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Abstract. We extend the explicit quadratic Chabauty methods developed in previous work by the
first two authors to the case of non-hyperelliptic curves. This results in a method to compute a finite
set of p-adic points, containing the rational points, on a curve of genus g ≥ 2 over the rationals
whose Jacobian has Mordell-Weil rank g and Picard number greater than one, and which satisfies
some additional conditions. This is then applied to determine the rational points of the modular curve
Xs(13), completing the classification of non-CM elliptic curves over Q with split Cartan level structure
due to Bilu–Parent and Bilu–Parent–Rebolledo.
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1. Introduction

In this paper, we explicitly determine the rational points on Xs(13), a genus 3 modular curve defined
over Q with simple Jacobian having Mordell-Weil rank 3. This computation makes explicit various
aspects of Minhyong Kim’s nonabelian Chabauty programme and completes the “split Cartan” case of
Serre’s uniformity question on residual Galois representations of elliptic curves. Moreover, the broader
techniques are potentially of interest for determining rational points on other curves. The main technical
development is an algorithm for computing Frobenius structures on the unipotent isocrystals which arise
in the Chabauty–Kim method. We begin with an overview of Serre’s question, outline our strategy to
compute Xs(13)(Q) in the context of Kim’s nonabelian Chabauty, and end with some remarks on the
scope of the method in the toolbox for explicitly determining rational points on curves.

1.1. Modular curves associated to residual representations of elliptic curves. If E/Q is an
elliptic curve and ` is a prime number, then there is a natural residual Galois representation

ρE,` : Gal(Q̄/Q)→ Aut(E[`]) ' GL2(F`).

Serre [Ser72] showed that if E does not have complex multiplication (CM), then ρE,` is surjective for
all primes `� 0.

1



2 JENNIFER S. BALAKRISHNAN, NETAN DOGRA, J. STEFFEN MÜLLER, JAN TUITMAN, AND JAN VONK

Question (Serre). Is there a constant `0 such that ρE,` is surjective for all elliptic curves E/Q without
CM and all primes ` > `0?

It is known that if `0 exists, then it must be at least 37. To tackle this question, one may use
the fact that a maximal subgroup of GL2(F`) is either a Borel subgroup, normalizer of (split or non-
split) Cartan subgroup, or exceptional subgroup. The Borel and the exceptional cases were handled by
Mazur [Maz78] and Serre [Ser72], respectively, and the case of normalizers of split Cartan subgroups
(for ` > 13) follows from Bilu–Parent [BP11] and Bilu–Parent–Rebolledo [BPR13], which we now recall.

For a prime `, we write Xs(`) for the modular curve X(`)/Cs(`)
+, where Cs(`)

+ is the normalizer
of a split Cartan subgroup of GL2(F`). Since all such subgroups Cs(`)

+ are conjugate, Xs(`) is well-
defined up to Q-isomorphism. Bilu–Parent [BP11] proved the existence of a constant `s such that
Xs(`)(Q) only consists of cusps and CM points for all primes ` > `s. This was later improved by
Bilu–Parent–Rebolledo [BPR13] who showed that the statement holds for all ` > 7, ` 6= 13. This proves
that, for all primes ` > 7, ` 6= 13, there exists no elliptic curve E/Q without CM whose mod-` Galois
representation has image contained in the normalizer of a split Cartan subgroup of GL2(F`). However,
they were unable to prove this statement for ` = 13.

Bilu, Parent, and Rebolledo use a clever combination of several techniques for finding Xs(`)(Q),
but one of the crucial ingredients is Mazur’s method [Maz78] for showing an integrality result for
non-cuspidal rational points on Xs(`). This relies on the statement

Jac(Xs(`)) ∼ Jac(X+
0 (`2)) ∼ J0(`)× Jac(Xns(`))

proved by Chen [Che98], where Xns(`) is the modular curve associated to the normalizer of a non-split
Cartan subgroup of GL2(F`), similar to the split case. Mazur’s method applies whenever J0(`) 6= 0,
which is the case for ` = 11 and ` ≥ 17. But since J0(13) = 0, it follows that Jac(Xs(13)) ∼ Jac(Xns(13))
and Jac(Xs(13)) is absolutely simple, which is the underlying reason that their analysis does not succeed
in tackling that case; they call 13 the cursed level in [BPR13, Remark 5.11].

In fact, Baran [Bar14a, Bar14b] showed that more is true: There is a Q-isomorphism between
Jac(Xs(13)) and Jac(Xns(13)), and we further have

(1) Xns(13) 'Q Xs(13).

She derives (1) in two different ways: by computing explicit smooth plane quartic equations for both
curves and observing that they are isomorphic [Bar14a] on the one hand, and by invoking Torelli’s
theorem [Bar14b] and an isomorphism between the Jacobians on the other. There is no known modular
interpretation of the isomorphism (1). Since the problem of computing rational points on modular
curves associated to normalizers of non-split Cartan subgroups is believed to be hard in general, this
may give some indication why Xs(13) is more difficult to handle than Xs(`) for other ` ≥ 11.

Galbraith [Gal02] and Baran [Bar14a] computed all rational points up to a large height bound;
they found 6 CM points and one cusp. In addition to Mazur’s method, other standard approaches for
proving that this is the complete set of rational points do not seem to work for Xs(13). The method of
Chabauty and Coleman (see §1.3) fails as the rank of Jac(Xs(13)) is at least 3, and the genus of Xs(13)
is 3. The Mordell–Weil sieve cannot be applied on its own, as Xs(13)(Q) 6= ∅. Descent and elliptic
curve Chabauty also do not seem to work, as no suitable covers of Xs(13) are readily available.

In this paper we show, using quadratic Chabauty, that the only rational points on Xs(13) are indeed
the points found by Galbraith and Baran.

Theorem 1.1. The rational points on Xs(13) consist of six CM points and one cusp.

Together with the results of Bilu–Parent and Bilu–Parent–Rebolledo, this allows us to complete the
characterisation of all primes ` such that the mod ` Galois representation of a non-CM elliptic curve
over Q is contained in the normalizer of a split Cartan subgroup of GL2(F`).
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Theorem 1.2. The set of primes ` for which there exists an elliptic curve E/Q without CM such that
ρE,` is contained in the normaliser of a split Cartan subgroup is {2, 3, 5, 7}.

Via the isomorphism (1), we also find

Corollary 1.3. We have |Xns(13)(Q)| = 7, and all points are CM.

Remark 1.4. As was noted by Serre [Ser97] a complete determination of Xns(N)(Q) for some N leads
to a proof of the class number one problem. Corollary 1.3 therefore gives a new proof of this theorem.

1.2. Notation. Throughout this paper, X/Q denotes a smooth projective geometrically connected
curve of genus g ≥ 2 such that X(Q) 6= ∅, with Jacobian J; we write r := rk(J /Q) and ρ := rk(NS(J)).
Fix an algebraic closure Q of Q and write GQ := Gal(Q/Q) and X := X × Q. Fix a base point
b ∈ X(Q) and a prime p of good reduction for X. The field End(J)⊗Q is denoted by K and we set

(2) E := H0(XQp
,Ω1)∗ ⊗H0(XQp

,Ω1)∗.

Let T0 be the set of primes of bad reduction of X, and T = T0 ∪ {p}. We denote GT for the maximal
quotient of GQ unramified outside T , and Gv for the absolute Galois group of Qv for any prime v.

1.3. Chabauty–Coleman and Chabauty–Kim. Chabauty [Cha41] proved the Mordell conjecture
for curves X as above, satisfying an additional assumption on the rank of the Jacobian. More precisely,
Chabauty showed that the set X(Q) is finite if r < g. Following Coleman [Col85], one may explain
the proof as follows. The choice of base point b gives an inclusion of X into J, defined over Q. On
J(Qp) there is a linear integration pairing on the Jacobian defined by explicit power series integration
on individual residue polydisks, extended via the group law

J(Qp)×H0(JQp
,Ω1) −→ Qp : (D,ω) 7→

∫ D

0

ω,

inducing a homomorphism
log : J(Qp) −→ H0(JQp

,Ω1)∗.

Via the canonical identification of H0(JQp
,Ω1) with H0(XQp

,Ω1), this gives rise to the following com-
mutative diagram:

(3)

X(Q) X(Qp)

J(Q) J(Qp) H0(XQp
,Ω1)∗

log

AJb

where the Abel–Jacobi morphism AJb is defined to be the map sending a point x to the linear functional
ω 7→

∫ [x−b]
0

ω. Chabauty’s proof involves a combination of global “arithmetic” or “motivic” information
with local “analytic” information. The global arithmetic input is that, when r < g, the closure J(Q) of
J(Q) with respect to the p-adic topology is of codimension ≥ 1. Hence there is a non-zero ωJ which
vanishes on J(Q), so that X(Q) is annihilated by the function

(4) x 7−→ AJb(x)(ωJ).

The local analytic input is that, on each residue disk of X(Qp), AJb has Zariski dense image and is
given by convergent p-adic power series, so the function in (4) can have only finitely many zeroes on
each residue disk of X(Qp). The non-trivial steps in solving for the function in (4) are:

• Determine, on each residue disk, the power series AJb to sufficient p-adic accuracy.
• Evaluate AJb(Pi) on a basis {Pi} of J(Q)⊗Q.
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With the aim of removing the restrictive condition r < g, Kim [Kim05, Kim09] has initiated a
programme to generalise Chabauty’s approach. Very roughly, the Chabauty–Kim method produces
locally analytic functions X(Qp) → Qp which are higher analogues of the Coleman integrals AJb(ω),
and which (in favourable circumstances) satisfy algebraic identities on rational points, coming from
their interpretation in terms of étale fundamental groups. The fact that these locally analytic functions
have an étale topological interpretation rests on deep theorems in p-adic Hodge theory [Ols11]. The
analytic description of these functions implies such identities can only be satisfied at finitely many points,
producing finite subsets of X(Qp) containing X(Q). As in the method of Chabauty and Coleman, one
hopes to be able to translate Kim’s approach into a practical explicit method for computing (a finite
set of p-adic points containing) X(Q) in practice for a given curve X/Q having r ≥ g. In part due
to the technical nature of the objects involved, this is a rather delicate task. Kim’s results [Kim05] on
integral points on P1 \{0, 1,∞} have been made explicit by Dan-Cohen and Wewers [DCW15] and used
to develop an algorithm to solve the S-unit equation [DCW16, DC17] using iterated p-adic integrals.
The work [BDCKW] of the first author with Dan-Cohen, Kim and Wewers contains explicit results for
integral points on elliptic curves of ranks 0 and 1.

1.4. Quadratic Chabauty. One approach that has led to some explicit results involves p-adic heights.
We now formalize this approach in elementary terms. Suppose r = g, and the p-adic closure of J(Q)
has finite index in J(Qp). Then AJb induces an isomorphism J(Q) ⊗ Qp ' H0(XQp

,Ω1)∗, meaning
that we cannot detect global points among local points using linear relations in AJb. The idea of the
quadratic Chabauty method is to replace linear relations by bilinear relations. Suppose we can find a
function θ : X(Qp)→ Qp and a finite set Υ ⊂ Qp with the following properties:

(a) On each residue disk of X(Qp), the map

(AJb, θ) : X(Qp) −→ H0(XQp
,Ω1)∗ ×Qp

has Zariski dense image and is given by a convergent power series.
(b) There exist

• an endomorphism E of H0(XQp
,Ω1)∗, and a functional c ∈ H0(XQp

,Ω1)∗,
• a bilinear form B : H0(XQp

,Ω1)∗ ⊗H0(XQp
,Ω1)∗ → Qp,

such that, for all x ∈ X(Q),

(5) θ(x)−B(AJb(x), E(AJb(x)) + c) ∈ Υ.

This gives a finite set of p-adic points containing X(Q), since property (a) implies that only finitely
many p-adic points can satisfy equation (5), and property (b) implies all rational points satisfy it. As in
the Chabauty–Coleman method, finiteness is obtained by a combination of local analytic information
and global arithmetic information, corresponding to (a) and (b), respectively. We shall refer to (θ,Υ)
as a quadratic Chabauty pair. The objects E, c, and B will be referred to as its endomorphism, constant
and pairing, respectively.

The goal of the quadratic Chabauty method is to use a quadratic Chabauty pair (or several of them)
to determine X(Q). Let us clarify how the pair (θ,Υ) (as well as knowledge of the implicit E and c)1

gives a method for determining a finite set containing X(Q). For α ∈ Υ, define

X(Qp)α := {x ∈ X(Qp) : θ(x)−B(AJb(x), E(AJb(x)) + c) = α}.
By definition, X(Q) ⊂

∐
α∈ΥX(Qp)α, and we focus on the problem of describing X(Qp)α. The

following result gives an explicit equation for a finite subset of X(Qp) containing X(Qp)α. Suppose we
have P1, . . . , Pm ∈ X(Q) such that

AJb(Pi)⊗ (E(AJb(Pi)) + c)

1In practice, one calculates E and c, but B is something one has to solve for, in the same way that one solves for the
annihilating differential in the Chabauty–Coleman method.
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form a basis of E , where E is as in (2) (see the end of §1.7 for a discussion of this assumption), and
suppose that ψ1, . . . , ψm form a basis of E∗. Assume furthermore that we have Pi ∈ X(Qp)αi , where
αi ∈ Υ. For x ∈ X(Qp), define the matrix T (x) = T(θ,Υ)(x) by

(6) T (x) =


θ(x)− α Ψ1(x) . . . Ψm(x)
θ(P1)− α1 Ψ1(P1) . . . Ψm(P1)

...
...

. . .
...

θ(Pm)− αm Ψ1(Pm) . . . Ψm(Pm)

 ,

where Ψi(x) := ψi(AJb(x)⊗ (E(AJb(x)) + c)). Since B is a linear combination of the ψi, we get:

Lemma 1.5. If x ∈ X(Qp)α, then we have det(T (x)) = 0.

Remark 1.6. An important piece of input is a large supply of points {Pi}i=1,...,m in X(Q) – enough so
that the set {AJb(Pi)⊗ (E(AJb(Pi)) + c)}i=1,...,m forms a basis of E , and in particular m = g2, which,
together with the base point b, means we a priori require 1 + g2 points. This may be reduced to 1 + g,
using instead the notion of equivariant p-adic heights, which is used in the example of Xs(13) worked
out in §6, see the discussion in §1.7 and Remark 3.9. One could bypass this requirement completely by
replacing the input with a set of generators for a finite index subgroup of J(Q), see Remark 1.7.

1.5. Quadratic Chabauty pairs for rational points. The definition of quadratic Chabauty pairs
is inspired by an approach for computing integral points on rank 1 elliptic curves [BB15], and more
generally, on odd degree hyperelliptic curves [BBM16], which satisfy the assumptions of §1.4, as follows.

Let h : J(Q) → Qp be the p-adic height function in the sense of Coleman–Gross [CG89], then for
any rational point x ∈ X(Q) there is a decomposition

(7) h(x−∞) = hp(x) +
∑
v 6=p

hv(x)

of h(x − ∞) into a sum of local heights such that x 7→ hp(x) extends to a locally analytic function
θ : X(Qp) → Qp (in fact, a sum of double Coleman integrals), and for v 6= p the function x 7→ hv(x)
maps integral points in X(Q) into a finite subset of Qp, and this set is trivial if v is a prime of good
reduction. The set Υ of values of −

∑
v 6=p hv(x) for integral x ∈ X(Q) is therefore finite. As discussed

in §1.4, our assumptions imply that AJb defines an isomorphism

J(Q)⊗Qp ' H0(XQp
,Ω1)∗

so that the p-adic height can be viewed as a bilinear form B on H0(XQp
,Ω1)∗. One can explicitly

compute θ and Υ, determine B, and obtain the set of integral points, see [BBM17].
Following [BD16], we construct a quadratic Chabauty pair by associating to points of X a mixed ex-

tension of p-adic Galois representations, and then taking the p-adic height in the sense of Nekovář [Nek93].
This mixed extension depends on a choice of correspondence Z on X, which always exists when ρ > 1.
In the case of modular curves, such correspondences exist in abundance in the form of the Hecke cor-
respondences. For the illustrative case Xs(13) treated in §6, the correspondences we choose are of the
form Tq − Tr(Tq)I, where q is a prime. Via the Chabauty–Kim method, this yields a suitable GL-
representation AZ(b, x), constructed for every x ∈ X(L), where L = Q or Qv. In [BD16, Theorem 1.2],
the height of AZ(b, x) is shown to be equal to the height pairing between two divisors given explicitly
in terms of b, x, and Z. In this paper, we work directly with the representation AZ(b, x), without
determining the corresponding divisors. The advantage is that one does not need an explicit geometric
description of Z, only its cycle class.

We note that the language of p-adic heights due to Nekovář is more general than that of Coleman–
Gross [CG89] adopted in [BB15, BBM16], see Besser [Bes04]. We have opted for the former due to
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its flexibility and potential for generalisations. Henceforth, h denotes Nekovář’s p-adic height. Similar
to (7), there is a local decomposition

h(AZ(b, x)) = hp(AZ(b, x)) +
∑
v 6=p

hv(AZ(b, x)),

where x 7→ hp(AZ(b, x)) again extends to a locally analytic function θ : X(Qp) → Qp, and for v 6= p
the local heights hv(AZ(b, x)) take on a finite set of values Υ. By [BD16, §5], this gives a quadratic
Chabauty pair (θ,Υ) whose pairing is h and whose endomorphism is the one induced by Z.

Suppose that X satisfies r = g and ρ > 1, and that the p-adic closure of J(Q) has finite index in
J(Qp). Note that these conditions are satisfied for many modular curves for which Chabauty–Coleman
does not apply (see [Sik17]), including Xs(13). Suppose that we have enough rational points P1, . . . , Pm
to generate E as in §1.4. It follows from Lemma 1.5 that, if we can carry out the following steps
explicitly, we have an explicit method for computing a finite subset of X(Qp) containing X(Q):

(i) Determine the set of values that hv(AZ(b, x)) can take for x ∈ X(Qv) and v 6= p.
(ii) Expand the function x 7→ hp(AZ(b, x)) into a p-adic power series on every residue disk.
(iii) Evaluate h(AZ(b, Pi)) for i = 1, . . . ,m.

Note that in the context of Lemma 1.5, (i) is about the determination of Υ, whereas (ii) and (iii)
are about the determination of θ(x) and θ(Pi) − αi. The entries Ψj(x) and Ψj(Pi) of the matrix T
in (6) are of a more elementary nature, and consist essentially of the Abel–Jacobi map once we have
determined the endomorphism and constant of the quadratic Chabauty pair (θ,Υ), which is done in
Lemma 3.7. In this paper, we say nothing about problem (i) since Xs(13), our main object of interest,
has potentially good reduction everywhere, so that all local heights away from p are trivial. This also
reduces problem (iii) to problem (ii). Nevertheless, in the interest of future applications, we phrase
much of the setup in greater generality than needed for the application to Xs(13).

1.6. Explicit local p-adic heights at p. The main contribution of this paper is to give an explicit
algorithm for solving problem (ii). This is already done for hyperelliptic curves in [BD17], and we
follow the general strategy used there. As in [Kim09, Had11], we emphasize the central role played by
universal objects in neutral unipotent Tannakian categories. This approach allows us to make several
aspects of [BD16] and [BD17] explicit in a conceptual way.

The definition of Nekovář’s local height at p is in terms of p-adic Hodge theory. More precisely, let
M(x) denote the image of AZ(b, x) under Fontaine’s Dcris-functor. Then M(x) is a filtered φ-module,
and to find hp(AZ(b, x)) it suffices to explicitly describe its Hodge filtration and its Frobenius action. It
is shown in [BD17] thatM(x) can be described as the pullback along x of a certain universal connection
AZ , which also carries a Frobenius structure. Our task is to find a sufficiently explicit description of both
the Hodge filtration and the Frobenius structure on AZ . In [BD17], the Hodge filtration is computed
using a universal property proved by Hadian [Had11], and we follow a similar strategy here. The explicit
description of the Frobenius structure constitutes the key new result which makes our approach work.
In the hyperelliptic situation, one gets a description in terms of Coleman integrals, but this crucially
relies on the existence of the hyperelliptic involution [BD17, §6.6]. Here we characterise the Frobenius
structure using a universal property, based on work of Kim [Kim09].

1.7. Algorithmic remarks and applicability. We note that while many of the constructions in
this paper rely on deep results in p-adic Hodge theory, for a given curve, all of this can subsequently
be translated into rather concrete linear algebra data which can be computed explicitly. For instance,
instead of working with a correspondence Z explicitly, by the p-adic Lefschetz (1,1) theorem it is enough
to work with the induced Tate class in H1

dR(XQp
)⊗H1

dR(XQp
). In practice, we fix a basis of H1

dR(XQp
)

and encode our Tate classes as matrices with respect to this basis. Computing the structure of M(x) as
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a filtered φ-module boils down to computing two isomorphisms of 2g+ 2-dimensional Qp-vector spaces

Qp⊕H1
dR(XQp

)∗ ⊕Qp(1) 'M(x),

one of which respects the Hodge filtration, while the other one is Frobenius-equivariant. In practice, the
universal properties discussed above give rise to explicit p-adic differential equations, which we solve
using algorithms of the fourth author [Tui16, Tui17]. Our algorithms have been implemented in the
computer algebra system Magma [BCP97] and can be found at [BDM+].

The results of this paper remain useful in somewhat less restrictive situations than the one considered
above. For instance, as noted above, the condition that the curve has potentially good reduction
everywhere is only used to give a particularly simple solution to problem (i) (and (iii)). Also, [BD16,
§5.3] discusses an approach to computing a finite set containing X(Q) when r > g, but r + 1− ρ < g,
and is similar to the one used here. For this approach, one also needs to solve problem (ii), and our
algorithm for its solution applies without change.

Moreover, recall that we have made the assumption that we have enough rational points available to
span E as in §1.4. In practice, since ρ > 1, the algebra K := End(J)⊗Q will be strictly larger than Q
and, following [BD17], we can construct h so that it is K-equivariant. This means we can replace E by
H0(XQp

,Ω1)∗⊗K⊗Qp
H0(XQp

,Ω1)∗ in Lemma 1.5, which lowers the number of rational points required.
We use this for X = Xs(13), so that we only need 4 rational points. If we have an algorithm to compute
the p-adic height pairing between rational points on the Jacobian, and we have r independent rational
points on J, we would only need one rational point on X, to serve as our base point.

Remark 1.7. Finally, we note that if X(Q) fails to be large enough, it should still be possible to make
our methods work, if one can determine generators for a finite index subgroup of J(Q). Indeed, under
our running assumptions, we have an isomorphism

J(Q)⊗Qp ' H0(XQp
,Ω1)∗

which, given a basis for a finite index subgroup of J(Q), provides us with enough information to
determine the global p-adic height pairing, exactly as in Lemma 1.5. To carry this out in practice, one
would need an algorithm to compute the p-adic height of points in J(Q). For hyperelliptic curves, such
an algorithm was used in [BBM17]; an extension to general curves is work in progress.

1.8. Outline. In Section 2, we recall the salient points of Chabauty–Kim theory, and in Section 3, we
recall the definition of Nekovář’s p-adic height and how it can be used to construct quadratic Chabauty
pairs. Section 4 describes the computation of the Hodge filtration on a universal connection AZ , and
Section 5 describes the computation of its Frobenius structure. Both of these rely on universal properties
and can be used to determine the structure of AZ(b, x) as a filtered φ-module. All aspects of this theory
are then computed explicitly for X = Xs(13) in Section 6: We first show that the rank of J(Q) is
exactly 3 and that X has potentially good reduction. We then run our algorithm for the local 17-adic
height at p = 17 for two independent Tate classes coming from suitable correspondences, leading to
two quadratic Chabauty pairs. As a consequence, we prove Theorem 1.1. The appendix contains a
discussion of some concepts and results on unipotent neutral Tannakian categories used throughout the
paper.
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a CRM/ISM Postdoctoral Scholarship at McGill University.
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2. Chabauty–Kim and correspondences

In this section we briefly recall the main ideas in the non-abelian Chabauty method of Kim [Kim09].
We then recall some results from [BD16] which can be used to prove the finiteness of the set of rational
points under certain assumptions. We note that a crucial role is played by p-adic Hodge theory, a
feature shared with the interesting recent approach to proving finiteness (unconditionally) of Lawrence–
Venkatesh [LV18]. None of the results in this section are new.

In a letter to Faltings, Grothendieck proposed to study rational points on X through the geometric
étale fundamental group πét

1 (X, b) of X with base point b. More precisely, he conjectured that the map

X(Q) −→ H1
(
GQ, π

ét
1 (X, b)

)
,

given by associating to x ∈ X(Q) the étale path torsor πét
1 (X; b, x), should be an isomorphism. Unfor-

tunately, there seems to a lack of readily available extra structure on the target, which makes it difficult
to study directly. However, one can try instead to work with a suitable quotient of πét

1 (X, b), where
“suitable” depends on the properties of the curve in question. Most techniques for studying X(Q) can be
phrased in this language. Chabauty–Coleman, finite cover descent (see for instance [BS09]) and elliptic
curve Chabauty [FW99, Bru03] rely on abelian quotients, whereas Chabauty–Kim, discussed below,
uses unipotent quotients. Following [BD16] we will construct quadratic Chabauty pairs for a class of
curves including Xs(13) from the simplest non-abelian unipotent quotient when r = g and ρ > 1.

2.1. The Chabauty–Kim method. Let V := H1
ét(X,Qp)

∗, and VdR := H1
dR(XQp

)∗, viewed as a
filtered vector space with the dual filtration to the Hodge filtration, so that there is an isomorphism
VdR/Fil0 ' H0(XQp

,Ω1)∗. Bloch–Kato show there is an isomorphism H1
f (Gp, V ) ' VdR/Fil0, and it

follows from [BK90, 3.10.1] that there is a commutative diagram

(8)

X(Q) X(Qp)

J(Q) J(Qp) H0(XQp
,Ω1)∗

H1
f (GT , V ) H1

f (Gp, V ) VdR/Fil0

κ κp '

log

locp '

AJb

extending the Chabauty diagram (3). Here κ and κp map a point to its Kummer class, H1
f (Gp, V ) is the

subspace of H1(Gp, V ) consisting of crystalline torsors [BK90, (3.7.2)], and H1
f (GT , V ) = loc−1

p H1
f (Gp, V ).

The idea of the Chabauty–Kim method is essentially that, if we cut out the middle row of this diagram,
we obtain something amenable to generalisation. Namely, for each n we obtain:

(9)

X(Q) X(Qp)

Sel(Un) H1
f (Gp,U

ét
n ) UdR

n /Fil0.

jét
n jét

n,p

locn,p D

jdR
n

We now define the objects in this diagram precisely, following [Kim09]. Let Uét
n := Uét

n (b) denote the
maximal n-unipotent quotient of the Qp-étale fundamental group of X with base point b. This is a
finite-dimensional unipotent group over Qp with a continuous action of Gal(Q/Q), which contains the
maximal n-unipotent pro-p quotient of πét

1 (X, b) as a lattice. In this paper, we only need n = 1 or 2.
We have Uét

1 = V , and Uét
2 is a central extension

(10) 1−→Coker
(
Qp(1)

∪∗−→ ∧2V
)
−→U2−→V −→ 1.
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We obtain for any x ∈ X(Q) a path torsor Uét
n (b, x), see Appendix A. This gives rise to a map

j ét
n : X(Q) −→ H1(GT ,U

ét
n ), x 7→ Uét

n (b, x),

as well as local versions j ét
n,v for any finite place v. We obtain the commutative diagram

X(Q)
∏
v∈T X(Qv)

H1(GT ,U
ét
n )

∏
v∈T H1(Gv,U

ét
n ).

jét
n

∏
jét
n,v∏

locn,v

As discussed in Kim [Kim09, §2], it follows from [Ols11, Theorem 1.11] that j ét
n,p(X(Qp)) ⊂ H1

f (Gp,U
ét
n ).

It is shown in [Kim05] that H1(Gp,U
ét
n ) and H1(GT ,U

ét
n ) are represented by algebraic varieties over Qp.

By [Kim09, p. 119], H1
f (Gp,U

ét
n ) is represented by a subvariety of H1(Gp,U

ét
n ), and the analogous state-

ment holds for H1
f (GT ,U

ét
n ). Similar to classical Selmer groups, we add local conditions and define the

Selmer variety Sel(Un) to be the subvariety of H1
f (GT ,U

ét
n ) consisting of all classes

c ∈
⋂
v∈T0

loc−1
n,v(j

ét
n,v(X(Qv)))

whose projection to H1
f (GT , V ) lies in the image of J(Q) ⊗ Qp, see diagram (8) above. See [BD16,

Remark 2.3] for a discussion how our definition relates to other definitions of Selmer varieties (and
schemes) in the literature.

Remark 2.1. Since X = Xs(13) has potentially good reduction everywhere (see Corollary 6.7), the local
conditions at v 6= p are vacuous for this example, and the Selmer variety is simply H1

f (GT ,Un).

Finally, we define the objects on the right side of diagram (9). Let L be a field of characteristic zero.
Deligne [Del89, Section 10] constructs the de Rham fundamental group

πdR
1 (XL, b),

a pro-unipotent group over L, defined as the Tannakian fundamental group of the category CdR(XL) of
unipotent vector bundles with flat connection on X with respect to the fibre functor b∗. When there is
no risk of confusion, we drop the subscript L. Define UdR

n (b) to be the maximal n-unipotent quotient
of πdR

1 (X, b), along with path torsors UdR
n (b, x) for all x ∈ X(L). Most of the time, L will be a finite

extension of Qp. In this case, UdR
n (b, x) has the structure of a filtered φ-module. Kim shows [Kim09]

that the isomorphism classes of UdR
n -torsors in the category of filtered φ-modules are naturally classified

by the scheme UdR
n /Fil0. Hence, we get a tower of maps

jdR
n : X(Qp) −→ UdR

n /Fil0, x 7→ UdR
n (b, x).

Furthermore, the non-abelian comparison isomorphism [Ols11, Theorem 1.11] implies that there is a
canonical isomorphism Dcris(U

ét
n (b, x)) ' UdR

n (b, x) that makes the right triangle in (9) commute.
More generally, for any Galois stable quotient U of Uét

n , we have a diagram similar to (9) involving
UdR := Dcris(U), where Sel(U) and the corresponding maps j ét

U , j
dR
U and locU,p are defined in the same

way. We then have that X(Q) is contained in the subset

X(Qp)U := (j ét
U,p)

−1 (locU,p Sel(U)) ⊂ X(Qp).

When U = Un, we write X(Qp)n for this subset; its elements are called weakly global points. We have

X(Q) ⊂ . . . ⊂ X(Qp)n ⊂ X(Qp)n−1 ⊂ . . . ⊂ X(Qp)2 ⊂ X(Qp)1 ⊂ X(Qp).
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2.2. Diophantine finiteness. In [Kim09], Kim showed how the set-up of Chabauty’s theorem may
be generalised to diagram (9). The sets in the bottom row have the structure of Qp-points of algebraic
varieties, in such a way that the morphisms locn,p and D are morphisms of schemes (and D is an
isomorphism). The analogue of the analytic properties of AJb is the theorem that jdR

n has Zariski
dense image [Kim09, Theorem 1] and is given by a power series on each residue disk. The analogue of
Chabauty’s r < g condition is non-density of the localisation map locUn,p. As in the classical case, this
gives the following theorem.

Theorem 2.2 (Kim). Suppose locU,p is non-dominant. Then X(Qp)U is finite.

Kim [Kim09, §3] showed that non-density of locU,p (and hence finiteness of X(Qp)U) is implied by
various conjectures on the size of unramified Galois cohomology groups (for example by the Beilinson–
Bloch–Kato conjectures) but is hard to prove unconditionally. One instance where the relevant Galois
cohomology groups can be understood by Iwasawa theoretic methods is when the Jacobian of X has
CM. This was used by Coates and Kim [CK10] to prove eventual finiteness of weakly global points.
Recently, Ellenberg and Hast [EH17] prove, using similar techniques, that the class of curves admitting
an étale cover all of whose twists have eventually finite sets of weakly global points includes all solvable
Galois covers of P1. In this article the Galois cohomological input needed is of a much more elementary
nature. The following result was proved by Balakrishnan–Dogra [BD16, Lemma 3].

Theorem 2.3 (Balakrishnan–Dogra). Suppose

r < g + ρ− 1,

where r = rk J(Q) and ρ = ρ(JQ) = rk NS(JQ). Then X(Qp)2 is finite.

The idea of the proof of this lemma is as follows. As the map loc2,p is algebraic, it suffices by
Theorem 2.2 to construct a Galois-stable quotient U of U2 for which dim H1

f (GT ,U) < dim H1
f (Gp,U),

since X(Qp)2 ⊂ X(Qp)U. We can push out (10) to construct a quotient U of U2 which is an extension

1−→Qp(1)⊕(ρ−1)−→U−→V −→ 1.

Using the six-term exact sequence in nonabelian cohomology and some p-adic Hodge theory, one shows
dim H1

f (GT ,U) ≤ r, whereas dim H1
f (Gp,U) = g + ρ− 1.

2.3. Quotients of fundamental groups via correspondences. Theorem 2.3, as well as the results
of [CK10, EH17] where finiteness is proved unconditionally in certain cases, say nothing about how
to actually determine X(Qp)2 or X(Q) in practice. In [BD16, BD17], the two first-named authors
construct a suitable intermediate quotient U between U2 and V that is non-abelian, but small enough
to make explicit computations possible. Working with such quotients U, rather than directly with
U2, may be thought of as a non-abelian analogue of passing to a nice quotient of the Jacobian, as,
for instance, in the work of Mazur [Maz77] and Merel [Mer96]. Theorem 2.3 was deduced from the
finiteness of such a set X(Qp)U, and it is these sets which will be computed explicitly in what follows.

Denoting by τ the canonical involution (x1, x2) 7→ (x2, x1) on X ×X, we say that a correspondence
Z ∈ Pic(X ×X) is symmetric if there are Z1, Z2 ∈ Pic(X) such that

τ∗Z = Z + π∗1Z1 + π∗2Z2,

where π1, π2 are the canonical projections X ×X → X. We say that Z is a nice correspondence if Z
is nontrivial, symmetric, and ξZ has trace 0, where ξZ ∈ H1(X)⊗ H1(X)(1) ' End H1(X) is the cycle
class and H∗(X) is any Weil cohomology theory with coefficient field L of characteristic zero.

Lemma 2.4. Suppose that J is absolutely simple and let Z ∈ Pic(X×X) be a symmetric correspondence.
Then the class associated to Z lies in the subspace

2∧
H1(X)(1) ⊂ H1(X)⊗H1(X)(1).
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Moreover, Z is nice if and only if the image of this class in H2(X)(1) under the cup product is zero.

Proof. It follows from [BL04, Proposition 11.5.3], whose proof remains valid over any base field,
that a correspondence is symmetric if and only if its induced endomorphism of J is fixed by the
Rosati involution. By [Mum70, §IV.20] the subspace of End(J)⊗Q fixed by the Rosati involution is
isomorphic to NS(J)⊗Q, so we find that Z induces an element of NS(J). Hence the class associated
to Z lies in H2(J)(1) = ∧2 H1(X)(1).

The second statement is a consequence of the observation that the trace of ξZ as a linear operator
on H1(X) is equal to the composite of the cup product and the trace isomorphism

H1(X)⊗H1(X)(1)−→H2(X)(1) ' L. �

We now define quotients UZ of U2 attached to the choice of a nice correspondence Z on X. These
underlie the proof of Theorem 2.3, and play a crucial role in our determination of Xs(13)(Q). By
Lemma 2.4, if Z is a nice correspondence on X, we obtain a homomorphism

cZ : Qp(−1)−→Ker
(
∧2 H1

ét(XQ,Qp)
∪−→ H2(XQ,Qp)

)
,

and hence by (10), we may form the quotient UZ := U2 /Ker(c∗Z), which sits in an exact sequence

1→ Qp(1)→ UZ → V → 1.

Remark 2.5. In the computations of this paper, we never work with nice correspondences directly, but
rather with their images in H1

dR(X) ⊗ H1
dR(X)(1). In fact, we can carry out these computations for

quotients corresponding in the same way to more general Tate classes H1
dR(X) ⊗ H1

dR(X) which come
from a nice Z ∈ Pic(X × X) ⊗ Qp, for which we extend the notion of a nice correspondence in the
obvious way. For notational convenience, we denote a class obtained in this way by Z as well.

3. Height functions on the Selmer variety

In this section we recall Nekovář’s theory of p-adic height functions [Nek93] and summarise some
results of [BD16] relating p-adic heights to Selmer varieties and leading to a construction of quadratic
Chabauty pairs when r = g and ρ > 1.

3.1. Nekovář’s p-adic height functions. We start by recalling some definitions from the theory of
p-adic heights due to Nekovář [Nek93]. The necessary background from p-adic Hodge theory can be
found in [Nek93, Section 1].

For a wide class of p-adic Galois representations V , Nekovář [Nek93, Section 2] constructs a continuous
bilinear pairing

(11) h : H1
f (GT , V )×H1

f (GT , V
∗(1))−→Qp .

For this construction, Nekovář assumes that V satisfies the conditions given in [Nek93, §2.1.2]. This
global height pairing depends only on the choice of

• a continuous idèle class character χ : A×Q/Q×−→Qp,
• a splitting s : VdR/Fil0 VdR−→VdR of the Hodge filtration, where VdR = Dcris(V ).

Henceforth, we fix such choices once and for all. We will only consider V = H1
ét(XQ,Qp)

∗, and specialise
immediately to this case for simplicity, so that VdR = H1

dR(XQp
)∗. By [Nek93, §5.3], V satisfies the

conditions of [Nek93, §2.1.2].
The global p-adic height pairing h decomposes as the sum of local pairings hv, for every non-

archimedean place v of Q, as explained in [Nek93, Section 4]. As in the classical decomposition of
the height pairing, the local height functions do not define a bilinear pairing, but rather a bi-additive
function on a set of equivalence classes of mixed extensions, which we now explain. In the particular
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example of X = Xs(13), only the local height hp is of importance. Recall that T = T0 ∪ {p}, where T0

is the set of primes of bad reduction of X.

Definition 3.1. Let G be the Galois group GT or Gv, for v ∈ T . We define the categoryM(G; Qp, V,Qp(1))
of mixed extensions with graded pieces Qp, V, and Qp(1) as follows: The objects are triples (M,M•, ψ•) ,
where

• M is a Qp-representation of G,
• M• is a G-stable filtration M = M0 ⊃M1 ⊃M2 ⊃M3 = 0,
• ψ• are isomorphisms of G-representations

ψ0 : M0/M1
∼−→ Qp,

ψ1 : M1/M2
∼−→ V,

ψ2 : M2/M3
∼−→ Qp(1),

and the morphisms
(M,M•, ψ•) −→ (M ′,M ′•, ψ

′
•)

are morphisms M →M ′ of representations which respect the filtrations and commute with the isomor-
phisms ψi and ψ′i. Let M(G; Qp, V,Qp(1)) denote the set of isomorphism classes of objects.

When G = GT or Gp, we denote byMf(G; Qp, V,Qp(1)) the full subcategory ofM(G; Qp, V,Qp(1))
consisting of representations which are crystalline at p, and similarly define Mf(G; Qp, V,Qp(1)).

The set Mf(GT ; Qp, V,Qp(1)) is equipped with two natural surjective homomorphisms

π1 : Mf(GT ; Qp, V,Qp(1)) −→ H1
f (GT , V ) , M 7→ [M/M2],

π2 : Mf(GT ; Qp, V,Qp(1)) −→ Ext1
GT ,f(V,Qp(1)) , M 7→ [M1].

(and similarly for the groups Gv, for v ∈ T ). Throughout this paper, we implicitly identify H1
f (GT , V )

and H1
f (GT , V

∗(1)) with the groups Ext1
GT ,f(Qp, V ) and Ext1

GT ,f(V,Qp(1)) respectively, where the sub-
script f denotes those extensions which are crystalline at p. From Poincaré duality for étale cohomology
of curves [Mil80, §11], we get V ' V ∗(1), and hence we may view both π1(M) and π2(M) as elements
of H1

f (GT , V ). We say M is a mixed extension of π1(M) and π2(M).
Nekovář’s global height pairing (11) decomposes as a sum of local heights in the following sense.

There exist functions hp and hv for every finite place v 6= p:

hp : Mf(Gp; Qp, V,Qp(1)) −→ Qp

hv : M(Gv; Qp, V,Qp(1)) −→ Qp

such that h =
∑
v hv, where h is viewed by abuse of notation as the composite function

Mf(GT ; Qp, V,Qp(1))
(π1,π2)−−−−→ H1

f (GT , V )× Ext1
GT ,f(V,Qp(1))

h−→ Qp .

Note that (π1, π2) is surjective by [Nek93, §4.4]. Unlike the global height h, the local heights hv do not
factor through the map analogous to (π1, π2). We now define the functions hv for v 6= p and v = p, and
refer to Nekovář [Nek93, Section 4] for more details.

3.2. The local height away from p. We recall the definition of the local height away from p,
see [Nek93, §4.6]. By Tate duality, for any continuous p-adic representation W of Gv we have an
exact sequence

0−→H1
f (Gv,W )−→H1(Gv,W )−→H1

f (Gv,W
∗(1))∗−→ 0

see for instance Fontaine–Perrin-Riou [FPR94, §3.3.9]. We have

H1
f (Gv,W ) 'W Iv/(Fr−1)W Iv ,
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so if H0(Gv,W ) = H0(Gv,W
∗(1))∗ = 0 then H1(Gv,W ) = 0. By the weight-monodromy conjecture for

curves [Gro72, Exposé IX, Theorem 4.3(b) and Corollary 4.4], we have H0(Gv, V ) = 0, and by Poincaré
duality, it follows that also H0(Gv, V

∗(1))∗ = 0. We conclude that H1(Gv, V ) = 0.
The vanishing of H1(Gv, V ) implies that a mixed extension M in Mf(Gv; Qp, V,Qp(1)) splits as

M ' V ⊕ N , where N is an extension of Qp by Qp(1). We obtain a class [N ] ∈ H1(Gv,Qp(1)). Via
Kummer theory [Nek93, §1.12] the local component χv : Q×v −→Qp gives a map

χv : H1(Gv,Qp(1)) ' Q×v ⊗̂Qp−→Qp,

where the second map is induced by the valuation Q×v −→Z. The local height at v is now defined as

hv(M) := χv([N ]).

When M is unramified at v, the local height automatically vanishes. More generally, we have:

Lemma 3.2. Let v 6= p, and let M ∈ M(Gv; Qp, V,Qp(1)) be a mixed extension. Assume that M is
potentially unramified, then hv(M) = 0.

Proof. Suppose that Kv/Qv is a finite Galois extension such that the action of GKv
on M is

unramified. The inflation-restriction sequence attached to this subgroup gives an exact sequence

0−→H1(A,Qp(1)GKv )−→H1(Gv,Qp(1))
res−→ H1(GKv

,Qp(1)),

where A = Gv/GKv is a finite group. Write M ' V ⊕ N , where N is an extension of Qp by
Qp(1). Then by assumption, we have that the class of N in H1(GKv

,Qp(1)) is trivial. On the
other hand, the restriction map res is injective, since Qp(1)GKv = 0. This shows that the class of
N in H1(Gv,Qp(1)) is trivial, and in particular that hv(M) = 0. �

3.3. The local height at v = p. Given a mixed extension Mét ∈ Mf(Gp; Qp, V,Qp(1)), the definition
of its local height at p is in terms of MdR := Dcris(Mét), see [Nek93, §4.7]. The module MdR inherits a
structure of mixed extension similar to that of Mét, which we formalise in Definition 3.4.

Definition 3.3. A filtered φ-module is a finite-dimensional Qp-vector space W equipped with an ex-
haustive and separated decreasing filtration Fili and an automorphism φ = φW .

Really, we are only interested in admissible filtered φ-modules, but since we will only consider iterated
extensions of filtered φ-modules which are admissible, and any extension of two admissible filtered φ-
modules is admissible, we will ignore this distinction.

For any filtered φ-module W for which Wφ=1 = 0, we have (see [Nek93, §3.1]) an isomorphism

(12) Ext1
Fil,φ(Qp,W ) 'W/Fil0 .

Explicitly, the map from the Ext-group to W/Fil0 is defined as follows. Given an extension

0−→W −→E−→Qp−→ 0,

one chooses a splitting sφ : Qp → E which is φ-equivariant, and a splitting sFil which respects the
filtration. Their difference gives an element of W . Since Wφ=1 = 0, the splitting sφ is unique, whereas
sFil is only determined up to an element of Fil0W . Hence the element sφ − sFil ∈ W mod Fil0 is
independent of choices. We leave the construction of the inverse map to the reader.

Definition 3.4. Let V be as above, and let VdR = Dcris(V ). Define MFil,φ(Qp, V,Qp(1)) to be the
category of mixed extensions of filtered φ-modules, whose objects are tuples (M,M•, ψ•) where

• M is a filtered φ-module,
• M• is a filtration by sub-filtered φ-modules M = M0 ⊃M1 ⊃M2 ⊃M3 = 0,
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• ψ• are isomorphisms of filtered φ-modules
ψ0 : M0/M1

∼−→ Qp

ψ1 : M1/M2
∼−→ VdR

ψ2 : M2/M3
∼−→ Qp(1)

and whose morphisms are morphisms of filtered φ-modules which in addition respect the filtrations M•
and commute with the isomorphisms ψi and ψ′i. Let MFil,φ(Qp, V,Qp(1)) denote the set of isomorphism
classes of objects.

Remark 3.5. As a consequence of our definitions, the only jumps in FiliM are at i = 0 and −1, since
we have assumed that V = H1

ét(XQ,Qp)
∗ for X as above. In other words, M has “Hodge weights 0 and

−1”. In Nekovář’s theory, more general weights can arise.

The structure of a mixed extension of filtered φ-modules on MdR = Dcris(Mét) naturally allows us
to define extensions E1(M) and E2(M) by

(13) E1(M) := MdR/Qp(1), E2(M) := Ker(MdR → Qp),

compare with the definition of π1 and π2 above. For simplicity we will sometimes write these as E1 and
E2. We have a short exact sequence

(14) 0−→Qp(1)−→E2/Fil0−→VdR/Fil0−→ 0.

The image of the extension class [M ] ∈ H1
f (Gp, E2) ' E2/Fil0 in the group VdR/Fil0 ' H1

f (Gp, VdR) is
exactly the extension class [E1]. We define δ to be the composite map

δ : VdR/Fil0
s−→ VdR−→E2−→E2/Fil0,

where s is the splitting of the Hodge filtration we chose at the beginning of the subsection, the homo-
morphism VdR → E2 is the unique Frobenius-equivariant splitting of

0−→Qp(1)−→E2−→VdR−→ 0,

and the last map is just the canonical surjection. By construction, [M ] and δ([E1]) have the same
image in VdR/Fil0, hence via the exact sequence (14) their difference defines an element of Qp(1). The
filtered φ-module Qp(1) is isomorphic to H1

f (Gp,Qp(1)) via (12), so we may think of [M ] − δ([E1]) as
an element of H1

f (Gp,Qp(1)). The local component χp : Q×p −→Qp gives rise to a map

χp : H1
f (Gp,Qp(1)) ' Z×p ⊗̂Qp−→Qp

where the isomorphism follows from Kummer theory. This allows us to define

(15) hp(M) := χp ([M ]− δ([E1])) .

For the practical determination of rational points, it will be necessary to make this more explicit.
To do so, it is convenient to introduce some notation for filtered φ-modules M in MFil,φ(Qp, V,Qp(1)).
The splitting s of Fil0 VdR defines idempotents s1, s2 : VdR−→VdR projecting onto the s(VdR/Fil0)-
and Fil0-components, respectively. Suppose we are given a vector space splitting

s0 : Qp⊕VdR ⊕Qp(1)
∼−→M.

The split mixed extension Qp⊕VdR ⊕Qp(1) has the structure of a filtered φ-module as a direct sum.
Choose two further splittings

sφ : Qp⊕VdR ⊕Qp(1)
∼−→ M

sFil : Qp⊕VdR ⊕Qp(1)
∼−→ M
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where sφ is Frobenius equivariant, and sFil respects the filtrations. Note that the choice of sφ is unique,
whereas the choice of sFil is not. Suppose we have chosen bases for Qp, VdR, and Qp(1) such that with
respect to these bases, we have

(16) s−1
0 ◦ sφ =

 1 0 0
αφ 1 0
γφ βᵀ

φ 1

 s−1
0 ◦ sFil =

 1 0 0
0 1 0
γFil βᵀ

Fil 1

 .

Then, Nekovář’s local height at p defined by (15) translates in our notation to the simple expression

(17) hp(M) = χp

(
γφ − γFil − βᵀ

φ · s1(αφ)− βᵀ
Fil · s2(αφ)

)
.

3.4. Twisting and p-adic heights. We now use Nekovář’s theory of p-adic heights to construct a
quadratic Chabauty pair (θ,Υ). See [BD16, Section 5] for more details on the twisting construction.

Let Zp[[π
ét,p
1 (X, b)]] := lim←−Zp[π

ét
1 (X, b)]/N where the limit is over all finite quotients of p-power order.

Let I denote the augmentation ideal of Qp⊗Zp Zp[[π
ét,p
1 (X, b)]]. Define the nilpotent algebra

Aét
n (b) := Qp⊗Zp

Zp[[π
ét,p
1 (X, b)]]/In+1.

Then the limit of the An is isomorphic to the pro-universal enveloping algebra of the Qp-unipotent étale
fundamental group of X at b (see [CK10]). There is an isomorphism

I2/I3 ' Coker
(
Qp(1)

∪∗−→ V ⊗2
)
.

Fix a nice correspondence Z ∈ Pic(X×X) (or, more generally, in Pic(X×X)⊗Qp, see Remark 2.5),
and let UZ denote the corresponding quotient of Uét

2 as defined in §2.3. We define the mixed extension
AZ(b) to be the pushout of Aét

2 (b) by

cl∗Z : Coker
(
Qp(1)

∪∗−→ V ⊗2
)
−→ Qp(1),

see also [BD16, §5]. Then AZ(b) defines an element inMf(GT ; Qp, V,Qp(1)), with respect to the I-adic
filtration. The mixed extension AZ(b) is naturally equipped with a faithful Galois-equivariant action of
UZ which acts unipotently with respect to the filtration.

We use the twisting construction (see [Ser02, §5.3]) to define AZ(b, x). Consider the maps

τ : H1
f (GT ,UZ) −→ Mf(GT ; Qp, V,Qp(1)), P 7−→ P ×UZ

AZ(b),

τp : H1
f (Gp,UZ) −→ Mf(Gp; Qp, V,Qp(1)), P 7−→ P ×UZ

AZ(b).

As explained in [BD16, §5.1], the map τ is injective. When x ∈ X(Q) and P = πét
1 (X; b, x), we denote

AZ(b, x) := τ([P ]) = P ×UZ
AZ(b).

If x ∈ X(Qp) we likewise define AZ(b, x) := τp([P ]) to be the mixed extension of Gp-modules obtained
by twisting AZ(b). Similarly, we define A1(b, x) and IAZ(b, x) by twisting Aét

1 (b) and IAZ(b).
We can now define (θ,Υ). Composing the twisting map with the unipotent Kummer map, we define

(18) θ : X(Qp) −→ Qp ; x 7−→ hp (AZ(b, x)) .

Then, using the local heights hv, for v ∈ T0, we define the set

(19) Υ :=

{∑
v∈T0

hv(AZ(b, xv)) : (xv) ∈
∏
v∈T0

X(Qv)

}
⊂ Qp .

It follows from Kim–Tamagawa [KT08, Corollary 0.2] that Υ is finite:

Theorem 3.6 (Kim–Tamagawa). If v 6= p, then j ét
2,v : X(Qv)−→H1(Gv,U2) has finite image.
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We now prove that (θ,Υ) is a quadratic Chabauty pair, under the assumptions of §1.4.

Lemma 3.7. Let X be as in §1.4. Then (θ,Υ) is a quadratic Chabauty pair. The endomorphism E is
that induced by Z, the constant c is [IAZ(b)], and the bilinear pairing B is the global height h.

Proof. By assumption, we have r = g and H1
f (GT , V ) ' H1

f (Gp, V ) ' H0(XQp
,Ω1)∗, so we can

indeed view the global height h as a bilinear pairing

h : H0(XQp
,Ω1)∗ ×H0(XQp

,Ω1)∗−→Qp .

We now check the conditions for a quadratic Chabauty pair. By [BD17, Lemma 10], the map

(π∗, hp ◦ τp) : H1
f (Gp,UZ) −→ H1

f (Gp, V )×Qp

is an isomorphism of schemes. Recall that j ét
UZ ,p

has Zariski dense image, so that the function

(AJb, θ) = (π∗, hp ◦ τp) ◦ j ét
UZ ,p,

which is defined by convergent power series on residue disks, also has Zariski dense image. As
explained in [BD16, §5.2], we have for each x ∈ X(Q) that

(π1, π2)(AZ(b, x)) = (AJb(x), E(AJb(x)) + c),

where E is the endomorphism induced by Z, and c = [IAZ(b)]. It follows from the decomposition
h =

∑
v hv that when B = h and x ∈ X(Q), we have

θ(x)−B(AJb(x), E(AJb(x)) + c) ∈ Υ. �

By Lemma 3.2, the local heights away from p are all trivial if X has potentially good reduction
everywhere, so that Υ = {0}. This is the case for X = Xs(13). We obtain:

Corollary 3.8. If X has potential good reduction everywhere and satisfies the assumptions of §1.4, then
(θ, {0}) is a quadratic Chabauty pair, where θ = hp(AZ(b, .)). The endomorphism E is that induced by
Z, the constant c is [IAZ(b)], and the bilinear pairing B is the global height h.

Remark 3.9. We say the splitting s of the Hodge filtration is K-equivariant if it commutes with the
action of K = End(J)⊗Q. If s is a K-equivariant splitting, then by [BD17, §4.1] the associated height
pairing on any two extensions E1, E2 is K-equivariant, in the sense that for all α ∈ K we have

h(αE1, E2) = h(E1, αE2).

This decreases the number of rational points required to determine X(Q) using quadratic Chabauty.

Remark 3.10. The character χ describes how to combine the various local classes in H1(Gv,Qp(1)).
However, for a curve with potentially good reduction everywhere, the local heights away from p are
trivial by Lemma 3.2, so the role of χ is reduced to providing an isomorphism of Qp-vector spaces

DdR(Qp(1)) ' H1
f (Gp,Qp(1)) ' Qp .

Remark 3.11. The extension class [IAZ(b)] is the p-adic realisation of the Chow-Heegner point associated
to the Néron-Severi class Z (see e.g. [DRS12, Theorem 1]). As explained in Remark 5.6, the methods
of this paper give an alternative approach to [DDLR15] for computing Chow–Heegner points, see (47).

Remark 3.12. A priori, since the p-adic height depends on a choice of splitting of the Hodge filtration and
a choice of idèle class character, the quadratic Chabauty pair defined above has a similar dependence.
As explained in [BD17] (remark below Lemma 3.11), if s1 and s2 are two different splittings with
associated p-adic heights hp,1 and hp,2, then hp,1 − hp,2 will be bilinear, i.e. will factor through

Ext1
Fil,φ(Qp, VdR)⊗ Ext1

Fil,φ(VdR,Qp(1)).

This means that, although θ(x) and B(AJb(x), E(AJb(x)) + c) depend on the splitting, the quantity

(20) θ(x)−B(AJb(x), E(AJb(x)) + c)
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is independent of it. The dependence of (20) on the choice of idèle class character is linear, and hence
the zero set is independent of choices, since H1(GQ,T ,Qp) is one-dimensional.

4. Explicit computation of the p-adic height I: Hodge filtration

To complete the recipe for finding explicit finite sets containing X(Q), it remains to choose a nice
class Z ∈ Pic(X ×X)⊗Qp, and write the resulting locally analytic function

θ : X(Qp) −→ Qp ; x 7−→ hp (AZ(b, x))

as a power series on every residue disk of X(Qp). By equation (17), all that is needed is a sufficiently
explicit description of the filtered φ-module Dcris(AZ(b, x)). We compute the filtration and Frobenius
separately, as pull-backs of certain universal objects AdR

Z and Arig
Z respectively. The filtration of AdR

Z

is made explicit in this section, following the strategy of [BD17, §6], and the Frobenius structure is
determined in §5. The bundle AdR

Z has “Hodge weights 0 and −1” in the sense that the only non-trivial
jumps in its filtration are at Fil0AdR

Z and Fil−1AdR
Z , which we describe explicitly below.

Remark 4.1. We note that unlike the Frobenius structure, the Hodge filtration has global meaning.
In this section, we introduce all necessary objects over Q, even though for the application to rational
points, this is not strictly necessary, and it would suffice to work over Qp.

4.1. Notation. Henceforth, X is a smooth projective curve of genus g > 1 over Q, and Y ⊂ X is an
affine open subset defined over Q. Let b be a rational point of Y which is integral at p. Suppose

#(X\Y )(Q) = d,

and let L/Q be a finite extension over which all the points of D = X\Y are defined. Choose a set
ω0, . . . , ω2g+d−2 ∈ H0(YQ,Ω

1) of differentials on Y , satisfying the following properties:

• The differentials ω0, . . . , ω2g−1 are of the second kind on X, and form a symplectic basis of
H1

dR(X/Q), i.e. the cup product is the standard symplectic form with respect to this basis.
• The differentials ω2g, . . . , ω2g+d−2 are of the third kind on X, i.e. a differential all of whose

poles have order one.

We set VdR(Y ) := H1
dR(Y/Q)∗, and let T0, . . . , T2g+d−2 be the dual basis.

4.2. The universal filtered connection AdR
n . Let CdR(X) be the category of unipotent vector bun-

dles with connection on X. Our base point b ∈ X(Q) makes CdR(X) into a unipotent Tannakian
category, whose fundamental group we denote by πdR

1 (X, b). Using the notation from the appendix, we
define

AdR
n (b) = An(CdR(X, b∗)),

with associated path torsors AdR
n (b, x). Let AdR

n (b), or simply AdR
n , be the universal n-unipotent object,

associated to the πdR
1 (X, b)-representation AdR

n (b) via the Tannaka equivalence, see § A.1.2. This vector
bundle carries a Hodge filtration, with the property that the Qp-vector space isomorphism

x∗AdR
n (b) ' AdR

n (b, x), ∀x : Spec(Qp)−→X

is an isomorphism of filtered vector spaces. For more details, see also [Kim09, pp. 98–100].
We now describe a closely related bundle AdR

n (Y ) on the affine open Y , using the notation from §4.1.
This bundle admits a very simple description, and its relation with AdR

n is given in Corollary 4.4. To
distinguish it more clearly from AdR

n (Y ), we will denote AdR
n by AdR

n (X) in this paragraph.
Set AdR

n (Y ) :=
⊕n

i=0 VdR(Y )⊗i ⊗OY , and define the connection

(21) ∇n : AdR
n (Y ) −→ AdR

n (Y )⊗ Ω1
Y , ∇n(v ⊗ 1) =

2g+d−2∑
i=0

−(Ti ⊗ v)⊗ ωi,
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Then AdR
n (Y ) is n-step unipotent, in the sense that it has a filtration

n⊕
i=j

VdR(Y )⊗i ⊗OY , for j = 0, 1, . . . , n

by subbundles preserved by ∇, where the graded pieces inherit the trivial connection. The following
theorem, proved by Kim [Kim09, p. 99], provides a universal property for the bundle AdR

n (Y ).

Theorem 4.2 (Kim). Let 1 = 1⊗ 1 be the identity section of AdR
n (Y ). Then (AdR

n (Y ),1) is a n-step
universal pointed object, in the sense of §A.1. That is, for any n-step unipotent vector bundle V with
connection on Y , and any section v of V, there exists a unique map

f : AdR
n (Y )−→V such that f(1) = v.

Although universal properties mean (AdR
n (Y ),1) is unique up to unique isomorphism, the triviali-

sation of the underlying vector bundle above is not unique, as it depends on a choice of elements of
H0(YQ,Ω

1) defining a basis of H1
dR(Y/Q). This trivialisation has some relation to the algebraic struc-

ture of the spaces AdR
n (b, x), which we now explain. For x ∈ Y (Q), it gives a canonical isomorphism

(22) s0(b, x) :

n⊕
i=0

VdR(Y )⊗i−→ AdR
n (Y )(b, x) := x∗AdR

n (Y ).

The left hand side has a natural algebra structure, by viewing it as a quotient of the tensor algebra
of VdR(Y ). On the other hand, for all x1, x2, x3 ∈ Y (Qp) we have maps

(23) AdR
n (Y )(x2, x3)×AdR

n (Y )(x1, x2) −→ AdR
n (Y )(x1, x3).

These may be defined via the isomorphism

(24) αx2,x3
: AdR

n (Y )(xi, xj) ' Hom(x∗in, x
∗
jn),

(see §A.1), where x∗in and x∗jn denote the restriction of the functors x∗i and x∗j to the full subcategory
CdR(Y )n ⊂ CdR(Y ) of n-unipotent objects. Then (23) corresponds via (24) to the composition of natural
transformations

Hom(x∗2n, x
∗
3n)×Hom(x∗1n, x

∗
2n) −→ Hom(x∗1n, x

∗
3n).

These two structures are respected by the trivialisation s0 from (22), in the following sense:

Lemma 4.3. For all f1, f2 ∈ AdR
n (Y ), and all x1, x2, x3 ∈ Y (Qp),

s0(x1, x3)(f2f1) = s0(x2, x3)(f2)s0(x1, x2)(f1).

Proof. To prove the lemma it is enough to prove that

αx2,x3
(s0(x2, x3)(f2))

(
s0(x1, x2)(f1)

)
= s0(x1, x3)(f2f1)

in x∗3A
dR
n (Y ). To prove this, note that there is a morphism of connections F : AdR

n (Y )→ AdR
n (Y )

given by sending v to vf1. Hence the lemma follows from commutativity of

x∗2A
dR
n (Y ) x∗3A

dR
n (Y )

x∗2A
dR
n (Y ) x∗3A

dR
n (Y )

x∗2F

α

α

x∗3F

where α := αx2,x3
(s0(x2, x3)(f2))(AdR

n (Y )). �

The following result describes the relation between AdR
n (X) and AdR

n (Y ), see also [BD17, Lemma
6.2].
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Corollary 4.4. The connection AdR
n (X)|Y is the maximal quotient of AdR

n (Y ) which extends to a
holomorphic connection (i.e. without log singularities) on the whole of X.

Proof. It is enough to show that, for any surjection of left πdR
1 (Y, b)-modules

p : AdR
n (Y )−→N,

the associated connection N extends to a connection on X without log singularities if and only
if p factors through the surjection AdR

n (Y )−→AdR
n (X). The latter occurs if and only if N is the

pullback of a left πdR
1 (X, b)-module. The corollary follows by the Tannaka equivalence between left

πdR
1 (X, b)-modules, and unipotent connections on X. �

4.3. The Hodge filtration on AdR
n . In what follows, we will need to explicitly compute the Hodge

filtration of AdR
2 , or rather of a certain quotient AZ . To this end, we now state a characterisation of

this Hodge filtration via a universal property, due to Hadian [Had11].
Recall that a filtered connection is defined to be a connection (V,∇) onX, together with an exhaustive

descending filtration
· · · ⊃ Fili V ⊃ Fili+1 V ⊃ · · ·

satisfying the Griffiths transversality property

∇(Fili V) ⊂ (Fili−1 V)⊗ Ω1.

A morphism of filtered connections is one that preserves the filtrations and commutes with ∇.
The universal n-unipotent bundle AdR

n (b) is associated to the πdR
1 (X, b)-representation AdR

n (b), and
there is a natural exact sequence of representations

0−→ In/In+1−→AdR
n (b)−→AdR

n−1(b)−→ 0

where the kernel In/In+1 has trivial πdR
1 (X, b)-action. This means that the kernel

AdR[n] := Ker
(
AdR
n (b)−→AdR

n−1(b)
)
' In/In+1 ⊗OX ,

is trivial as a bundle with connection (i.e. isomorphic to a direct sum of copies of (OX , d)). The natural
surjection (I/I2)⊗n−→ In/In+1 gives rise to a surjection V ⊗ndR ⊗OX −→A

dR[n]. The Hodge filtration
on VdR gives AdR[n] its structure of a filtered connection. As explained in [BD17], the Hodge filtration
on AdR

n (b) may now be characterised using Hadian’s universal property, proved in [Had11].

Theorem 4.5 (Hadian). For all n > 0, the Hodge filtration Fil• on AdR
n (b) is the unique filtration such

that

(1) Fil• makes (AdR
n (b),∇) into a filtered connection,

(2) The natural maps induce a sequence of filtered connections:

V ⊗ndR ⊗OX −→A
dR
n (b)−→AdR

n−1(b)−→ 0,

(3) The identity element of AdR
n (b) lies in Fil0AdR

n (b).

Remark 4.6. For our purposes, the important point in Hadian’s theorem is the uniqueness of the
filtration satisfying the above properties. In what follows, the subbundle Fil0 of a certain quotient AZ
of AdR

2 is determined in an explicit trivialisation on Y , by writing down the general form for a basis,
and solving for the coefficients using the fact that it extends to X and satisfies the three constraints
in Theorem 4.5. Note that the Griffiths transversality condition is empty, since Fil1AZ = 0 and
Fil−1AZ = AZ . Hence we determine Fil0AZ using properties (2) and (3) of Theorem 4.5.
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4.4. The filtered connection AZ . We now come to the definition of the main object of study in this
paper: The bundle AZ . It is constructed as a quotient of the universal 2-step unipotent bundle AdR

2

defined above. As in §3, a central role is played by a Tate class, which will come from an algebraic cycle
on X ×X. Since the contribution to the p-adic height is entirely through its realisation as a p-adic de
Rham class, we phrase things in this language. Henceforth, let

Z =
∑

Zijωi ⊗ ωj ∈ H1
dR(X/Q)⊗H1

dR(X/Q)

be a nonzero cohomology class satisfying the following conditions:

(a) Z maps to (H1
dR(X/Qp)⊗H1

dR(X/Qp))
φ=p after base change to Qp

(b) Z is in Fil1(H1
dR(X/Q)⊗H1

dR(X/Q)).
(c) Z maps to zero under the cup product

∪ : H1
dR(X/Q)⊗H1

dR(X/Q)−→H2
dR(X/Q).

(d) Z maps to zero under the symmetrisation map

H1
dR(X/Q)⊗H1

dR(X/Q)−→ Sym2 H1
dR(X/Q).

By property (d), we may henceforth think of Z as an element of H2
dR(J /Q). It follows from Lemma 2.4

that the Tate class associated to a nice correspondence satisfies these properties. Though we will not
need it in the sequel, the following result gives a converse to this statement.

Lemma 4.7. Let Z be a class satisfying properties (a)–(d). If ρ(J) = ρ(JQp
), then there exists a nice

element of Pic(X ×X) mapping to Z.

Proof. By the Tate conjecture for H2 of abelian varieties over finite fields, property (a) of Z
guarantees that it comes from a Qp-divisor on JFp

. By the p-adic Lefschetz (1,1)-theorem of
Berthelot–Ogus [BO83, §3.8], property (b) implies that it lifts to something in NS(JQp

)⊗Qp. By
hypothesis, the map NS(JQ)⊗Qp → NS(JQp

)⊗Qp is an isomorphism, hence the base change of
Z to Qp comes from a Qp-divisor on JQ. Finally, the element of Pic(X ×X) corresponding to this
cycle is nice by property (c) of Z. �

Recall that we have an exact sequence of filtered connections

(25) 0−→AdR[2]−→AdR
2 −→AdR

1 −→ 0,

and an isomorphism of filtered vector bundles

AdR[2] ' Coker
(
Q(1)

∪∗−→ V ⊗2
dR

)
⊗OX .

Define AZ(b), or simply AZ , to be the quotient of AdR
2 obtained by pushing out (25) along

Z : VdR ⊗ VdR −→ Q(1),

which by property (c) of Z factors through V ⊗2
dR /Im ∪∗. Since the connection on AdR[2] is trivial, AZ

has the structure of a filtered connection. The importance of this definition lies in the fact that, as we
will see in §5, we can endow the base change of AZ to Qp with a Frobenius structure such that we have
an isomorphism of filtered φ-modules

x∗AZ ' Dcris(AZ(b, x))

for all x ∈ X(Qp). The Frobenius structure on AZ is the subject of §5, and in the remainder of this
section we will explicitly compute the connection and Hodge filtration on AZ .

Using the results of §4.2, we may describe the connection of AZ explicitly on the affine open Y . We
use the notation of §4.1, and denote the matrix of the correspondence Z on H1

dR(X/Q) also by Z,
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where we act on column vectors. By Corollary 4.4 and the explicit description of the connection on
AdR
n (Y ) given in (21), we see that we may choose a trivialisation

(26) s0(b, · ) : (Q⊕VdR ⊕Q(1))⊗OY
∼−→ AZ(b)|Y ,

such that the connection ∇ on AZ via this trivialisation is given by

(27) s−1
0 ◦ ∇ ◦ s0 = d+ Λ, where Λ := −

 0 0 0
ω 0 0
η ωᵀZ 0

 ,

for some differential η of the third kind on X which is in the space spanned by ω2g, . . . , ω2g+d−2. When
there is no risk of confusion we will occasionally write this trivialisation simply as s0. The left hand
side of (26) has a filtration as described in (31), but s0 is not necessarily an isomorphism of filtered
vector bundles.

Remark 4.8. In the notation above, and henceforth in this paper, block matrices are taken with respect
to the 2-step unipotent filtration with basis 1, T0, . . . , T2g−1, S, and we use the notation ω for the column
vector with entries ω0, . . . , ω2g−1.

Remark 4.9. We note that a priori, we get a trivialisation of AZ |Y from Corollary 4.4 with respect to
which the connection ∇ is given by (27) for some differential

η = α0ω0 + · · ·+ α2g+d−2ω2g+d−2, αi ∈ Q .

By adjusting the trivialisation further via

Ti 7→ Ti + αiS

we see that we may indeed assume that α0, . . . , α2g−1 = 0 as claimed above. The value of this observation
is made apparent in Lemma 4.10, which tells us that η is uniquely determined under this additional
restriction and may be computed easily in practice.

This trivialisation allows us to describe the connection AZ on the affine open Y . In what follows,
it is important to keep track of the fact that it extends to X. In order to do this easily, we introduce
some notation, notably the gauge transformations (29) at all infinite points x in D = X\Y . Recall that
L is a finite extension of Q over which all points of D are defined, as introduced in §4.1. In a formal
neighbourhood of such a point x, with local parameter tx, we can always find a trivialisation of AZ

sx :
(

(Q⊕VdR ⊕Q(1))⊗ LJtxK, d
)
∼−→
(
AZ |LJtxK, ∇

)
since AZ is unipotent, and any unipotent connection on a formal disk is necessarily trivial, as may be
seen inductively. The difference of bundle trivialisations defines a gauge transformation

Cx := s−1
x ◦ s0 ∈ End

(
Q⊕VdR ⊕Q(1)

)
⊗Q L((tx))

which is unipotent, and satisfies

(28) C−1
x dCx = Λ.

Conversely, any such Cx defines a trivialisation sx. Expanding out (28) shows that Cx is of the form

(29) Cx =

 1 0 0
Ωx 1 0
gx Ωᵀ

xZ 1

 , where
{
dΩx = −ω
dgx = Ωᵀ

xZdΩx − η.

Lemma 4.10. The differential η appearing in (27) is the unique differential satisfying

• η is in the space spanned by ω2g, . . . , ω2g+d−2,
• the connection ∇ extends to a holomorphic connection on the whole of X.
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Proof. From Corollary 4.4, we see that η must satisfy the conditions, hence it suffices to show
that it is uniquely determined by them. The defining equations of the gauge transformations Cx
in (29) imply that we must have

(30) Resx (Ωᵀ
xZdΩx − η) = 0, for all x ∈ D.

Since the kernel of the map H1
dR(Y/Q)−→Ld given by the residues at all d points x in D is

precisely H1
dR(X/Q), the first condition implies that η is uniquely determined. �

4.5. The Hodge filtration on AZ . We will now give an explicit description of the Hodge filtration
on AZ , with respect to the trivialisation s0 on Y chosen in (26). This is achieved by writing down
an explicit basis for it, and verifying that it extends to X and satisfies the characterising properties of
Hadian’s Theorem 4.5. Formally, this means that we will find an explicit isomorphism

sFil : (Q⊕VdR ⊕Q(1))⊗OY
∼−→ AZ

that respects the Hodge filtration on both sides, where the left hand side is given the filtration

(31)
Fil−1 = (Q⊕VdR ⊕Q)⊗OY
Fil0 = (Q⊕Fil0 VdR)⊗OY
Fil1 = 0.

Before we state the result, we introduce some notation. Recall that 1, T0, . . . , T2g−1, S is the basis
for the trivialisation s0 defined in (26). Define the matrix of the inclusion Fil0 VdR ↪→ VdR

N = (0g,1g)
ᵀ ∈ Mat2g,g(Q)

which has the zero matrix 0g and identity matrix 1g of dimension g as blocks. Using the notation for
the gauge transformations Cx introduced in (29), we define the quantities

(32)
{
γFil ∈ OY ,
bFil = (bg, . . . , b2g−1)ᵀ ∈ Qg

by the requirements that γFil(b) = 0 and, for all x ∈ (X\Y ),

gx + γFil − bᵀ
FilN

ᵀΩx −Ωᵀ
xZNN

ᵀΩx ∈ L[[tx]].

The existence and uniqueness of γFil and bFil subject to these requirements follow from a Riemann–
Roch argument. We omit the proof, see [BD17, Lemma 25] for a similar argument. With this notation
in place, we are ready to state the main result of this section.

Theorem 4.11. A basis for Fil0AZ with respect to the trivialisation (26) is given by

(33) { 1 + γFilS, Tg + bgS, . . . , T2g−1 + b2g−1S } .
In other words, we may choose the isomorphism sFil respecting the Hodge filtrations in such a way that
the restriction of s−1

0 ◦ sFil to (Q⊕Fil0 VdR)⊗OY is given by the (2g + 2)× (g + 1)-matrix

(34) H =

 1 0
0 N
γFil bᵀ

Fil

 .

Proof. We will check directly that (33) spans the Hodge filtration. This is equivalent to

Fil0AZ |Y = H,
where H ⊂ AZ is the image of (Q⊕Fil0 VdR)⊗OY under s0 ◦H. We will use the characterisation
of the Hodge filtration provided by Hadian’s theorem, which states that it is enough to check the
following two things:
(a) The bundle H on Y extends to a sub-bundle of AZ on X,
(b) The bundle H satisfies the three characterising properties of Theorem 4.5.
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We first check (a). Define for every x ∈ X\Y the matrix of base change

Bx =

(
1 0

NᵀΩx 1

)
∈ End(Q⊕Fil0 VdR)

then we calculate

(35) CxHB
−1
x =

 1 0
Ωx −NNᵀΩx N

gx + γFil − bᵀ
FilN

ᵀΩx −Ωᵀ
xZNN

ᵀΩx Ωᵀ
xZN + bᵀ

Fil

 .

Note that NNᵀ is a diagonal block matrix with entries 0g and 1g, which is simply the projection
of VdR onto Fil0 VdR. This implies that the vector Ωx − NNᵀΩx has entries in L[[tx]]. Likewise,
the vector Ωᵀ

xZN has entries in L[[tx]], since Z ∈ Fil1(H1
dR(X)⊗H1

dR(X)), and therefore has lower
right block 0g. Finally, the lower left entry is regular by definition of the quantities γFil and bᵀ

Fil.
This is true for every x ∈ X\Y , which implies that H extends to X.

We now check (b). Condition (1) of Theorem 4.5 is vacuous, since the Hodge filtration on AZ
has weights 0 and −1. Condition (2) is satisfied since the top right entry of H is zero and the
middle right entry is the inclusion. Finally, condition (3) is satisfied since the middle left entry of
H is zero and γFil(b) = 0. �

We may summarise the computations in this section by saying that, in the notation of (16), we may
choose an isomorphism sFil respecting the Hodge filtration on AZ , such that

(36) s−1
0 ◦ sFil =

 1 0 0
0 1 0
γFil βᵀ

Fil 1

 ,

where βFil = (0, . . . , 0, bg, . . . , b2g−1)ᵀ, and γFil and bFil = (bg, . . . , b2g−1) are as in Theorem 4.11. These
quantities may be computed as follows:

(i) Compute η as in (27), as the unique linear combination of ω2g, . . . , ω2g+d−2 such that

dΩᵀ
xZΩx − η

has vanishing residue at all x ∈ X\Y .
(ii) For all x ∈ X\Y , compute power series for ωx and η up to large enough precision, which means

at least (mod tdxx ), where dx is the order of the largest pole occurring. Use this to solve the
system of equations (29) for gx in L((tx))/L[[tx]].

(iii) Compute the constants bFil and function γFil characterised by γFil(b) = 0 and

gx + γFil − bᵀ
FilN

ᵀΩx −Ωᵀ
xZNN

ᵀΩx ∈ L[[tx]]

where N = (0g,1g)ᵀ is the 2g × g matrix which has the zero matrix 0g of dimension g and the
identity matrix 1g of dimension g as blocks. Set βFil = (0, . . . , 0, bg, . . . , b2g−1)ᵀ.

5. Explicit computation of the p-adic height II: Frobenius

The preceding section gives a computationally feasible method for computing the Hodge filtration
on the module Dcris(AZ(b, x)). We now describe its Frobenius structure. When X is hyperelliptic,
such a description was given in [BD17, §6]. We give a description in general, in terms of the Frobenius
structure on the isocrystal Arig

Z (b), and compute the latter using universal properties.

Remark 5.1. In contrast with the previous section, everything in this section is local. This means that,
unless stated otherwise, we consider the bundle AZ over XQp

, and x will denote a point in X(Qp).
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5.1. The Frobenius structure on Arig
n . We first describe the Frobenius structure on the universal

n-step unipotent connection AdR
n (b). We henceforth assume that X\Y is smooth over Zp. Some

background on unipotent isocrystals can be found in §A.2, and we adopt the notation used there.
Let Crig(XFp) be the category of unipotent isocrystals on the special fibre of X . Pull-back by absolute

Frobenius induces an auto-equivalence of Crig(XFp) [CS99, Proposition 2.4.2], which yields an action on
the path torsors πrig

1 (XFp ; b, x) of its fundamental group, and hence on the n-step unipotent quotients:

φn : Arig
n (b, x)−→Arig

n (b, x).

On the other hand, pull-back by absolute Frobenius on Crig(XFp
) induces an auto-equivalence. There-

fore, if (Arig
n (b), 1) is the universal n-step unipotent pointed object, so is its pullback, and hence they are

canonically isomorphic, yielding a Frobenius structure on Arig
n (b). To describe this Frobenius structure

explicitly on the realisation given by the rigid triple (Y,X,X), let U ⊂ Y be a Zariski open subset,
and let X and U denote the formal completions of X and U along their special fibres. Choose a lift of
Frobenius

φ : U −→ U

which extends to a strict open neighbourhood of ]UFp
[. Then the Frobenius structure is an isomorphism

Φn : φ∗Arig
n (b)

∼−→ Arig
n (b)

of overconvergent isocrystals on (Y,X,X). By the functoriality of the isomorphism in Lemma A.4, we
obtain, for all points x ∈ U(Fp) with Teichmüller representative x0, a commutative diagram

(37)
x∗0A

rig
n (b) x∗0A

rig
n (b)

Arig
n (b, x) Arig

n (b, x).

∼
x∗0Φn

φn

∼

To compute φn on Arig
n (b, x), we are reduced to describing the Frobenius structure Φn on the isocrystal

Arig
n (b), which has the advantage of being characterised by the following universal property.

Lemma 5.2. The Frobenius structure on UFp
for Arig

n (b) is the unique morphism

(38) Φn : φ∗Arig
n (b) −→ Arig

n (b)

which, in the fibre at b, sends 1 to 1.

Proof. The Frobenius endomorphism in Hom(b
∗
, b
∗
) is a morphism of unital algebras, and hence

the Frobenius structure satisfies this property. As explained in §A.1, a morphism of n-unipotent
universal objects is determined by where it sends 1 ∈ b∗Arig

n (b), which shows uniqueness. �

5.2. The Frobenius operator on AdR
n (b, x). We now explain how to define Frobenius operators on

AdR
n (b, x). They will be computed explicitly in the next section on the quotient AdR

Z (b, x). We start by
recalling the following comparison theorem of Chiarellotto–Le Stum [CS99, Proposition 2.4.1].

Theorem 5.3 (Chiarellotto–Le Stum). The analytification functor defines an equivalence of categories

(−)an : CdR(XQp
)
∼−→ Crig(XFp),

and for any x ∈ X(Qp) with reduction x, we have a canonical isomorphism of fibre functors

ιx : x∗ ◦ (−)an ' x∗,

such that if x, y ∈ X(Qp) belong to the same residue disk, the canonical isomorphism ιx ◦ ι−1
y is given

by parallel transport Tx,y along the connection, as described in §A.2.
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Via ιb and ιx, the pull-back of absolute Frobenius on XFp
gives a Frobenius action on the fundamental

group πdR
1 (XQp

; b, x), and therefore a Frobenius operator on the quotient

φn(b, x) : AdR
n (b, x)−→AdR

n (b, x).

This Frobenius operator may be related to the isocrystal Arig
n (b) as follows. Let b0 and x0 be Teichmüller

representatives of b and x, respectively. We then have the equality

φn(b, x) = τb,x ◦ φn(b0, x0) ◦ τ−1
b,x ,

with τb,x the canonical isomorphism provided by Theorem 5.3, given by

τb,x : Hom(b∗0, x
∗
0)

∼−→ Hom(b∗, x∗), g 7→ Tx,x0 ◦ g ◦ Tb0,b.

5.2.1. Parallel transport. We can describe the effect of τb,x on AdR
n (b, x) explicitly via formal integration

on residue disks. Since AdR
n (b, x) is a quotient of AdR

n (Y )(b, x), it suffices to describe parallel transport
on the latter. Recall the trivialisation

(39) s0(b, x) :
n⊕
i=0

VdR(Y )⊗i
∼−→ AdR

n (Y )(b, x)

from Section §4.2. We showed in Lemma 4.3 that via this trivialisation, the composition of functors

Hom(x∗0, x
∗)×Hom(b∗0, x

∗
0)×Hom(b∗, b∗0)−→Hom(b∗, x∗)

acting on AdR
n (Y ) corresponds to multiplication in the algebra. To explicitly describe parallel transport,

define for any two x1, x2 ∈ X(Qp) on the same residue disk

(40) I(x1, x2) = 1 +
∑
w

∫ x2

x1

w(ω0, . . . , ω2g+2d−2) in
n⊕
i=0

VdR(Y )⊗i

where the sum is over all words w in {T0, . . . , T2g+d−2} of length at most n, and where w(ω0, . . . , ω2g+d−2)
is defined to be the word in {ω0, . . . , ω2g+d−2} obtained by substituting ωi for Ti. Here, the integrals are
given by formal integration of power series on the residue disk of x1 and x2. Then τb,x, when considered
as an operator on AdR

n (Y ) via the trivialisation (39), is given by the left-right multiplication map

(41) τb,x :

n⊕
i=0

VdR(Y )⊗i
∼−→

n⊕
i=0

VdR(Y )⊗i, v 7→ I(x0, x)v I(b, b0).

By Besser’s theory of Coleman integration on unipotent connections [Bes02], we have that, for any
b, b0, x, x0 ∈ Y (Qp), the same formula (41) describes the unique unipotent Frobenius-equivariant iso-
morphism

AdR
n (b0, x0)−→AdR

n (b, x)

if the integrals in (40) are instead interpreted in the sense of Coleman integration.

5.2.2. Frobenius on AdR
n (b0, x0). The operator φn(b0, x0) is related to the isocrystal Arig

n (b) via

(42)
x∗0A

rig
n (b) x∗0A

rig
n (b)

AdR
n (b0, x0) AdR

n (b0, x0).

∼

x∗0Φn

φn(b0, x0)

∼

In the computations below, we explicitly determine φn(b0, x0) via this diagram, using Lemma 5.2 to
characterise the Frobenius structure Φn uniquely by its universal property.
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5.3. The Frobenius operator on AdR
Z (b, x). After taking the quotient by a choice of a nice corre-

spondence Z, we obtain Frobenius operators

φZ(b, x) : AdR
Z (b, x)−→AdR

Z (b, x).

Likewise, we obtain a quotient Arig
Z (b) of the universal 2-step unipotent isocrystal Arig

2 (b). Reprising
the notation of §5.1, so that in particular φ : U −→ U is an overconvergent lift of Frobenius, Theorem
5.3 gives us an isomorphism

ΦZ : φ∗Arig
Z (b)

∼−→ Arig
Z (b)

such that we have a commutative diagram

(43)
x∗0A

rig
Z (b) x∗0A

rig
Z (b)

AdR
Z (b0, x0) AdR

Z (b0, x0).

∼

x∗0ΦZ

φZ(b0, x0)
∼

We have the following two equalities, which will be used to determine φZ(b, x) in practice:

φZ(b0, x0) = x∗0ΦZ , φZ(b, x) = τb,x ◦ φZ(b0, x0) ◦ τ−1
b,x .

5.3.1. Parallel transport. To compute the isomorphism τb,x, we use (41). Given an element (a,b, c) of
the algebra Qp⊕VdR ⊕Qp(1), its action via left, respectively right, multiplication is given by

(44)

 a 0 0
b a 0
c bᵀZ a

 ,

 a 0 0
b a 0
c −bᵀZ a

 .

When applied to the integrals I(x, x0) and I(b0, b) from (40), we obtain the matrix describing τb,x.

5.3.2. The F-isocrystal AdR
Z (b)an. The connections on AdR

Z (b)an |Y and φ∗AdR
Z (b)an |Y are described

with respect to the trivialisation s0 by equation (27), and are equal to d+ Λ and d+ Λφ, where

Λφ = −

 0 0 0
φ∗ω 0 0
φ∗η φ∗ωᵀZ 0

 .

Henceforth, we set φ∗ω = Fω + df for a column vector f with entries in H0(]Y [, j†OY ), uniquely
determined by the condition that f(b0) = 0. To make the Frobenius structure explicit, we need to find
an invertible (2g + 2)× (2g + 2)-matrix G with entries in H0(]Y [, j†OY ), such that

ΛφG+ dG = GΛ.

Here G is the inverse of the Frobenius structure, i.e. G = Φ−1
Z . It is a straightforward calculation using

the relation F ᵀZF = pZ to check that the matrix

(45) G =

 1 0 0
f F 0
h gᵀ p

 , where

 dgᵀ = dfᵀZF,
dh = ωᵀF ᵀZf + dfᵀZf − gᵀω + φ∗η − pη,
h(b0) = 0,

induces the required identity. From G, we obtain the Frobenius equivariant isomorphism sφ(b, x) as
follows. Define

s0(b, x)−1 ◦ sφ(b, x) =:

 1 0 0
αφ(b, x) 1 0
γφ(b, x) βᵀ

φ(b, x) 1

 .
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Firstly, since the action of φ on AdR
Z (b0, x0) is given by G(x0)−1, we have 1 0 0

αφ(b0, x0) 1 0
γφ(b0, x0) βᵀ

φ(b0, x0) 1

 =

 1 0 0
(I − F )−1f 1 0

1
1−p

(
gᵀ(I − F )−1f + h

)
gᵀ(F − p)−1 1

 (x0).

Using the parallel transport formula from Section 5.3.1 we have that 1 0 0
αφ(b, x) 1 0
γφ(b, x) βᵀ

φ(b, x) 1


is equal to the matrix product 1 0 0∫ x0

x
ω 1 0∫ x0

x
η +

∫ x
x0
ωᵀZω

∫ x0
x
ωᵀZ 1


 1 0 0∫ b

b0
ω 1 0∫ b

b0
η +

∫ b
b0
ωᵀZω −

∫ b
b0
ωᵀZ 1


 1 0 0
αφ(b0, x0) 1 0
γφ(b0, x0) βᵀ

φ(b0, x0) 1

 .

5.4. Computing p-adic heights. Recall that for the intended Diophantine application, we set out to
compute the function

θ : X(Qp) −→ Qp ; x 7−→ hp (AZ(b, x))

in order to obtain an explicit finite set of points in X(Qp) containing X(Q). In §3, we reduced this
question to finding an explicit description of the filtered φ-module Dcris(AZ(b, x)).

Lemma 5.4. There is an isomorphism of filtered φ-modules

Dcris(AZ(b, x)) ' AdR
Z (b, x).

Proof. Olsson’s comparison theorem [Ols11, Theorem 1.11] shows that with respect to the Frobe-
nius operator φn(b, x) discussed above, there exist isomorphisms of filtered φ-modules

Dcris(A
ét
n (b, x))

∼−→ AdR
n (b, x)

which on graded pieces A[n] := Ker(An(b, x)→ An−1(b, x)) induces commutative diagrams

Dcris(V )⊗n V ⊗ndR

Dcris(A[n]) AdR[n].

We obtain the following commutative diagram with exact rows

(46)

0 Dcris

(
Coker

(
Qp(1)

∪∗−→ V ⊗2
))

Dcris(A
ét
2 (b, x)) Dcris(A

ét
1 (b, x)) 0

0 Coker
(
Qp(1)

∪∗−→ V ⊗2
dR

)
AdR

2 (b, x) AdR
1 (b, x) 0.

∼ ∼ ∼

It follows that Dcris(AZ(b, x)) may be identified with the filtered φ-module AdR
Z (b, x) obtained by

pushing out the bottom exact sequence of diagram (46) by the map

cl∗Z : VdR ⊗ VdR−→Qp(1),

where we implicitly use the fact that the p-adic comparison isomorphism is compatible with cycle
class maps, see e.g. [Fal89, Theorem 5.6], and the fact that cl∗Z factors through Coker(∪∗). �
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Recall that in §4, we obtained a simple algorithm for determining the Hodge filtration on AZ(b)
via Hadian’s universal property. The Frobenius structure is computed explicitly on the Teichmüller
representative x0 of x using the algorithms of Tuitman [Tui16, Tui17] to solve the system of equations
(45), and then for x via explicit integration in the residue disk. The steps outlined at the end of §4.5
and §5.3 yield matrices 1 0 0

0 1 0
γFil(b, x) βᵀ

Fil(b) 1

 and

 1 0 0
αφ(b, x) 1 0
γφ(b, x) βᵀ

φ(b, x) 1

 .

As an immediate consequence of equation (17), we obtain from Lemma 5.4 the following result.

Lemma 5.5. For any x ∈ X(Qp)∩ ]U [, the local p-adic height of AZ(b, x) is given by

hp(AZ(b, x)) = χp

(
γφ(b, x)− γFil(b, x)− βᵀ

φ(b, x) · s1(αφ)(b, x)− βᵀ
Fil(b) · s2(αφ)(b, x)

)
.

Remark 5.6. We also deduce the following formula for the p-adic Abel–Jacobi class of the Chow–Heegner
point [IAZ(b)] discussed in Remark 3.11. Let C denote the matrix describing the cup product, then

(47) [IAZ(b)] = C · (βφ(b, b)− βFil(b)).

5.5. A trick for dealing with leftover residue disks. The process described above gives a way of
computing a finite set containing X(Q)∩]U [. This leaves the residue disks where the Frobenius lift is
not defined, or where the basis differentials have poles. To deal with those residue disks, we could pass
to a different choice of basis and Frobenius lift until the whole of X is covered.

An alternative approach to deal with residue disks where the Frobenius lift is not defined is to change
the base point. The effect this has on the quantities computed above, which we spell out now, may
be of some independent interest. Suppose b′ ∈ X(Q) lies in a residue disk where none of our basis
differentials have poles. The starting point is the observation that the set X(Qp)U is independent of b′.
The computation in §4.5 of the Hodge filtration is largely independent of the base point, yielding

(48)
{
βᵀ

Fil(b
′) = βᵀ

Fil(b)
γFil(b

′, x) = γFil(b, x)− γFil(b, b
′).

The effect of changing the base point on the Frobenius structure is described by the following lemma.

Lemma 5.7. Let b′ ∈ X(Qp) lie in a residue disk where none of the basis differentials have poles. Then

s−1
0 (b′, b′) ◦ sφ(b′, b′) =

 1 0 0
αφ(b′, b′) 1 0
γφ(b′, b′) βᵀ

φ(b′, b′) 1

 =

 1 0 0
0 1 0

0 βᵀ
φ(b, b) + 2

∫ b′
b
ωᵀZ 1

 .

Proof. Recall that we defined the Frobenius structure on AZ(b′, b′) via the quotient map

AdR
2 (Y )(b′, b′) −→ AdR

Z (b′, b′).

By equation (41), there is a φ-equivariant unipotent isomorphism

(49) AdR
n (Y )(b, b) −→ AdR

n (Y )(b′, b′)
s0(b, b)(v) 7−→ s0(b′, b′) ( I(b, b′)vI(b′, b) ) .

To apply equation (49), we first have to describe the algebra structure of AdR
Z (b, b) thought of as a

quotient of AdR
2 (b, b). By equations (44) and (49), we obtain that s−1

0 (b′, b′) ◦ sφ(b′, b′) is equal to 1 0 0∫ b′
b
ω 1 0∫ b′

b
η +

∫ b′
b
ωᵀZω

∫ b′
b
ωᵀZ 1


 1 0 0∫ b′

b
ω 1 0∫ b′

b
η +

∫ b′
b
ωᵀZω −

∫ b′
b
ωᵀZ 1


−1 1 0 0

0 1 0
0 βᵀ

φ(b, b) 1

 ,
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using the composition of Frobenius equivariant isomorphisms

Qp⊕VdR ⊕Qp(1)
'−→ AZ(b, b)

'−→ AZ(b′, b)
'−→ AZ(b′, b′). �

6. Example: Xs(13)

As in the introduction, we denote by Xs(`) the modular curve associated to the normaliser of a split
Cartan subgroup of GL2(F`), where ` is a prime number. This curve can be defined over Q and there
is a Q-isomorphism X+

0 (`2) ' Xs(`) coming from conjugation with ( ` 0
0 1 ), where X+

0 (`2) is the quotient
of X0(`2) by the Atkin-Lehner involution w`2 .

In this section, we compute the rational points on X = Xs(13), which is a curve of genus 3. We
show in §6.1 that we have ρ(JQ) = 3 = rk(J /Q) and in §6.2 that X has potentially good reduction
everywhere. Hence Corollary 3.8 implies that

ΥZ = (θZ , {0})
is a quadratic Chabauty pair for X, where Z ∈ Pic(X ×X)⊗Qp is nice and θZ(x) = hp(AZ(b, x)).

We work at the prime p = 17 and we choose g + ρ − 1 − r = 2 independent nice Z; by Lemma 1.5
we get two finite sets of 17-adic points which contain X(Q). Their intersection turns out to be exactly
X(Q), which proves Theorem 1.1.

Remark 6.1. The choice of the prime 17 is somewhat arbitrary. For primes less than 11, our chosen
basis of de Rham cohomology is not p-integral, and at p = 13 the curve has bad reduction.

6.1. Ranks. Modular symbol routines as implemented in Magma [BCP97] allow us to compute the space
of weight 2 cuspforms for Γ+

0 (169), and it turns out that their eigenforms form a single Galois conjugacy
class defined over Q(ζ7)+. An explicit eigenbasis is given by the Galois conjugates of the form f , with
q-expansion

f = q + αq2 + (−α2 − 2α)q3 + (α2 − 2)q4 + (α2 + 2α− 2)q5 + (−α− 1)q6 + · · · ,
where α is a root of x3 + 2x2− x− 1. We conclude by [Shi70, Theorem 7.14] and [Rib80, Corollary 4.2]
that End(J)⊗Q ' K := Q(ζ7)+, and J is a simple abelian threefold. Therefore ρ(JQ) = 3.

Proposition 6.2. We have rk(J /Q) = 3.

Proof. Let Af denote the modular abelian variety Af = J0(169)/If associated to f , where If is
the annihilator of f in the Hecke algebra T acting on J0(169). Then Af is an optimal quotient of
J0(169) in the sense that the kernel of J0(169) → Af is connected. Since J is Q-isogenous to Af
(this was already used by Baran in [Bar14b]), it suffices to show that rk(Af/Q) = 3. The work
of Gross-Zagier [GZ86] and Kolyvagin-Logachev [KL89] proves that if the order of vanishing of the
L-function L(f, s) of f at s = 1 is 1, then rk(Af/Q) = g = 3.

We showed that ords=1L(f, s) > 0 by computing the eigenvalue of f under the Fricke involution
W169 and by computing the rational number cAf

L(f, 1)/ΩAf
exactly using the algorithm of [AS05],

where cAf
is the Manin constant of Af and ΩAf

is the real period. So it only remains to show
that L′(f, 1) 6= 0, which we did using Magma. We found that the number L′(f, 1) was always larger
than 0.6 for any embedding Q(α) ↪→ C and the error in these computations was smaller than
10−100. �

Remark 6.3. An alternative approach was explained to us by Schoof [Sch12]. The computation of the
rank using descent is discussed by Bruin, Poonen and Stoll in [BPS16]. They show that the rank is at
least 3 by exhibiting three rational points in J which are independent modulo torsion. To carry out the
descent needed to bound the rank from above, one needs to compute the class group of a certain number
field L of degree 28 and discriminant 242 · 1312. In [BPS16], this enables the authors to compute the
rank assuming the Generalized Riemann Hypothesis. The authors of [BPS16] suggest that “the truly
dedicated enthusiast could probably verify unconditionally that the class group of OL is trivial.”
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6.2. Semi-stable reduction of Xs(`). We show that Xs(13) has potentially good reduction by com-
puting, more generally, semi-stable models of the split Cartan modular curves Xs(`) for primes ` ≡ 1
(mod 12) over the integers in an explicit extension of Q`, using the work of Edixhoven [Edi89, Edi90].
For the remainder of this subsection, we let ` denote a prime number of the form ` = 12k + 1.

Remark 6.4. For simplicity, we restrict to the case ` ≡ 1 (mod 12), when there are no supersingular
elliptic curves with j-invariant 0 or 1728. The same analysis would work in general if one in addition
makes the action of the additional automorphisms explicit, which is done in [Edi89, §2.1.3]. We also
note that additional level structure away from ` has little effect on our analysis, and may easily be
included, mutatis mutandis.

For a Dedekind domain R we say φ : X → Spec R is a model for a smooth, proper, geometrically
connected curve X over the field of fractions of R if φ is proper and flat, X is integral and normal, and
the generic fibre of X is isomorphic to X over the base field. Such a model is called semi-stable if all its
geometric fibres are reduced and have at most ordinary double points as singularities. In what follows,
we set W to be the ring of Witt vectors over F`, with field of fractions Qnr

` . Furthermore, we set Ig(`)
to be the Igusa curve, which is the coarse moduli space over F` classifying elliptic curves E → S/F`
together with Γ1(`)-Drinfeld level structure on E(`) which generates the kernel of the Verschiebung map
V : E(`) → E, see [KM85, Section 12.3].

We start by recalling the work of Edixhoven on the semi-stable reduction of X0(`2). The description
of the model may be found in [Edi90], and the statements about w`2 are in [Edi89, §2.2, 2.3.4].

Theorem 6.5 (Edixhoven). The curve X0(`2) obtains semi-stable reduction over Qnr
` ($), where $ is

such that $12k(6k+1) = `. Its special fibre consists of the following components:

• k horizontal components, all isomorphic to u2 = v`+1 + 1.
• Four vertical components, of which two are rational, and two are isomorphic to Ig(`)/± 1.

Every horizontal component intersects every vertical component exactly once, and there are no other
intersections. The Atkin–Lehner operator w`2 stabilises every horizontal component, and acts via
(u, v) 7−→ (u,−v) in the above coordinates. Furthermore, w`2 permutes the rational vertical compo-
nents and stabilises the Igusa curves.

We write X for this semi-stable model of X0(`2) over W [$]. We denote the maximal ideal of W [$]
by m, and for any scheme Y over W [$], we write Ys for its special fibre.

Theorem 6.6. The curve Xs(`) obtains semi-stable reduction over the field Qnr
` ($), where $`2−1 = `2.

There exists a semi-stable model, whose special fibre consists of the following components:

• k horizontal components, all isomorphic to u2 = v6k+1 + 1.
• Three vertical components, of which one is rational, and two are isomorphic to Ig(`)/C4.

Every horizontal component intersects every vertical component exactly once, and there are no other
intersections.

Proof. Because X+
0 (`2) 'Q Xs(`), it follows from [Ray90, Proposition 5] that the quotient X+ =

X/w`2 is a semi-stable model for Xs(`). To describe the special fibre of this model, note that the
order of w`2 is invertible on OX , and we therefore have

H1 (〈w`2〉,m) = 0.

This implies that OX+/m ' (OX /m)
w`2 , and hence X+

s = Xs/w`2 . The description of the special
fibre follows from that of the action of w`2 in Theorem 6.5. First, we note that both rational
components of Xs are identified by w`2 , giving rise to a unique rational component in the quotient.
By [Edi89, §2.2], the quotients of the non-rational vertical components are isomorphic to the Igusa



EXPLICIT CHABAUTY–KIM FOR THE SPLIT CARTAN MODULAR CURVE OF LEVEL 13 31

curves Ig(`)/C4, which are of genus (k − 1)(3k − 2)/2, whereas the quotients of the horizontal
components have equation u2 = v6k+1 + 1, and are hence of genus 3k. The result follows. �

k curves

0

3k

3k

3k

(k−1)(3k−2)
2

Figure 1. Reduction of the semi-stable model of Xs(`).

As a consequence, we obtain the genus formula g = 6k2 − 3k for the curve Xs(`).

Corollary 6.7. The split Cartan modular curve Xs(13) has good reduction outside 13, and potentially
good reduction at 13. More precisely, it obtains good reduction over the field Qnr

13($), where $84 = 13.

Proof. The result follows from Theorem 6.6. Indeed, we may contract all three rational curves to
obtain a smooth model over W [$]. �

Remark 6.8. Since Xns(13) ' Xs(13), the same result holds for the non-split curve of level 13.

6.3. Defining equations and known rational points. Baran [Bar14a] finds an explicit defining
equation for Xs(13) as follows. As the curve Xs(13) ' X+

0 (169) is of genus 3, it is either hyperelliptic
or has a smooth plane quartic model. It may be checked that the q-expansions of the Galois conjugates
of f do not satisfy a quadratic relation, but do satisfy a quartic relation, resulting in the plane model2

(−Y − Z)X3 + (2Y 2 + Y Z)X2 + (−Y 3 + Y 2Z − 2Y Z2 + Z3)X + (2Y 2Z2 − 3Y Z3) = 0,

which has good reduction away from 13. To apply the algorithms of [Tui16, Tui17], it will be convenient
to have a plane quartic model whose Y 4-coefficient is 1. For this reason we apply the substitution
(X : Y : Z) 7→ (X − Y : X + Y : X + Z) giving the model Q(X,Y, Z) = 0, where

Q(X,Y, Z) =Y 4 + 5X4 − 6X2Y 2 + 6X3Z + 26X2Y Z + 10XY 2Z − 10Y 3Z − 32X2Z2 − 40XY Z2

+ 24Y 2Z2 + 32XZ3 − 16Y Z3

which we will use henceforth and which has good reduction away from 2 and 13. With respect to this
model, the seven known rational points are as follows:

P0 P1 P2 P3 P4 P5 P6

(1 : 1 : 1) (1 : 1 : 2) (0 : 0 : 1) (−3 : 3 : 2) (1 : 1 : 0) (0 : 2 : 1) (−1 : 1 : 0)

In the remainder of this section, we show that there are no other rational points on X.

6.4. Finding rational points on the first affine chart. Set Y to be the affine chart Z 6= 0 with
respect to the model Q = 0, with coordinates x = X/Z, y = Y/Z. Then Y contains all known rational

2Hopefully, no confusion will arise from our use of the letters X,Y and Z, which also denote other objects in this
paper, as projective coordinates.
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points, except P4 and P6. Let us choose the basepoint to be b = P2 = (0, 0). Define Qy = ∂Q/∂y, then
a set of differentials which satisfy all the properties in §4.1 is given by

ω :=


1
x
y

−160x4/3 + 736x3/3− 16x2y/3 + 436x2/3− 440xy/3 + 68y2/3
−80x3/3 + 44x2 − 40xy/3 + 68y2/3− 32

−16x2y + 28x2 + 72xy − 4y2 − 160x/3 + 272/3


dx

Qy
.

We construct p-adic de Rham classes as in §4.4 associated to nice correspondences as follows: If q
is a prime of good reduction, and if ι denotes the inclusion of K ⊗Qq into End(H1

dR(XQq
)), then by

Eichler–Shimura the action of the Hecke operator Tq on H1
dR(XQq

) is given by

(50) ι(aq)(f) = Frq +q Fr−1
q .

Using the algorithms of [Tui16, Tui17], we can compute the matrix of Frq with respect to the basis ω
to any desired precision. Then (50) allows us to compute the matrix Aq of Tq with respect to ω, and
multiplying 6Aq − tr(Aq)I6 by the inverse of the cup product matrix with respect to ω, we obtain

Z1 =


0 −976 −1104 10 −6 18

976 0 −816 −3 1 3
1104 816 0 −3 3 −11
−10 3 3 0 0 0

6 −1 −3 0 0 0
−18 −3 11 0 0 0

 , Z2 =


0 112 −656 −6 6 6
−112 0 −2576 15 9 27
656 2576 0 3 3 −3
6 −15 −3 0 0 0
−6 −9 −3 0 0 0
−6 −27 3 0 0 0


using q = 7 and q = 11, respectively. These matrices encode independent Tate classes Z1, Z2 ∈
H1

dR(X)⊗H1
dR(X) with respect to the basis ω, which satisfy the conditions (a) – (d) of §4.4.

We find that a basis of H0(X,O(2D)) is given by 1, x, y, x2, xy, y2, where D = X \ Y . Using the
algorithm outlined at the end of §4.5, we compute the Hodge filtration of the connections AZi :

ηZ1 = −(44x2 + 148/3xy + 8y2) dxQy
ηZ2

= (−40x2 + 148xy + 36y2) dxQy

βFil,Z1
= (0, 0, 0, 0, 1/2, 1/2)ᵀ βFil,Z2

= (0, 0, 0, 0,−1/2,−5/2)ᵀ

γFil,Z1
= 5y/6 + 3x/2 γFil,Z2

= −5y/6− 15x/2.

Define U1 := YFp
∩ {Qy 6= 0}. We apply the methods of [Tui16] to define a lift Φ of Frobenius on

a strict open neighbourhood of ]U1[ satisfying Φ(x) = xp. The base point b = P2 is a Teichmüller
point with respect to our chosen Φ. The Frobenius structure of Arig

Zi
is determined using the techniques

of §5.3. This enables us to compute θZ1
and θZ2

as a power series on every residue disk in ]U1[ via
Lemma 5.5.

6.4.1. Equivariant p-adic heights and quadratic Chabauty pairs. Having computed the Hodge filtration
and Frobenius structure for Z1 and Z2, we now explain how to compute the function in Lemma 1.5 for
the quadratic Chabauty pairs associated to Z1 and Z2, respectively. First, we can compute the action
of K on H1

dR(X) by noting that a3 := a3(f) = −α2 − 2α generates K and by computing the action
ι(a3) of the Hecke operator T3 on H1

dR(X) using (50). This enables us to compute a K-equivariant
splitting s of the Hodge filtration on H1

dR(X); by Remark 3.9, the p-adic height h taken with respect
to s is K-equivariant. Finally, as in the introduction we set Kp = K ⊗Qp and

E = H0(XQp
,Ω1)∗ ⊗Kp

H0(XQp
,Ω1)∗.

By Lemma 3.7, we need to consider, for x ∈ X(Qp) and Z ∈ {Z1, Z2}, the extensions

E1(x) := E1(AZ(b, x)) = AJb(x), E2,Z(x) := E2(AZ(b, x)) = E(AJb(x)) + c,
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with notation as in (13), viewed as elements of H0(XQp
,Ω1)∗. We start by computing E1(Pi) and

E2,Z(Pi) for the known points P1, P2, P3, P5 in ]U1[∩X(Q) from the Hodge filtration and Frobenius
structure of AZ(b, Pi). We find that E1(P5) is nonzero, and hence generates H0(XQp

,Ω1)∗ over Kp.
Moreover, we compute that the elements

ι(a3)i
(
E1(P5)⊗Kp

E2,Z1
(P5)

)
, i = 0, 1, 2

are a Qp-basis for E , and we define ψ1, ψ2, ψ3 to be the dual basis of E∗. We also find that

E1(P1)⊗Kp
E2,Z1

(P1) = ι(352 + 818α+ 294α2)
(
E1(P5)⊗Kp

E1(P5)
)

E1(P3)⊗Kp
E2,Z1

(P3) = ι(162 + 406α+ 150α2)
(
E1(P5)⊗Kp

E1(P5)
)

E1(P5)⊗Kp
E2,Z1

(P5) = ι(−36− 62α− 18α2)
(
E1(P5)⊗Kp

E1(P5)
)

so that the three classes on the left form a basis for E . By Lemmas 1.5 and 3.7, this gives two matrices

Ti(x) :=


θZi

(x) Ψ1(Zi , x) Ψ2(Zi , x) Ψ3(Zi , x)
θZ1

(P1) Ψ1(Z1, P1) Ψ2(Z1, P1) Ψ3(Z1, P1)
θZ1(P3) Ψ1(Z1, P3) Ψ2(Z1, P3) Ψ3(Z1, P3)
θZ1(P5) Ψ1(Z1, P5) Ψ2(Z1, P5) Ψ3(Z1, P5)

 , Ψj(Z, z) := ψj(E1(z)⊗KpE2,Z(z)),

such that the locally analytic functions det(Ti(x)) : X(Qp) → Qp vanish on X(Qp)2. It only remains
to determine their common zeroes. This may be done by computing up to high enough precision, in
the following sense. Let Fi ∈ ZpJtK, and suppose

G(t) =
∑
n≥0

cnt
n =

∑
aij

∫
Fi

(∫
Fj

)
+
∑

ai

∫
Fi +

∑
biFi

is a Qp-linear combination of the Fi, their single integrals, and their double integrals. An elementary
estimate gives us

vp(cn) ≥ min {vp(ai), vp(aij), vp(bi)}i,j − 2blogp(n)c,
so that if we compute enough coefficients for the power series Fi, the slopes of the Newton polygon of
G(t) beyond our precision are bounded below by −1, and can hence not come from Qp-rational points.
A table of the zeroes of det(T1(x)) and det(T2(x)) on ]U1[ may be found in [BDM+]. All zeroes of
det(T1(x)) and det(T2(x)) are simple, and the only simultaneous zeroes are P1, P2, P3 and P5. Hence
these are the only Q-rational points on ]U1[.

Remark 6.9. Note that by construction det(T1(x)) vanishes on P1, P2, P3, P5. However, the vanishing
of det(T2(x)) at none of the points P1, P3, P5 is automatic, which seems to us a convincing confirmation
of the correctness of our algorithms.

6.5. Rational points on ]U2[. We now consider a second affine chart Y ′ defined by X 6= 0 with respect
to the model Q = 0, with coordinates u := Z/X and v := Y/X. Then Y ′ contains all known rational
points, except P2 and P5. Let us choose the basepoint to be b = P6 = (0,−1). One may similarly write
down a basis of differentials in terms of u and v, which satisfy all the properties in §4.1 with respect to
Y ′, and are cohomologous to the previous differentials ω in H1

dR(X), so that the matrices Z1 and Z2

remain unchanged. The exact details of the basis we use may be found in [BDM+].
We calculated the Hodge filtration using the algorithm outlined at the end of §4.5. To compute the

Frobenius structure, define U2 := Y ′Fp
∩ {Qv 6= 0}. As our model is monic in v, we can again apply

the methods of [Tui16] to define a lift Φ of Frobenius on a strict open neighbourhood of ]U2[ satisfying
Φ(u) = up. The base point b = P6 is a Teichmüller point with respect to our chosen Φ. The Frobenius
structure of Arig

Zi
is determined using the techniques of §5.3. This enables us to compute θZ1

and θZ2

as a power series on every residue disk in ]U2[ via Lemma 5.5.
Using the same rational points as we did in the previous section, we construct two matrices T ′i (u),

whose determinant vanishes at all the rational points on ]U2[. It suffices to check the residue disks of



34 JENNIFER S. BALAKRISHNAN, NETAN DOGRA, J. STEFFEN MÜLLER, JAN TUITMAN, AND JAN VONK

(1 : 1 : 0), (1 : −1 : 0) and (1 : 1 : 1). The Frobenius lift we chose was not defined on the residue
disk of (1 : 1 : 1), but for the other two disks we obtain the zeroes of det(T ′1(u)) and det(T ′2(u)) to
precision O(175), see [BDM+]. All zeroes are simple and the only points which are simultaneous zeroes
are (0, 1) and (0,−1). Combined with the calculations of §6.4, this shows that there are no points in
X(Q) besides the known ones, except perhaps on the residue disk of (1 : 1 : 1).

6.6. Rational points on ](1 : 1 : 1)[. The remaining residue disk lies at the point P0 = (1 : 1 : 1),
which was the disk where the Frobenius lift above is not defined. Rather than choosing a new lift of
Frobenius, as explained in §5.5 we may use Lemma 5.7 to reduce the computation of p-adic heights of
AZ(P0, x), for x in ]P0[, to the problem of computing the single integrals

∫ P0

b
ω. These integrals are

computed using the original Frobenius lift, via overconvergence and evaluating at points defined over
highly ramified extensions of Qp (see [BT17, Prop 3.8, Prop 4.3]). We find that, for both choices of Z,
the only roots of the resulting power series are at P0 = (1 : 1 : 1) (and are simple). This completes the
proof of Theorem 1.1.

Appendix A. Universal objects and unipotent isocrystals

In this appendix, we briefly discuss the notion of universal objects in unipotent Tannakian categories,
and discuss them in the example of the category of unipotent isocrystals on XFp .

A.1. Universal objects in unipotent Tannakian categories. We say a neutral Tannakian category
C is unipotent if its fundamental group is pro-unipotent. For a general unipotent neutral Tannakian
category C with fibre functors ω and ν, we first define universal objects An(C, ω). Their utility comes
from the fact that one can often compute ‘extra structure’ on fundamental groups and path torsors by
instead computing that extra structure on certain universal objects in the category.

It is instructive to first consider the case of fundamental groups of topological spaces. If X is a locally
path connected topological space, with universal cover X̃, then there is a well known correspondence
between deck transformations of X̃ and elements of the fundamental group. This is perhaps most
naturally formulated by replacing the universal cover with a pointed universal cover

p : (X̃, b̃) −→ (X, b).

Then the correspondence is given by the statement that the following map is bijective:

π1(X, b) −→ p−1({b}), γ 7−→ γ(̃b).

A.1.1. Universal objects. Similar universal objects may be constructed in certain Tannakian categories.
For the main definitions on Tannakian categories and their fundamental groups, we refer to Deligne
[Del90], and will make free use of the language introduced there.

Definition A.1. We say a neutral Tannakian category C over a field K with fibre functor ω is unipotent
if its fundamental group π1(C, ω) is pro-unipotent. Equivalently, C is unipotent if every object V ∈ C
admits a nonzero morphism 1−→V from the unit object 1 in C.

Let C be a neutral unipotent Tannakian category over a field K of characteristic zero, with fibre
functor ω, let A(C, ω) denote its pro-universal enveloping algebra, with augmentation ideal I, and
define An(C, ω) := A(C, ω)/In+1. Recall that there is a canonical isomorphism

lim−→
n

An(C, ω)∗
∼−→ O(π1(C, ω))

between the dual Hopf algebra and the co-ordinate ring of the affine group scheme π1(C, ω). Since
An(C;ω) is a finite dimensional K-representation of π1(C, ω), it corresponds by Tannaka duality to an
object An(C, ω) of the category C, with the property that ω(An(C, ω)) = An(C, ω).
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Now suppose (C, ω) has finite dimensional Ext-groups. A pointed object in C is a pair (V, v) where
V ∈ C and v ∈ ω(V ). An object of C is n-unipotent if there exists a filtration

V = V0 ⊃ · · · ⊃ Vn

by subobjects such that Vi/Vi+1 is zero or is isomorphic to a direct sum of copies of the trivial object, for
all i. A morphism between pointed n-unipotent objects is a morphism in C that respects the filtrations
Vi, and the chosen vectors v.

Definition A.2. We say a pointed n-unipotent object (E , e) is a universal pointed n-unipotent object if
for all pointed n-unipotent objects (V, v) there exists a morphism of pointed n-unipotent objects

(E , e) −→ (V, v).

Finally, a universal pointed pro-object in C is a compatible sequence {(En, en)}n≥1 of universal pointed
n-unipotent objects in C, equipped with maps of pointed objects

(En, en) −→ (En−1, en−1).

Note that if a universal pointed n-unipotent object exists, it is unique up to unique isomorphism.
Since we have a canonical identification of ω(An(C, ω)) with An(C, ω), we have an associated n-unipotent
pointed object (An(C, ω), 1). Furthermore, the quotient map An+1(C, ω)→ An(C, ω) induces transition
maps

(An+1(C, ω), 1) −→ (An(C, ω), 1) .

From the equivalence between representation of π1(C, ω) and left A(C, ω)-modules, we obtain:

Lemma A.3. (1) For all n, (An(C, ω), 1) is a universal pointed n-unipotent object in C.
(2) The inverse system {(An(C, ω), 1)}n≥1 is a universal pointed pro-object in C.

A.1.2. Path torsors. As in the topological case, we can define path torsors of the universal objects
An(C, ω) in unipotent neutral Tannakian categories. If ν is another fibre functor of C, then recall there
are corresponding path torsors

π1(C;ω, ν)

for the Tannakian fundamental group, given by the tensor compatible isomorphisms between ω and ν.
We define likewise

An(C;ω, ν) := An(C, ω)×π1(C,ω) π1(C;ω, ν)

where the product is interpreted in the following sense: The co-ordinate ring O(π1(C;ω, ν)) has the
structure of a free O(π1(C, ω))-comodule of rank one, giving O(π1(C;ω, ν))∗ the structure of a free
O(π1(C, ω))∗-module of rank 1 hence we may define

An(C;ω, ν) :=
(
(O(π1(C;ω, ν))∗ ⊗O(π1(C;ω))∗ An(C, ω)∗

)∗
.

In the topological setting, the universal pointed cover has the following useful property. For any
point x ∈ X, there is a canonical isomorphism

π1(X; b, x) ' p−1(x).

In the case of a neutral unipotent Tannakian category we have the following analogue, see for instance
Kim [Kim09, §1] or Betts [Bet17, §6.2.2].

Lemma A.4. Let ω and ν be fibre functors, and let ωn and νn denote their restriction to the full
subcategory of n-unipotent objects. Then we have functorial isomorphisms

ν(An(C, ω)) ' An(C;ω, ν) ' ω(An(C, ν)).
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Proof. By the universal property of An, the map

Hom(ωn, νn) −→ ν(An(C, ω))

F 7−→ F (An)(en)

is an isomorphism of K-vector spaces. Since Hom(ωn, ωn) = An(C, ω) we get a map

π1(C;ω, ν)×π1(C,ω) An(C, ω) −→ Hom(ωn, νn) : (γ, x) 7−→ γ ◦ x.

Since both sides are free An(C, ω)-modules of rank one, this is an isomorphism.
For the second isomorphism, note that by duality we have an isomorphism Hom(ωn, νn) '

Hom(νn, ωn), (i.e. the isomorphism is defined by sending f ∈ Hom(ωn, νn) to the morphism of
functors f∗ sending V ∈ C to f∗(V ) := (f(V ))∗). �

The identification of An(C;ω, ν) with Hom(ωn, νn) induces composition maps

An(C;ω2, ω3)×An(C;ω1, ω2)→ An(C;ω1, ω3)

for all fibre functors ω1, ω2, ω3. We may also describe the right action of An(C, ω) on ν(An(C, ω))
induced by these isomorphisms. Given x ∈ ν(An(C, ω)), and y ∈ An(C;ω, ν), the product y.x is defined
as follows. Take x̃ to be the unique endomorphism An(ω) such that ν(x̃(en)) = x. Then

y.x = x̃(y).

A.2. Unipotent isocrystals on XFp
. We now recall some foundational results about the category of

unipotent isocrystals on a curve over Fp [Ber96, CS99]. We first recall the notion of a rigid triple, and
then define the category Crig(XFp

).
We start by recalling the notion of a rigid triple. Related notions are those of a triple in [CT03], or

a Qp-frame in [LS07]. A rigid triple over Fp is a triple (Y,X, P ), where

• P is a formal p-adic Zp scheme,
• X is a closed Fp-subscheme of P , proper over Fp,
• Y ⊂ X is an open Fp-subscheme such that P is smooth in a neighbourhood of Y .

Given a rigid triple (Y,X, P ), we let PQp
denote the Raynaud generic fibre of P . We let

]Y [ ⊂ PQp

denote the tube of Y , which consists of all the points that reduce to a point of Y . Finally, let j†OY be
the overconvergent structure sheaf on ]Y [, as defined in [Ber96, §2.1.1.3].

Definition A.5. Let T = (Y,X, P ) be a rigid triple. An overconvergent isocrystal on T is a locally free
j†OY -module with flat connection.

Given rigid triples T = (Y,X, P ) and T ′ = (Y ′, X ′, P ′), and a morphism f : Y → Y ′, a compatible
morphism T → T ′ is a morphism

g :W −→ P ′Qp

from a strict neighbourhood of ]Y [ to P ′Qp
, which is compatible with f via the specialisation map.

Given two rigid triples T = (Y,X, P ) and T ′ = (Y,X, P ′), there is a canonical equivalence between
the category of overconvergent isocrystals on T and T ′, via the category of overconvergent isocrystals
on (Y,X, P×Zp

P ′) , (see [Ber96, §2.3.1] or [LS07, §7.3.11]). For this reason we often suppress the choice
of rigid triple from our notation and terminology, and denote the category of unipotent isocrystals on Y
by Crig(Y ). The category Crig(T ) is sometimes referred to as a realisation of Crig(Y ). By functoriality,
for any y ∈ Y (Fp), we obtain a functor y∗ from Crig(Y ) to the category Crig(Spec Fp) of unipotent
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isocrystals on Spec Fp, which is canonically identified with the category of Qp-vector spaces, via the
realisation given by the rigid triple

T = (Spec Fp,Spec Fp,Spf Zp).

In this way y∗ can be viewed as a fibre functor on the unipotent Tannakian category Crig(YFp).
An explicit description of the fibre functor y∗ may be given as follows. Choose a lift ỹ of y to ]Y [.

Then ỹ defines a fibre functor on Crig(T ) in the obvious way. Whenever we write the fibre functor y∗
in this paper we shall mean ỹ∗ for some choice of ỹ. The justification for this notation is that if ỹ1 and
ỹ2 are two different lifts, then there is an isomorphism of functors

Tỹ1,ỹ2 : ỹ1 → ỹ2

defined by parallel transport as follows. Given an overconvergent isocrystal (V,∇) on T , the pullback
of (V,∇) to ]y[ is trivial, and hence the maps

V(]y[)∇=0 '−→ ỹ∗i V
are bijective. The natural transformation Tỹ1,ỹ2(V,∇) is defined as the composite

ỹ∗1V
'←− V(]y[)∇=0 '−→ ỹ∗2V.

The main example of interest to us is the following. Using the notation of §4.1, we denote by
Crig(XFp

) the Tannakian category of unipotent isocrystals on the rigid triple

T = (XFp ,XFp ,X),

where X is the completion of X along its special fibre. This will usually be referred to simply as the
category of unipotent isocrystals on XFp

. Its fundamental group will be denoted by

πrig
1 (XFp , b) := π1(Crig(XFp); b)

and the maximal n-unipotent quotient and its path torsors are denoted Urig
n (b) and Urig

n (b, x). We also
use the notation: {

Arig
n (b) := An(Crig(XFp

); b
∗
),

Arig
n (b, x) := An(Crig(XFp); b

∗
, x∗).

as well as the notation Arig
n (b) for the corresponding universal n-unipotent object. When we want to

emphasise the choice of a rigid triple (Y,X, P ), we write Arig
n (b, x) and Arig

n (b), where b, x are Qp points
of PQp

lying above b and x respectively.
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