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Abstract. These are the notes for a mini-course taught in Bordeaux, at the end of June 2019. They introduce

the theory of p-adic overconvergent modular forms, with an emphasis on their explicit computation, and discuss

some arithmetic applications, including the computation of p-adic L-functions of real quadratic �elds.

Introduction

The p-adic theory of modular forms goes back at least to the work of Serre [Ser73] and Katz [Kat73], and

has since taken up a central role in algebraic number theory, becoming an indispensable item in the toolbox

of many a mathematician working in the �eld. In these notes, we attempt to give a quick overview of the

basics of the theory, favouring explicit examples and computations over detailed proofs of the foundations

of the theory. As such, there will inevitably be some discussion that remains rather informal, particularly

surrounding the notion of eigencurves, but we hope that nonetheless these notes can provide some of the

intuition and ideas that underly the subject. For the reader interested in learning the subject thoroughly,

there is no substitute for the original papers that shaped the �eld, many of which are extremely well written,

such as for instance [Ser73, Kat73, Col96, Col97b, CM98, Buz03, Pil13].

The subject of overconvergent forms is not an unpopular one for mathematical events like this one, and

as a byproduct there are many good expository sources available, which I would be foolish to ignore. Most

notably, I borrowed several expository ideas and examples from the wonderful notes of Calegari [Cal13].

The �rst lecture will start from a historical perspective, discussing some of the early work on congruences

between modular forms in the spirit of the approach towards the subject due to Serre [Ser73]. As is also done

in loc. cit., our excursion will be motivated by a desire to construct the p-adic L-function of Kubota–Leopoldt

by means of the prototypical example of a p-adic family provided by Eisenstein series. This idea of Serre,

whereby information on the constant coe�cient of the Fourier expansion of a modular form is inferred

from the higher coe�cients, will be the recurrent theme around which we structure our discussion, and

will reappear many times in later lectures.

The success of the approach of Serre in constructing p-adic L-functions, as well as the shortcomings

inherent to the central role played by q-expansions, motivate us to reinterpret the constructions geometri-

cally, which we will do in the second lecture following Katz [Kat73]. We explore several important aspects

of the basic theory on a concrete example where the modular curve X0(p) has genus zero, and an explicit

orthonormal basis can be constructed, leading to a hands-on encounter with some spaces of overconvergent

modular forms and their properties. The discussion is presented in a way which I hope, perhaps naively,

will encourage (or at least enable) students to experiment with their own implementations, both to recover

the numerical data in the text, as well as to explore some slightly di�erent settings independently.
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After our preliminary computations with speci�c examples, the third lecture brie�y discusses the idea of

p-adic families of modular forms, and the eigencurve. As a reprise of Serre’s idea discussed in the previous

lecture, we use p-adic families of Eisenstein series to prove Leopoldt’s formula for the value Lp(χ, 0). The

rest of the lecture is focussed on the computation of spaces of overconvergent forms in general, using

the notion of Katz expansions, following Lauder’s algorithm [Lau11]. We use these algorithms to explore

some folklore conjectural properties about slopes of modular forms, and present some data related to the

Gouvêa–Mazur conjecture and Chow–Heegner points on elliptic curves.

In the fourth and �nal lecture, we come back to Serre’s idea from the �rst lecture, and discuss diagonal

restrictions of Hilbert Eisenstein series, and their relevance to both the theoretical construction, and the

practical computation, of p-adic L-functions of real quadratic �elds.

The prerequisites are a good knowledge of the classical theory of modular forms, and some familiarity

with their algebro-geometric de�nitions. In particular, the discussion on algebraic modular forms, the line

bundles ω⊗k on modular curves, Hecke correspondences, Tate curves, etc., will be very brief, and previous

exposure to these ideas would be helpful. An excellent treatment can be found in Loe�er [Loe14] That

said, these notes, and a fortiori the even more concise contents of the lectures, will not spend much time

developing the basic geometric theory, in favour of explicit computations. The uninitiated reader may

therefore opt to focus on the explicit aspects, and start experimenting before reading up on the more formal

aspects of the theory. We also use some very basic concepts from p-adic geometry, but certainly not enough

to merit a section on the topic. A casual reading of any basic summary of the subject will more than cover

it.

Finally, since these notes still have many rough corners and certainly contain many errors, I would be

grateful for any corrections or suggestions, which I warmly invite at vonk@maths.ox.ac.uk.
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1. Congruences between modular forms

Recall that the Ramanujan ∆-function is the unique normalised cusp form of weight 12 for the group

Γ = SL2(Z). Its q-expansion is given by the following in�nite product expansion due to Jacobi:

(1) ∆(q) = q

∞∏
n=1

(1− qn)24

We tabulate its �rst few Fourier coe�cients an for future reference:

(2)

n 1 2 3 4 5 6

an 1 −24 252 −1472 4830 −6048

n 7 8 9 10 11 12

an −16744 84480 −113643 −115920 534612 −370944

The explicit product expansion of the Ramanujan ∆-function, as well as basic facts about the dimensions

of spaces of cusp forms, allow us to easily establish a number of congruences between these Fourier coef-

�cients and the Fourier coe�cients of various other modular forms. Classically, some of the most famous

congruences satis�ed by ∆ are the following:

Example 1. The following congruence is due to Ramanujan [Ram16]. For any even k ≥ 4, consider the

weight k normalised Eisenstein series

(3) Gk(q) =
−Bk
2k

+

∞∑
n=1

σk−1(n)qn where σk−1(n) =
∑
d |n

dk−1

When k = 12, the constant term is equal to
691

65520 , whereas for k = 6 the constant term is
−1
504 . Since the

spaceM12(SL2(Z)) is two-dimensional, spanned by G12 and ∆, the form G2
6 must be a linear combination

of the two. Computing the �rst two terms of all three q-expansions, we �nd that

(4)

691

65520
· 5042 ·G6(q)2 = G12(q)− 756

65
∆(q)

and since all three modular forms involved have 691-integral q-expansions, we obtain as a consequence the

congruence G12(q) ≡ ∆(q) (mod 691). In particular, we see that for any prime p, we get the celebrated

Ramanujan congruence

(5) τ(p) ≡ 1 + p11 (mod 691).
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Example 2. The following example is due to Wilton [Wil30], and establishes a congruence modulo 23

between ∆ and a certain form of weight 1. We have the obvious congruence

(6) q

∞∏
n=1

(1− qn)24 ≡

(
q1/24

∞∏
n=1

(1− qn)

)
·

(
q23/24

∞∏
n=1

(1− q23n)

)
(mod 23)

and we recognise the right hand side as η(q)η(q23), where η(q) is the q-expansion of the Dedekind η-

function, which is a modular form of weight 1/2 for some character χ24 of the metaplectic double cover of

SL2(Z), of order 24. Using the Euler identity

(7)

∞∏
n=1

(1− qn) =
∑
n∈Z

(−1)nq
3n2+n

2

one can prove (see exercises) that we have the congruence

(8) q

∞∏
n=1

(1− qn)24 ≡ 1

2

∑
u,v∈Z

(
qu

2+uv+6v2 − q2u
2+uv+3v2

)
(mod 23).

We deduce from this identity (see exercises) that for any prime p 6= 23 we get the following congruences

(9)


τ(p) ≡ 0 (mod 23) if

(
−23
p

)
= −1,

τ(p) ≡ 2 (mod 23) if

(
−23
p

)
= 1 and p = u2 + 23v2,

τ(p) ≡ −1 (mod 23) if

(
−23
p

)
= 1 and p 6= u2 + 23v2,

Note that the right hand side of (8) is a modular form of weight 1. It is in fact a Hecke eigenform, with

an associated Artin representation that we can identify easily: Consider the quadratic �eld

(10) K = Q(
√
−23),

which has class number 3. Its Hilbert class �eld H is obtained by adjoining a root of the polynomial

(11) f(x) = x3 − x− 1

which has discriminant−23. The representation ρH of Gal(Q/Q) obtained from the unique 2-dimensional

irreducible representation of its quotient Gal(H/Q) ' S3 gives a 2-dimensional Artin representation. The

traces of Frobenius match up with the Fourier coe�cients of the right hand side of (8) (see exercises).

Example 3. Finally, we note that using a similar argument to the one used in the previous example, we

obtain the congruence

(12) q

∞∏
n=1

(1− qn)24 ≡ q
∞∏
n=1

(1− qn)2(1− q11n)2 (mod 11)

The right hand side is the weight 2 newform of level Γ0(11), associated to the elliptic curve

(13) E : y2 + y = x3 − x2 − 10x− 20

The three examples of congruences above are of very di�erent �avours, and illustrate di�erent but related

phenomena that arise in the p-adic theory of modular forms:

• The �rst is a congruence between a cusp form and an Eisenstein series, of the same weight. Such

congruences are central to the subject of Iwasawa theory, and directly related to the notion of the

Eisenstein ideal. We will not discuss this theme much during these lectures, though it will no doubt
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appear in many of the other lectures.

• The second is a congruence between two cusp forms, of di�erent weights. This �ts in the framework

of p-adic families of modular forms, as developed by [Hid86b, Hid86a, Col97b, CM98] and many

others. This example has special signi�cance, in the sense that it exhibits congruences between a

modular form of weight 1 and a modular form of higher weight. The existence of such congruences

are a crucial ingredient in the proof of Deligne–Serre [DS74] of the existence of Artin representa-

tions attached to modular forms of weight 1.

• The third is again a congruence between two cusp forms of di�erent weights, one of them being as-

sociated to an elliptic curve. Unlike the previous example there is no simply phrased criterion on the

prime (for instance, a congruence condition) that predicts the congruence class of the p-th coe�cient

modulo 11. The reason is that this rule is governed by the traces of the Galois representation associ-

ated to the 11-adic representation attached to the elliptic curve E : y2 + y = x3−x2−10x−20. It

can be shown that its mod 11 reduction, which is the Galois representation on the 11-torsion points

of this curve, has image equal to GL2(F11). Since this group is not solvable, the law governing

the traces of Frobenius of various primes is not given by a simple expression. In contrast, in the

previous example this law was governed by the splitting behaviour in a generalised dihedral (and

hence solvable) extension with Galois group S3.

1.1. The p-adic family of Eisenstein series. In these notes, we will focus primarily on the theme of

congruences between modular forms of di�erent weights, and p-adic families. Traditionally, the theory was

built around the prototypical example of the Eisenstein family, as in Coleman [Col97b], until more recent

advances due to Pilloni [Pil13] and Andreatta–Iovita–Stevens [AIS14] on the geometric interpolation of line

bundles, which allows us to develop the theory abstractly, without building it around the Eisenstein family.

From a practical and computational point of view, this family remains of primordial importance, so we will

quickly review it, motivated by the strategy of Serre to show the existence of the Kubota–Leopoldt p-adic

L-function.

Recall that the Riemann zeta function ζ(s) may be analytically continued to the entire complex plane,

except for a simple pole with residue 1 at the point s = 1. It satis�es the functional equation

(14) π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

Of special importance are its values at negative odd integers (or equivalently, by the functional equation,

at positive even integers), which were computed �rst by Euler in 1734, and read on 5 December 1735 in the

St. Petersburg Academy of Sciences. The starting point for Euler was the easily veri�ed identity

(15) sin(πz) = πz
∏
n≥1

(
1− z2

n2

)
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By taking the logarithmic derivative, we obtain the following identities

πz cot(πz) =
∑
n∈Z

z2

z2 − n2
(16)

= 1− 2

∞∑
n=1

∞∑
k=1

z2k

n2k
(17)

= 1− 2

∞∑
k=1

ζ(2k)z2k(18)

On the other hand, the Bernoulli numbers are de�ned via the generating series

(19)

t

et − 1
=

∞∑
k=0

Bk
tk

k!

and hence we can formally extract the even part of this series as

1

2

(
t

et − 1
− −t
e−t − 1

)
=

t

2
· e

t/2 + e−t/2

et/2 − e−t/2
(20)

=
t

2
· coth

(
t

2

)
(21)

Bearing in mind that icoth(iz) = cot(z), we obtain the identity

(22) cot(z) =
1

z
+

∞∑
n=1

(−1)k22kB2k

(2k)!
z2k−1.

It now follows formally from (18) and (22) that

(23) ζ(2k) =
(−1)k−1(2π)2k

2(2k)!
B2k

and hence by the functional equation

(24) ζ(1− 2k) =
−B2k

2k
.

The fact that the values of the zeta function at negative odd integers is a rational number is remark-

able. Moreover, the Bernoulli numbers have many interesting p-adic properties, notably two results estab-

lished in the mid-19
th

century: The Clausen–von Staudt theorem [Cla40, vS40] and the Kummer congruences
[Kum51], which tell us the following:

Lemma 1.1. Suppose k, k′ are two positive even integers such that k ≡ k′ (mod (p− 1)pn), then

(25)

If (p− 1) - k : (1− pk−1)Bk/k ≡ (1− pk′−1)Bk′/k
′ (mod pn+1)

If (p− 1) | k : vp (Bk/k) = −1− vp(k)

The proof requires work. The Kummer congruences especially are a striking property of Bernoulli num-

bers, suggesting that suitably modi�ed values of the zeta function at negative odd integers interpolate to

a p-adically continuous (or indeed, analytic) function. This was proved by Kubota–Leopoldt [KL64], and

there is a good chance that their work will be discussed in the course of Ellen Eischen.

Instead of discussing the arguments of Kummer [Kum51] and Kubota–Leopoldt [KL64] we will look at a

suggestion of Serre, who observed that the congruences of Bernoulli numbers given in (27) can be upgraded

to congruences between q-expansions of modular forms. Notice �rst that we see from the above theorem
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that the Bernoulli numbers need to be modi�ed in order to interpolate nicely. Likewise, we need to adjust

the Eisenstein series introduced above, by setting

(26) G
(p)
k = (1− pk−1Up)Gk

which is a modular form for Γ0(p), often referred to as a p-stabilisation of Gk . Likewise, we de�ne E
(p)
k

to be its normalised version, whose constant coe�cient is 1. Observe now that elementary congruences

for the non-constant (henceforth called higher) Fourier coe�cients yield an upgraded version of the above

congruences, as the statement that whenever k ≡ k′ (mod (p− 1)pn) we have

(27)

If (p− 1) - k : G
(p)
k (q) ≡ G

(p)
k′ (q) (mod pn+1)

If (p− 1) | k : E
(p)
k (q) ≡ E

(p)
k′ (q) (mod pn+1)

The observation of Serre [Ser73] was that in establishing these congruences of Eisenstein series, there

is a striking dichotomy between the congruences between the constant terms (which are the Kummer con-

gruences, and hence somewhat deep) and the higher coe�cients (which follow trivially from Fermat’s little

theorem, and are hence not deep). His idea was to try and obtain the Kummer congruences, and hence the

construction of the Kubota–Leopoldt zeta function ζp(s), by inheriting congruences of a more elementary

nature from the higher coe�cients, through the notion of p-adic modular forms. This idea, whereby in-

formation on the constant coe�cient is transferred from the higher coe�cients, will appear several times

throughout these lectures, and is very powerful and useful in a variety of contexts. We will mark the para-

graphs where it comes back by a small light bulb in the margin as shown here.

1.2. p-Adic modular forms. We now follow Serre [Ser73] and establish some basic de�nitions of p-adic

modular forms. We follow Serre in restricting to the case of level 1 modular forms de�ned over Qp, but

reassure the reader who is nervous about this that these assumptions will eventually be lifted when we

adopt the more geometric viewpoint due to Katz in the next lecture.

For any formal power series in the variable q given by

(28) f(q) = a0 + a1q + a2q
2 + . . . ∈ QpJqK,

we de�ne vp(f) = infn(vp(an)), where vp is the usual p-adic valuation on Qp. We de�ne the space of

p-adic modular forms to be the collection of f(q) ∈ QpJqK such that there is a sequence fi satisfying

(29) vp(f(q)− fi(q))→∞, fi ∈Mki(SL2(Z),Q).

A p-adic modular form f(q) therefore is obtained as a limit of q-expansions of classical modular forms.

The following important proposition of Serre [Ser73, § 1.3 Théorème 1] states that the sequence of their

weights ki must tend to a limit p-adically. Its proof, which lies much deeper than the rest of the contents

of [Ser73] which are otherwise largely established by elementary means, is merely sketched here, since we

have not yet introduced the necessary objects (such as the Hasse invariant).

Proposition 1.2. Let f, g be two classical modular forms of weights k, ` on SL2(Z), both nonzero and nor-
malised such that vp(f) = 0. Suppose that we have

(30) vp(f − g) ≥ m

for some positive integerm, then it must be true that

(31)

k ≡ ` (mod (p− 1)pm−1) if p ≥ 3

k ≡ ` (mod 2m−2) if p = 2
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Proof. Let us brie�y sketch the proof, for p ≥ 5. Let M be the ring of modular forms modulo p,

obtained by reduction from classical modular forms with p-integral q-expansion. Its structure can

be determined following Swinnerton–Dyer: Since we are in level 1, the algebra of modular forms in

characteristic zero is generated by the Eisenstein series E4 and E6, and hence

(32) M ' Fp[x, y]/a

for some ideal a If A is the Hasse invariant, then clearly (A − 1) ⊆ a. Since A has simple zeroes,

the ideal (A − 1) must be prime, and therefore (A − 1) = a since a is clearly not maximal, and the

Krull dimension of Fp[x, y] is 2. As an immediate consequence, we see that M is the direct sum of the

reductions of modular forms whose weight is in a �xed residue class modulo (p − 1). The statement

of the theorem then immediately follows in the case m = 1.

For general m, set h = k′ − k and suppose that vp(h) < m− 1. First one calculates that

(33) fφ = g (mod p), φ =
∑
n≥1

σh−1(n)qn

where g is a multiple (by a p-unit) of the modular form p−vp(h)−1(f Eh−f ′). Since f and g have the

same weight modulo (p−1), this shows that φ is in the �eld of fractions ofM0, the summand ofM of

reductions of forms whose weight is divisible by (p− 1), which is isomorphic to the ring of functions

on the ordinary locus of the modular curve modulo p. On the other hand, we have

(34) φ− φp ≡ ψ :=
−1

24

(
qd

dq

)h−1
(E2)

which is an element of M0, and since M0 is integrally closed (since the ordinary modular curve is

irreducible) it follows that φ ∈ M0. On the other hand, Serre uses a weight �ltration argument to

show directly that φ 6∈M0, which is a contradiction. �

As a consequence of this proposition, every p-adic modular form f has a well de�ned weight

(35) k := lim←−
i

ki ∈ Zp×Z /(p− 1)Z = lim←−
m

Z /(p− 1)pm Z .

This is the point where Serre is able to realise the idea of “inheriting” congruences for the constant terms

of Eisenstein series, from the much more elementary congruences between their higher coe�cients.

Theorem 1.3 (Serre). Suppose we have a sequence of p-adic modular forms of weights ki:

(36) fi(q) = a
(i)
0 + a

(i)
1 q + a

(i)
2 q2 + . . .

which satisfy the following two properties:

• The sequences a(i)n tend uniformly to a limit an ∈ Qp,
• The weights ki tend to a limit k 6= 0.

Then the constant terms a(i)0 tend to a limit a0, and the q-series

(37) f(q) = a0 + a1q + a2q
2 + . . . ∈ QpJqK

is a p-adic modular form.
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Proof. Assume for simplicity that p ≥ 3, the proof of the case p = 2 being nearly identical. Let m

be such that the image of ki in Z /pm(p − 1)Z is eventually equal to a �xed non-zero class for all i

large enough, which is possible by the second assumption. By Proposition 1.2, applied to the forms

fi(q)/a
(i)
0 (of weight ki) and the constant 1 (of weight 0) we obtain

(38) inf
n≥1

vp(a
(i)
n ) = vp(fi(q)− a(i)0 ) ≤ vp(a(i)0 ) +m

By the �rst assumption, the quantity on the left is bounded from below. It follows that vp(a
(i)
0 ) is

bounded from below as i grows, and hence there is a subsequence that converges. For any other

convergent subsequence, the di�erence of the limits is a p-adic modular form of weight k, but it is also

equal to the di�erence of the limits of the constant terms, and hence of weight 0. Since k 6= 0, this is

only possible if the two limits of constant terms are equal. The theorem follows. �

Notice that we may use the above theorem to show the existence of a continuous function interpolating

the constant terms of the Eisenstein family! This therefore gives a construction of the Kubota–Leopoldt

p-adic L-function function. The rest of the paper of Serre pushes this idea even further, and strengthens this

signi�cantly by deducing also its analytic properties. In particular, the above arguments may be strength-

ened to give an e�ective version of the claimed convergence, whose rate may be controlled to truly recover

the Kummer congruences for Bernoulli numbers from elementary congruences between the higher coe�-

cients.

Hecke operators. We mention that the space of p-adic modular forms is also equipped with actions of

Hecke operators, as was shown by Serre [Ser73, §2] (see exercises). The action of these Hecke operators

may be given explicitly on a p-adic modular form f(q) = a0 + a1q + a2q
2 + . . . of weight k by

(39) T`f(q) =
∑
n≥0

a`nq
n + `k−1

∑
n≥0

anq
`n

when ` 6= p is prime, and by

(40) Upf(q) =
∑
n≥0

anpq
n, Vpf(q) =

∑
n≥0

anq
np.

Despite the great success of establishing the existence of the Kubota–Leopoldt p-adic L-function, this is a

point where the theory of p-adic modular forms starts lacking a bit. Indeed, it was de�ned in a rather ad-hoc

fashion, and its de�nition based solely on q-expansions lacks any kind of rigidity, and we have captured a

tremendous amount of power series in the space of p-adic modular forms. One way in which this became

apparent is that the spectrum of the Hecke operators is far from interesting. For example, every element of

Cp is an eigenvalue of Up on the space of p-adic modular forms, base changed to Qp!

1.3. Exercises. We now collect some exercises related to the material discussed in this lecture, mostly

�lling in the gaps of some arguments that were merely sketched above.

1. Prove the Euler identity (7), and use it to deduce (8). Finally, show that the resulting weight 1

modular form congruent to ∆ modulo 23 satis�es, for almost all p, that

ap = Tr(ρH(Frobp)).

2. Prove that the operators T`, Up, Vp on the space of q-expansions preserve the subspace of p-adic

modular forms of weight k, as claimed in the text.
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3. Prove that the q-expansion

E2(q) = 1 + 24
∑
n≥1

(∑
d|n

d
)
qn

is a p-adic modular form, for all primes p. (Hint: Use the Hecke operators Up and Vp)

4. Unlike what we know for classical modular forms, there is no obstruction to a p-adic modular form

having a negative weight. Show that the q-expansion

E4(q)−1 = (1 + 240q + 2160q2 + 6720q3 + . . .)−1

= 1− 240q + 55440q2 − 12793920q3 + 2952385680q4 + . . .

is a 2-adic, 3-adic, and 5-adic modular form of weight −4. Finally, prove that for any p, there exists

a p-adic modular form of negative weight, by generalising your argument.

5. Prove that the weight of a p-adic modular form f is well-de�ned. In other words, if there exist two

sequences of modular forms fi and gi, such that

vp(f − fi) −→ ∞,
vp(f − gi) −→ ∞,

then the weights of the sequences fi and gi have the same limit in Zp.

6. Let f be any p-adic modular form, and λ ∈ pZp. Show that

fλ = (1− λVp)−1f [p], where f [p] = (1− VpUp)f

exists as a p-adic modular form, has the same weight as f , and Upfλ = λfλ.
1

7. (?) Prove that if f ∈Mk(Γ0(p)), then f(q) is a p-adic modular form of weight k.

2. Overconvergent modular forms

Last time, we encountered the Kubota–Leopoldt p-adic zeta function, and explored an idea of Serre that

uses the p-adic Eisenstein family to construct it. This culminated in the notion of p-adic modular forms,

which served a great purpose, but otherwise seems lacking in good structural properties, as evidenced by

the absence of an interesting spectrum of Hecke operators (see the exercises in the previous section). In

today’s lecture, we will follow Katz in reinterpreting the viewpoint of Serre geometrically, and identifying

much smaller (though still in�nite-dimensional) subspaces of the space of p-adic modular forms.

We will assume some familiarity with the algebro-geometric theory modular forms. Excellent expositions

can be found for instance in Katz [Kat73], Calegari [Cal13], and Loe�er [Loe14].

2.1. The Hasse invariant. Suppose S is a scheme over Fp, then there is an absolute Frobenius morphism

(41) Fabs : S −→ S

given on a�ne opens by the map on functions f 7→ fp. If X/S is an S-scheme, we de�ne the scheme

X(p) = X ×S S where the �bre product is taken over S, viewed as an S-scheme via Fabs. The relative

1
Extending scalars to Cp, the same argument shows that any λ ∈ Cp of positive valuation is an eigenvalue of Up.



OVERCONVERGENT MODULAR FORMS 11

Frobenius morphism F = FX/S is de�ned by the following commutative diagram, where the square is

Cartesian:

(42) X(p)

S

X

S

X

Fabs

Fabs

FX/S

Notice that the relative Frobenius is an S-linear morphism, whereas the absolute Frobenius is not! Also,

the scheme X(p)
is hardly a mysterious thing: Suppose X is of �nite type over Fq /Fp, then X(p)

is given

by the same equations as X , but where all the coe�cients are raised to the p-th power. Note that if q = p,

then we have X(p) = X .

Now suppose that E/S is an elliptic curve, then the relative Frobenius F = FE/S is an isogeny, and

hence has a dual isogeny V :

(43)

F : E −→ E(p)
“Frobenius ”

V : E(p) −→ E “Verschiebung ”

Suppose now that S = Spec(Fp), then we de�ne

(44)

{
E is ordinary if E[p](Fp) 6= 1

E is supersingular if E[p](Fp) = 1

In general, we say E/S is ordinary/supersingular if all its geometric �bres are.

Proposition 2.1. Suppose E/S is an elliptic curve, and S is an Fp-scheme. Then we have:

• E/S is ordinary if and only if V : E(p)−→E is étale.
• E/Fp is supersingular, only if E is de�ned over Fp2 .

Proof. We can factor the multiplication by p map as

(45) [p] : E
F−→ E(p) V−→ E.

This implies that V is separable if and only if Ker(V )(Fp) 6= 1 on all geometric �bres. Since the kernel

of Frobenius only has the trivial geometric point, this is equivalent to Ker([p])(Fp) 6= 1. This proves

the �rst statement. For the second statement, we have that E/S is supersingular if and only if V is

inseparable, which means it must factor through Frobenius:

(46) V : E(p) F−→ E(p2) −→ E

The latter map must be �nite of degree 1, and hence an isomorphism. Thus E is de�ned over Fp2 . �

Finally, we de�ne the Hasse invariant of an elliptic curveE/RwhereR is a ring of characteristic p. First,

choose ω ∈ H0(E,Ω1
E/R) to be an R-basis, and let

(47) η ∈ H1(E,OE)

be the R-basis de�ned via Serre duality. The Hasse invariant A(E,ω) ∈ R is de�ned by

(48) F ∗abs(η) = A(E,ω) · η

Note that by the previous proposition, E/Fp is ordinary if and only if A(E,ω) 6= 0 for any choice of ω.
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The Hasse invariant is a modular form of weight p − 1, in the following sense. Recall (see for instance

Katz [Kat73, Chapter 1]) that a weakly holomorphic modular form of weight k ∈ Z over a ring A is a rule

which assigns to any isomorphism class of pairs

(49) (E/R, ω)

where E/R is an elliptic curve over an A-algebra R, and ω is a global section of Ω1
E/R, an element

f(E/R, ω) ∈ R such that the following two properties are satis�ed:

• (Base change) If φ : R→ R′ is a morphism of A-algebras, then

(50) f ((E/R, ω)⊗φ R′) = φ (f(E,ω)) .

• (Weight k homogeneity) For all λ ∈ R× we have

(51) f(E, λω) = λ−kf(E,ω).

The q-expansion of a weakly holomorphic modular form f is de�ned as

(52) f(q) := f
(
Tate(q)Z((q)), ωcan)⊗R

)
∈ R((q)),

where Tate(q) is the Tate elliptic curve over Z((q)) de�ned by

(53) y2 + xy = x3 +Bqx+ Cq, ωcan =
dx

2y + x

with coe�cients de�ned by the explicit q-series in ZJqK

(54)

Bq =
∑
n≥1

−5σ3(n)qn

Cq =
∑
n≥1

−5σ3(n)− 7σ5(n)

12
qn

We say a weakly holomorphic modular form is an algebraic (or holomorphic) modular form if its q-expansion,

which a priori is an element of R((q)), is in fact in RJqK.

With these de�nition, the Hasse invariant is an algebraic modular form of weight p − 1. Indeed, the

functoriality is clear by de�nition, and for any λ ∈ R× we do the following formal calculation:

A(E, λω) · λ−1η = F ∗abs(λ
−1η)(55)

= λ−pF ∗abs(η)(56)

= λ1−p ·A(E,ω) · λ−1η(57)

We conclude that the Hasse invariantA de�nes an (algebraic) weakly holomorphic modular form of weight

p − 1 (and level one). It also has the following important properties, whose proof we omit, as they would

lead us too far a�eld:

• The q-expansion of the Hasse invariant was computed in [Kat73, KM85] and is simply given by

A(q) = 1. The proof is a beautiful argument using the Cartier operator.

• We already know that for E/k over k = Fp, the Hasse invariant vanishes if and only if E is

supersingular. In fact, it has simple zeroes in the sense that if R is a local Artinian k-algebra, and

E/R is such that V : E(p)−→E induces the zero map on tangent spaces, then it must be true that

there is a supersingular elliptic curve E0/k such that

(58) E0 ×k R ' E.
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2.2. Overconvergent modular forms. We now come to Katz’ geometric reinterpretation of Serre’s space

of p-adic modular forms, and introduce the notion of overconvergent modular forms. To phrase everything

as geometrically as possible, we will choose some auxiliary level structure to rigidify the moduli problem

of elliptic curves into something representable by a modular curve. The reader should keep in mind that

this is done just for simplicity, and in principle one may work directly on the moduli stack of level one, by

working with algebraic modular forms as we did in our discussion of the Hasse invariant.

The Hasse invariant A is a beautiful example of a modular form of weight p− 1 and level one. Suppose

we have a lift Ã of the Hasse invariant, meaning a modular form of weight p−1 over Zp whose q-expansion

is congruent to 1 modulo p. In this case, we have the elementary observation

(59) vp

(
Ã(q)p

n−1 − Ã(q)−1
)
−→ ∞

so that Ã(q)−1 is a p-adic modular form in the sense of Serre. See also the exercises in the previous section,

where this argument already appeared. This observation lies at the basis of the work of Katz [Kat73], who

showed that the space of p-adic modular forms of weight k ∈ Z is the set of sections of the line bundle ω⊗k

on the ordinary locus of the modular curve, where any lift Ã is invertible.

Let N ≥ 5 and p - N be a prime. We let X /Zp be the moduli space of generalised elliptic curves with

Γ1(N)-level structure, universal curve π : E −→X , and closed subscheme of cusps IC . We frequently

denote its generic and special �bres by X and X s respectively. Furthermore, we set

(60) ω := π∗Ω
1
E /X (log π−1 IC),

which is a line bundle on X . The Hasse invariant is the unique section

(61) A ∈ H0(X s, ω⊗p−1)

with q-expansion 1, and indeed more generally: any modular form with a given q-expansion and weight

is uniquely characterised by this data. Since the relative curve X /Zp is proper, every Cp-point extends

uniquely to an OCp-point, and we obtain a reduction map

(62) red : X (Cp)−→X s(Fp).

The inverse image red−1(x) of a closed point of the special �bre is isomorphic to a rigid analytic open disk.

We saw previously that the vanishing locus of the Hasse invariant is precisely the supersingular locus of

X s, which consists of a �nite set of closed points. Therefore, any lift of the Hasse invariant is invertible

on the ordinary locus Xord
, which is the a�noid whose set of Cp-points correspond to elliptic curves with

ordinary reduction. It is the complement of a �nite number of rigid analytic open disks.
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As a consequence, the space of p-adic modular forms of weight k ∈ Z is given by H0(Xord, ω⊗k). We saw

previously that this space is too large to have nice structural properties, prompting Katz to consider the

subspace of sections that extend to sections on a�noids strictly containing Xord
.

More precisely, let 0 ≤ r ≤ 1, and de�ne Xord ⊂ Xr ⊂ X rig
by

(63) Xr(Cp) := {x ∈ X(Cp) : vp(Ãx) ≤ r},

where Ãx is a local lift of the Hasse invariant A at x. Note we do not require a global lift of the Hasse

invariant to exist, which may fail in general when p ≤ 3. We de�ne the space of r-overconvergent modular
forms of integer weight k on Γ1(N) to be

(64) M†k(r) := H0(Xr, ω
⊗k).

These spaces come with a collection of Hecke operators T` for ` - Np, and U` for ` | N , which can be

de�ned by restricting the Hecke correspondences on X and have the usual e�ect on q-expansions.

In addition, the operators Up and Vp de�ned on p-adic modular forms may be de�ned geometrically,

and preserve the subspace of overconvergent modular forms. More precisely, they are de�ned for every

r < 1/(p+ 1) and have the following e�ect on the rate of overconvergence:

(65)

Up : M†k(r) −→ M†k(pr)

Vp : M†k(pr) −→ M†k(r)

In particular, the operator Up improves the rate of overconvergence. The reason for the existence of the

operators Up and Vp is the canonical subgroup section s of the natural forgetful map of modular curves,

which exists for any r < p/(p+ 1):

(66)

X(Γ1(N) ∩ Γ0(p))rig X rig

⊂

Xrs

This yields two ways to view spaces of overconvergent modular forms: On a�noid opens of X (no level at

p) or as a�noid opens of the modular curve with additional Γ0(p)-structure. For theoretical questions, the

latter is frequently more convenient, whereas for computational purposes, the former has advantages.

Extended example. Let us explore these rather abstract de�nitions in a particular case, to get a feeling

for the various objects involved. Consider the case where p = 2 and k = 0, in level one. In this case, we
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can be very explicit about the spaces of p-adic and r-overconvergent modular forms, both from the “tame”

viewpoint (in level one) or via the canonical subgroup section (on X0(2)).

2.2.1. The “tame” viewpoint. Consider the moduli stack X of elliptic curves. Of the 4 values in F4 for the

j-invariant, only j = 0 is supersingular, so that its special �bre at p = 2 has a unique supersingular point

corresponding to the vanishing locus of j. It follows that the ordinary locus onX is described by |j−1| ≤ 1,

and hence the space of 2-adic modular forms of weight 0 is isomorphic to

(67) C2〈j−1〉 =
{
a0 + a1j

−1 + a2j
−2 + . . . | an → 0

}
For any r, the space M†0 (r) de�nes a Banach space contained inside of this Tate algebra, which we can

explicitly identify through growth conditions on the coe�cients an. Precisely, we use the observation that

(68) j =
E3

4

∆

and E4 = 1 + 240(. . .) is the Eisenstein series of weight 4, which is a lift of the fourth power of the

Hasse invariant A4
. In particular, we �nd that on the supersingular disk (where ∆ is invertible, and hence

v2(∆) = 0, we have that

(69) v2(A) ≤ r ⇐⇒ v2(j) ≤ 12r.

and as a consequence, we get that the subspace of r-overconvergent forms is given by

(70) M†0 (r) =
{
a0 + a1j

−1 + a2j
−2 + . . . : |an|p12nr → 0

}
Finally, let us compute some Hecke operators, and see whether the obtained results make sense with what

is said above. First, note that we can compute very rapidly (most serious computer algebra packages like

Magma, PARI/GP, or Sage will already have a function implemented) the q-expansion of j−1. Given

any 2-adic modular form of weight 0, we can then compute its j−1-expansion very rapidly by the simple

observation that j−1 vanishes to order 1 at the cusp in�nity, and hence we can inductively subtract powers

of j−1 until we are left with zero. Carrying out this procedure in Magma [BCP97], we obtain that

U2j
−1 = −744 j−1

= −140914688 j−2

= −16324041375744 j−3

= −1528926232501026816 j−4

+ . . .

T3j
−1 = 356652 j−1

−16114360320000 j−2

+1298216343568384000000/3 j−3

+ . . .

T5j
−1 = 49336682190 j−1

−122566701099729715200000 j−2

+177278377115100363578123747328000000 j−3

+ . . .

where we calculated in reality hundreds of terms, which look rather unappetising. Things become very

interesting when we look at the 2-adic valuations of the coe�cients a1, a2, a3, . . . of U2j
−1

and T`j
−1

tabulated above, which give us the following sequences:

(71)

U2j
−1 : v2(an) = 3, 12, 20, 28, 35, 46, 52, 60, 67, 76, 86, 94, . . .

T3j
−1 : v2(an) = 2, 16, 32, 45, 60, 79, 91, 105, 120, 136, 154, 165, . . .

T5j
−1 : v2(an) = 1, 18, 33, 47, 61, 80, 92, 107, 121, 138, 155, 167, . . .



16 JAN VONK

We see very clearly that the latter two sequences grow roughly at the same rate, whereas the �rst one grows

signi�cantly more slowly! In fact, if we plot these three sequences in red, green, and blue respectively, for

the �rst two hundred terms, we obtain the following picture:

They all look like linear functions! The green and blue plots are virtually indistinguishable at this scale, and

look roughly like a linear function of slope 15. On the other hand, at this scale the red plot looks roughly

like a linear function of slope 8. This is precisely what we expected from the general theory, since j−1 is

r-overconvergent for any r (indeed, it converges on the entire modular curve X expect for a simple pole

at the cusp 0!) and its image under the U2-operator is therefore only guaranteed to be r-overconvergent

for any r < p/(p + 1) = 2/3. With respect to the identi�cation (70), this shows that the valuation of the

coe�cients should grow at least like a linear function of slope 8 = (2/3) · 12.

2.2.2. The “canonical subgroup" viewpoint. Even though we can compute things to our heart’s desire, it is

hard to get any more speci�c information in the tame description of this space. Following Buzzard–Calegari

[BC05], we will now see that we can get a lot of mileage from working on X0(2) instead, which we know

we can by the theory of the canonical subgroup. De�ne the Hauptmodul

(72) h = ∆(2z)/∆(z) = q
∏
n≥1

(1 + qn)24

which is a meromorphic function on X0(2) with a simple zero at the cusp∞, and a pole at the cusp 0. It is

related to the j-function by

(73)

h

(1 + 28h)3
= j−1

Using a Newton polygon argument, we see that we can �nd a canonical section of the forgetful map when-

ever vp(j
−1) > −8 exactly as predicted by the theory of canonical subgroups. Note also that in this case,

we see that this section does not extend to any larger region, so the result was optimal! This means that we

get an alternative description for (70) of the form

(74) M†0 (r) =
{
a0 + a1h+ a2h

2 + . . . : |an|p12nr → 0
}

The advantage is the following: The Hecke operators are de�ned as correspondences on X0(2), and hence

we know thatU2(h) and T`(h) are polynomials in h! This is in stark contrast with the tame situation, where

we got a rather mysterious set of power series, which we could compute to any accuracy, but never exactly.

In contrast, on X0(2) we can do the computation exactly, and we obtain:

U2(h) = 24h+ 2048h2

T3(h) = 300h+ 98304h2 + 16777216/3h3

T5(h) = 18126h+ 40239104h2 + 14696841216h3 + 1649267441664h4 + 281474976710656/5h5
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Together with (74), this can be seen as a complete description of the Hecke module M†0 (r). This is what is

used by Buzzard–Calegari [BC04] to determine the valuations of all the eigenvalues of U2 on this space, see

also the exercises where you will be guided towards this result in several steps.

A number of years ago, explicit computations of the sort we did above, and are about to do in the exercises,

were a popular theme in the literature, since they are often the only fruitful way to try and obtain informa-

tion about the eigenvalues of Up on spaces of overconvergent modular forms. The spectrum of Up remains

to this day an enigma, and is the subject of several celebrated conjectures in the literature, notably Buzzard’s

slope conjectures, and the Gouvêa–Mazur conjecture. We will review these conjectures in the next lecture.

For more about these questions, see for instance the works [Buz03, Buz04, BC04, BC05, BC06, BK05, Roe14]

and the references contained in them.

2.3. Spectral theory of Up. We �nish this section with some brief comments about a very important part

of the subject, which is the spectral theory of the Hecke operator Up. Spaces of r-overconvergent forms

may naturally be endowed with the structure of a Cp-Banach space, and we will see that this structure

allows us to develop a meaningful spectral theory for Up.

We begin by de�ning a norm ‖ · ‖r on M†k(r). Pick a point x ∈ Xr , let K be a �nite extension of the

residue �eld of x, and let Spec(K)→ XQp
be a point whose image corresponds to x. The properness of X

implies that this extends uniquely to a point ϕ : Spec(OK)→ X . Now let f ∈M†k(r), then ϕ∗f = afs for

some section s generating the trivial line bundle ϕ∗ω⊗k and some a ∈ OK . We set

(75) |f(x)| := |af |,

which is independent of the choice of s. The norm

(76) ‖f‖r := sup{|f(x)| : x ∈ Xr}

makes M†k(r) into a p-adic Banach space. This induces the structure of a p-adic Fréchet space on

(77) M†k := lim−→
r>0

M†k(r)

which we call the space of overconvergentmodular forms. The Banach spacesM†k(r) are in�nite-dimensional,

and there is a priori no meaningful way to talk about the spectrum of an operator, unless we know more.

Suppose we have a continuous bounded operator T on a separable Cp-Banach spaceB, then we say that

T is compact if it is the limit of operators of �nite rank. Equivalently, T is compact if and only if the image

of the unit ball is relatively compact. There is a well-developed spectral theory for compact operators, see

[Dwo62, Ser62, Col97b], which has the following pleasant consequences for compact operators:

• T has a discrete spectrum of non-zero eigenvalues

(78) |λ1| ≥ |λ2| ≥ . . .

where |λi| → 0 as i→∞, whose inverses are the roots of a well-de�ned characteristic series

P (t) = “det(1− Tt)”
= a0 + a1t+ a2t

2 + . . . , where ai → 0 as i→ 0.
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• For every v ∈ B there are constants ci and generalised eigenvectors vi with eigenvalue λi such

that for any ε > 0 we have (asymptotically in n) that

(79) ε−n

∥∥∥∥∥∥Tnv − Tn
∑
|λi|≥ε

civi

∥∥∥∥∥∥ −→ 0.

The constants ci are often called the coe�cients of the asymptotic expansion of v.

Now we turn to the speci�c case of Hecke operators acting on the Banach spaces M†k(r). Note that we

established that the operator Up exhibits a contractive nature, which is the underlying reason it improves

overconvergence as described by (65). Using this property, it can be shown that this implies that the operator

Up is compact, and hence it possesses a well-de�ned characteristic series. Here is one concrete way to

think about this series (and indeed, to compute it in examples!) as explained by Serre [Ser62] and Coleman

[Col97b, Theorem A2.1]: Suppose we have an orthonormal basis

(80) {f1, f2, f3 . . .} for M†k(r),

then we obtain an in�nite matrix representation of Up. In the example above, where p = 2 and k = 0, we

already noted that we have an algorithm to compute this matrix exactly, or at least any �nite submatrix of

it. To see what compactness really means in practice, we compute the �rst 10× 10 submatrix with respect

to the basis fi = (28h)i of the cuspidal subspace, and look at the 2-adic valuations of its entries:

(81) v2(U2(i, j))i,j =



3 8

3 7 11 16

8 12 17 19 24

7 11 15 21 23 27 32

11 19 20 25 27 35 35 · · ·
11 16 20 24 27 33 35

17 19 24 29 34 35

15 20 23 27 31 38

19 24 27 37 36
.
.
.

.
.
.


Here, we omitted the entries of U2 that were equal to zero. The compactness of Up in orthonormalisable

situations like this one is equivalent to the statement that the column vectors converge uniformly to 0 in

the in�nite matrix representation. In the above example, that certainly looks plausible, as the entries of the

columns seem to have valuation which grows roughly at the same rate. To contrast this with what happens

in general, let us compute with respect to the same basis the �rst 10× 10 submatrix for T3:

(82) v2(T3(i, j))i,j =



2 12 16

7 2 11 20 27 32

8 8 2 14 17 28 34 46 48

11 8 2 12 19 29 36 43

16 9 10 2 12 16 32 34 · · ·
16 15 12 7 2 11 22 28

18 19 8 8 2 16 18

23 19 17 12 9 2 13

24 25 18 17 10 12 2
.
.
.

.
.
.


Notice the stark contrast with the matrix of U2. Whereas the general entry of every column seems like it

tends to zero (as it should, since T3 still de�nes an operator on the Banach space M†0 (2/3) after all) it does
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not look like the general column tends uniformly to zero. Most strikingly, the diagonal entries all seem to

have valuation 2, suggesting this operator is not compact.

For the operator U2 we can also compute an approximation for its characteristic series P (t), using the

above matrix. One can easily analyse to which precision the given answer is correct, but we will ignore

such issues here. We truncate the matrix for U2 as above, and obtain a polynomial whose coe�cients are

2-adically close to those of P (t). Using a Newton polygon argument, we check that the valuations of the

eigenvalues of U2 on the full space M†0 (r) for any r are as follows:

(83) 01, 31, 71, 131, 151, 171, . . .

Here, we denote the valuations of the eigenvalues by bold type, and the multiplicity of that valuation by a

subscript. It is striking that these are all integers, since there is no a priori reason that they should be! In this

particular example, there is an explicit expression for the general term in this sequence (see the exercises)

proving in particular that every valuation in this in�nite sequence is an integer, and occurs with multiplicity

one.

In general, the valuations of the eigenvalues of Up are usually referred to as the slopes of this Hecke

operator, and they are the subject of many results and conjectures in the literature. There are few cases

where things can be proved explicitly, and in general there is a conjectural recipe to �nd the sequence of

slopes, known as Buzzard’s slope conjectures. They remain today completely mysterious. See [Buz05, BC05,

BK05, Roe14, BP16, LWX17] and the references contained therein.

2.4. Exercises. We collect a handful of exercises related to the material in this section.

1. Prove that if f ∈Mk(Γ0(p)), then f(q) is a p-adic modular form of weight k.

2. Consider the modular function U2j − 744, where j is the usual Klein invariant

j(q) =
1

q
+ 744 + 196884q + . . . =

∑
n≥−1

anq
n

and show that it is in the cuspidal subspace of M†0 (2/3) of overconvergent 2-adic modular forms.

Deduce from our computation of 2-adic slopes (83) the congruence proved by Lehner [Leh49] which

states that for all n > 0 we have

an ≡ (mod 23m+8) whenever n ≡ 0 (mod 2m).

3. Let h be the Hauptmodul de�ned in (72). Prove that for n ≥ 2 it satis�es the recursion

Up(h
n) = (48h+ 4096h2)Up(h

n−1) + hUp(h
n−2).

We know from (74) that the powers of 26h form an orthonormal basis of the Banach spaceM†0 (1/2).

Prove that the (i, j)-th entry in the matrix for Up with respect to this basis is given by

3j(i+ j − 1)!22i+2j−1

(2i− j)!(2j − i)!

4. Assume without proof
2

that there exist matrices A,B with entries in Z2 which are both congruent

to the identity matrix modulo 2, and such that ADB equals the matrix of Up computed in the

2
This was shown by Buzzard–Calegari [BC05, Lemma 4] via an explicit construction, followed by a really intriguing direct com-

putation using a hypergeometric summation formula.
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previous exercise, where D is the diagonal matrix with (i, i)-th entry given by

24i+1(3i)!2i!2

3(2i)!4
.

Deduce that the matrix of Up has a characteristic series whose Newton polygon is the same as that

for the matrix D. Conclude that the slope sequence (83) is none other than the sequence

1 + 2v2

(
(3n)!

n!

)
.

3. Families of modular forms

In this lecture, we make some �nal remarks on families of modular forms, before we discuss how to

compute explicitly with overconvergent modular forms in general.

3.1. The eigencurve. The above constructions may be extended to incorporate families of elliptic curves,

culminating in the existence of the eigencurve, which is a mysterious geometric object that provides a very

helpful mental picture to have in mind when thinking about families of overconvergent modular forms.

The theory is due mainly to Coleman [Col96, Col97b] and Coleman–Mazur [CM98] and was revisited more

recently by Pilloni [Pil13] and Andreatta–Iovita–Stevens [AIS14], who provided an extremely satisfactory

and �exible framework. We content ourselves with a very brief discussion in these notes.

We start by noting that the geometric theory of overconvergent forms due to Katz has some crucial

drawbacks. Most notably, it is restricted to the setting of integral weights k ∈ Z, whereas already Serre’s

theory of p-adic modular forms allows for more general weights in Zp. As a consequence, it is di�cult to

get a theory of continuous (analytic) families of modular forms in di�erent weights, if we cannot interpolate

p-adically between weights. To overcome the lack of a sheaf ωκ for any p-adic weight other than κ ∈ Z,

the idea of Coleman was to turn once more to the Eisenstein family, where the analytic variation of all the

Fourier coe�cients is known. In fact, in those cases we can de�ne the coe�cients for any weight-character

(84) κ ∈ W := Homcont(Z
×
p ,C

×
p )

where we can view a pair (k, χ) consisting of k ∈ Z and χ : (Z /pn Z)× → C×p as a subset via the

embedding de�ned by the continuous homomorphism

(85) (k, χ) : Z×p −→C×p , a 7−→ χ(a)ak.

where χ is now thought of as a character of Z×p by composing with reduction modulo pn. The subset of

weight characters for which κ induces the trivial character on (Z /pZ)× is denoted byW0.

The coe�cients of Eisenstein series are naturally functions of (k, χ), and one can easily show that they

extend to functions ofW . The only part that needs clari�cation is how to view the Kubota–Leopoldt zeta

function ζp as a function of κ ∈ W . Denote ∆ for the torsion subgroup of Z×p , which is cyclic of order φ(q),

where q = 4 if p = 2, and q = p otherwise. There is an isomorphism

(86) Z×p
∼−→ ∆× (1 + qZp), a 7−→ (ω(a), 〈a〉).

The character ω is called the Teichmüller character. Let Λ = ZpJZ×p K be the Iwasawa algebra, which is the

ring of functions onW , then we have an isomorphism

(87) Λ ' Zp[∆]JT K, 1 + q 7−→ 1 + T.
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This way, the Kubota–Leopoldt zeta function ζp can be viewed as a function onW , satisfying ζp((1+q)k−
1) = (1− pk−1)ζ(1− k), giving us the Eisenstein family

(88)

Gκ(q) =
ζp(κ)

2
+

∑
n≥1

(∑
p-d|n

κ(d)/d
)
qn κ 6∈ W0

Eκ(q) = 1 +
2

ζp(κ)

∑
n≥1

(∑
p-d|n

κ(d)/d
)
qn κ ∈ W0

The idea of Coleman was to de�ne an overconvergent modular form of weight κ to be any q-expansion with

the property that its quotient by the Eisenstein series of weight κ is an overconvergent modular function.

Since then, a more satisfactory de�nition has been given by Pilloni, who gave a geometric construction of

line bundles ωκ on the a�noids Xr for some r that depends on κ. He shows that the Eisenstein series of

weight κ is a section of his line bundle, therefore giving a completely geometric de�nition of the space of

r-overconvergent forms M†κ(r) for any weight-character κ, as long as r is su�ciently small.

This work culminated in the construction, due to Coleman–Mazur [CM98], of the eigencurve for any level

N coprime to p. This is a rigid analytic curve CN , whose Cp-points classify overconvergent eigenforms f

of the Hecke operators Up and T` for ` - Np, which are not in the kernel of Up (in this case, we say f is of

�nite slope). We de�neWN , the weight space of level N , as a rigid analytic variety, via

(89) WN = (Spf ΛN )
rig

, where ΛN = ZpJ(Z /N Z)× × Z×p K

and there is a natural map π : CN −→WN associating to every overconvergent eigenform f its weight

character κ. The geometric properties of CN therefore dictate all the possible p-adic variations of modular

forms of �nite slope in families. Very little is known about its geometry, but one important fact is that

it is a curve, justifying its name. This means that every overconvergent eigenform of �nite slope may be

interpolated in a p-adic family. Should this overconvergent eigenform correspond to a singularity of CN ,

this may even be possible in several di�erent ways.

Hida theory. There has been a lot of research on the geometric properties of the eigencurve, and

though this has yielded extremely interesting results, much of its geometry remains elusive. One part
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of the eigencurve that is fairly well understood is the so-called ordinary part. Recall that an overconvergent

form is called ordinary if it is a Up-eigenvector with an eigenvalue that is a p-adic unit, or, said di�erently,

which is of slope zero. Hida considered the ordinary projection operator

(90) eord = lim
n→∞

Un!p

whose limit exists as an operator on M†κ(r) for any κ ∈ WN . Then Hida showed:

Theorem 3.1 (Hida). The image of eord on M†κ(r) is a �nite-dimensional vector space, whose dimension
depends only on the connected component ofWN containing κ.

This statement is miraculous, and shows that even though the slopes of the spectrum of Up can vary

wildly, the dimension of the part of slope 0 is locally constant onWN . Note that the connected components

ofWN are indexed by the characters (Z /NqZ)× → C×p , and the dimension of the ordinary subspace is

constant over each component. Hida in fact proved the following statement: Suppose

(91) πord : Cord

N →WN

is the projection map from the ordinary part of the eigencurve to weight space, then πord
is �nite �at. The

ordinary part of Cord

N is often referred to, at least locally, as the Hida family.

A very important fact is that specialisations of Hida families at classical weights k ≥ 2 are always classical
modular forms. More precisely, and more generally, the following theorem was proved by Coleman:

Theorem 3.2 (Coleman). Suppose that k ≥ 2 is a classical weight, and f ∈ M†k is a Up-eigenform of slope
strictly less than k − 1. Then f is classical, in the sense that it belongs to the �nite-dimensional subspace

(92) f ∈ Mk(Γ0(Np)) ⊂M†k .

Leopoldt’s formula. We �nish our brief discussion of p-adic families of modular forms by proving

Leopoldt’s formula, which is a classical result on the value at s = 1 of p-adic L-functions attached to

Dirichlet characters. We follow here the treatment in [BCD
+

]. Once more, this is an incarnation of Serre’s

idea of obtaining information about L-values by identifying them as the constant term in the Fourier ex-

pansion of a modular form. In the situation at hand, this provides a rigidity for the power series that allows

us to identify the constant term as an explicit combination of units. A purely algebraic proof for Leopoldt’s

formula for Lp(1, χ) can be found in Washington [Was97, §5.4].

Suppose that χ : (Z /N Z)× → C× is a primitive even Dirichlet character with conductor N > 1

coprime to p, then we have the p-adic Eisenstein family of overconvergent forms

(93) E
(p)
k,χ(q) = Lp(1− k, χ) + 2

∑
n≥1

σ
(p)
k,χ(n) qn, where σ

(p)
k,χ(n) =

∑
p - d |n

χ(d)dk−1.

This family specialises at k = 0 to a rigid analytic function on Xord = X1(N)ord
, whose value at the cusp

∞ is the value Lp(1, χ). Now choose a primitive N -th root of unity ζ , then there is a collection of Siegel
units ga ∈ O×Y1(N) whose q-expansions are given by

(94) ga(q) = q1/12(1− ζa)
∏
n≥1

(1− qnζa)(1− qnζ−a), 1 ≤ a ≤ N − 1.

These Siegel units are the building blocks of Kato’s Euler system, and will no doubt make several appear-

ances at this conference. We have seen that the operator Vp decreases overconvergence, as dictated by
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(65), but it does de�ne an operator on the space of p-adic modular functions (i.e. the case r = 0). We can

therefore use it to de�ne the rigid analytic function

(95) F (p)
χ =

1

pg(χ−1)

N−1∑
a=1

χ−1(a) logp
(
Vp(gpa)g−1a

)
which is de�ned on the ordinary locusXord

, where g denotes the standard Gauß sum, obtained by summing

χ−1(a)ζa over a. A direct computation using the expression (94) shows that the higher coe�cients of its

q-expansion agree with that of E
(p)
0,χ. Therefore the modular form

(96) E
(p)
0,χ − F (p)

χ ,

which is a constant function, must be equal to zero, since it has nebentype χ. We conclude that the constant

terms of both series are equal, yielding Leopoldt’s formula:

(97) Lp(1, χ) = − (1− χ(p)p−1)

g(χ−1)

N−1∑
a=1

χ−1(a) logp(1− ζa).

3.2. Computing overconvergent forms. We now explain how to compute explicit bases for r-overconvergent

forms, following Katz [Kat73] and Lauder [Lau11]. Note that in the example we encountered in the previous

section, namely where (p,N) = (2, 1) and k = 0, we were particularly lucky in the sense that the modular

curve X0(2) had genus zero, and the overconvergent regions Xr were isomorphic to a rigid analytic disk,

for which we could identify an explicit parameter. This procedure can be repeated for any prime p for which

X0(p) has genus zero (i.e. for p = 2, 3, 5, 7, 13), where one can likewise write down a power basis for the

space of overconvergent modular forms, for any weight k. See Loe�er [Loe07] for a detailed discussion of

this case, as well as many interesting results and computations.

For general values of p, we are faced with a more complicated geometric picture, as the overconvergent

regions Xr are isomorphic to the complement of a �nite number of disks in P1
:

Moreover, in cases where we also have a nontrivial tame levelN , the modular curve from which we remove

these �nitely many disks is no longer isomorphic to P1
. Therefore, �nding an explicit basis for the set

of sections over the overconvergent regions Xr becomes signi�cantly more subtle. In his foundational

paper on the subject, Katz [Kat73, Chapter 2] identi�es an explicit basis for these spaces, such that any

overconvergent form may be written as a unique linear combination of it, referred to as its Katz expansion.

Let X be the modular curve over Zp with Γ1(N)-level structure for p - N ≥ 5. Let n be the smallest

power of p such that the n-th power of the Hasse invariant An lifts to a level 1 Eisenstein series E of
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weight kE = n(p − 1). Throughout this section, we assume nr ≤ 1. Our notation is summarised in

the following table: In practice, there is a lot of �exibility with the setup, and the computations below are

p 2 3 ≥ 5

E E4 E6 Ep−1

n 4 3 1

kE 4 6 p− 1

usually for Γ0(N) instead of Γ1(N). To justify this, some additional analysis is required to deal with the

lack of representability, see [BC05, Appendix].

We now describe an explicit basis for the p-adic Banach spaces M†k(r). Suppose r = vp(s) for some

s ∈ Cp, then let Ir be the sheaf of ideals in Sym(ω⊗kE ) generated by E − sn, and de�ne the line bundle

(98) L = SpecX
(
Sym(ω⊗kE )/Ir

) πL−→ X .

Assuming that k 6= 1, we can apply the base change theorems from [Kat73, Theorem 1.7.1] to show that

M†k(r) = H0
(
Lrig, π∗Lω

⊗k)
(99)

= H0
(
X , ω⊗k ⊗ Sym(ω⊗kE )

)
/H0(X , Ir).(100)

Having this concrete description in hand, we now attempt to eliminate the relationE = sn by investigating

the map given by multiplication by E on modular forms as in [Kat73, Lemma 2.6.1].

Lemma 3.3. Let k 6= 1, then the injection given by the multiplication by E-map

(101) −×E : H0
(
X , ω⊗k

)
−→H0

(
X , ω⊗k+kE

)
splits as a map of Zp-modules.

Proof. The result is clear for k ≤ 0. For k ≥ 2, we have H1(X , ω⊗k) = 0 by computing the degree of

ω as in [Kat73, Theorem 1.7.1]. We obtain the short exact sequence

(102) 0→ H0
(
X , ω⊗k

) ×E−→ H0
(
X , ω⊗k+kE

)
−→H0 (X ,F)→ 0,

where F is the quotient sheaf. This sheaf F is �at over Zp, and since F is a skyscraper sheaf over

Fp it follows that H1(Xs,F) = 0 and hence Supp R1f∗F = ∅, where f : X → Spec(Zp) is the

de�ning morphism forX . We conclude that H0 (X ,F) is a free Zp-module, from which the conclusion

follows. �

For every i ≥ 0, choose generators {ai,j}j for a complement of the submodule

(103) Im (−× E) ⊆ H0(X , ω⊗k+ikE ).

This choice is not canonical, but we will �x it once and for all in what follows. As in [Kat73, Proposition

2.6.2], one obtains the following as a consequence of (100) and Lemma 3.3.

Theorem 3.4. The set {ei,j}i,j is an orthonormal basis for the p-adic Banach spaceM†k(r), where

(104) ei,j = sni
ai,j
Ei

Note that we have avoided the case k = 1, which we can still compute with by appropriately twisting

by Up, thereby reducing the computation to one in higher weight for which the results above hold. This
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technique is often referred to as Coleman’s trick, see [Col97b, Eqn. (3.3)], and is also frequently useful in

other situations. It is based on the observation that multiplication by Ej de�nes an isomorphism

(105) M†,rk →M†,rk+jkE ,

as well as the fact that the Up-operator is Frobenius linear in the sense that

(106) Up(fVp(E)) = Up(f)E.

It follows from these two simple facts that Pk+jkE (t) equals the characteristic series of Up ◦ Gj on M†,rk ,

where we denoteG = E/VpE. This allows us to �exibly change the weights of the spaces of overconvergent

forms we are interested in. In particular, we can compute overconvergent forms in weight 1 by reducing

the computation to, say, weight p. In addition, if we would like to compute the operator Up onM†k for some

extremely large weight k, we can use Coleman’s trick to reduce the computation to a much small weight.

Now that we know, by Theorem 3.4, an explicit basis ei,j for the Banach spaceM†k(r), we are in a position

to compute approximations of the matrix of Up on q-expansions. Since we can only compute �nitely many

of its entries, we need a good estimate on the valuations of its entries, so we know how many elements of

the basis we need to compute before we are guaranteed that the end result is correct up to some chosen

p-adic precision. To do this, let us �rst �x some notation for these entries. We write

(107) Up ◦Gj(eu,v) =
∑
w,z

Aw,zu,v (j) ew,z,

for some Aw,zu,v (j) ∈ Cp. Said di�erently, the numbers Aw,zu,v (j) are the entries of the in�nite matrix of

Up ◦ Gj with respect to our chosen orthonormal basis for M†k(r). The following lemma estimates their

p-adic valuations, and is an easy extension of Wan [Wan98, Lemma 3.1], see [Von15].

Lemma 3.5. We have

(108) vp
(
Aw,zu,v (j)

)
≥ wrkE − 1− r(n− 1).

The reader may have wondered why in the above precision estimate, we included the parameter j, cor-

responding to a twist of the Up operator by Gj = (E/VpE)j , rather than simply putting j = 0. The reason

is that this allows us to easily move between di�erent ways, and perform the computation of Up in several

weights at once. The example below illustrate this, by computing the Up-operator in families.

3.2.1. The spectral curve. We now have two crucial active ingredients for a working algorithm to compute

with spaces of overconvergent modular forms, since we have (a) an explicit basis due to Katz, provided

by Theorem 3.4, and (b) a precision estimate for the concomitant entries of the matrix of Up due to Wan,

provided by (108). Lauder [Lau11] combines these two ingredients into an e�cient algorithm for computing

Up on M†k(r). We note that the estimate (108) is independent of j, and hence the computation may be

performed at several p-adic weights at once. In this example, we compute the resulting 2-variable series

P (κ, t). The curve inWN ×Gm cut out by this equation is often referred to as the spectral curve of Up,

which yields the eigencurve after an additional modi�cation, see [CM98].

Let f : WN → Cp be a function in the Iwasawa algebra, and {κ0, κ1, . . . , κn} a �nite set of Type-I

points. Then we denote f [κ0] = f(κ0) and we inductively de�ne the divided di�erence of order n to be

f [κ0, κ1, . . . , κn] :=
f [κ1, . . . , κn]− f [κ0, . . . , κn−1]

κn − κ0
.
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We now de�ne the n-th Newton series to be

(109) Pn(κ, t) =

n∑
i=0

P [κ0, κ1, . . . , κi](t)× (κ− κ0)(κ− κ1) · · · (κ− κi),

where P [κ0, . . . , κn](t) is the power series in t obtained by taking the corresponding �nite di�erences

on the coe�cients of P (κ, t) of t, which are elements of the Iwasawa algebra by Coleman [Col97a]. The

theory of �nite di�erences then shows that upon increasing the number of interpolation points, the n-th

Newton series p-adically approaches the series P (κ, t). This means that all we need to do to compute an

approximation for P (κ, t), is to choose our interpolation points carefully and estimate the error term.

We explicitly compute some examples, starting by revisiting the example of Buzzard–Calegari [BC05]

familiar from the previous lecture, and then venturing into more unfamiliar territory relating to situations

that were considered in the literature by Buzzard–Kilford [BK05], Roe [Roe14] and the work on boundary

slopes and the spectral halo by Andreatta–Iovita–Pilloni [AIP18] and Bergdall–Pollack [BP16]. We note that

an alternative approach using overconvergent modular symbols has been developed in [DHH
+

16], for Hida

families. Their algorithms yield explicit q-expansions of Hida families, where the coe�cients are elements

of Λ, but is only equipped to handle the ordinary part of the spectrum of Up.

Example 1. We revisit the case of p = 2 and tame level N = 1, where we computed with the space for

k = 0 in the previous lecture. Using an interpolation as described above, we can compute the two variable

power series P (κ, t), whose specialisation at κ ∈ W recovers the characteristic series Pκ(t) of U2 on the

space of overconvergent modular forms M†κ(r). We obtain

P (κ, t) = 1 + 519736167t+ 413685912t2 + 148708352t3 + 1065353216t4

+ κ (36306799t+ 374998993t2 + 380696768t3 + 281739264t4)

+ κ2(43984100t+ 481404364t2 + 496002384t3 + 387895296t4 + 1811939328t5)

+ κ3(874017364t+ 890496879t2 + 487943741t3 + 4077568t4 + 964689920t5)

+ κ4(392124398t+ 264203079t2 + 839291211t3 + 908503936t4 + 817102848t5)

+O(κ5, 230),

We actually computed P (κ, t) to precision O(κ25, 270), which took about 5 minutes, but I truncated the

result to get output that �ts in this document. Let us now investigate various specialisations:

• The computation we did in the previous section is contained in this one, and if we set κ = 5k−1 = 0,

which corresponds to weight k = 0, we recover the same power series as before, up to the used

precision. In particular, we can read o� that �rst few slopes are 01,31,71, . . ., which agrees with

the result of Buzzard–Calegari [BC05], proved in the exercises above, that in weight 0 the n-th slope

is equal to

1 + 2v2

(
(3n)!

n!

)
,

with multiplicity 1.

• As for the other extreme, the main result of Buzzard–Kilford [BK05] states that the slopes for 1/8 <

|κ| < 1 form an arithmetic progression with n-th term nv2(κ), all with multiplicity 1. Indeed,

by substituting κ = 2 we obtain the slope sequence 0, 1, 2, 3, 4, . . ., while for κ = 4 we recover

0, 2, 4, 6, 8, . . .. Our computed power series P (κ, t) hence combines the best of both worlds, by

describing the spectral curve over the inner regions ofW as well as the outskirts. Notice the striking

contrast between the nature of the slope sequence at k = 0 and that close to the boundary! A
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folklore conjecture predicts that the same phenomenon happens in general, and a result of this

�avour was obtained by Liu–Wan–Xiao [LWX17].

In the above computation, we focussed on the variation of Pκ(t) with the weight κ, but we can inter-

change the variables κ and t and study instead the powers series in κ appearing as the coe�cients of the

above series in t. For instance, up to precision (221, κ7) we obtain

P (κ, t) ≡ 1 + t(1739623 + 655215κ+ 2041060κ2 + 1602132κ3 + 2054126κ4 + 779022κ5 + 1634724κ6)

+t2(546968 + 1705937κ+ 1156556κ2 + 1304431κ3 + 2059079κ4 + 1677821κ5 + 644339κ6)

+t3(1907712 + 1112256κ+ 1074512κ2 + 1404477κ3 + 430411κ4 + 51909κ5 + 1261732κ6)

+t4(720896κ+ 2019328κ2 + 1980416κ3 + 437120κ4 + 1161264κ5 + 1648837κ6)

+t5(1310720κ4 + 524288κ5 + 1101824κ6)

+O(221, κ7)

Investigating the coe�cients ai(κ) of P (κ, t) for small values, we see that their valuation on κ ∈ Z2 only

seems to depend on κ (mod 26). This can be made into a rigorous proof of this fact, by using the uniform

estimates in Wan [Wan98] for the Newton polygon in t of P (κ, t) recalled above. After possibly redoing the

computation to a higher precision, to assure that all the slopes are indeed correct, we recover the following

theorem, which may be found in Emerton [Eme98, Theorem 1.1].

Theorem 3.6 (Emerton). The minimal non-zero slope of U2 onM
†
k in tame level 1, along with its multiplicity,

depends only on k (mod 16). In particular, the minimalU2 slope with multiplicity is 31 when k ≡ 0 (mod 4),
41 when k ≡ 2 (mod 8), 51 when k ≡ 6 (mod 16) and 62 when k ≡ 14 (mod 16).

We note that the calculations of Emerton [Eme98] rely crucially on the explicit uniformisations of 2-adic

regions on the genus 0 modular curves X0(2n) for small values of n, which are hard to come by in higher

levels and primes. Our algorithms do not rely on any speci�cs of the situation (p,N) = (2, 1), and therefore

similar arguments work in more general settings.

Looking further into the above coe�cients, let λ(i) be the number of roots of ai(κ) in the open unit disk.

The following table displays the 2-adic valuations of these roots, along with their multiplicities:

Coe�cient Valuations λ

a0(κ) = 1 ∅ 0

a1(κ) ∅ 0

a2(κ) 31 1

a3(κ) 32,41 3

a4(κ) 34,41,71 6

a5(κ) 36,42,51,71 10

a6(κ) 39,43,52,61 15

a7(κ) 312,45,52,61,81 21

By inspecting the 2-adic valuations of the coe�cients we computed, we see that this output is provably

correct and complete. Note that

λ(i) =

(
i

2

)
,

which also follows from the main result of Buzzard–Kilford [BK05]. In Bergdall–Pollack [BP16], precise

conjectures are made about the location of the zeroes of ai.
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Example 2. Let us set (p,N) = (3, 1) and compute P (κ, t) up to precision O(390, κ60). The motivated

reader is encouraged to try and recover this computation, for instance using an explicit basis similar to that

used in the previous lecture, which is possible since X0(3) has genus 0. There is a particularly nice basis,

described by Loe�er [Loe07], which can be twisted by an Eisenstein series to obtain the computation in all

weights.

With the same notation as above, we �nd the following slopes of the zeroes of the coe�cients ai(κ):

Coe�cient Valuations λ

a0(κ) = 1 ∅ 0

a1(κ) ∅ 0

a2(κ) 12 2

a3(κ) 15,31 6

a4(κ) 19,22,31 12

a5(κ) 115,24,31 20

a6(κ) 122,25,32,41 30

a7(κ) 130,28,32,42 42

a8(κ) 140,211,32,43 56

Again, this output is complete and provably correct. Notice that

λ(i) = 2

(
i

2

)
,

which follows from the main result of Roe [Roe14], who showed that near the boundary, the slopes form

an arithmetic progression with an explicit argument that depends on the valuation of κ. Roe tackled this

more complicated situation using the same techniques as Buzzard–Kilford [BK05].

Example 3. We now turn to (p,N) = (2, 3) and compute P (κ, t) up to precision O(260, κ20). This

computation took about 90 minutes on a standard laptop. In addition to the notation above, let µ(i) to be

the largest power of p that divides ai(κ). The work of Bergdall–Pollack [BP16] uses Koike’s trace formula

to prove that µ(i) = 0 whenever N = 1. However, in our situation µ appears to be larger for several i:

Coe�cient Valuations λ µ

a0(κ) = 1 ∅ 0 0

a1(κ) − − −
a2(κ) ∅ 0 0

a3(κ) ∅ 0 1

a4(κ) 41 1 0

a5(κ) 32 2 1

a6(κ) 32,41 3 0

a7(κ) 32,41,81 4 1

a8(κ) 33,41,51,61 6 0

a9(κ) 34,43,61 8 1

a10(κ) 35,43,51,81 10 0

a11(κ) 36,44,52 12 1

a12(κ) 37,45,52,71 15 0
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Computing P (κ, t) up to precision O(2, κ30) takes about one minute. Extracting the degrees of the t-

coe�cients, our data suggests the boundary slope sequence

02,1/22,12,3/22,22,5/22,32,7/22, . . .

which is indeed in accordance with the Newton polygon of λ+ µ computed above, up to the chosen preci-

sions. Notice the similarity with the slope sequence for (p,N) = (2, 1).

Example 4. As above, set (p,N) = (11, 1) and compute P (κ, t) up to precision O(11, κ60), which

takes about two minutes. We compute the degrees of the t-coe�cients, which suggest the boundary slope

sequence:

01,11,21,31,42,51,61,71,92, . . .

3.2.2. The Gouvêa–Mazur conjecture. An enormous amount of arithmetic information is encoded in the

slopes of overconvergent modular forms, which are the valuations of their Up-eigenvalues. One of the

consequences of the theory of Coleman [Col97b] is that for any α > 0, there exists a smallest integer Nα
with the following property: If k1 and k2 are integers such that

(110) k1 ≡ k2 mod pNα(p− 1)

then the collection of slopes ≤ α in weights k1 and k2 agree, with multiplicities. Gouvêa and Mazur con-

jectured in [GM92] that Nα ≤ bαc. However, Wan [Wan98] exhibits an explicit quadratic upper bound for

Nα, depending on p and the level.
3

The key observation for Wan is that the lower bound (108) is independent of j. After taking determinants,

we obtain a lower bound on the coe�cients of the characteristic series of Up in weight k + jkE , again

independent of j. Wan then proceeds by proving a very general reciprocity lemma on Newton polygons,

which allows him to transform the lower bound for those coe�cients into an upper bound for Nα. The

analysis goes through without modi�cations, and using Wan’s results we deduce from (108) that

Theorem 3.7. There is an explicitly computable quadratic polynomial P ∈ Q[x], depending only on p and
the level, such that Nα ≤ P (α).

Since Gouvêa and Mazur conjectured in [GM92] that Nα ≤ bαc, this is still an order of magnitude from

what we expect. However, the conjecture of Gouvêa–Mazur is known to be false, and a counterexample

was given in [BC04]. It should be noted that the counterexample of Buzzard–Calegari is only a very small

violation of the conjecture, and on average it seems that in fact something much stronger than Gouvêa–

Mazur is true! Let us illustrate this with two examples.

The case p = 2 is proli�c soil for �nding counterexamples to the Gouvêa–Mazur conjecture. As noted

above, the �rst counterexample was given in [BC04] for p = 59 and level 1, and a further one for p = 79 in

3
Strictly speaking, Wan assumes that p ≥ 5, but his arguments easily extend to p = 2, 3 using our basis described above.
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[Lau11]. For p = 2, we obtain the following slope sequences in level Γ0(19):

k = −2 : 04,1/22,13,25,9/44,43,52,621,15/22, . . .

k = 0 : 04,1/22,15,311,13/44,725,25/24,1311, . . .

k = 2 : 04,1/22,13,3/22,25,411,17/44,825,27/24, . . .

k = 4 : 04,1/22,15,5/22,36,7/22,43,55,21/44, . . .

k = 6 : 04,1/22,13,27,5/22,43,9/22,56,11/22, . . .

k = 8 : 04,1/22,15,313,7/22,65,13/22,76,15/22, . . .

Notice the aberration in the dimensions of the slope 1 subspaces, as well as the slope 3 subspaces in weights

0 and 8. Whereas these are all near misses, in that the smallest slopes for which discrepancies arise are

exactly equal to the valuation of the weight di�erence, we note a 2-dimensional slope 3/2 subspace in

weight 2, which is completely absent in weight 6, whereas 3/2 < v2(6 − 2) = 2. Similarly, the slope 9/4

subspace in weight −2 does not exist in weight 6 = −2 + 23.

On the other hand, to see how Gouvêa–Mazur is frequently much weaker than the truth, consider the

�rst few slopes of U3 acting on M†278 (Γ0(41)), which we computed using Lauder’s algorithm to be

(111) 012,114,348,614,722,86,922,1014,1248,1414,1622,176,1822, . . .

where the subscripts denote multiplicities. Repeating the same computation in weight 8, we �nd the exact

same slope sequence for all the terms we display here, whereas the Gouvêa–Mazur conjecture would only

predict the slopes up to 3 to agree. This behaviour is somewhat typical when one computes lots of examples.

3.3. Chow–Heegner points. We end this lecture with an example of how the practical computation of

spaces of overconvergent forms, using the above algorithms, can be used to construct arithmeto-geometric

invariants. We chose to discuss the Heegner-type point construction on elliptic curves, following the theory

of Darmon–Rotger [DR14], since there seems to be a very good chance that this topic will also be discussed

by Víctor Rotger in his course, and if it is not, then it is still interesting anyways.

Let p be a prime and E/Q an elliptic curve of conductor N , associated to a p-ordinary form f ∈
Snew
2 (Γ0(N)). Let g be any other weight 2 newform which is p-ordinary. It can be deduced from the

work of Darmon–Rotger [DR14, Theorem 1.3] that there exists a global (rational) point Pg ∈ E(Q) that

satis�es the Gross–Zagier type formula

(112) log(Pg) = 2dg ·
E0(g) E1(g)

E(g, f, g)
· Lp(g, f ,g)(2, 2, 2) ,

where the quantities appearing in the formula are

• log is the formal p-adic logarithm on the elliptic curve E,

• dg is an integer described in [DDLR15, Remark 3.1.3],

• the E-factors are quadratic numbers depending only on the p-th coe�cients of f and g,

• Lp(g, f ,g) is the Rankin triple product p-adic L-function of the Hida families f ,g through f, g.

The last item in this list deserves some discussion. We will not de�ne the Rankin triple product p-adic

L-function here, as that would lead us too far from the topic of these notes, and the exposition in Darmon–

Rotger [DR14] is excellent. We will however explain how one computes the special value appearing in
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formula (112). As before, we let eord = limn U
n!
p be Hida’s ordinary projector. Start by computing

(113) eord(θ−1f [p] × g)

where f [p] denotes the p-depletion (1 − VpUp)f of f . Here, we have used Serre’s di�erential operator

θ = qd/dq, which is an important object in the theory of overconvergent forms, which would merit an

entire lecture to do it justice. The inverse of this operator is de�ned by the p-adic limit

(114) θ−1 = lim
n→∞

θp
n−1.

By Coleman’s criterion, we conclude that the overconvergent form (113) is classical, and hence it can be

written as a �nite linear combination of Hecke eigenforms of weight 2 and level Γ0(p). The special value

Lp(g, f ,g)(2, 2, 2) is the coe�cient of g in this linear combination.

Remark. The formula (112) has a similar �avour to the celebrated Gross–Zagier formula, but it has the

advantage of giving an equality

(Special value of L-function) = (Logarithm of a global point).

In the Gross–Zagier formula, an equality between a special value of an L-function and the height of a global

point is obtained. From the value of the height, it is not easy to reconstruct the global point, but from the

value of the logarithm it is, since we can formally exponentiate! This means that the formula (112) has the

additional advantage that it may be used to construct explicitly global points on E.

Example 1. Consider the elliptic curve

(115) E : y2 + xy = x3 − x2 − x+ 1

which has rank 1 and conductor 58. Consider its associated newform f , and let g be the unique newform

on Γ0(58) di�erent from f , then

(116)

f(q) = q − q2 − 3q3 + q4 − 3q5 + 3q6 − 2q7 − q8 + 6q9 + 3q10 − q11 + . . .

g(q) = q + q2 − q3 + q4 + q5 − q6 − 2q7 + q8 − 2q9 + q10 − 3q11 + . . .

Both f and g are 2-ordinary. Letting P = (0, 1) be a generator for E(Q), we compute that

(117) L2(g, f ,g)(2, 2, 2) ≡ 3 logE(P ) (mod 2200),

as predicted by the theory in [DR14].

Let us end this section on a more speculative note. In the above theory, it is important that we assume

ordinarity of f . Whereas it is conceivable that this may be extended to eigenforms of �nite slope through

the use of Coleman families, it is not clear that the Rankin triple product p-adic L-function may even be

constructed in cases where f is of in�nite slope. Nonetheless, the special value as computed above yields

an explicit number even in those situations, and we now compute a few examples where the Tate module

of EQ is wildly rami�ed at 2 or 3, and associated newform f is of in�nite slope.

Example 2a. Consider the elliptic curve

(118) E : y2 + y = x3 + 9x− 10

which is of conductor 4617 = 35 · 19 and rank 1. Consider the newforms

(119)

f(q) = q − 2q2 + 2q4 − 2q5 − 3q7 + 4q10 − 6q11 + . . .

g(q) = q − 2q3 − 2q4 + 3q5 − q7 + q9 + 3q11 + . . .
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where f is associated to E, and g is the unique cuspidal newform of weight 2 on Γ0(19). Despite f being

of in�nite 3-adic slope, we can run the computation and �nd a numerical value for L2(g, “f”,g)(2, 2, 2).

We �nd that

(120) L3(g, “f”,g)(2, 2, 2) ≡ t · logE(P ) (mod 3200) where 2t2 + 48t+ 729 = 0,

where P = (4, 9) is a generator of E(Q). The fact that both quantities are related by a quadratic number t

of small height suggests that a more general analogue of the theory for ordinary forms in [DR14], and more

speci�cally equation (112), might exist.

Example 2b. Consider the elliptic curve

(121) E : y2 = x3 + x2 − 62893x− 6091893

which is of rank 1 and conductor 15104 = 28 ·59. Let f be its associated newform, and let g be the newform

of level 118 associated to the elliptic curve with Cremona label 118.a1, then

(122)

f(q) = q − 2q3 − 3q7 + q9 + 3q11 − 3q13 + . . .

g(q) = q − q2 − q3 + q4 − 3q5 + q6 − q7 − q8 − 2q9 + 3q10 − 2q11 + . . .

Note that g is 2-ordinary. We compute that

(123) L2(g, “f”,g)(2, 2, 2) ≡ 6 logE(P ) (mod 2100),

where P = (20821, 3004216) is a generator of E(Q). As in the previous example, this suggests that an

analogue of (112) holds for f of in�nite slope. Note that in this example already, the generator of E(Q) has

very large height, and is therefore not trivial to �nd. For examples like these, there may already be some

value in reversing the Gross–Zagier formula, to construct rational points on E.

4. p-Adic L-functions of real qadratic fields

In this lecture, we will discuss one approach to the computation of p-adic L-functions of real quadratic

�elds, which once more is an incarnation of Serre’s idea, whereby this function is computed through a

similar ‘rigidi�cation’ procedure to what we discussed before. First, we realise it as the constant coe�cient

of a modular form, and subsequently we compute its higher Fourier coe�cients instead.

We note that the problems of de�ning, and computing, both theoretically and computationally, p-adic

L-functions of totally real �elds go back a long time, and are rooted in an idea of Siegel. Recent work of

Roblot [Rob15] also describes an e�cient algorithm for computing p-adic L-functions of totally real �elds,

based on a di�erent construction due to Cassou–Noguès [CN79].

(This material was presented with slides)
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