the reader familiar with the classical Chabauty–Coleman method, where it is often advantageous

to choose the smallest possible prime of good reduction. The prime 11 has two main advantages for our

purposes. First, the polynomial f67 has no linear factors over Q11 and, as a result, the lift of Frobenius that

we use in §6.5 extends to all of X(Q11). While it is possible to deal with disks containing a point with

zero y-coordinate by working with a di�erent lift of Frobenius or by using the trick discussed in [BDM
+

19,

15
Since the newforms of weight 2, level 67, which are invariant under w67 form a single Galois orbit, the Mordell–Weil rank over

Q is necessarily a multiple of the genus, i.e. of 2.
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§5.5], our choice of p makes both the exposition and the computation signi�cantly shorter. The second

advantage of the prime 11 is somewhat post-hoc, coming from the �nal Mordell-Weil sieve step. Indeed,

it turns out that J0(N)+(Fq) has order divisible by 112 for several small primes q (including q = 31 and

q = 137), which makes the Mordell-Weil sieve particularly e�cient for proving that points of X(Q11) are

not in X(Q).

We choose b = (1, 1) for the base point. Note that b lies in both our a�ne patch and in the a�ne patch

at in�nity. One advantage of b over other possible base points is that b will be a Teichmüller point for a

convenient lift of Frobenius.

A basis for the de Rham cohomology of X0(67)+. It is well known that H0(YQ,Ω
1) has basis given by (the

classes of) the di�erentials

(45)

{
dx

y
,
x dx

y
,
x2 dx

y
,
x3 dx

y
,
x4 dx

y

}
and that, inside of H0(YQ,Ω

1), we can identify H1
dR

(X) with those di�erentials which have residue 0 at

both points of X rY = {∞+,∞−}. By working with the expansion of each di�erential in (45) in terms of

the uniformizer t∞± = x−1 at∞±, we construct a new basis ω0, . . . , ω4 satisfying the properties (1) and

(2) of §5.3. In particular, we may take

ω0 = − dx

y
, ω1 = (−1− x) · dx

y
, ω2 = (−2 + x− x3 − x4) · dx

y
,

ω3 =
1

2

(
1− x2 − x3

)
· dx
y
, ω4 = (−x− x2) · dx

y
.

From now on, ω will denote the column vector (ω0, . . . , ω3)ᵀ.

6.3.1. A Néron–Severi class. The choice of a Néron–Severi class Z as in Section 4 is equivalent to the choice

of an endomorphism of H1
dR

(X), satisfying a list of conditions (see [BDM
+

19, §4.4]). Let ` be a prime of

good reduction for X . In order to compute the action of the Hecke operator T` ∈ End(H1
dR

(X/Q`)) on

the whole of H1
dR

(X/Q`), rather than just on Fil0 H1
dR

(X/Q`), we use the Eichler–Shimura formula

T` = Frᵀ` +` · (Frᵀ` )−1 .

The matrix of Frobenius Fr` with respect to the basis ω may be computed using Tuitman’s algorithm (we

brie�y postpone a discussion of this to Step (1) of §6.5, since this matrix for ` = p, as well as one additional

output of Tuitman’s algorithm, are both needed at that step), and we identify the operator T` with its

matrix representation with respect to ω. Note that the Eichler–Shimura formula holds forX0(67) and thus

for X0(67)+, since the Atkin–Lehner involution commutes with T` at all ` 6= 67.

To obtain from T` an endomorphism corresponding to a class Z ∈ NS(J) which maps to zero in NS(X),

we �rst consider Tr(T`) · I4 − 4T`, which has trace zero, and then multiply on the right by the inverse of

the cup product matrix on ω. For example, choosing ` = 11, we obtain the non-trivial endomorphism with

matrix representation

Z =


0 −8 12 8

8 0 −8 −12

−12 8 0 0

−8 12 0 0

 .
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Since the Néron–Severi group has rank 2, choosing a di�erent Hecke operator would only change the

matrix Z by a multiplicative constant factor.

Remark 6.2. Using Tuitman’s algorithm, we can compute the entries of T` only up to some `-adic precision.

In our case, this would su�ce to carry out the steps of the quadratic Chabauty computation, since we have

chosen ` = p. It should however be possible to prove that Z is given exactly by the above matrix, and we

may assume that this is the case, as doing so does not a�ect the computation in any crucial way.

6.4. Hodge Filtration onAZ . We now compute the Hodge �ltration of the vector bundleAZ attached to

our choice of Néron–Severi class Z and base point b. Since the curve X is hyperelliptic, by Remark 5.3 we

only need to compute γFil, and we can do so using a simpli�ed version of Algorithm 5.2. In particular, for

each point at in�nity∞±, we can compute Ω∞± and g∞± by formal integration of Laurent series in the

uniformizer t∞± . Following the steps, we then �nd that γFil has a pole of exact order 1 at∞± with residue

−8. Since γFil must vanish at b, we conclude that

γFil = −8x+ 8.

6.5. Frobenius structure on AZ . We compute the Frobenius structure on AZ using Algorithm 5.4.

Step (1): We �rst �x a lift of Frobenius φ. We take φ(x) = xp, and extend to Q11[x] by linearity. Since

f67 has no zeros over F11, we extend this lift to a strict open neighborhood of the tube ]YFp
[16

by expanding

φ(y) =
√
φ(f67(x)) = yp ·

(
1 +

φ(f67(x))− f67(x)p

y2p

)1/2

.

as an overconvergent Laurent series in Qp[[x, y, y
−1]]. This lift naturally extends to one-forms.

Next, we compute p-adic approximations of F and f using Tuitman’s algorithm [Tui16, Tui17], a gener-

alization of Kedlaya’s algorithm which incorporates Lauder’s �bration method [Lau06]. Roughly speaking,

we �rst compute φ∗ωi. Then, we reduce pole orders by iteratively subtracting di�erentials of overcon-

vergent functions (constructed by solving linear systems) until φ∗ωi has been reduced to a cohomologous

linear combination of basis di�erentials

∑
j Fjiωj . The sum fi of the functions from each step satis�es

φ∗ωi =
∑
j

Fijωj + dfi .

Note that in our working example, this F is the matrix Fr` that was computed in §6.3.1 since ` was chosen

there to be p = 11 as well.

Step (2): Since b = (1, 1) is a Teichmüller point for φ, I(b0, b)
− = I(b, b)− is an identity matrix. To

compute the I(x, x0)+ on each residue disk, we expand the ωi in terms of a uniformizer near each Teich-

müller point x0 and integrate formally. To compute

∫ x
x0
ωᵀZω, we expand, formally integrate, multiply

terms, and formally integrate again, as in steps (3) and (5) of Algorithm 5.2.

Step (3): The matrices Z and F are constants, so gᵀ = fᵀZF . We approximate h by iteratively “reduc-

ing” a p-adic approximation (dh)∼ to dh = ωᵀF ᵀZf+dfZf−gᵀω+φ∗η−pη as in Tuitman’s algorithm

until we �nd aj ∈ Q11 and an overconvergent function h∼(x) so that

(dh)∼ =
∑
j

ajωj + d(h∼) .

16
the tube consists of all points reducing to YFp
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Disks x-coordinates of candidate points

](0,±1)[ 0

0 + 7 · 11 + 0 · 112 + 3 · 113 + 3 · 114 + · · ·
](1,±1)[ 1

1 + 6 · 11 + 6 · 112 + 8 · 113 + 7 · 114 + · · ·
](6,±5)[ 6 + 5 · 11 + 8 · 112 + 2 · 113 + 4 · 114 + · · ·

6 + 7 · 11 + 0 · 112 + 5 · 113 + 1 · 114 + · · ·
](−2,±7)[ −2

9 + 10 · 11 + 1 · 112 + 8 · 113 + 0 · 114 + · · ·
](−1,±3)[ −1

10 + 3 · 11 + 9 · 112 + 10 · 113 + 1 · 114 + · · ·
]∞±[ ∞

2 · 11−1 + 4 + 10 · 11 + 9 · 112 + 8 · 113 + 7 · 114 + · · ·
Table 1. A set of 24 points of X0(67)+(Q11) containing X0(67)+(Q).

Then h∼(x)−h∼(b) approximates h(x). The remainder of Steps (3) and (4) are straightforward. The terms

αφ(b, x),βφ(b, x), γφ(b, x) cannot be expressed compactly, so we omit them here.

6.6. The local p-adic height and a �nite set of p-adic points containing X(Q). We have now as-

sembled all ingredients to compute the quadratic Chabauty function from (37), whose �nite set of zeroes

contains X(Q). To �nd the constants ai in (37), we use the discussion at the end of §5.1.

Set K := Q(
√

5) = End0(J0(67)+) and Kp = K ⊗Q Qp. If we pick a K-equivariant splitting

s of the Hodge �ltration in formula (40), then the global height h factors through the tensor product

H0(XQp
,Ω1)∨⊗KpH

0(XQp
,Ω1)∨. We now choose auxiliary points x1 = (−2, 7), x2 = (−1, 3) ∈ X(Q).

Since AJb(x1) = [ω 7→
∫ x1

b
ω] is nonzero, AJb(x1) is a Kp-basis for H0(XQp

,Ω1)∨. Using (41), we com-

pute (π ◦ ρ)(xi) in this basis.

We compute h(π(ρ(xi))) = hp(perp(xi)) using (40), the results of §6.4, §6.5 and the splitting s associated

to the K-equivariant basis (ω0, ω1, ω2, ω3−ω1). Writing ψ1 for the projection onto the “rational part” and

ψ2 for the projection onto the “

√
5 part,” we �nd that the function sending x ∈ X(Qp) to

Q(x) := hp(perp(x))− (5 · 11 + 2 · 112 + 5 · 113 + 0 · 114 + · · · ) · ψ1(π(ρ(x)))

+ (4 · 11 + 0 · 112 + 4 · 113 + 0 · 114 + · · · ) · ψ2(π(ρ(x)))(46)

vanishes for all x ∈ X(Q).

We expand Q as a power series on each residue disk, �nd the roots, and repeat the computation on an

a�ne patch containing the points at in�nity to �nd a �nite subset of X(Q11) which contains X(Q). Using

a Newton polygon argument, we �nd that every root of Q is simple. In addition to the 10 known rational

points, we �nd 14 additional 11-adic zeros ofQ (listed in Table 1). To show that these points are not rational,

we turn to the Mordell-Weil sieve, described in the following subsection.

6.7. The Mordell–Weil sieve. We assume we are given a smooth projective curve X/Q, p a prime of

good reduction, a set Xknown ⊆ X(Q) and a set Xextra ⊆ X(Qp) known to some �nite p-adic precision,

distinct from any of the Xknown to that precision. The goal of the Mordell–Weil sieve, which we describe in
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this section, is to describe extra conditions that the points of X(Q) satisfy that the points in Xextra do not.

See also [Sik15, BS10, BBM17].

We will show that any rational point must be su�ciently close p-adically to an element ofXknown. To do

this, one proves that for each x ∈ X(Q), there is some y ∈ Xknown such that [x− y] ∈ J(Q) is p-adically

close to the identity in J(Q). We can get a handle on being p-adically close to 0 ∈ J(Q) using the p-adic

�ltration of J(Qp) by

Ji =
{
x ∈ J(Qp) : x ≡ 0 (mod pi)

}
.

The important property of this �ltration that we will make use of is that

J0/J1 ' J(Fp), Ji/Ji+1 ' Fdim J
p ,

so that p-adically close rational points must have di�erence in the Jacobian divisible by a large power of p.

Then for any D ∈ J(Q) we have #J(Fp) · pi ·D ∈ Ji+1.

The Mordell–Weil sieve locates small cosets within J(Q) (that is, cosets of large index), that contain

the image of X(Q) under the Abel-Jacobi map ib : X → J sending x to [x − b]. The sieve plays o� local

information at a �nite set of primes v against the global Mordell–Weil group structure to �nd restrictions

on ib(X(Q)). First we �x a prime v of good reduction and consider the following commutative diagram:

(47)

X(Q) J(Q)

X(Fv) J(Fv)

redX,v redJ,v

ib

ib,v

The commutativity of the diagram implies that the image of X(Q) along redJ,v ◦ib is contained in the

image of ib,v . The advantage of this observation is that the bottom row of the diagram deals with �nite

objects and information about these may be computed e�ectively. In particular we can �nd im ib,v given

equations for X . In our setting of a hyperelliptic curve, algorithms for this go back to [Can87], and in

general one can make use of work of Khuri-Makdisi [KM07]. Pulling the computed image im ib,v back to

J(Q) gives a union of cosets for the kernel of redJ,v that contains the image of X(Q). We will want to

pick v so that the kernel of this map provides non-trivial information about cosets of the target subgroup,

which means that the index of the kernel is divisible by p. The Mordell–Weil sieve diagram can be amended

by using several primes v of good reduction or working with residue classes of J(Q); it is also possible to

make use of primes of bad reduction and to go deeper into the �ltration (Ji)i.

For simplicity, we suppose that r = g and we �x a basis D1, . . . , Dg of J(Q)/J(Q)torsion. If x ∈ X(Qp)

were to be rational, and we expressed

ib(x) =

g∑
j=1

mjDj , mj ∈ Z ,

then we would have, via the linearity of the Coleman integral of regular 1-forms on the Jacobian,

(48)

∫ x

b

ωi =

g∑
j=1

mj

∫ Dj

0

ωi, for each i ∈ {1, . . . , g}
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where we identify ωi with the holomorphic di�erential it induces on J via ιb. This can be used to determine

the mj for given x ∈ X(Qp) modulo pn for any n. We are done if we can show for every x ∈ Xextra that

the resulting coset of J(Q)/pnJ(Q) does not meet the pullback of ib,v under redJ,v for some v.

6.7.1. X0(67)+. We now give some details of this computation for X0(67)+, using the model

y2 = x6 + 2x5 + x4 − 2x3 + 2x2 − 4x+ 1 ;

we have for Xknown the 10 points found in (44). The quadratic Chabauty computation described above also

results in a setXextra of 11-adic points of cardinality 14, known to �nite precision, whose elements are roots

of the function Q in (46), but which do not appear to be rational. See Table 1 for their x-coordinates.

As above, we take b = (1, 1); with this choiceD1 = ib(∞−) andD2 = ib(∞+) are generators for J(Q).

For x ∈ Xknown we can �nd exact coe�cients for ib(x) in terms of this basis. In particular, ib(Xknown) is

given by pairs

(m1,m2) ∈ {(1, 0), (0, 1), (−6, 4), (7,−3), (3,−1), (−2, 2), (1, 1), (0, 0), (8,−5), (−7, 6)} .

Since we are working with p = 11, we look for primes v such that ord11(#J(Fv)) is large.

We �nd that

J(F31) ' (Z /(3 · 11))2 and J(F137) ' Z /3⊕ Z /(3 · 112 · 19)

and the image of J(Q)/112J(Q) inside these groups surjects onto the 11-parts. We pull back the images

of ib,31 and ib,137 to cosets for J(Q)/112J(Q). Using (48) we compute ib(x) modulo 112 for all x ∈ Xextra,

assuming x is rational, and we �nd that this does not meet our cosets for 31 or 137.

6.7.2. Further examples. In the case ofN = 73 we run computations analogous to the ones described above,

using the prime p = 37 for the quadratic Chabauty procedure, and applying the Mordell–Weil sieve with

the prime 9511 to rule out the extra 37-adic points. Likewise for N = 103 we can perform quadratic

Chabauty at p = 3. This gives 6 “extra” 3-adic points, which can be shown to be non-rational by applying

the Mordell–Weil sieve using the prime 397.

6.7.3. Conclusion. In summary, we have shown:

Theorem 6.3. The number of rational points on the Atkin–Lehner quotient modular curves X0(N)+ for
N ∈ {67, 73, 103} are as follows:

#X0(67)+(Q) = 10 , #X0(73)+(Q) = 10 , #X0(103)+(Q) = 8 .

According to [Gal96], this shows thatX0(67)+(Q) contains no exceptional points and thatX0(73)+(Q)

andX0(103)+(Q) contain precisely one exceptional point each, up to the hyperelliptic involution. Here an

exceptional point is a rational point that is neither a cusp nor a CM point.

Furthermore, we may conclude that the table in [Box19, § 4.6] contains all quadratic points onX0(67) and

the table in [Box19, § 4.7] contains all quadratic points on X0(73), complementing [Box19, Theorem 1.1].

Finally, our theorem implies that the list of j-invariants of Q-curves attached to non-cuspidal rational

points on X0(N)+ given in [BGX19, §4.1] is complete for N ∈ {67, 73, 103}.
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