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These are notes from a set of lectures given in Barcelona, June 2017, about meromorphic cocycles.
Many of the results are classical, and all the new constructions and results mentioned in this docu-
ment are joint work with Henri Darmon.

Class �eld theory. LetK be a number �eld, and CK its idèle class group. Fix a separable closure
of K , and take the maximal abelian subextensionKab/K . Then there exists a global Artin map

' : CK ! Gal(Kab/K).

This map is surjective, and its kernel is the connected component of the identity. It becomes an
isomorphism of topological groups when we pass to pro�nite completions:

' : bCK
⇠�! Gal(Kab/K), where bCK = lim �

U

CK/U,

with the limit taken over all �nite index open subgroups. The Artin map sets up a bijection between
�nite index open subgroups ofCK , and �nite abelian extensions ofK , where a �nite abelian extension
L/K corresponds to the �nite index open subgroup NmL/KCL of CK . This is a powerful dictionary,
as it encodes information about extensions ofK into an object that makes no reference to other �elds
and depends only on the internal arithmetic of K . It is relatively straightforward to describe all the
�nite index open subgroups of CK , but the nature of the Artin map does not allow us to easily �nd
generators for its corresponding abelian extension ofK . This is the subject of explicit class �eld theory,
also know as Hilbert’s 12th problem. When K = Q, the theorem of Kronecker–Weber guarantees
that Kab is generated by the special values

exp(2⇡iz), z 2 Q
1
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of the transcendental exponential function. The aspiration to extend this to more general number
�elds is known as Kronecker’s Jugendtraum, and these lectures are about the case of quadratic ex-
tensions of Q. The construction of such a transcendental function will take very di�erent forms for
imaginary and real quadratic �elds, and remains conjectural for the latter.

CM theory. The theory of complex multiplication for elliptic curves gives a very concrete con-
struction of all �nite abelian extensions of an imaginary quadratic number �eld K . The method is
to consider elliptic curves EQ whose ring of endomorphisms is isomorphic to an order in K . All �-
nite abelian extensions ofK may then be obtained by adjoining combinations of two basic invariants
attached to E: Its j-invariant, and the x-coordinates of its torsion points.

By means of an example, a classical result due to Weber, which uses some re�ned statements in
CM theory and the theory of Weber functions, shows that

j(
p
�14) = 23

✓
323 + 228

p
2 + (231 + 161

p
2)

q
2
p
2� 1

◆
3

.

This number lies in the Hilbert class �eld H = K(
p
2
p
2� 1) of K = Q(

p
�14). Many other ex-

amples may be computed by hand, and fast algorithms are available for precisely determining explicit
generators for any �nite abelian extension of imaginary quadratic �elds.

Meromorphic cocycles. If one naively tries to adapt the methods of CM theory to construct
abelian extensions of real quadratic �elds, one immediately runs into a number of seemingly insur-
mountable di�culties. One of these arises at a very basic level: Real quadratic singularities do not
lie in H, where the j-function is de�ned! The main goal of these notes is to discuss a proposal for a
p-adic analogue of singular moduli, as discussed in recent work with Henri Darmon.

The idea is to replace the prime 1 by a �nite prime p. Unlike H, the p-adic upper half plane
Hp contains many real quadratic points ⌧ 2 Hp \ K , where K ⇢ Cp is a real quadratic �eld in
which the prime p is either inert or rami�ed. We will refer to such points as RM points. They are
characterised by the fact that their stabiliser in � = SL

2

(Z[1/p]) is an in�nite cyclic group generated
by a matrix �⌧ 2 � whose eigenvalues belong to O⇥

K . The group � acts on holomorphic functions
O⇥ and meromorphic functions M⇥ via the usual weight 0 action. Because the �-orbits in Hp are
dense for the rigid analytic topology, we have

H0(�,O⇥) = H0(�,M⇥) = C⇥
p

We therefore look at the �rst cohomology group H1(�,O⇥) instead, consisting of one-cocycles c :
� �! O⇥ satisfying

c(�
1

�
2

) = c(�
1

) + �
1

· c(�
2

),

taken modulo 1-coboundaries, of the form c(�) = � · f � f , for f 2 O⇥. A class in H1(�,O⇥) is
called a (multiplicative) rigid analytic cocycle for �, and one in H1(�,M⇥) is called a (multiplicative)
rigid meromorphic cocycle.

The value of a rigid meromorphic cocycle �⇥ at the RM point ⌧ is de�ned to be

�⇥[⌧ ] := �⇥(�⌧ )(⌧) 2 Cp,

a numerical invariant which depends only on the class of � in cohomology and not on the choice of
cocycle representing it. We de�ne, for any RM point ⌧

1

, a multiplicative rigid meromorphic cocycle
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�⇥
F for �, with values in the set of meromorphic functionsM⇥/C⇥

p . Its values

Jp(⌧1, ⌧2) := �
⇥
⌧1(⌧2)

conjecturally satisfy many properties analogous to those enjoyed by singular moduli. As an example,
consider the golden ratio !, which satis�es !2 = ! + 1. We calculate that

J
3

(!, 4
p
2) = �70�35

p
5+40

p
2�40i+16

p
10�20

p
�5�70
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p
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Both of these are generators for the compositum H
12

of the Hilbert class �elds H
1

and H
2

of the
orders Z[

p
5] and Z[

p
2]. The denominator is 5 ·13, and both of these primes are divisors of a number

of the form 5 · 8� x2.
Outline. After quickly recalling some classical results from CM theory in Section 1, we move to

the theory of quadratic forms, which occupy center stage in the proposed p-adic strategy for explicit
class �eld theory of real quadratic number �elds. This topic is discussed in Section 3 using the Con-
way topograph, a combinatorial tool that makes many of the later constructions more natural. We
then introduce techniques from p-adic analysis, and interpret some earlier constructions of Darmon
from the viewpoint of rigid analytic cocycles, introduced in Section 2. Finally, we introduce rigid mero-
morphic cocycles in Section 4, by making a synthesis of the p-adic analytic theta functions considered
in quaternionic settings with the work on rational period functions on the Riemann sphere by Knopp,
Ash, Choie–Zagier, and Duke–Imamoglu–Toth.

1. C�������� CM ������ ��� �������� ������

We start by recalling some classical results from the theory of complex multiplication for elliptic
curves. The algebraic values of the transcendental function j(⌧) are called singular moduli, and enjoy
many interesting arithmetic properties. We recall some of these results, due to Gross–Zagier at the
end of this section.

1.1. Abelian extensions of imaginary quadratic �elds. We will start by recalling the main the-
orem of CM theory, as presented by Shimura [Shi70, Section 5]. As the set of CM elliptic curves is
countable, it is easy to see that j(E) 2 Q for EQ an elliptic curve with CM byK . The main theorem
of complex multiplication �ne-tunes our understanding of the set j(E)� , where � 2 Aut(C/K).

Let K be an imaginary quadratic extension of Q. The Artin map ' : CK ! Gal(Kab/K) is
surjective, and more precisely, there is an exact sequence

1 �! K⇥A⇥
K,1 �! A⇥

K

'K�! Gal(Kab/K) �! 1,

where A⇥
K,1 is the archimedean part of the idèles. Let E be an elliptic curve with CM by K , where

we have normalised the isomorphism EndQ(E) ' K s.t. the endomorphism corresponding to � 2
K acts on the cotangent space at the origin as multiplication by �. We know that there exists an
isomorphism

⇠ : C/a
⇠�! E

for some lattice a inK . Let p be a rational prime, and de�neKp = K ⌦Q Qp. Then ap = a⌦Z Zp is
a lattice inKp. We now recall how to multiply a lattice by an idèle ofK :
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Lemma 1.1. Let x 2 A⇥
K , then there exists a lattice xa in K such that (xa)p = xpap for all p, and we

have a commutative diagram, where the horizontal maps are isomorphisms

Kp/ap Kp/xpap

K/a K/xa

xp

x

Remark. The above decomposition ofK/a into local pieces is taken from Shimura [Shi70, Section
5.2], and there is a much more general version for torsion modules over a Dedekind domain. A very
precise description is given in Silverman [Sil09, Section II.8].

This gives us a method to modify a lattice a in K by an idèle. The main theorem of complex
multiplication says that this is precisely the modi�cation needed to obtain the lattice corresponding
to the image of E under the Galois action associated with the idèle via class �eld theory.
Theorem 1.2. Let � 2 Aut(C/K), and s 2 A⇥

K an element corresponding to � |
Kab via the Artin

map attached toK . There exists an isomorphism ⇠s : C/s�1a �! E� such that the following diagram
commutes:

K/a E

K/s�1a E�

⇠

⇠s

s

�1
�

Themain theoremhas far-reaching consequences, and in particular it allows us to recover a number
of classical results on explicit class �eld theory due to Kronecker, Weber, Takagi, and Hasse. From the
main theorem, it follows that j(a)� = j(s�1a), so that j(a)� only depends on the restriction of � to
Kab. It follows that j(a) 2 Kab, and the action of the element corresponding to s is via multiplication
by s�1 on the lattice. We can in fact be much more precise about the nature of the numbers j(a):
Corollary 1.3. Let a be a proper ideal of an order O inK , then we have

• K(j(a)) is the ring class �eld of O over K ,
• The map Gal(K(j(a))/K)! Cl O : � 7! b, where j(a)� = j(b�1a), is an isomorphism,
• We have deg(K(j(a))/K) = deg(Q(j(a))/Q),

All of this, and much more, is proved in Shimura [Shi70, Section 5]. We have omitted the important
role of the coordinates of torsion points, which are needed to generate all ray class �elds ofK , together
with the values of the j-invariant. These two di�erent proofs foreshadow the determination of the
non-archimedean and archimedean contributions to the celebrated height calculations of Heegner
points on X

0

(N) in [GZ86].

1.2. Singular moduli. The main theorems of CM theory for elliptic curves tell us that whenever
⌧ 2 H generates a quadratic order of class number one, the number j(⌧) is an integer. This is a
crucial ingredient of Heegner’s proof of the celebrated class number one problem, which states that
there are precisely 9 quadratic imaginary �elds with class number one, tabulated here:
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Field EQ with CM by maximal order j(E)

Q(
p
�1) y2 = x3 + x 26 · 33

Q(
p
�2) y2 = x3 + x 26 · 53

Q(
p
�3) y2 + xy = x3 � x2 � 2x� 1 0

Q(
p
�7) y2 = x3 + 4x2 + 2x �33 · 53

Q(
p
�11) y2 + y = x3 � x2 � 7x+ 10 �215

Q(
p
�19) y2 + y = x3 � 38x+ 90 �215 · 33

Q(
p
�43) y2 + y = x3 � 860x+ 9707 �218 · 33 · 53

Q(
p
�67) y2 + y = x3 � 7370x+ 243528 �215 · 33 · 53 · 113

Q(
p
�163) y2 + y = x3 � 2174420x+ 1234136692 �218 · 33 · 53 · 233 · 293

A striking feature of the values of j at imaginary quadratic points, often called singular moduli, is
that they are highly divisible. This observation was made precise, and proved for norms of arbitrary
singular moduli, by Gross and Zagier [GZ85]. For simplicity, let us assume that �

1

,�
2

are two
negative fundamental discriminants which are coprime. We de�ne the product

J(�
1

,�
2

) =

0

@
Y

[⌧1],[⌧2]

(j(⌧
1

)� j(⌧
2

))

1

A

4
w1w2

,

where the product runs over SL
2

(Z)-equivalence classes of quadratic imaginary numbers ⌧
1

and ⌧
2

of
discriminant�

1

and�
2

respectively, and wi is the number of torsion elements in the quadratic order
of discriminant �i. Gross and Zagier [GZ85] prove an explicit formula for the integer J(�

1

,�
2

)2,
which has the following consequence

Theorem 1.4 (Gross–Zagier). If l is a prime dividing J(�
1

,�
2

)2, then
✓
�

1

l

◆
,

✓
�

2

l

◆
6= 1, and l | �1

�
2

� b2

4

for some b <
p
�

1

,�
2

.

Gross and Zagier [GZ85] o�er two proofs of this theorem, one using Deuring’s lifting theorem for
supersingular elliptic curves, and one using an analytic calculation using the diagonal restriction of
an Eisenstein series in two variables.

2. R���� �������� ��������

The groupPGL
2

(Qp) acts naturally on the p-adic upper half planeHp byMöbius transformations,
and the spaces O and M of rigid analytic and rigid meromorphic functions on Hp is equipped, for
each even integer k, with a weight k action given by

(1) (f |k�)(⌧) =
det(�)k/2

(c⌧ + d)k
f

✓
a⌧ + b

c⌧ + d

◆
, where � :=

✓
a b
c d

◆
.

Write Ok for the space O endowed with this action. In this section, we will discuss rigid analytic
cocycles, i.e. elements of

H1(�,Ok), where � := SL
2

(Z[1/p]).
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The partial lifts of certain weight two cocycles under the logarithmic derivative map
dlog : H1(�,O⇥) �! H1(�,O

2

)

are introduced, and the Gross–Stark units of [DD06] and the Stark–Heegner points of [Dar01], which
are conjecturally de�ned over ring class �elds of real quadratic �elds, will be interpreted as RM values
of these multiplicative cocycles. These values are natural substitutes for the CM values of classical
modular forms.

2.1. Modular symbols and the residue map. As it is more convenient to work with modular sym-
bols than with parabolic cocycles, we now recall some standard de�nitions. If ⌦ is an abelian group,
we say an ⌦-valued modular symbol is a function

m : P1(Q)⇥P1(Q) �! ⌦,

satisfying
m{r, s} = �m{s, r}, m{r, s}+m{s, t} = m{r, t} for all r, s, t 2 P1(Q).

The space of ⌦-valued modular symbols is denoted MS(⌦). If ⌦ has an action of PGL
2

(Q), then
MS(⌦) is naturally endowed with the PGL

2

(Q)-action de�ned by
(m|�){r, s} := (m{�r, �s}) |�.

The space of �-invariant modular symbols MS�(⌦) := H0(�,MS(⌦)) is related to cohomology by
the exact sequence
(2) 0 �! ⌦� �! ⌦�1 �! MS�(⌦) �! H1(�,⌦) �! H1(�1,⌦).

This sequence is obtained from exact sequence of Z[�]-modules

(3) 0 �! ⌦ �! Fct(P1(Q),⌦)
d�! MS(⌦) �! 0,

where df{r, s} := f(s)�f(r), andFct(P1(Q),⌦) be the�-module of⌦-valued functions onP1(Q).
Now let us specialise to the case⌦ = O

2

. In that case, the above exact sequence induces an injection
MS�(O

2

) ,! H1(�,O
2

), whose image we call the parabolic cohomology group H1

par

(�,O
2

). After
choosing a base point r 2 P1(Q), the cohomology class � := �(�

0

) associated to �
0

2 MS�(O
2

) is
de�ned by �(�) = �

0

{r, �r}. Parabolic cocycles are very closely related to classical modular forms,
as the following classi�cation theorem shows.

Theorem 2.1 (Darmon–V.). There is a Hecke-equivariant isomorphism, which we call the Schneider–
Teitelbaum lift:

LST : MS�0(p)(Cp)
⇠�! MS�(O

2

).

The proof of this theorem is inspired by the proofs of analogous results in the case where � is
replaced by an appropriate quaternionic group. It relies on the Poisson kernel function introduced by
Teitelbaum, as well as the control theorem of Stevens for overconvergent modular symbols.

There are precisely two conjugacy classes of parabolic subgroups of �
0

(p), the group P1 con-
sisting of the upper triangular matrices, which stabilise the cusp1, and the group P

0

consisting of
lower triangular matrices, which stabilise the cusp 0. The �

0

(p)-module Fct(P1(Q),Cp) therefore
decomposes as a direct sum of the two induced modules

Fct(P1(Q),Cp) = Ind�0(p)
P1

Cp � Ind�0(p)
P0

Cp,
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and the �
0

(p)-cohomology of the exact sequence (3) with ⌦ = Cp leads to a short exact sequence

(4) 0 �! Cp �! MS�0(p) �! H1

par

(�
0

(p),Cp) �! 0.

2.2. Multiplicative cocycles and the multiplicative Schneider-Teitelbaum lift. The logarith-
mic derivative gives a natural isomorphism

dlog : O⇥/C⇥
p �! O

2

sending the local section f to f 0/f , where f 0 denotes the derivative with respect to ⌧ . It induces a
similar map
(5) dlog : MS�(O⇥/C⇥

p ) �! MS�(O
2

)

on the space of �-invariant modular symbols. The space dlog(O⇥) ⇢ O
2

is called the space of rigid
di�erentials of the third kind on Hp, and consists of di�erentials whose image under @ are Z-valued
harmonic functions on T ⇤

1

. The image of (5) is likewise called the space of rigid analytic modular
symbols of the third kind.

Proposition 2.2. There is a Hecke equivariant map

L⇥
ST

: MS�0(p)(Z) �! MS�(O⇥/C⇥
p )

for which the diagram

MS�0(p)(Z)
L⇥
ST //

� _

✏✏

MS�(O⇥/C⇥
p )

dlog

✏✏

MS�0(p)(Cp)
LST // MS�(O

2

)

commutes.

The map L⇥
ST

is called the multiplicative Schneider-Teitelbaum lift. It is constructed by setting, for
each m 2 MS�0(p)(Z),

(6) L⇥
ST

(m){r, s}(z) := ⇥
Z

P1
(Qp)

(z � t)dµm{r, s}(t) := lim
{U↵}

Y

↵

(z � t↵)
m{r,s}(U↵),

where the limit of “Riemann products" on the right-had side is taken over �ner and �ner coverings
{U↵} of P1(Qp) by open balls, the point t↵ is any sample point in U↵, and

m{r, s}(U↵) := m{�r, �s}, with � 2 �, �U↵ = Zp.

2.3. Lifting obstructions and RM values. Given �̄ 2 MS�(O⇥/C⇥
p ) ⇢ H1(�,O⇥/C⇥

p ), it is
natural to ask whether it lifts to a “genuine" multiplicative class in H1(�,O⇥). The obstruction to
lifting �̄ to such a class lies inH2(�,C⇥

p ) and is the image of �̄ under the connecting homomorphism
� in the following long exact cohomology sequence:

· · · // H1(�,C⇥
p ) // H1(�,O⇥) // H1(�,O⇥/C⇥

p )
� // H2(�,C⇥

p ) // · · ·

De�nition 2.3. The class  := �(�̄) 2 H2(�,C⇥
p ) is called the lifting obstruction attached to �̄. A

subgroupQ ⇢ C⇥
p is said to trivialise this lifting obstruction if the natural image of  inH2(�,C⇥

p /Q)
is trivial.
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If Q trivialises the lifting obstruction for �̄, then this class lifts to an element of H1(�,O⇥/Q).
This lift is unique up to elements of order 12, since the abelianisation of � is a quotient of (Z/12Z)
and therefore

H1(�,C⇥
p /Q) ⇢ (C⇥

p /Q)[12].

In conclusion, after replacing Q by a slightly larger group (containing Q with �nite index) one can
thus associate to any modular symbolm 2 MS�0(p)(Z) a canonical multiplicative cocycle

(7) � 2 H1(�,O⇥/Q)

of weight zero “modulo Q". The trivialising subgroup Q is a subtle invariant ofm and a careful anal-
ysis is required to identify it in each case.

The guiding philosophy of multiplicative rigid meromorphic cocycles is that their RM values are
algebraic invariants in ring class �elds of the associated real quadratic �eld. To illustrate this, let us
use this classi�cation of rigid analytic cocycles to investigate the lifting obstructions and RM values
of both the universal cocycle and the

2.4. Example: The universal cocycle. The one-dimensional kernel of the short exact sequence (4)
is spanned by the modular symbolm

univ

de�ned by

(8) m
univ

{r, s} =

8
<

:

1 if r ⇠ 0 and s ⇠ 1,
�1 if r ⇠ 1 and s ⇠ 0,
0 otherwise,

where r ⇠ s means that r, s 2 P1(Q) are �
0

(p)-equivalent.
We now illustrate the guiding philosophy discussed above for the multiplicative universal cocycle

�̄
univ

{r, s}(z) := L⇥
ST

(m
univ

) =

✓
z � s

z � r

◆
(mod C⇥

p ).

The explicit nature of this universal cocycle renders all proofs elementary, and the following propo-
sition is left to the reader as an exercise.

Proposition 2.4. The lattice Q
univ

of C⇥
p generated by �1 and p trivialises the lifting obstruction for

�̄
univ

. More precisely, the class �̄
univ

admits a canonical lift to a class inMS�(O⇥/Q
univ

).

We now consider the RM values of the lifted cocycle �
univ

. If F (x, s) = ax2 + bxy + cy2 is a
binary quadratic form of discriminant � = b2 � 4ac, then its root is ⌧F = (�b+

p
�)/2a, while its

stabiliser is generated by

�F =

✓
u� bv �2cv
2av u+ bv

◆
, u2 ��v2 = 1,

where u + v
p
� is a fundamental solution to Pell’s equation. A straightforward calculation shows

that
�
univ

[⌧F ] = �univ

{r, �⌧r}(⌧F ) = u± v
p
D (mod Z)[1/p]⇥,

for any r 2 P1(Q).
It follows that the cocycle �

univ

takes algebraic values at RM points, albeit somewhat uninterest-
ing ones, since they always belong to the �eld of “real multiplication" and are just a power of the
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fundamental unit in this �eld. More precisely, �
univ

[⌧ ] is a fundamental unit in the order associated
to ⌧ .

2.5. Example: Elliptic modular cocycles. Let E be an elliptic curve of prime conductor p, and let
fE be the modular form attached to E, then we have

Z s

r
(2⇡i)fE(z)dz = m+

E{r, s} · ⌦
+

E +m�
E{r, s} · ⌦

�
E ,

where ⌦+

E and ⌦�
E are real and imaginary periods attached to E, and m±

E 2 MS�0(p)(Z). Consider
the multiplicative Schneider-Teitelbaum lifts

�̄+

E , �̄
�
E 2 MS�(O⇥/Q⇥

p )

of m+

E and m�
E respectively, and let +E and �E 2 H2(�,Q⇥

p ) denote the associated lifting obstruc-
tions. Recall the Tate p-adic period qE 2 Q⇥

p attached to E, and let

 E,p : C
⇥
p /q

Z
E �! E(Cp)

denote the Tate uniformisation of E. Theorem 1 of [Dar01] can be stated as follows:

Theorem 2.5. There are lattices Q+

E andQ�
E ⇢ Q⇥

p which are commensurable with the Tate lattice qZE
and trivialise +E and �E respectively.

After slightly enlarging the latticesQ±
E , the classes �̄

±
E lift uniquely to classes�±

E 2 H1(�,O⇥/Q±
E).

Let t be an integer for which (Q±
E)

t ⇢ qZE . After replacing the multiplicative cocycles �±
E by their

t-th powers power and reducing modulo qZE , we may view �+

E and ��
E as elements ofH1(�,O⇥/qZE),

whose values at RM points ⌧ 2 Hp can then be viewed as elements of E(Cp) by applying the Tate
uniformisation  E,p. One thus obtains two p-adic variants

�+

E , �
�
E : �\HRM

p �! E(Cp)

of the classical modular parametrisation attached to E.

Conjecture 2.6. Let E be an elliptic curve of conductor p and let K be a real quadratic �eld in which
p is inert. For all ⌧ 2 Hp \K ,

(1) the point �+

E [⌧ ] 2 E(Cp) is de�ned over the ring class �eld ofK attached to O⌧ ;
(2) the point ��

E [⌧ ] 2 E(Cp) is de�ned over the narrow ring class �eld ofK attached to O⌧ , and is
in the (�1)-eigenspace for the action of complex conjugation.

This conjecture suggests that the multiplicative cocycles �±
E attached to E carry arithmetic infor-

mation about E that is just as rich and useful as the classical modular parametrisation, allowing the
construction of global points onE that cannot be obtained (as far as we know) from the more classical
parametrisations of elliptic curves by modular or Shimura curves. Extensive numerical evidence for
this conjecture has been gathered in [Dar01], [DG02], [DP06], and (in much more general settings) in
[GM14] and [GM15].
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3. �������� ����� ��� ��� C����� ���������

3.1. Binary quadratic forms. A binary quadratic form, or simply quadratic form, is a homogenous
polynomial of degree two in Z[x, y]. We will usually write

F (x, y) = ax2 + bxy + cy2,

where a, b, c 2 Z are the coe�cients of F . The quadratic form F is said to be primitive when
gcd(a, b, c) = 1, and we will exclusively consider primitive forms in what follows. An important
invariant of a quadratic form is its discriminant � = b2 � 4ac. Quadratic forms with � > 0 are
called inde�nite, those with� < 0 are called de�nite, and those with� = 0 are called parabolic. Def-
inite quadratic forms come in two �avours: Positive de�nite forms take only positive values, negative
de�nite forms take only negative values.

The central subject of study is the following action of the group SL
2

(Z) on the set of quadratic
forms:

F (x, y) · � = F (qx+ ry, sx+ ty) where � =

✓
q r
s t

◆
.

This de�nes a right action of GL
2

(Z) on the set of quadratic forms which preserves primitivity, and
leaves the discriminant invariant. Two quadratic forms in the same SL

2

(Z)-orbit are called equivalent.
The group SL

2

(Z) is generated by the elements

S =

✓
0 �1
1 0

◆
, and T =

✓
1 1
0 1

◆
.

This gives rise to the equivalences ha, b, ci ⇠ hc,�b, ai and ha, b, ci ⇠ ha, b+ 2a, a+ b+ ci. The set
of equivalence classes of primitive quadratic forms of a given discriminant� has a natural structure
of an abelian group, called the (narrow) class group Cl+(�). Every class of Cl+(�) however does
still consist of an in�nitude of quadratic forms, and has an internal structure exhibited visually by the
Conway topograph.

3.2. Conway’s topograph. Conway [Con97] presents a convenient visual method for investigating
quadratic forms. Not only is it enlightening to think of an equivalence class of quadratic form this way,
it often leads to short and clear proofs. All the pictures here are taken from the excellent treatment
by Hatcher [Hat17].

It is well–known that
SL

2

(Z) ' C
4

⇤
C2 C6

,

and such an amalgam corresponds to an action of SL
2

(Z) on a tree by Bass–Serre theory [Ser80],
which in this case is a 3-regular tree. We may interpret this tree in concrete terms as follows:

• Vertices = “Superbases”: {e
1

, e
2

, e
3

}/± 1, which are vectors of Z2 such that any two of them
form a basis, and e

1

+ e
2

+ e
3

= 0,
• Edges = Bases of Z2 up to sign: {e

1

, e
2

}/± 1,
• Regions = Primitive vectors of Z2 up to sign,
• Adjacency = Inclusion.

This incidence structure yields a 3-regular tree embedded in the plane, which we call the topograph.
Given a quadratic form F , we may visualise its SL

2

(Z)-orbit QF by assigning numbers to all
regions and edges, as well as an orientation to the edges. To a region corresponding to a vector in Z2,
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we attach the value of F on this vector. To every edge we assign the second coe�cient of F in the
corresponding basis. We assign an orientation to every edge to keep track of orderings of the basis,
where the convention is that the value assigned to an edge is always positive, and the region to the
left corresponds to the �rst basis vector. Starting with F = hp, h, qi, we �ll in the numbers of the
topograph step by step as follows. Start with an arbitrary edge, and attach p and q to the two regions
bordering the edge, and attaching h to the edge itself, as well as the orientation for which p is on the
left, and q is on the right.

Now proceed by computing s = p+ q+ h and r = p+ q� h. The value of the edge between p and s
is the positive square root of�+4ps, and its orientation is pointing towards q if q > p+ s and away
from q otherwise. Here are two examples of topographs as shown in Hatcher [Hat17]. Complete this
picture by determining the orientations of the edges:

To turn our practical computations into rigorous proofs, the following simple lemma often su�ces.

Lemma 3.1 (Climbing lemma). Suppose q, p, and h in the �gure above are positive. Then the number s
is also positive, and the edges adjacent to s point away from the vertex shared by p, q, and s.

The proof of this lemma is a very easy veri�cation, and it gives us the following schematic rendition
of the topograph locally around an edge where all the numbers are positive:
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The shape of the topograph reveals much of the inner workings of an orbit of quadratic forms, and
can be an extremely enlightening thing to keep in mind. We will now try and be as explicit as possible
about the topograph in the various cases considered above.

3.3. De�nite forms. For de�nite forms, every orbit consists of either positive or negative de�nite
forms. The operation ha, b, ci 7! h�a, b,�ci interchanges positive and negative de�nite forms, and
there is no essential di�erence between the two theories. Let F = ha, b, ci be a primitive positive
de�nite quadratic form. We say F is reduced if

|b|  a  c, and b � 0 if either |b| = a or a = c.

A negative de�nite form is reduced if its corresponding positive de�nite form is. Reduced forms will
play the role of distinguished elements in an SL

2

(Z)-orbit. This de�nition is equivalent to saying
that one of the roots of F lies in the standard fundamental domain for the action of SL

2

(Z) via linear
fractional transformation on the upper half plane H.

Every de�nite form is equivalent to a unique reduced form. Since for a reduced form we have
b2  a2 and a  c, and hence � = b2 � 4ac  a2 � 4a2 = �3a2, we obtain a practical method for
�nding all primitive reduced forms of a given discriminant � < 0. Here are some examples:

� Reduced forms � Reduced forms
�3 ±h1, 1, 1i �19 ±h1, 1, 5i
�4 ±h1, 0, 1i �20 ±h1, 0, 5i,±h2, 2, 3i
�7 ±h1, 1, 2i �23 ±h1, 1, 6i,±h2,±1, 3)
�8 ±h1, 0, 2i �24 ±h1, 0, 6i,±h2, 0, 3i
�11 ±h1, 1, 3i �27 ±h1, 1, 7i
�12 ±h1, 0, 3i �28 ±h1, 0, 7i
�15 ±h1, 1, 4i,±h2, 1, 2i �31 ±h1, 1, 8i,±h2,±1, 4i
�16 ±h1, 0, 4i �32 ±h1, 0, 8i,±h3, 2, 3i

There is no essential di�erence between postive and negative de�nite forms, so let us assume that
we are dealing with a positive de�nite form F . To describe the Conway topograph of F , note that by
the climbing lemma, if we follow the �ow of the arrows then the values of all regions keep increasing.
Retracing our steps, we see that there must be a ‘source’ or ‘well’ in the topograph, depicted in the
following illustrations:
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If the �rst case occurs, the form F must necessarily be of order at most 2 in the class group.

3.4. Inde�nite forms. The theory for inde�nite forms is signi�cantly richer and more mysterious
than its de�nite counterpart. Gauß introduced a notion of reduced form that still allows us to show
that the number of orbits is �nite. To simplify our presentation, we assume throughout that� > 0 is
not a square, and will brie�y discuss the degenerate case of � = h2 at the end of this section.

Following Gauß, we say that the inde�nite form F = ha, b, ci of discriminant � > 0 is reduced if

0 <
p
�� b < 2|a| <

p
�+ b.

This condition is equivalent to the following condition on the roots �� < �+:
⇢

�� < �1, �+ 2 (0, 1) if a � 0
1 < �+, �� 2 (�1, 0) if a < 0

Again, reduced forms will play the role of distinguished elements in an SL
2

(Z)-orbit, with one very
important di�erence: There can be many more than one reduced form per orbit! For instance, the
two forms of discriminant � = 2021 given by

h5, 41,�17i and h19, 11,�25i
are SL

2

(Z)-equivalent, even though they are both reduced.
Let us now investigate the topograph attached to an inde�nite form F . Assume �rst that� > 0 is

not a square. Then there must be an edge adjacent to regions with opposite signs, and we see that on
either side of this edge, there must be another edge with the same property. The edges that separate
positive and negative values must therefore be an in�nite chain, which Conway calls the river.

By the climbing lemma, if we move away from the river into the positive side, the values will contin-
uously increase, whereas they will continuously decrease as we venture into the negative side. The
condition pq < 0 means that h2 � 4pq = � only has a �nite number of solutions, and hence the
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river must eventually become periodic! This means that the topograph has non-trivial translation
symmetries, corresponding to matrices in SL

2

(Z) that �x our given quadratic form. We now see that
the stabiliser is projectively in�nite cyclic. Gauss’ notion of reduced form corresponds to an edge of
the river where the trees hanging o� the river switch from the negative side to the positive side, or
conversely. In the above picture of the form x2 � 3y2 we obtain exactly 2 reduced forms.

Finally, assume � = h2 is a square, and say h is positive. The quadratic form has rational roots
and hence represents 0. There is therefore a region labelled 0, which Conway calls a lake:

Because we are in the case where h 6= 0, there are two distinct rational roots, and hence there are
exactly two lakes in the topograph. As in the above picture, the regions adjacent to the lake have
values that form an arithmetic progression, and hence they must change sign at some step. This
shows that they must each sprout o� a river, which then necessarily connect and form the following
picture:

It is possible, as the example h0, 2, 0i shows, that the length of the river between the two lakes is zero,
in which case the two lakes share an edge. See Conway [Con97] for more pictures and details.

4. R���� ����������� ��������

We now come to the de�nition of rigid meromorphic cocycles. The motivation will come from the
work of Ghys and Duke–Imamoglu–Toth, concerning linking numbers of modular knots.
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4.1. Linking numbers of modular knots. We start by discussing the rational period functions
and associated cocycles that arise, notably, in the work of Knopp, Ash, Choie–Zagier, and Duke–
Imamoglu–Toth. A folklore result, see for instance [?], asserts that the quotient space

SL
2

(Z)\SL
2

(R)

has the structure of a real analytic threefold, and is isomorphic to the complement of a trefoil knot
(see �gure) in the 3-sphere S3.

Since the quotient SL
2

(Z)\SL
2

(R)/SO
2

(R) is isomorphic to the a�ne modular curve Y (1), we
may uniquely lift a geodesic on Y (1) to SL

2

(Z)\SL
2

(R). Given an inde�nite integral binary quadratic
form, we obtain a closed geodesic on Y (1) by considering the quotient of the geodesic connecting
the roots of F in the upper half plane. This means that to any inde�nite form F , we can attach its
modular knot

S1 ,! SL
2

(Z)\SL
2

(R).
Since the latter space is the complement of a trefoil knot in S3, it is natural to ask what the linking
number of the modular geodesic attached to F with the trefoil knot is. This question was answered by
Ghys, who connected this topological linking number to the Dedekind–Rademacher symbol. Going
one step further, Duke–Imamoglu–Toth relate the linking number of the modular geodesics attached
to two inde�nite forms F and G to a curious cocycle, which is the object we will �nd a p-adic coun-
terpart for.

If r and s are elements of P1(Q), let �(r, s) denote the geodesic on H̄ := H [ R [ {1} joining
r to s and oriented in the direction from r to s. The complement of this geodesic in H̄ is partitioned
into two disjoint connected subsets

H̄� �(r, s) := H+[r, s] [H�[r, s],

labelled with the convention that, as one is travelling along �(r, s) in the positive direction from r to s,
the regionH+[r, s] is to one’s right and the regionH�[r, s] is to one’s left. Any binary quadratic form
G is said to be linked to �(r, s) if its roots belong to distinct connected components of H̄��(r, s). In
that case we writew+

G andw�
G for its root inH+[r, s] andH�[r, s] respectively. Fix a binary quadratic

form F . While the class QF is in�nite, the subset

QF [r, s] := {G 2 QF such that G is linked to �(r, s)}

is �nite. The function !F : P1(Q)⇥P1(Q) �! C(z) de�ned by

(9) !F (r, s) :=
X

G2QF [r,s]

1

z � w+

G

� 1

z � w�
G

is easily seen to be an SL
2

(Z)-invariant modular symbol of weight two.
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By formally integrating and exponentiating the modular symbol !F , or in other words applying
the inverse of the isomorphism

dlog : M⇥(H)/C⇥ �!M
2

(H),

one obtains a multiplicative variant of weight zero, which is de�ned by

(10) ⇥F (r, s) :=
Y

G2QF [r,s]

✓
z � w+

G

z � w�
G

◆
.

Let
✓F 2 H1(SL

2

(Z),M⇥(H)/C⇥)

denote the image of ⇥F under the coboundary map. Although this “classical" modular cocycle only
takes values in the quotientM⇥(H)/C⇥, the obstruction to lifting ✓F to a genuine modular cocycle
with values in M⇥(H) lies in H2(SL

2

(Z),C⇥) which is trivial, since SL
2

(Z) is essentially a free
group. Since H1(SL

2

(Z),C⇥) = µ
12

, and hence the lift of ✓F to H1(SL
2

(Z),M⇥(H)) is essentially
unique, up to 12-th roots of unity. By an abuse of notation, we will continue to denote by ✓F this
essentially unique lift to H1(SL

2

(Z),M⇥(H)/µ
12

).
If G is any inde�nite binary quadratic form which does not lie in QF , we can attach to it a non-

trivial, well-de�ned numerical invariant

J1(F,G) =
✓F (�G)(wG)

✓F (�G)(w0
G)

,

where �G is a generator of the group of automorphs of G and wG and w0
G are the two roots of G.

This quantity is algebraic, but not in an interesting way, since it merely lies in the (biquadratic) �eld
generated by the roots of F and G. The authors of [DIT] relate it to the topological linking number
of the modular geodesics attached to F and G in the circle bundle SL

2

(Z)\SL
2

(R) over SL
2

(Z)\H.

4.2. Rigid meromorphic cocycles. Let F be a primitive, integral, inde�nite binary quadratic form
of non-square discriminant�. LetQ(p)

F denote the �-orbit of F . It consists of binary quadratic forms

ax2 + bxy + cy2, a, b, c 2 Z[1/p], gcd(a, b, c) = 1, b2 � 4ac = �.

We set
Q(p)

F [r, s] := {G 2 Q(p)
F such that G is linked to �(r, s)}.

For G 2 Q(p)
F [r, s], we continue to use the notation w+

G and w�
G from the previous section to denote

the roots of G that, as one travels along the geodesic from r to s, lie to the right and left respectively.
In addition we de�ne

wG =
�b+

p
�

2a
, sgn(G) =

⇢
1 if wG = w+

G

�1 if wG = w�
G

The set Q(p)
F [r, s] is naturally a disjoint union Q(p)

F [r, s] = Q(p)
F [r, s]+ [Q(p)

F [r, s]�, where

Q(p)
F [r, s]± = {G 2 Q(p)

F [r, s] : sgn(G) = ±1}.
We now de�ne
(11) ⇥F (r, s)(z) :=

Y

G2Q(p)
F [r,s]

[z � wG]
sgn(G)
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Unlike the product in (10), this product is in�nite. We will show below that it converges to a mero-
morphic function on Hp, and de�nes a �-invariant modular symbol modulo constants.

Theorem 4.1. (a) For all r, s 2 P1(Q), the in�nite product in (11) converges to a rigid-meromorphic
function:

⇥F (r, s)(z) 2M⇥.

(b) The assignment (r, s) 7! ⇥F (r, s) is a modular symbol with values in M⇥, which means that for
all r, s, t 2 P1(Q) we have the equalities

⇥F (r, s) = ⇥F (s, r)�1,
⇥F (r, s)⇥⇥F (s, t) = ⇥F (r, t),

(c) The modular symbol ⇥F is �-invariant up to multiplicative constants, i.e.,

⇥F (�r, �s)(�z) = ⇥F (r, s)(z) (mod K⇥
p ).

Proposition 4.2. The group p2�1
p
"Z trivialises the restriction to SL

2

(Z) of the lifting obstruction F ,
where " is the fundamental unit of the quadratic �eld de�ned by F .

4.3. Meromorphic period functions. The aim of this section is to classify elements ofMS�(M
2

),
whereM

2

is the space of meromorphic function onHp endowedwith the weight 2 action of� de�ned
by (1). As a consequence, we deduce that the modular symbols

⇥F 2 MS�(M⇥/C⇥
p )

constructed above are essentially the only examples.
The key role in our classi�cation is played by a p-adic analogue of the rational period functions

introduced by Knopp [Kno78]. Any m 2 MS�(M
2

) is determined by the meromorphic function
f = m{0,1}. This function satis�es a number of properties, which are formalised in the following
de�nition.

De�nition 4.3. A rigid meromorphic period function is a function f 2M
2

satisfying:
• f |(1 + S) = 0,
• f |(1 + U + U2) = 0,
• f |Dp = f .

Call Per
2

the space of all rigid meromorphic period functions. For example,

�F := dlog⇥F (0,1) =
X

G2Q(p)
F [0,1]

sgn(G)

z � wG

is easily seen to de�ne an element in Per
2

. We will now show that any element of Per
2

is a �nite
linear combination of these, up to a holomorphic function. We borrow many ideas of Choie–Zagier
[CZ93], who classify rational functions on P1(C) subject to similar conditions.

Theorem 4.4. Any f 2 Per
2

may be written as a �nite linear combination of period functions of the
form �F , up to a holomorphic period function onHp. In other words, we have a decomposition

Per
2

= (Per
2

\O
2

)
M

F

Cp�F ,

where the sum runs through inde�nite binary quadratic forms F with non-square discriminant.
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4.4. Arithmetic intersection numbers of RM points. LetHRM
p denote the set of real multiplica-

tion points in Hp that lie in the standard a�noid. An element ⌧ 2 HRM
p is the zero of a primitive

integral binary quadratic form F⌧ , which is unique up to sign. The discriminant of F⌧ is called the
discriminant of ⌧ . The class group of a given discriminant D acts on the set, denoted SL

2

(Z)\HD
p ,

of SL
2

(Z)-orbits ⌧ 2 HRM
p of discriminant D. Let Cp denote the compositum of all the quadratic

extensions of Qp.

Conjecture 4.5. There exists a function

Jp : HRM
p ⇥HRM

p �! Cp

satisfying the following properties:

(1) (Relation with the meromorphic cocycles ✓F ). For all ⌧1 and ⌧
2

as above, which are zeroes of
quadratic forms F

1

and F
2

of discriminants D
1

and D
2

,

✓F1 [⌧2] =
Jp(⌧1, ⌧2)

Jp(⌧̄1, ⌧2)
.

(2) (Algebraicity and integrality). The p-adic number Jp(⌧1, ⌧2) is an algebraic integer in the com-
positum H

12

:= H
1

H
2

of the ring class �elds of discriminants D
1

and D
2

.

(3) (Shimura reciprocity law). Suppose that�
1

and�
2

are relatively prime to each other, so that
class �eld theory gives an identi�cation

Gal (H
12

/H
1

K
2

) = Gal (H
2

/K
2

) = Pic(R⌧2).

For all � in this group and all ⌧
1

, ⌧
2

2 HRM

p of discriminant �
1

and �
2

respectively,
Jp(⌧1, ⌧2)

� = Jp(⌧1, ⌧
�
2

).

(4) (Arithmetic intersections). Let q 6= p be a prime that is inert or rami�ed in both K
1

and in
K

2

, and hence splits completely in H
12

/K
12

. Then there exists a prime q above q for which
ordq(Jp(⌧1, ⌧2)) = Ipq(F1

, F
2

),

where Ipq(F1

, F
2

) is a certain q-weighted intersection number between themodular geodesics
attached to F

1

and F
2

, in the circle bundle on the Shimura curve attached to a maximal order
in the inde�nite quaternion algebra of discriminant pq.

(5) (Factorisation). The norm

Jp(D1

, D
2

) := Jp(⌧1, ⌧2) :=
Y

�2Gal (H12/K12)

J(⌧�1
1

, ⌧�2
2

)

belongs toK
12

\Qp = Q(
p
D

1

D
2

) and the quantity Jp(⌧1, ⌧2) =: Jp(⌧1, ⌧2) is only divisible
by primes l which are inert or rami�ed in both Q(

p
�

1

) and Q(
p
�

2

), and which divide a
positive integer of the form (D

1

D
2

� b2)/4.

The conjectural quantity J(⌧
1

, ⌧
2

) is called the p-adic arithmetic linking number between the RM
points ⌧

1

and ⌧
2

. It generalises the arithmetic intersection
J(⌧

1

, ⌧
2

) = j(⌧
1

)� j(⌧
2

)

between CM points ⌧
1

and ⌧
2

that is studied in [GZ85].
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