THE VALUES OF THE DEDEKIND-RADEMACHER COCYCLE
AT REAL MULTIPLICATION POINTS
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ABSTRACT. The values of the Dedekind-Rademacher cocycle at certain real quadratic arguments are shown to
be global p-units in the narrow Hilbert class field of the associated real quadratic field, as predicted by the
conjectures of [DD06] and [DV21]. The strategy for proving this result combines the approach of [DPV21] with
one crucial extra ingredient: the study of infinitesimal deformations of irregular Hilbert Eistenstein series of
weight one in the anti-parallel direction, building on the techniques of [BDP].
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INTRODUCTION

Let H,, denote Drinfeld’s p-adic upper half plane, and let M ™ denote the multiplicative group of non-zero
rigid meromorphic functions on H,,, equipped with the translation action of the discrete group SLo(Z[1/p])
by Mobius transformations. A rigid meromorphic cocycle on a congruence subgroup I' C SLy(Z[1/p]) is a
classin HY(I', M ™). If 7 € H,, is a real multiplication, or RM, point, i.e., generates a real quadratic extension
of Q, the value of J at 7 is defined to be

(1) JIr] = J(7=)(7) € Cp U {0},

where v, € I'is the automorph of T, a suitably normalised generator of the stabiliser of 7 in I". The relevance
of the RM values of rigid meromorphic cocycles to explicit class field theory for real quadratic fields has been
explored in [Dar01], [DD06] [DV21], and [DV], where it is conjectured, broadly speaking, that they behave

in many key respects just like the values of classical modular functions at CM points, and in particular that
they belong to, and often generate, narrow ring class fields of real quadratic fields.

Theorem B below gives some theoretical evidence for this general conjecture in the simplest case where
I' = SLy(Z[1/p]) and J is analytic, i.e., takes values in the subgroup A* C M ™ of rigid analytic functions.

1991 Mathematics Subject Classification. 11G18, 14G35.
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Strictly speaking, there are no interesting rigid analytic cocycles: the group H*(T', . A*) is generated, up to
torsion, by the class J,iy given by

Jtriv< Ccl Z)(z)zcz—i-d,

whose RM values are units in the associated quadratic order — hence, algebraic, but not in an interesting
way for explicit class field theory.

There is a less trivial class in H!(T', A* /p?) arising from the classical Dedekind—Rademacher homomor-
phism ppr : To(p) — Z describing the periods of the weight two Eisenstein series

(2) Eé?)(Q) = dlog (i%;)) — <p —1424 i o®) (n)q") %7 where ¢ (n) := Z d,
ptd|n

n=1

and given by

YZ0

1
® pon() 1= 55 [ 2B )
More precisely, the description of I as an amalgamated product of two conjugate copies of SLo(Z) inter-
secting in Iy (p) leads to an injection

HY(Ty(p),Z) — H*(T, Z).

Leta,,, € Z%(T,Z) be atwo-cocycle whose cohomology class is the image of ¢pr under this map. Refining
a construction of [DD06], Theorem A below asserts that the cocycle p*P® with values in p” is trivialised in
the larger group A* D p%:

Theorem A. There is a one-cochain Jpr € C*(T', A*) satisfying
v Jor(12) + Jor(1172) X Jor(y1) = p*er072) forallyy, v, €T

The essential triviality of H' (", A*) shows that Jpg is uniquely determined up to coboundaries and
powers of the cocycle Ji,i, above. The proof of Theorem A is given in § 1, and constructs an explicit
cochain Jpr which is well defined up to coboundaries. The natural image of Jpr in H!(T, A* /pZ) is
the Dedekind—Rademacher cocycle of the title. The rigid analytic cocycles of higher level studied in [DD06]
are all multiplicative combinations of GL3(Q)-translates of this basic cocycle. The proof of Theorem A
complements the approach of [DD06], producing a more canonical object in level 1 which can be envisaged
as an avatar of the Eisenstein series E5 in the setting of rigid meromorphic cocycles. The RM values of
Jpr are well defined modulo pZ, and it therefore makes sense to enquire about their algebraicity, and their
factorisation away from p.

An RM point 7 € H,, is said to be of discriminant D if it satisfies an equation of the form Q(7,1) = 0,
where Q(x,y) = Ax?+ Bxy+ Cy? is a primitive integral binary quadratic form of discriminant D. The set
'HpD of 7 of a fixed discriminant D is non-empty precisely when p is inert or ramified in the quadratic field

F = Q(v/'D), and is preserved by the action of SLy(Z). The orbit set SLa(Z)\H} is in natural bijection
with the class group Cl(D), by sending the orbit of 7 to the narrow equivalence class C. of the fractional
ideal generated by 7 and 1 when 7 — 7’ is positive. The reciprocity map

rec : Cl(D) — Gal(H/F)

of global class field theory identifies C1(D) with the Galois group of the narrow ring class field of H over
F attached to D. If ’Hf is non-empty and p 1 D, then the prime p is inert in F//Q and splits completely in
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H/F. The choice of an embedding Q C @pihence determines a prime p of H above p, which is fixed once
and for all. Fix also a complex embedding Q C C and write x — Z for the action of complex conjugation
on H (which is independent of the choice of embedding). Let

Ogl1/p]*

be the group of p-units of H which are in the minus-eigenspace for the action of complex conjugation. By
the Dirichlet S-unit theorem, it is a Z-module of rank [H : F|/2 if F' does not possess a unit of negative
norm, and is finite otherwise. In particular, there is a unique element u, € (Og[1/p]*) ® Q satisfying

(4) ordye (u;) = —L(F,CZ,0), forallo € Gal(H/F),

»¥T

where L(F,C?, s) is the partial zeta function of the narrow ideal class CZ (cf. [Gr82, Prop. 3.8]). The p-unit
u, is called the Gross—Stark unit attached to H/F (and the prime p). The Brumer-Stark conjecture implies
that 12 belongs to Oy [1/p]* rather than to the tensor product of this group with Q. The proof by Samit
Dasgupta and Mahesh Kakde of (the prime to 2 part of) the Brumer—Stark conjecture [DKa] in this setting
shows that ul? belongs to (O [1/p]*) ® Z[1/2].

The principal conjecture of [DD06], and its refinement covering the Dedekind—-Rademacher cocycle itself,
asserts that Jpgr|[7] is equal, up to a small torsion ambiguity and powers of p, to an integer power of the
Gross—Stark unit u,. The weaker equality

(5) Norm(@p2 /0, (Jor[7]) = Norm@p2 /Q, (u}?)  (mod (Q;)mrs,pz)

involving the norms to Q) of these invariants was shown in [DD06] to follow from Gross’s p-adic analogue
of the Stark conjecture on p-adic abelian L-series of totally real fields at s = 0 — at least, after replacing
Jpr|[7] by the closely allied quantities denoted u(c, 7) in [DD06], which depend on the choice of a suitable
modular unit a € (’);1 (V) with auxiliary level structure. The Gross—Stark conjecture was then proved in
[DDP11]. An important recent work of Samit Dasgupta and Mahesh Kakde [DKb] has significantly refined
the approach of [DDP11] to prove Gross’s tame refinement of the Gross—Stark conjecture, for arbitrary
totally real fields. Specialising this result to the case of a real quadratic field leads to the refinement

() Jor[r] = u}?  (mod (Q)%)tors, P7)

of (5) in which the norm is removed. The removal of this ambiguity is crucial for a truly satisfying approach
to explicit class field theory for real quadratic fields.

The main contribution of this paper is an independent and more direct proof of (6) for fundamental
discriminants:

Theorem B. Let D > 0 be a fundamental discriminant that is prime to p. If T is an RM point in H,, of
discriminant D, then Jpr 7] is equal to the Gross—Stark unit ul?, up to torsion in Q2 and powers of p, and in
particular belongs to (O [1/p]*) ® Z[1/2].

To situate the approach of this paper in the context of previous works, note that Dasgupta and Kakde
tackle Theorem B by studying Mazur-Tate style “tame refinements" of the techniques of [DDP11], leading to
a proof of Gross’s tame refinement of his p-adic Stark conjecture (known as the “tower of fields conjecture”
[Gr88]). They then show that this tame refinement implies Theorem B. Like [DKb], the present work rests
on the careful study of deformations of Galois representations that was also exploited in [DDP11], but
otherwise differs in its approach to Theorem B by avoiding the recourse to tame deformations. Its key idea
is to package the RM values of Jpg as the coefficients of certain modular generating series. The resulting
identities (cf. Theorem C below) are of interest in their own right and enrich the tapestry of analogies
between RM values of rigid meromorphic cocycles and CM values of modular functions.
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The Dedekind-Rademacher cocycle, taken modulo C,; rather than p”, is a prototypical instance of a
rigid analytic theta-cocycle: a function J : I' — A which satisfies the one-cocycle relation, but only up
to multiplicative scalars. The proof of Theorem B rests on the study of another theta-cocycle, the so-called
winding cocycle

(7) Jw € HY(D, A /C)),

whose key properties are recalled in § 2. The notion of RM value can be extended to theta cocycles by noting
that, if the RM point 7 has discriminant prime to p, then its automorph ~; belongs to SLs(Z). The groups
H'(SLy(Z),C) and H*(SLy(Z),C)) are finite of order dividing 12, which implies that the restriction
of J'2 to SLy(Z) admits an essentially unique lift J € H'(SLy(Z),.A*), and the value J[7] can then be
defined as in (1), with J replaced by J'/12 on the right hand side. Although there is some torsion ambiguity
in the resulting RM values, the p-adic logarithms of these RM values are well-defined.

The explicit nature of J,, can be parlayed into a proof of the following result:

Theorem C. Let 7 be as in Theorem B. There is a classical modular form G of weight two on I'o(p) with
p-adic Fourier coefficients, whose q-expansion is given by

GT(Q) = IOg(uT) + Z log((Tan)[T])q",

n=1

where log : Oép — C, is the p-adic logarithm. The modular form G is non-trivial if and only ifQ(v/D)
does not admit a unit of norm —1.

The modular generating series of Theorem C is constructed from the diagonal restriction of a nearly
ordinary deformation of a weight one Hilbert Eisenstein series for SLo(OF) in the anti-parallel direction.
The logarithm of the global p-unit u., enters into the proof as the eigenvalue of the Frobenius at p on a
quotient of the associated p-adic Galois representation, via a calculation which exploits the reciprocity law
of global class field theory, thereby leveraging class field theory for H into explicit class field theory for F'.
An essential ingredient in the proof of Theorem C is the study of p-adic deformations of irregular Hilbert
Eisenstein series of weight one, which is explained in § 3 and forms the technical core of this article. This
approach is inspired by the study of the local geometry of the modular eigenvariety in the neighbourhood
of irregular Eisenstein points of weight one carried out in [BDP], and its extension to the Hilbert setting in
[BDS].

Derivatives of p-adic families of (classical, or Hilbert) modular forms can be viewed as p-adic counterparts
of incoherent Eisenstein series in the sense of Kudla, and provide a protoypical instance of what might be
envisaged as p-adic mock modular forms. Deformations of weight one Hilbert modular Eisenstein series in
the parallel weight direction and their diagonal restrictions are studied in [DPV21], where they are related
to the norms to Q,, of Jpr[7]. Because of the loss of information inherent in taking the norm, Theorem C
represents a significant strengthening of the main theorem of [DPV21], just as Theorem B strengthens the
equality (5) resulting from the proof of Gross-Stark conjecture in the setting of odd ring class characters of
real quadratic fields.

In §1 the Dedekind-Rademacher cocycle is constructed, thereby proving Theorem A. The definition
and main properties of the winding cocycle appear in § 2, where Theorem B is reduced to Theorem C. The
modular generating series G of Theorem C is constructed in § 3-4. The pivotal § 3 studies infinitesimal
p-adic deformations of weight one Hilbert Eisenstein series and their Fourier expansions. Finally, through a
calculation carried out in § 4, the form G, is obtained from the ordinary projection of the diagonal restriction
of this infinitesimal deformation.
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Remark 1. There are various ways in which the main results of this work could be strengthened or gener-
alised. For instance, it would be desirable to relax the assumption in Theorem B that D be a fundamental
discriminant. This might be achieved by working with modular generating series of higher level, leading to
complications that are described in Remark 8. It would also be natural to tackle p-units defined over more
general ray class fields of real quadratic fields, as described in [Cha09] and [Das08] for example, where it
might become necessary to consider Hilbert modular Eisenstein series attached to more general pairs of
ray class characters. Extending the scope of the method to more general totally real base fields F as in the
work of Dasgupta and Kakde [DKa, DKb] is a third natural objective. A promising step in this direction
is made in the ongoing PhD thesis of Romain Branchereau, which gives a geometric interpretation of the
Fourier coefficients of the diagonal restriction of a Hilbert modular Eisenstein series for a totally real field
F, similar to the results of [DPV21] for [F': Q] = 2.

1. THE DEDEKIND-RADEMACHER COCYCLE

This section constructs a one-cochain satisfying Theorem A, which is well-defined up to coboundaries
and whose image in H! (", A* /p?) is the Dedekind-Rademacher cocycle .Jpg of the introduction.

1.1. Siegel units. Let O}, denote the multiplicative group of nowhere vanishing holomorphic functions
on the Poincaré upper half-plane, endowed with the right action of SL(R) given by

hlv(z) = h(v2),
where vz denotes the usual action of v by Mébius transformations.
The construction of Jpg rests on the Siegel units .go,5 € O} indexed by pairs (a,3) € (Q/Z)? —

{(0,0)} of order N > 1, depending on an auxiliary integer ¢ which is relatively prime to 6N. They satisfy
the transformation properties

(8) cGuy = cgvh/ forall v = (Oz,ﬂ) € (Q/Z)za v E SLQ(Z)

(Cf. [Ka04, Lemma 1.7(1)].) In particular, .g,,3 is a unit on the open modular curve attached to the congru-
ence subgroup of SLa(Z) that fixes («, 3), and hence belongs to O* (Y (IN)). The Siegel units also satisfy
the distribution relations:

) [T c905(2) = cgasz/m); TI cap(2) = cgas(m2),
mao’'=«a mp'=p
which together imply that
(10) H cgo/,ﬁ’(z) = cga,ﬁ(z)'
m(a’,f)=(a,B)
(Cf. [Ka04, Lemma 1.7(2)] or [LLZ14, Prop. 2.2.1 and 2.2.2].)

The unit g, 3 is equal to g(‘fﬁ G <> Where the g-expansion of go g € O* (Y (NV)) ® Qs given by
(11) gap(q) = —¢" JJ (1 = ¢t [T (1 = g"~*e>™P),
n>0 n>0
where w =1/12 — /2 + (1/2)a/N, with 0 < o < 1. (Cf. [Ka04, §1.9].)
Fix a rational prime p, and assume that («, 3) is of p-power order in (Q/Z)?. To lighten notations, it will

be assumed below that p # 5, and the choice ¢ = 5 will be fixed. (The constructions are readily adapted to
the case p = 5 by changing the value of c.)
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1.2. The Siegel distribution. Let X, := (Z2)' be the set of vectors (a,b) € Z2 that are primitive, ie.,
satisfy ged(a, b) = 1, and let

(12) X:=(@—{0,00)= |J rXo.

j=—o00

Let A be an SLy(Z)-module, and let LC(X, Z) be the space of locally constant Z-valued functions on
Xo. An A-valued distribution on Xg is a homomorphism from LC(Xy,Z) to A. Because Xy is compact,
a distribution y is determined by its values ;(U) on the characteristic functions of compact open subsets
U C Xp. Let D(Xp, A) denote the module of A-valued distributions. It is endowed with the (right) SLy(Z)-
action defined by

(13) (uNU) = w(Uy Ny, fory € SLy(Z), U CXo.

An A-valued distribution on X is homomorphism to A from the subspace of LC(X, Z) of functions with
compact support. A distribution on X is said to be p-invariant if it is invariant under multiplication by p,
ie,

(14) w(p?U) = u(U) for all j € Z and all compact open U C X.

Denote by D(X, A) the module of p-invariant distributions on X. Because X is a fundamental domain
for the action of p on X (cf. (12)), every distribution on X extends uniquely to a p-invariant distribution,
yielding an isomorphism

(15) D(Xo, A) = D(X, A).

The target space is equipped with a natural action of the larger group I" when A is a I-module, defined
by (13) with SL3(Z) replaced by I'. For all 4 € D(X, A) and for all locally constant, compactly supported
Z-valued functions f on X, the I"-action is determined by

/fmwaWMam:/ﬂumwwum‘
X X

As was implicitly observed in the work of Kubert and Lang, the collection of Siegel units of p-power
level are conveniently packaged into a distribution on X, by setting

psieger ((a,0) +9"(Z})) =c g4 3, forall (a,b) € (Z°)'.

Since every compact open subset of X is a union of sets of the form (a, b) + p™ (Z;), the above rule deter-
mines [igicgel 0N all compact open subsets of Xg. The fact that it is well-defined follows from the distribution
relation (10) with m = p.

View [igicgel s an element of D(X, (’),X{) via (15). A key feature of pigiegel is its invariance under I' =
SLo(Z[1/p]), and even under the full group GL3 (Z[1/p]) of invertible matrices with coefficients in Z[1/p]
and positive determinant.

Theorem 1.1. The distribution [igicgc1 Satisfies

(16) ,USiegel(U’Y) = ,uSiegel(U)h/a
for all compact open subsets U C X and all v € GL3 (Z[1/p]).

Proof. Let (o, 8) = (55, p%) be an element of order p™ in (Q/Z)?. Since the sets Uy, 3 = (a,b)+p"Z2.
and their translates under multiplication by p form a basis for the topology on X it suffices to prove

the theorem for the sets of this form. The equivariance (16) for v € SLy(Z) follows directly from (8).
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Since GLJ (Z[1/p]) is generated by SL2(Z) and the matrix 7" := (£ ), one is reduced to showing the
relation

ﬂSiegel(Ua,ﬂT) = NSiegel(Ua,B)|T-
To see this, note that

Ua T = (pa +pn+1Zp) x (b+p"Zyp)
= U wa+p""Z) x (0 +p""Z) = | Uns-
b/Eb(p") pB’:,B

It then follows from (9) that

MSiegel(Ua,BT) = H cga,ﬁ’(z) = cga,ﬁ(pz) = NSiegel(Ua,B”Ta
pB'=p

as was to be shown. O

The invariance of {isiegel under translation by the full p-arithmetic group I', which is hinted at in [LLZ14,
Rem. 2.2.3], combines the SLy(Z)-invariance properties (8) and norm compatibility relations (9), (10) satis-
fied by the Siegel units of p-power level into a single unified statement.

The following Lemma evaluates the Siegel distribution at some distinguished open subsets of X. Recall
that we chose ¢ = 5 and p # 5; the lemma is easily adapted to the case p = 5 by changing the value of c.

Lemma 1.2. The distribution [igicge1 Satisfies

(17) /LSiegel(XO) =1 (HlOd :EpZ),
pisiegel (PZp X ZY) = (A(¢P)/A(g))*  (mod +p”).

Proof. The first assertion follows from the fact that X is stabilised by SLo(Z), and therefore that
its associated Siegel unit is a unit on the open modular curve Y5(1) of level 1, which contains no
non-constant elements. More precisely, psicge1(Xo) belongs to O* (Yo(1)z1/)) = £p*. (Cf. [LLZ14,
Prop.2.3.2] for instance.) The second assertion follows from the calculation

p—1 p—1

psieael (PZp ¥ Z5) = [ sieger((0,4) + pZ2) = ] c0./p = £0° ~(A(¢")/A(g)) ~V/12,

i=1 i=1
where the last equality can be read off from the g-expansions of the Siegel units given in (11). The
result now follows, since ¢ = 5. OJ

1.3. The Dedekind-Rademacher distributions. The following general Lemmas concerning p-invariant
distributions will be useful later.

Lemma 1.3. Let pu be any element of D(X, A). If A is any Z,-lattice in Q?, and N\’ is its set of primitive
vectors, then u(A") = u(Xo).

Proof. By compactness, there is an integer N > 0 for which p_N Zﬁ CcAC pN Zg, and hence each
v € A’ belongs to a translate p? X, for a unique j € [~ N, N]. Hence one may write
AN =p™mU U---Up™Uy,
for a suitable decomposition
X():UlLl"‘UUt

of Xy as a disjoint union of compact open subsets. The additivity properties of ;1 combined with its
p-invariance implies that p(A") = pu(Xp), as claimed. O
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Lemma 1.4. The rule which to A associates D(X, A) is an exact (covariant) functor from the category of
T'-modules to itself.

Proof. The issue is right exactness. If ¢ : A — B is a surjective module homomorphism and p €
D(X, B) is a B-valued, p-invariant distribution on X, one can construct a distribution i € D(X, A)
that maps to it by choosing, for each successsive n > 1 and for each primitive vector v = (Z/p"Z)’,
the value fi(v + p"Z2) € A satisfying o (fi(v + p"Z32)) = p(v + p"Z32), taking care at each stage that
the additivity relations required of distributions be satisfied. One obtains in this way an element of
D(Xo, B), giving rise to the desired lift in D(X, B) via (15). O

Thanks to Lemma 1.4, the exponential sequence

627riz

0 z Oxu o} 1

induces a short exact sequence
1-D(X,Z) — DX, 04) — DX, 05) — 1

of I'-modules. Let
§:HO(I,D(X, 05)) — H' (T, D(X, Z))

be the connecting homomorphism arising from the resulting long exact sequence in I'-cohomology. The
image

toR = 0(pisieger) € H (D, D(X, Z))

is a one-cococyle on I’ i.e., it satisfies the relation

por(1172) = por (1) + por (12) |
It is obtained by lifting /igicgel to an Oy -valued distribution

_ 1
HSiegel = % IOg(,uSiegel) S D(X, OH)a
and setting
(18) por () = fisiegel|[Y " — fisiegel-
Recall the Dedekind-Rademacher homomorphism ¢pg : I'g(p) — Z evoked in the introduction, which
encodes the periods of the Eisenstein series Eép) = dlog(A(pz)/A(2)) of weight two.

Lemma 1.5. The one-cocycle upg satisfies

por (7)(Xo) =0 forall v €T,

(19) iR (VP xZ5) = gpr(y)  forall v € To(p).

Proof. Observe that, for all v € T,

,UDR(’Y) (XO) = ﬂSiegel"Yﬁl(XO) - ﬁSiegel(XO) = ﬂSiegel(XO 7)‘771 - ﬂSiegel(XO)-

Lemma (1.3) implies that figiegel (X0 7) = fisiegel (X0), and Lemma 1.2 shows that this common value
is a constant function on H. The first assertion follows. As for the second, equation (18) implies that

,U/DR('Y) (pr X Z;) = ([’/Siegel"y_l - ﬂSiegel)(pr X Z;)
By Lemma 1.2,

- 2

siesel(PZy 1) = = 10g (A(p2)/A(=)  (1mod ©).
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Since v € T'g(p) preserves the region pZ, x Z, it follows that

~ B _ 2 7tz
(fisicgel|y ™" = fisiegel) (PZp X LX) = 9 / dlog(A(pz)/A(z)) = ¢pr(7)s

as was to be shown. O

1.4. The multiplicative Poisson transform. Because a distribution 1 € D(X, Z) is Z-valued, and hence
p-adically bounded, it also gives rise to a measure: one can extend p to arbitrary continuous, compactly
supported functions on X. There is even a multiplicative refinement of the integral against y, defined by

f fduta.y) = i TS

where the limit is taken over finer and finer open covers {U, } of the support of f, and (24, y) is a sample
point in U,. Here f : X — C; is a continuous, compactly supported function on X (which means that it
takes the value 1 outside a compact subset of X).

Let Do(Xo, Z) be the Z-module of distributions on X, satisfying
1(Xo) = 0.

The multiplicative Poisson transform of p € Dy(Xo, Z) is the rigid analytic function J(4) on H,, defined
by setting

T0() = f @7+ p)dn(e.).

0
This assignment gives rise to an SLy(Z)-equivariant map
J: ]D)()(X(),Z) —>.A><,
ie.,
J(p)(r) = J(w)h(r) = J(w)(y7),  forally € SLy(Z).

Identifying Do (Xo, Z) with the module Dy (X, Z) of distributions on X satisfying

wXo) =0, p(pU) = puU),

the same rule J (where one continues to integrate over the compact subset Xg C X) determines a I'-
equivariant map

(20) J :Do(X,Z) — A*/pL.

The reason for this somewhat weaker invariance property is that while SLo(Z) preserves the region X of
integration defining J (1), the full p-arithmetic group I" does not. Nonetheless, if v € T, one still can write
(following the reasoning in the proof of 1.3)

Xoy=p™UU---Up™Uy, with Xo=U;U---UU,
and the integrand (x7 + y) arising in the definition of J obeys a simple transformation property under

multiplication by p. It follows that J(u|y) = J(u)|y (mod p?), forall v € T.

Let
Jpr = J(MDR) S Hl(F,.AX /pZ)
be the image of the measure-valued cocycle upr under the multiplicative Poisson transform of (20). It is

represented by the one-cochain Jpr : I' — A* (denoted by the same symbol, by an abuse of notation)
defined by

Jor(V)(7) = J(upr(7))(7),
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which satisfies the cocycle relation modulo pZ,

Jor(1172) = Jor(11) X Jor(v2)l; b (mod p”).

Its restriction to SLy(Z) also satisfies the full cocycle relation, with no p”-ambiguity, because of the SL (Z)-
equivariance of J.

The proof of Theorem A of the introduction is based on a slight refinement of the approach followed in
[DDO6, Prop. 4.7]. Namely, it suffices to calculate the image of Jpgr under the sequence of maps
n: HH, A% /p®) — BT, p%) = H' (To(p), p%).
Theorem 1.6. The image of Jpr undern is
n(Jor) = p*°r.

Proof. The action of I" on the Bruhat-Tits tree of PGL2(Q,,) leads to an expression for I" as an amal-
gamated product of the groups

-1
SLa(Z),  SLa(2) = ( pl ) SLa(Z) ( pl ) 7
whose intersection is I'g(p). The fact that H* (SLy(Z), p%) = 0 and that H?(SLg(Z), p?) is of order 12
ensures the existence of unique lifts to A™ of the restrictions of J} % to SL2(Z) and SL2(Z)':
Jpr € H'(SLy(Z), A™), Jhr € HY(SLa(Z), A™).
One then has, for all v € T'y(p),
(21) n(JER)(7) = Tor(v) + Tbr(7).

Concretely, Jpr and J))r may be expressed as multiplicative Poisson transforms of pipg, by setting

Tor(7)(r) == f (a7 + 9)2dupr ()@, y),  Toe()(r) = ][ (a7 + 4)2dupr(7) (2, v),

Xo 0
where X, := (pZ,, x Z,,)' is the translate of X, under the matrix ( ‘8 (1) > , aregion whose stabiliser
in T is the group SLo(Z)'. Observe that
(22) XoNXf = pZy X L), Xo =X = Z X Ly, X —Xo = p(Z) X ZLyp).
Hence, for all v € T'y(p),

Ton() +Tbu() = @+ 9 duon()e.n) + f @7+ ) o))

- f (a7 +9) P dupr (1) (@ y) + 74 (a7 + 9) 2 dupr (1) (2, y)
Zy XZyp p(Zy XZp)

= ][ p~ 2dupr(v)(z,y),
Zy XLy

where the penultimate equality follows from (22) and the last from the invariance of upg () under
multiplication by p. Because (Z, x Zj,) is the complement of (pZ;, x Z,; ) in Xo, and pipr (7)(Xo) = 0,
this implies that

Jor(7) + THr(7) :][ p2dupr(v) (@, y) = p'HorMEExLy) — pl2epn()
prXZ;f

where the last equality follows from Lemma 1.5. Combining this with (21) shows that n(Jpgr ) and p¥P®
agree, since the group they belong to is torsion-free. This completes the proof of Theorem A. O
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2. THE WINDING COCYCLE

The goal of this section is to recall the definition and key properties of the winding cocycle introduced
in [DPV21, § 2.3] and to reduce Theorem B of the introduction to Theorem C.

2.1. The residue map. The group H!(T', A* / C,) of rigid analytic theta cocycles is finitely generated and
closely related to the space of modular forms of weight two on the Hecke congruence group I'g(p). More
precisely, it is a module over the Hecke algebra T (p) of Hecke operators acting faithfully on the weight
two modular forms on I'g(p). To see this, let

U:={zeP(Cp) withl < |z]| < p} CH,
be the standard annulus whose stabiliser in I" is T'g(p). The logarithmic annular residue map
(23) oy A* JC) — Z, Ay (f) := Resy (dlog f)

is equivariant for the action of I'g(p), and hence composing it with the restriction to I'y(p) yields a map on
cohomology

(24) Oy : HY(I', A /CX) — H' (o (p). Z),

which is denoted by the same symbol by abuse of notation. This map is compatible with the action of the
Hecke operators, and with the involution W, determined by the matrix

b 5)

which lies in the normaliser of both I and I'y (p). Let H! (I, A* /C)* denote the plus and minus eigenspaces
for this involution in the space of rigid analytic theta cocycles, and denote by H (I'y(p), Z)* the correspond-
ing eigenspaces in the cohomology of 'y (p).

While the map in (23) has an infinite rank kernel, it is notable that the induced map on rigid analytic
theta cocycles is essentially an isomorphism:

Lemma 2.1. The map Oy of (24) is surjective. Its kernel is finitely generated of rank one, and contains the
element of infinite order defined by the class of the “trivial" theta-cocycle

Jtriv GHI(F,AX), Jtriv (((ZZ)) (Z):CZ+d
In particular, the induced map
(25) 0y + Q@ H(T, A" /C))™ — H'(To(p),Q)~

is an isomorphism.

Proof. The first assertion is a reformulation of [DPV21, Theorem 3.1]. The last follows from the fact
that Ji,4y is fixed by W, as can be checked directly from the definition of Jyy;y. O

2.2. The winding cocycle. In [DPV21, § 2.3], the winding cocycle
Jw € HY(I, A* /C))~

is introduced. Unlike the Dedekind—-Rademacher cocycle, it is not an eigenclass for the Hecke operators,
although it belongs to the —1 eigenspace for the involution W,. The greater complexity of .J,, on the
spectral side is offset by a gain in simplicity on the geometric side, evidenced by the fact that the rigid
analytic functions J,, () admit explicit infinite product expansions.
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Let Yo(p) = T'o(p)\H be the open modular curve, and let X(p) be its standard compactification, ob-
tained by adding the two cusps 0 and co. The intersection pairing on homology (Poincaré duality) defines
isomorphisms

(26) Hi (Xo(p): {0, 00}, Q)F = H! (Yo (p), Q) = H'(To(p), Q)
Mazur’s winding element
pw € H'(To(p), 2)~
is defined to be the class of the path from 0 to oo in the homology of the modular curve X (p) relative to

the cusps, viewed as an element of H (I'g(p), Z) via (26). By [DPV21, Prop. 3.3] and its proof, the winding
cocycle is characterised by the identity

(27) 0y (Jw) = 2¢w.

2.3. Theorem C implies Theorem B. Theorem B of the introduction is reduced to Theorem C by writing
the modular form G, of this theorem as a linear combination of eigenforms.

To this end, observe that H* (I'g(p), Q) is generated as a Q-vector space by the Dedekind—-Rademacher
morphism ¢pg of (3) encoding the periods of the weight two Eisenstein series Eép ) defined in the intro-
duction, and the homomorphisms ¢, attached to the minus modular symbol for f, where f runs through
a basis of cuspidal Hecke eigenforms in S2(I'g(p)). A direct calculation of integration pairings in [DPV21,
Lemma 3.4] then yields the spectral decomposition of the winding element,

1 -
(28) Pw :E'@DR‘F;/\J"%p

where the coefficient Ay € Q is a suitable non-zero multiple of L(f, 1) whose exact nature is not germane
to the proof of Theorem B. (But see [DPV21, § 3] for more details.)

Now consider the rigid analytic theta-cocycle
Jy o€ Q®HYT, A* /Cy)~
characterised by 0, (J; ) = ¢ . By Lemma 2.1 and (27),

2 = _
(29) Jo = ﬁ-JDR + ;%f.Jf in Q@ H' (T, 4 /C))~,

where additive notation has been adopted to describe the operations in this group in spite of its multiplica-
tive nature. For each n > 1, applying the Hecke operator T, to this identity then gives

2 _
(30) Thdw = E -TphJpr + Ef 2)‘f 'Tan
2 (p) -
= p_l'JDR'01 (n) + Ef 2Xp - J; - an(f)

inQ®HYT, A"/ C, )~ . After evaluating at the RM point 7 and taking p-adic logarithms, it follows that

o0 o Tulrl) = SR o0 S o, (07 ) an(1).
f

Substituting this identity into Theorem C of the introduction yields the spectral expansion

(52) a@ﬁﬁ%ﬂﬂmw+2m¢m
f
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where Eép ) is the Eisenstein series of (2), and

(33) Bf = 2A5 1ogp(.]f_[7']).

Comparing the zero-th Fourier coefficient of G in (32) with the one in Theorem C shows that

10g JDR[T]
12

thereby reducing Theorem B of the introduction to Theorem C.

— log(u,),

The remainder of the paper is devoted to the construction of the modular generating series required for
the proof of Theorem C.

Remark. The coefficients 3 in (33) are immaterial to the proof of Theorem B but are of independent
interest, insofar as they involve the RM values of the elliptic rigid analytic theta-cocycles J; : these values
are the formal group logarithms of certain Stark—Heegner points in the modular Jacobian Jy(p), which are
conjectured to be defined over the narrow ring class field H,. While the algebraicity of Jpg[7] emerges
naturally from studying the deformations of certain two-dimensional Artin representations and from global
class field theory, these ingredients are likely insufficient to shed any light on the algebraicity of the more
mysterious Stark—Heegner points.

3. DEFORMATIONS OF HILBERT EISENSTEIN SERIES

In this section, we study the derivatives of certain p-adic analytic families of Hilbert modular forms for
F parametrised by the weight. These families specialise to a certain Hilbert Eisenstein series of parallel
weight that displays several notable features. Firstly, it is cuspidal when viewed as a p-adic modular form,
and admits cuspidal p-adic deformations. Secondly, it vanishes upon diagonal restriction. This implies that
the derivatives of both cuspidal and Eisenstein families specialising to f, in spite of not displaying any
simple modularity properties themselves, yield p-adic modular forms after taking diagonal restriction. In
§ 4, we consider a suitable linear combination of these derivatives, and relate the Fourier coefficients of its
ordinary projection to the RM values of the winding cocycle.

While p-adic Eisenstein families only occur in parallel weight, cuspidal families vary over a larger weight
space. The main result of this section is Theorem 3.13, which describes the Fourier coefficients of the deriva-
tives of a cuspidal family in the “anti-parallel” direction of the weight space. Much like in the archimedean
setting, the Fourier expansions of p-adic Eisenstein families are entirely explicit; however, no general ex-
pression is available for cuspidal families. Our approach to studying cuspidal deformations of a Hilbert
Eisenstein series rests on the analysis of the associated Galois deformation problems. Roughly speaking,
first order deformations of the Artin representation attached to a Hilbert Eisenstein series of parallel weight
one are described in terms of the Galois cohomology of the adjoint representation, which cuts out a finite
abelian extension H of F. A class in the Galois cohomology of the adjoint cuts out an abelian p-adic Lie
extension of H, and the Frobenius traces on the associated Galois deformation involve p-adic logarithms
of global p-units in H, via the reciprocity law of global class field theory for H. This translates into the
appearance of the logarithms of Gross—Stark units in the Fourier coefficients of first order deformations of
Hilbert Eisenstein series, and accounts for the presence of the same quantities in the constant term of the
generating series G, of Theorem C.

The Galois deformation arguments are clarified and not substantially lengthened by working in the
setting where F' is an arbitrary totally real field of degree d in which p is inert. This will be assumed until
§ 3.5, when the main results will be specialised to the case where F' is real quadratic.
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3.1. Hilbert modular forms and Hecke algebras. Fix an embedding Q — Q,. Let F be a totally real
field in which p is inert, and denote by 0 the different of its ring of integers O. Write oy, . .., aqg for the
distinct embeddings of F into Q,, so that o is the embedding given by the restriction to F of the chosen
embedding Q < Q,,. Via the choice of an isomorphism C ~ C,, one obtains a corresponding indexing of
embeddings Q < C. For z € F, let (z1,...,z4) denote the image of x under the embeddings a1, . . ., g,
viewed as a d-tuple of either complex or p-adic numbers, depending on the context.

It is assumed throughout that the Leopoldt Conjecture holds for F. (When F is quadratic, this assumption
is known to be satisfied.) Fix a totally odd character ¢/ of the narrow class group of F. Let F be a finite
extension of @, containing the images of ' under all embeddings a1, . . ., a4 and the values of the character

.

We now recall some definitions and conventions related to Hilbert modular forms and their associated
Hecke algebras, following the treatment that is given in [Shi78], [Hi88, § 2] and [Hi91, § 3].

Let k = (k;) € Z%, be a d-tuple of integers. Denote t = (t;) the vector with t; = 1 for every
1 < 7 < d. Choose a vector v € 7% of non-negative integers such that k 4+ 2v = mt for some m € Z, and
define w = k + v — t. The space of Hilbert modular forms of weight (k, w) and full level 0, defined as in
[Hi88, § 2], is a finite-dimensional complex vector space. Let /v () be the algebra of Hecke operators
acting faithfully on the subspace of cuspforms. It is free of finite rank as a Z-module.

Fix (k, w) as above. The p-adic Hecke algebra is defined to be
(34) T = lm A w(p®) ® Op,

where the inverse limit is taken with respect to restriction of increasing full level structure at p. It contains
in particular diamond operators ([) for every integral ideal | coprime to p, as well as Hecke operators

(35) T(y) = ImT(y)y,”

for any idéle y € 6; N A7, whose component at p is denoted y,. When v, is a unit, the operator 7'(y)
depends only on the integral ideal m defined by y, and we write Ty, and Ty, for T'(y) and T(y). The compact
ring 7 has a unique decomposition 7" = 7:°" @7 such that T(p) is a unit in 77-°" and is topologically
nilpotent in 7. The ring 7™°™ is called the nearly ordinary cuspidal Hecke algebra. It is independent of
the choice of (k, w).

Write U = (Op ® Zp,)* and let Z be the Galois group of the maximal abelian extension of F' unramified
outside p and co. The Iwasawa algebra

A= OE[Z X U]
is abstractly isomorphic to a ring of power series in several variables with coefficients in a finite group ring
over Of. Denote
KUY Zx U — AX
its universal character. Since p is inert in F', the group U is identified with the group of units in the ring of

integers of F},. Denote Z**" and U*" the torsion subgroups of Z and U respectively, and choose Z° < Z and
U° < U torsion free subgroups so that

Zzztorxzo7 Uzutorxuo

and let A° = Og[Z° x U°]. Let x, and w,, be the cyclotomic and the Teichmiiller characters of G re-
spectively. They factor through the quotient Z. Define q = 4 when p = 2, and q = p otherwise. Then the
homomorphism

Xp.wgl: Z—14qZy
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induces an isomorphism when restricted to Z° if the Leopoldt conjecture holds for F". For any weight (k, w)
as above, consider the character kx w: G=ZxU— (@; defined by

(36) (z,a) — a -X;”_l(z).

With a slight abuse of notation, the corresponding ring homomorphism will also be denoted by xy v and
referred to as the weight (k, w)-specialisation. If v = 0, so that k = m - t, the pair (k, w) will be called
parallel weight m. Parallel weight specialisations are parametrised by the Iwasawa algebra Og[Z], which
shall be regarded as a quotient of A.

The nearly ordinary Hecke algebra 7™° is a A-algebra via the action of the diamond operators. The
main theorem of [Hi89a] asserts that 77:°"4 is finitely generated and torsion-free as a A°-module. In addi-
tion, the quotient of 7™-°*4 by the ideal generated by the kernel of ki w, for (k, w) as above, is isomorphic
to the ordinary part of the classical Hecke algebra of weight (k, w) and Iwahori level at p. This result is
often referred to as Hida’s Control Theorem.

3.1.1. p-adic families of Hilbert modular forms and weight one Eisenstein series. The space of Hilbert modular
forms of weight (k,w) and any level is automatically cuspidal unless (k,w) is parallel [Shi78, (1.8,)].
However, for parallel weights, non-trivial Eisenstein forms exist and can be interpolated in explicit p-adic
families parametrised by Og[Z]. The study of congruences between cuspidal and Eisenstein families of
Hilbert modular forms is at the heart of Wiles’ proof of the Iwasawa Main Conjecture over totally real
fields [Wi90]. In a similar spirit, we consider certain cuspidal and Eisenstein families sharing the same
specialisation at parallel weight one, i.e. k =t and w = 0.

For any pair (p,7n) of unramified characters of F' with ¢n totally odd, there exists a family £(p, n) of
Eisenstein series as described in [DDP11, §3]. The cases where (¢, ) = (1,%) or (¢, 1) are of particular
relevance in the calculations leading to the proof of Theorem C, and we now detail them.

A classical Hilbert modular form for F is a tuple g = (g;); of holomorphic functions on H¢, where H
is the Poincaré upper half plane, indexed by (a choice of) integral ideals t; representing the elements of the
narrow class group of F', and satisfying suitable modularity properties [Shi78, §2]. Each component admits
a Fourier expansion

(37) (21, za) = aolg, b)) + Y aulg)q’, ¢ =exiPT
veE (ti)+

for z = (21,...24) € H<, where t;r denotes the subset of totally positive elements of ;. Let 0 be the
different of F. Our calculations will only involve Fourier expansions of the component of the tuple indexed
by 971, so the other components will be omitted in the following discussion.

Let E1(1,%) be the classical Eisenstein series of parallel weight 1 defined in [DDP11, Prop. 2.1]. Its
9~ !-component has Fourier expansion

(Br(L,4))e-1(21, -, 2a) = L(F,4,0) + 4~ @) L(F, 7, 0) +27 Y 00.4(v0)¢",
ueall

where

orpla)= Y ()Nm()*  and  L(F¢,s)= >  (I)Nm(I)™*,

1905 I|(c) 1905

the latter converging for Re(s) large enough, analytically continued to all s € C.

Since p is inert in F, one has 1)(p) = 1, and the p-adic L-functions L, (3, s) and L,()!, s) have
exceptional zeros at s = 0. The Eisenstein series F1(1,1)) then admits a unique p-stabilisation f = (f;);
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such that
(38) for(2) = E§p)(1,1/))0_1(z) = E1(L,Y)o-1(2) — E1(1,¢)-1(p2).

The form f is the weight one specialisation of the Eisenstein families £(1, ) and £(¢, 1). For these families,
the algebraic notion of ¢-expansions (cf. Hida [Hi04, Chapter 4]) gives again a tuple of expansions indexed
by classes in the narrow ideal class group of F. The derivatives of the Fourier coefficients of £(1,) and
E(1, 1) at weight 1 will be exploited in § 4. Let E[e] be the ring of dual numbers with £2 = 0, and

Rite: OE[[Z] — E[E]
be the algebra homomorphism whose restriction to Z is given by
Ri4e(2) = Xp(2)(1 = log, (xp(2))e)-

Let E§T8 (n, ) be the image of £(n, ) under x14.. The Fourier expansion of the d~!-component of
E&?E(n, ) can be written

(39) EF (n¢) = aoln@) + > au(n@)e”,

where we omit the subscript 97! to lighten the notation. The coefficients can be read off from [DDP11,
Prop. 2.1, 3.2], as summarised in the following lemma:

Lemma 3.1. The Fourier coefficients of the component E%ﬁ_)s(n, ) indexed by 0~ are given by

L, (n"'¢,0)
ao(n, ¢) O
(40) (v)o
a(me) = > 1 (I) ¢(I) (1 +elog, Nm(I)) .
pH|(v)0

The article [DDP11] constructs an explicit cuspidal family parametrised by Og[Z] specialising to f at
weight 1. The family is not an eigenform over Og[Z]. Nevertheless, since f itself is an eigenform, one can
deduce the existence of a morphism

(41) wp: TV — Op

encoding the eigenvalues of Hecke operators acting on f. The composition with the morphism A — 72-°*4

will be denoted by
(42) m: A — O
and corresponds to the character x40 - 9.

The remainder of § 3 will be dedicated to studying lifts of the morphism 7¢ to the ring of dual num-
bers E[e]. Geometrically, this corresponds to studying the geometry of Spec(7™°') in an infinitesimal
neighborhood of the prime ideal defined by 7.

Remark 2. The cuspidal family appearing in [DDP11] was used to obtain the explicit formula for the deriv-
ative of the p-adic L-function L,(%, s) at s = 0 conjectured by Gross, asserting that

(43) Ly,(¢,0) = £(¥)L(1),0),

where £ (1)) is the Z-invariant described in §3.2. In recent work of Betina, Dimitrov and Shih [BDS]
Gross’ formula is linked to the study of the geometry of eigenvarieties from a Galois theoretic perspective.
The approach of [BDS] informs the present work, and is carried out in a broader setting.
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3.2. Galois cohomology and .Z-invariants. In this section we recall some results on Galois cohomology,
which we will later use, notably in § 3.4, to describe the tangent space of certain Galois deformation functors.
These preliminary results are well known to experts.

Although it will not be used, it is worth noting that most of the arguments below are quite general
and also work for general number fields /. Let H be a Galois extension of F' with Galois group G. The
E[G]-module Hom(G%P, E) can be described explicitly via class field theory. This will be used to show that
certain global Galois cohomology classes for the totally odd character v are determined by their images in
local cohomology.

A finite place v of H determines a prime ideal of H whose decomposition group is isomorphic to the absolute
Galois group of H,,, denoted by GG,,. For each v, there is an isomorphism between the profinite completion
of HX and G2 induced by the local Artin reciprocity map

rec,: HY — G2
for which the geometric normalisation is adopted. Note that the image of G, in G%P is canonical. Thus,
there is a restriction map res,, on continuous homomorphisms, defined by
res,: Hom(G3%,E) — Hom(H},FE)

(44) f > 1eCy O f|gab.

The following lemma is well-known to experts, but its proof is sketched below for completeness.

Lemma 3.2. There is an exact sequence of E|G]-modules

(45) 0 — Hom(G3p, E) =2, T] Hom(HY', E) — Hom(Ox[1/p]*, E).
vlp

In addition, the rightmost map is surjective if and only if Leopoldt’s Conjecture holds for H.

Proof. Let A};/H* be the idéle class group of H. The global Artin reciprocity map recy : Ay /H* —
G4 is compatible with its local versions via the restriction maps, and gives a sequence

(46) 0 — Hom(G%, E) — Hom(A};, E) — Hom(H*, E)
of continuous group homomorphisms, where the topology on H* is discrete. This sequence must be
exact for topological reasons. Let A: H* — A% and A,: Og([1/p]* — [1., H be the diagonal

embeddings. The two terms on the right of (46) are related to their restrictions to the places above p
by the commutative diagram

Hom(A},, E) —2°— Hom(H*, E)

Loy

[[ Hom(E, B) —~% Hom(Ou[1/p]", E)
Ip

where AV, A} are induced by A, A, by duality. Note that any element in Hom(A;, E') must be
trivial on the units O;° of H, for any v { poo, and standard continuity arguments then show that the
resulting map ker A¥ — ker A is an isomorphism. The rightmost map of (45) is surjective if and
only if the Z;-rank of the closure of the image of Oy in [[,, O is equal to the Z-rank of Op;, that
is, if Leopoldt’s Conjecture holds for H. 0

Let ¢: G — E* be any character, viewed as a character of G, and consider the global Galois coho-
mology group H!(F, E(y)). The inflation-restriction sequence for continuous group cohomology of E(()
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leads to the identification

(47) H'(F, E(p)) ~ H'(H, E)* " = Hom(G}}, E)?

-1

The cohomology group H!(F, E(y)) is related to certain units in H. Let S be a finite set of places of F,
containing all infinite places and let O};’ g be the S-units of H, and write

U, = (0} 5@ E)¥ .

Then, the Galois-equivariant version of Dirichlet’s Unit Theorem yields

(48) dimp U, = {w € S | p(w) = 1}| — dimg E(p)°.

The above discussion will now be specialised to the case where H is the narrow Hilbert class field of

F. In what follows, the character ¢ will be taken to be either the trivial character or an unramified totally
odd character ¢, viewed as a character of G = Gal(H/F'). Let S be the set of places containing the place
corresponding to the prime (p) of F' and all infinite places of F'. It follows from (48) that dimp Uy = d,
since F' is totally real and dimg U, = 1, because (p) splits completely in H/F' and ) is totally odd.

Recall that we wrote
o1, .00 F—=Q,

for the distinct p-adic embeddings of F'. The prime ideal pOp splits completely in H/F, and the choice of
a prime p of H above p determines an identification Hy, = F),. Fix the choice of p corresponding to the
chosen embedding Q — Q,, once and for all, and write

a1y, 0 H—Q,
for the p-adic embeddings of H extending a1, ..., oq respectively, ie.,
&j|F =y and &j_l(mzp) =p.

Lemma 3.3. For all totally odd characters ¢ of F' with values in E*,
(49) dimg HY(F, E(¥)) = d.
Furthermore, dimg H!(F, E) = 1 if the Leopoldt Conjecture holds for F.

Proof. Combining (47) with Lemma 3.2, for any E* -valued character ¢ of G, the cohomology group
H!(F, E(y)) is isomorphic to the ¢~ !-eigenspace of the kernel of

(50) HHom(HpXi,E)—>H0m(0H[1/p]X,E).

pilp
Let p; = p be the chosen prime. Then Hom(H,;, E) is spanned by {log,, oc;, j = 1,...,d} and ordy,.
Since p splits completely in H/F, the E-vector space Hom(H,,, E) generates the source of (50) as
an E[G]-module. The E[G]-span of each basis element of Hom(H,, E) is isomorphic to the right
regular representation of G. In particular, the multiplicity of every one-dimensional representation of
G in the source of (50) is equal to dim g (Hom(H,,, E)) = (d + 1).
Thus, (48) leads to the inequality

1, ife=1
dimp HY(F, E >(d+1) —dimgpU,-1 =< ’
sH(F E(p)) 2 (d+1) EYem {d, if  is totally odd,
where the equality holds precisely when the map induced by (50) on the ¢~ !-isotypic component is
surjective. The latter statement is equivalent to the Leopoldt Conjecture for F' when ¢ = 1. When ¢ is
totally odd, the ¢~ ! -isotypic component of O }; ® F is trivial, so the surjectivity of (50) is unconditional.

O
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When ¢ is either totally odd or trivial, we wish to describe the restriction to the decomposition group at

the prime p of a basis of H!(F, E(¢)). Denote

(51) res,: H!(F, E(¢)) — H' (Fy, B(p))

for the restriction to the decomposition group at p, which is characterised by the choice of embedding

Q — Q,. Since p|¢ s, = L, by local class field theory, we can choose a basis of the target given by the
p-adic valuation in F, px, denoted by oy, together with the homomorphisms

lp 5 = log, oay, 1< <d.

Choose an auxiliary prime p = p;, for some 1 < ¢ < n. Under the running assumptions, Uy, is a
one-dimensional E-vector space. Choose a generator u,, of Uy, and note that ord,, (uy) # 0, since the
¢~ !-eigenspace of O} ® E is trivial by (48).

Definition 3.4. The quantity

) %(w)=—m7 (1<j<d)

is called the partial #-invariant of 1 with respect to the j-th embedding of F' into Q.

Note that this definition is independent of the choice of the generator u, of Uy, and of the auxiliary
choice of the prime p of H above p. However, it depends on the choice of the p-adic embedding «; of F/,
thus justifying the notation.

The following lemma relates the partial .#-invariants of Definition 3.4 with the Gross-Stark unit w,
of the introduction. In order to state it precisely, fix a choice of the unit u,, by fixing an RM point 7 of
discriminant D and setting

(53) Uy = H (Uur)w(”fl).

o€Gal(H/F)
Lemma 3.5. For all odd characters i of Gal(H/F'), and all1 < j < d,
Z; () L(,0) = log,,(a (uy)).
Proof. This follows after noting that, by definition of the Gross—Stark unit .,
ordy (@ (uy)) = —L(¢,0).

The full £ -invariant of 1) is the quantity

It can alternatively be defined, for any choice of j, as
Fp  ~
(log,, o NmE? 0, (uy)
(ordy, o &) (uy)
Remark 3. Of primary interest is the case where F' is quadratic and v is an odd narrow class character.

Under theses assumptions, the character 1 satisfies ¢y ~!(c) = ¢ (ro77!) for any 7 € Gg ~ Gp. This
implies that the partial .Z’-invariants satisfy the relations

L) =L@, L) =LA@).

L) =~




20 HENRI DARMON, ALICE POZZI AND JAN VONK

The following characterisation of the partial .#-invariants, whose proof is recalled for the convenience
of the reader, is well known to experts and also plays a key role in the work of Dasgupta, Kakde and Ventullo
[DKV] on the Gross-Stark conjecture.

Proposition 3.6. Let ¢: G — E* be any character of G. Denote xp,: Gp — Z, the p-adic cyclotomic
character. If Leopoldt’s Conjecture holds for F, then:

(1) If ¢ is trivial, ny := —log,, ox,, generates H' (F, E()). Its restriction to the decomposition group at
D satisfies

d
resp () = Z lp.5
j=1

(2) If o is totally odd, the cohomology group H' (F, E(y)) has a basis {1, ; }1<j<a such that
resp(np,j) = by, +-ZLi(0"")op.

Proof. By Lemma 3.3, Hl(F , E) is one dimensional; thus, it is generated by the (non-zero element)
class of 7y = —log, (xp). The restriction to the decomposition group at p can be calculated by observ-
ing that, since X, is obtained by restriction to G of a character of G, the same applies to the local
characters at p. This implies that res, (71 ) factors through the norm map from F), to Q,,.

Since p; is the prime of H determined by the fixed embedding Q < Q,,, the diagram

resy

HY(F, E(p)) —— H!(Fp, E(p))
J{resH J{I‘GSH‘,1
H'(H, E(p)) — H'(Hy,, E(p))
commutes, where all the maps are given by restriction. In addition, resy, is an isomorphism, because
(p) splits completely in H/F’; more precisely resy, ~satisfies
(54) resg, (0p) =ord,od; and resm, (¢;,) = log,od;

for every 1 < j < d. It is worth noting at this stage that ord;, o &; is independent of j, while log,, oc;
depends very much on j. After identifying H (F, E(i)) with the ¢~ eigenspace of the kernel of (50),
the image of res), is isomorphic to the image of this subspace via the natural E-linear projection

@ Hom(H,, E) — Hom(H,, E)
i=1

on the first component (which is, of course, not Galois equivariant). Let {1,2,...,n} be the G-set
characterised by op; = p,; for every o € G. Let (f;)icr be an element of @' ; Hom(H,:, F). The
action of ¢ € G on (f;); is given by

o(fi)i = (fomrso0 )i

In particular, let (f;); belong to the !

transitive. Let i = 0~ 1 for ¢ € G. Then

fi= (o) (f1o0)
Let u,-1 be a generator of the p-eigenspace of O [1/p]* ® E. Then

-eigenspace. The action of G on primes above p is simply

n n

(Fier(Bp(up)) = 3 filue) = 3" plo) " (frlowy) = ni(u)
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where A,: Oy (1/p]* @ E — []; Hy; ® E denotes the diagonal embedding. Thus, (f;); belongs to

the ¢~ !-component of the kernel of (50) if and only if f1 (u,-1) = 0. Let
d
fi= Z z;log, oa; + yord, o &;.
j=1

The condition f(u,-1) = 0 cuts out a d-dimensional subspace, since ord, o @;(u,-1) # 0. Af-
ter re-writing this condition in terms of the .Z-invariants {.Z;(¢ ')} and comparing with (54), the
proposition follows. O

3.3. A-adic Galois representations. A general result of Hida establishes the connection between the
nearly ordinary Hecke algebra introduced in § 3.1 and Galois representations. More precisely, in [Hi89b],
certain Galois representations are constructed which interpolate the representation corresponding to clas-
sical specialisations of Hida families for the Hecke algebra 7™:°*4, Exploiting the properties of these Galois
representations, the study of the Hecke algebra 7"-°"¢ infinitesimally at the prime ideal corresponding to
the system of eigenvalues of f can be reduced to that of a deformation ring that will be introduced in § 3.4.

The ultimate goal is to leverage the properties of the Galois representation to extract explicit formulae
for the derivatives of the cuspidal family specialising to f, in the spirit of [DLR15]. For this purpose, it
suffices to consider the (reduced) completed local ring 7 obtained as the nilreduction of the completion
of the localisation of 7™:°"¢ at the prime ideal q given by the kernel of the morphism 7 defined in (41).
(Although this is not crucial for this application, it can be showed as in [Che05, Prop. 6.4] that the completion
of the localisation of 77-°*4 at the point corresponding to q is automatically reduced.)

It is natural to view 7 as an algebra over A;, the completion of the localisation of A at the prime ideal
p1 = ker my; the latter is isomorphic to a ring of power series in d + 1 variables over E.

In this section, Hida’s results are slightly refined in order to obtain a two-dimensional representation
with coefficients in 7y (Prop. 3.8), satisfying certain additional properties. The proof follows Mazur and
Wiles’ approach to the (somewhat delicate) study of deformations of residually reducible representations.
The treatment of Bellaiche and Chenevier [BC06], which is well-suited to working over reduced henselian
local rings such as 7y, will be followed. It is worth noting that the argument presented here relies crucially
on localising the nearly ordinary Hecke algebra 7-°'4 at a prime ideal of residual characteristic 0, and on
the Galois cohomology calculations in §3.2, and particularly on the injectivity of (51).

Write K f for the total ring of fractions of 7y; it is isomorphic to a product of fields Hl K ;, each corre-
sponding to a minimal local component at of Spec(7™°*4) at the point corresponding to q I

Thus 7 can be viewed as a subring of K. In this context, the main result of [Hi89b] can be phrased as
follows.

Theorem 3.7 (Hida). There exists a totally odd, continuous Galois representation
PK; - GF — GLQ(Kf)
satisfying the following properties:

(1) the projection prc, of pr, to Ky.; is absolutely irreducible, for every i;
(2) pk, is unramified outside p;
(3) For every | prime ideal of F' such that [ { p, let Frob| be a Frobenius element. Then

det(1 — Xp(Frob)) = 1 — T\ X + ()Nm() X?
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(4) The restriction of pr, to GF, isnearly ordinary, i.e., it satisfies

€k
pKf|GFp = 0 )

where

(55) § orecy(p) = T(p),
(56) §orec,(u) = (k") ((u,1)) forallu € U,

whererecy,: I — G, is the local Artin reciprocity map.

In order to relate the ring 7 to a deformation ring, it is important to refine the Galois representation py,
to an integral version with coefficients in 77. By the Cebotarev density theorem, the trace of px ;> as well
as the characters ¢ and ¢, take values in 7y C K. Following Bellaiche-Chenevier [BC06], the existence
of a free rank two Ty-module stable under the action of G can be related to a certain global cohomology
group. In addition, the condition that the Galois representation pf ; is nearly ordinary imposes some local
conditions on the global cohomology classes, that allow to show that py, is conjugate to a representation
with coefficients in 7, following an argument which will now be described.

Let Mg, ~ K ]% be the two-dimensional Galois representation of G provided by Theorem 3.7. Relative

to a basis (e, e™) of My, on which a choice of complex conjugation for F' acts diagonally as [6 O ] the
representation pg, is given by

ar b
PK; = [ij d;] : GF — GLQ(Kf).

The fact that the traces of pg, lie in 7y implies that ay (o) + d (o) belong to 7y, and hence, that
af(o),ds(o) € Ty, forallo € Gp.

It follows that
bi(o) - cp(r) =as(or) —as(o)ay(t) € Tf, forallo,7 € Gp.
Let By and C't be the T¢-submodules of K ; generated by the values of the functions b and cy respectively.

The reducibility ideal I}ed is the (proper) integral ideal of 7; generated by the products by (o )cy(7) for all
o, T € Gp.

Fixa G F, -stable free one-dimensional submodule L ; of Mg ;=K ]%, and denote by € and d¢ the local
characters of G, acting on Lg ; and Mg ; /Lk s respectively.

Proposition 3.8. There exists a Ty[G r]-submodule M, C M, which is free of rank 2 as a Ty-module,
whose associated Galois representation p7, : Gr — GL(Mr; ) satisfies the following properties:

(1) The residual representation Mg := M, ® E is semisimple;
(2) There exists a free rank one summand L, of M, such that
o L7, is G, -stable and Gf, acts on M, /LTf via d;
e The subspace Ly := L, ®F of Mg is not Gp-stable.

Proof. Let B, ; C By be the Ty-module generated by b(GF, ), and likewise for C, C Cy. We
claim that the natural inclusion B, y < By is surjective. The 7r-module By is finitely generated by
continuity of the representation pg ,, and hence, by Nakayama’s lemma, it suffices to show that the
induced map

ip: Byp/m7; Bfp = By/m, By
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is surjective. Consider the commutative diagram

(57) Hom(By /m7, By, E) ——=H'(F, E()) ,

lié lresp

FP
Hom(BZLf/mTf By, E) —— Hl(Fp’ E)
where the top horizontal map I" maps § € Hom(By/m7, By, E) to the class of the cocycle
o +— 0(b(0))

for every 0 € G, and I',, is the corresponding map on local cohomology. By [BC06, Lemma 3], the
map I is injective, and Proposition 3.6 implies that res,, is also injective. The commutativity of diagram
(57) implies that i} is injective, and therefore i 5 is surjective, as claimed, so that By = B,, ;. The same
argument shows that C'y = C) 5.

From the fact that pi is absolutely irreducible for every ¢, it follows that the the annihilator of the
module By (respectively C't) is 0. One can deduce that, without loss of generality, the vectors (e*, e™)
can be rescaled by a pair of elements of KX so that

LKf = <€+ + 67>.

Note that this basis is unique up to scaling, and hence, the resulting matrix representation of px, is
uniquely determined.
Changing the basis (e™,e™) to (e~ + e, e™), the representation p, is given in matrix form by

1 0 af bf 1 0 . CLf-l-bf bf
=1 1) |ep df| |1 1 o —bf—i—(df—af)—i—cf —by +dy

In particular, for every o € G Fp»

ap(o) +bp(o0) =€s(0)  and —bg(o) +ds(0) —ag(o) +cf(0) = 0.

Since ay and dy are valued in 7y and ay(0) = dy(0) = 1 (mod mr; ), the first equation implies that
by takes values in mr,. Similarly, because d f(o) —1lemg, from the second equation it also follows
thatcy(o) € my;. Thus, By = B,y C m7, and Cp, = C) y C m;. It follows that pr, has coefficients
in 77 relative to the basis (e*, e ™), giving rise to a Galois stable Ty-lattice M7, := Tyet +Tye™ which
satisfies all the claims of Proposition 3.8. O

3.4. A deformation ring for residually reducible representations. This section describes an abstract
deformation ring R, ord yelevant to the Eisenstein series f defined in (38). Recall that A; denotes the
completed local ring of the Iwasawa algebra defined in §3.3. It is isomorphic to a ring of power series over

E in (d + 1)-variables.
The deformation ring R;;%rd is equipped with a natural A;-algebra structure
(58) dr: Ay — R

The construction of Rg;fd is complicated by the residual reducibility, and we follow the approach of
Calegari-Emerton [CE05] to overcome this. The main result of this section is Proposition 3.10, which
computes the map induced by @ on tangent spaces and shows it is an isomorphism.
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3.4.1. The deformation functor. Let € be the category of local complete noetherian rings with residue field
E. Consider the functor
DI x Dl°°: ¢ — Sets

which takes any (A, m4) € Ob(Cg) to the set of pairs of continuous characters
(a: Z—= A% va: U= A7), with  (94,v4) =(1,1) (mod my).

This functor is represented by the completed local ring A;. Let E[e] be the ring of dual numbers over F
and denote td¢t10¢ = (Ddet x Ploc)(F[e]) the tangent space of the deformation functor D4et1°¢. The map

(59) Hom(Z, E) @ Hom(U, E) — tdetloc
sending a pair (x, y) in the source to the pair of homomorphisms

Z— Eg]*, zw— (1+ex(z)), U— Ele]”, u— (1+ey(u))
is an isomorphism. We fix such identification. The source of (59) has a basis

(60) eo = (n1,0),  €; =(0,0p;), 1<j<d
This choice of basis of the tangent space ¢1°"!°¢ gives a basis (e, .. ., €;) of ma, /m% by duality. For
each e} we fix a lift to ma,. This determines a choice of coordinates for Ay, that is an isomorphism
E[Xy,...,Xq] sending X to the chosen lift of e, which will be fixed throughout. Under this identifica-
tion, the universal object representing the functor D9* x D!°¢ is given by a pair of morphisms (94, , va,)

satisfying
d
’19/\1 =14+ Xom (HlOd mf\l), vp, =1+ Z XJ[PJ (mod mf\l)
j=1

Remark 4. The choice of coordinates on A; is only well-defined up to elements of mf\l. While these coordi-
nates will be used in the calculations with Fourier expansions in §3.5, this ambiguity is harmless, since the
computations will only involve infinitesimal deformations.

We now define a deformation ring R, 1. Let p = 1) @ 1 with the standard basis (v1,vs) of V = EZ
This is a semisimple reducible representation, and as such it admits non-scalar endomorphisms. To obtain
a representable functor, the deformation problem needs to be suitably rigidified. This is done, following
Calegari-Emerton [CE05], by setting L = (v; + v2), which is a line that is not stable under the action of
GF. A strict deformation of (V, L, p) over an object (4, m4) of € is a quadruple (V4, L4, pa,ga) where

V4 is a free A-module of rank 2;

L 4 is a free rank 1 summand of Vy;

pa: Gg — GL(Vy4) is a continuous representation;

ga: Va®4 E ~V is an isomorphism of E[Gg|-modules sending L4 ® E to L.

Two strict deformations (Va,La,pa,ga) and (V}, L'y, p'4,¢)s) are said to be equivalent if there is an
A[Gg]-module isomorphism & : V4 — V sending L 4 to L/, and for which the diagram

VA ®A E gA Vv
VioaE-25V

commutes. A deformation of (V, L, p) over an object (A, m4) in € is an equivalence class of strict defor-
mations over A.
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Remark 5. Even though no local conditions are imposed on the deformations of (V, L, p) at primes ¢ # p,
these deformations are automatically unramified. This boils down to the fact that, by global class field
theory, a Z,-extensions of H can only ramify at primes above p. The same argument applies more generally
to deformations of Artin representations.

Consider the functor
D, r: g — Sets
which associates to an object (A, m4) in € the set of deformations of (V, L, p) over (A4, my4). The functor
D,, 1 is representable by a complete local Noetherian ring R, 1, with residue field E. The representability
can be verified as in [Ma89, Prop. 1]. It is ensured by the additional datum of a line lifting L, which can be
viewed a “partial framing" of the functor parametrising deformations, forcing automorphisms of a deforma-
tion to consist only of scalars. Thus rigidified, the deformation functor presents the advantage of being fine
enough to be representable, while still being conceivably comparable with a Hecke algebra, as in [CE05].

Finally, consider the functor Dg,'zrd classifying quintuples (Va, L a, pa, ga,ta) such that:

e the equivalence class of the quadruple (V4, L4, pa, ga) belongs to D, 1,(A);
e the free rank one summand L 4 is G, -stable;
® a1 F)° — A* is the character satisfying

((paorecy)y)v = ta(y)v mod Ly
for every y € F,) and v € V4, where rec;, denotes the local Artin reciprocity map.

Remark 6. Of course the datum of a character ¢ 4 : FpX — A* is redundant in the previous definition; it is
nonetheless useful to keep track of it, since it plays a key role in the calculations.

The deformation functor D;}'zrd is representable by a quotient of R, 1, denoted R‘pl'zrd. Indeed, choose
an R, 1-basis (01, U2) for the universal representation, lifting (v1, v2), in such a way that the universal free
rank one summand is given by

Lz, , = (01 + o).

Then the ring RE;%rd is the quotient of R, 1, by the ideal
(a(0) + B(a) — (o) — 8(0) | Yo € G ),

where a, 3,7, are the entries of pr, , = {: g} with respect to the chosen basis.
We now describe the A;-algebra structure of Rgfd. Givenaquintuple (Va, La, pa,ga,ta) € D;‘;?d (A),
the pair (det p4 - 1, t|,x ) belongs to D" x D!°°(A). This is because the determinant of p4 factors
F,

through Z, which follows from two specific features of the setting, namely that the deformation rings have

residual characteristic 0, and that a finite image representation is being deformed. In particular, taking (a

representative of) the universal object of D‘pl'zrd yields a morphism ¢z : A; — R;'fd. As a consequence

of Proposition 3.8, the universal property of R} " 4 yields a morphism Y from the deformation ring to the
Hecke algebra, which makes the following diagram commute:

T

W

Ay

(61) Riyord Ty
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3.4.2. Tangent spaces. We now come to the main results of this subsection, and describe the map on tangent
spaces induced by ®. Recall that E[e] denotes the ring of dual numbers over E. Let

tor =Dpr(El]) and  tp3d =Dy (Efe])
be the tangent spaces of the deformation functors introduced above. The following lemma describes them
explicitly.
Lemma 3.9. (1) There is an isomorphism G : H'(F,ad(p)) — t, 1 sending the cohomology class of{z ?}
in HY(F,ad(p)) to the equivalence class of

(©2) (BE2 8, (1+2[55]) proe).

where g. sends the standard basis of E[¢]? to (v1,v2).

(2) There is a well-defined homomorphism

(63)  P:H'(F,ad(p)) — H'(F,, E), [3 ’g} — resp(a) + resy(B) — res,(7y) — resp(9)

where res,, is defined as in (51). The map G': ker(P) — tg;oer given by

(3] = (@ ((38]) 1+ o)

is well-defined and an isomorphism.

Proof. (1) For any equivalence classint, ;, = D, 1.(Fe]), we can choose a representative of the form
(62) for some cocycle in Z! (F, ad(p)). It suffices to verify that G is well-defined; in other words, it
is enough to show that two lifts if p., p. of p are conjugate by a matrix in the kernel of

GL2(E[e]) — GL2(E),

then they are conjugate by a matrix stabilising the line ([1]). This follows from the fact that the
space of coboundaries for the adjoint representation of the form
P(o) 0] [r s]| [v(e)™t 0 ros| 0 (Y(o) —1)s
0 1||t u 0 1 t oul (o)t =1t 0
foro € Gpand [} ;] € My(E) is spanned by coboundaries of matrices fixing the line ([1]).
(2) The map P is well-defined because the restriction of ¢ (and thus of ad(p)) to G, is trivial, so
there are no non-zero coboundaries for the local cohomology group. A lift of p to the ring of dual
numbers of the form (1 +e [‘;‘ gD p stabilises the line ((1)) ifand only if « + 8 = v + 4. It

|

follows that the lifts of p stabilising (( })) are the image under G of the kernel of P. By changing
the basis of E[e]* to [1],[?], we easily compute the action of G, on the quotient modulo the
Gk, -stable line, obtaining the second coordinate of G’. This is again well-defined because there
are no-non trivial local coboundaries.

O

For the tangent space ¢, 1, note that since p = ¢ @ 1, it follows that
ad(p) = 12 & @ L.

i.e. the adjoint representation of p splits completely. Hence, by Lemma 3.3, the cohomology group H! (F, ad(p))
has dimension 2d + 2, and we may choose the F-basis consisting of

~m O 10 0 10 myy o 0 0 .
(64) A_|:0 0:|) D_|:0 77]1:|7 BJ_|:0 0 ? C]_ ,',]w_17j 07 1S]Sd
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where the entries are described by Proposition 3.6. With respect to these choices of bases, we now explicitly
describe the map on tangent spaces induced by ®%, denoted

(65) O: t?,([)/rd — tdet,loc.

Proposition 3.10. If.Z () + £ (¢~1) # 0, the map © is an isomorphism and its inverse satisfies

2l 2(v)
12w AT O) g e (P Tia B

<
L) = L) d d
g(w) 4 3(1/)71) (A -D+ Zk:l Cr — Zk:l Bk) - B; - Cj

(66) O '(eq)

67 O e) =
forl1 <j <d.

Proof. By Lemma 3.9, the map G’ gives an isomorphism between the kernel of P (defined as (63))

in H'(F,ad(p)) and the tangent space t;;zrd. On the other hand, the map O: tszd — tdetloc gends

a quintuple (V., L., pe, ge, L) to the pair (det p. - 1, LE‘O; ). Combining Lemma 3.9, with the de-
P

scription of the tangent space of t4°%1°¢ given in (59), the map © can be interpreted in terms of Galois

cohomology as the restriction to the kernel of P of

P’ HY(F,ad(p)) — Hom(Z, E) & Hom(U, E), [“‘ 5} — (a +6,(5— B) orecy| o ) .

v 6
Thus, in order to show that © is an isomorphism, it suffices to show that
(P, P'): H'(F,ad(p)) — H'(F,, F) ® (Hom(Z, E) ® Hom(U, E))
is an isomorphism. Choose the bases (A, D, By, ..., By, C1,...,Cy) for HY(F,ad(p)) and
(0p,0), (£p1,0),...,(£p.a;0), (0,e0),...,(0,eq)

for the target of (P, P’). Let (x4, Zp,ZBy,---,ZBy, TCy,-- -, &, ) be the coordinates of a class in
H!(F,ad(p)) with respect to the basis above. The map (P, P’) yields a system of (2d + 2) linear
equations in (2d + 2)-variables:

Yot (B($)zo, — Ll zE,) =0
-TA*SCD‘FfEBj —Tg; =0
Ta+xzp =0
rp — Z‘B]. =0
where 1 < j < d. The corresponding matrix has determinant .£ (¢)) + £ (1)~ !). The expressions for

the inverse of © can be obtained by inverting the matrix of (P, P’) with respect to the above bases. [J

Remark 7. In the case of interest to this paper where [F' : Q] = 2, the non-vanishing of £ (v)) + £ (v~ 1)
is clear since £ () = £ (1) # 0. In fact, this non-vanishing can be proven more generally exploit-
ing results in p-adic transcendence theory. For details, compare with [BDP, Prop. 2.5] and the upcoming
generalisation to Hilbert eigenvarieties [BDS].

Recall the commutative diagram (61) arising from Proposition 3.8.

Theorem 3.11. The maps @, ®7 and Y are isomorphisms.

Proof. Since @ is a morphism of complete local noetherian rings with residue field E, the injectivity
of (65) implies that @ is surjective. The top row is surjective because all Hecke operators are in the
image; thus it follows that @7 is surjective. But 7 is a torsion free A-algebra; in particular ¢ is
injective, hence an isomorphism. It follows that ®x and T are isomorphisms as well. O
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Proposition 3.12. The inverse of O satisfies

o (Ty) = 14¢() +log,(Nm(l)) - (A+ p2p(1))  (mod mj )
(68) O (())Nm() = ()(1+ (A+ p)log,(Nm(1))) (mod m% )
o7 (T(p)) = 1+¢ (mod m3 ),

where | is a prime ideal of F’ such that p t Nm([) and A, 1, § € mp, are given by

A= (2@)+ 2@ ) (L)X + DL (LW) - ZWT)X,)

o= (W) 2@ ) (L)X - S (W) - £ )X,

E = (20)+ LW (L)LKo + T (BLW ) + L6 LW,

Proof. Let (V‘mi", Luwiv, punivguniv Luni") be a representative of the universal object of the functor
D;"zrd over the deformation ring Rgizrd. Then

T YY) = Tr(p")(Froby) and YT (T (p)) = "™ (Frob,).
Denoting

b — niv
(i d) = @Rl o p"V: Gp — GLy(Ay),

it follows from Proposition 3.10 that modulo m%l,

@ = b+em(ZW)+ L) (LEXo+ XL (W) - L))
d = T+m(Z)+ L) (L)X - D (Z0) - L6 ))X;)

from which the expression for Y~1(T)) is obtained. Similarly, the local character satisfies <I>7_€1 o WiV —
d — b. Since 7y (Frob,) = 0, it can be seen that (d — b)(Frob,) = 1 — b(Frob,), and the value of b at

Frob,, is equal to

L) (g i (Froby) o ((%(MDz%w))zi_lw,k(ﬂobp)

2o 20 0t L)+ LW

- W,j(Frobp)> X;
=1

modulo m%l by Proposition 3.10. The equality (68) then follows from Proposition 3.6. O

3.5. Fourier coefficients. The above results will now be specialised to the case where F' is a real quadratic
field and %) is an unramified totally odd character of F'. In this case, we compute the Fourier coefficients of
the anti-parallel family through the Eisenstein series f of parallel weight 1 discussed above.

The anti-parallel weight direction in the tangent space of the Iwasawa algebra is the direction corre-
sponding to the morphism A; — FE|[e] given in terms of generators as follows:

{ Xo,Xl — &,

(69) X, — 0.

Since, by Theorem 3.11, the structural map ®7: A; — 7 is an isomorphism, the map (69) gives rise to a
morphism from the nearly ordinary Hecke algebra to the ring of dual numbers

(70) wp T — Elel.

lifting the morphism 7, defined in (41). This corresponds to the system of Hecke eigenvalues of a first order
eigenfamily of Hilbert modular forms F, whose Fourier coefficients, which can be recovered from 7 ¢, play
a central role in what follows.
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In the anti-parallel weight direction, one immediately checks that the quantities A, u, and £ appearing in
the description of the tangent space of 7"-°"¢ in Proposition 3.12 specialise to

AW 0
‘2wt hE2w)

Using the results in § 3.4, the image under the anti-parallel weight morphism 7; of the operators () and
T for [ # (p), as well as T'(p™), can now be computed in terms of these quantities:

(71)

£=0.

e Let [ # (p) be a prime ideal. Proposition 3.12 immediately implies that

77 (To) = 149 + log, (Nm(D)) - (Mp([) + p)
(D) Nm() = () 4+ elog, (Nm([)) - o(l).

The recursion relation proved in [Hi88, Corollary 4.2], which states
TrnT) = T + (HNm() T

can be used to determine the image of the Hecke operators attached to powers of [. A straightfor-
ward inductive argument now shows that

Tp(Te) = Y ()7 (1+log, Nm(1) (j - A+ (n — 5) - 1))
=0
[n
_ ?l[n P(I) <1 + </\ log, Nm(I) + plog, Nm <I>)>

o For the nearly ordinary Hecke operators at p, it follows from [Hi89b, Proposition 2.3] that
T (T(@")) =7 (T(p)" = 1.

We are now ready to compute the Fourier coefficients of the anti-parallel deformation F. Recall that,
as in §3.1.1, the algebraic notion of g-expansions gives a tuple of power series F;(q) indexed by a set t; of
integral ideals representing the classes in the narrow ideal class group of F":

(72) Filg) = ao(t:) + Z av q”, a, € Ele].

veE(ti)+

Abbreviate the g-expansion corresponding to the inverse different 9~ by F(q). The main result of this
section is:

Theorem 3.13. The anti-parallel family

(73) Flg) = Y, aq’, ay€E[],

-1
veo,

has Fourier coefficients given, to first order, by

74)  a, = I%;Dw(f) (1 +e (— log,,(v) + ?(%) log, Nm(I) + ?((:f)) log, N (Ojf)a» ’

for all v that are relatively prime to p. Furthermore a,m, = a, for allm > 1.
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Proof. The family F is p-adically cuspidal, so the constant term vanishes. To compute the higher
Fourier coefficients, we compute that, for any v € D__i_l such thatp { v,

7 (Tup) = [ &7 (Tw)
()0

S = C)

I|(v)o

to first order. To determine the Fourier coefficients from this value, the p-adic interpolation properties
of the coefficients a,, and the density of classical forms, are used to reduce to the relations between
Fourier coefficients and the Hecke algebra proved for classical forms in [Hi91].

Consider the rigid analytic fiber of the formal scheme attached to 7°. For a sufficiently small
affinoid neighbourhood V' = Spm(Ay) of the point corresponding to the morphism 7y, there is a
rigid analytic family 7y = )~ av,,,¢” with normalised Fourier coefficients in ay,, € Ay, specialising
to F in the anti-parallel direction. By Hida’s Control Theorem, there is a Zariski-dense set of points
in V corresponding to systems of Hecke eigenvalues 7,: Ay — @, of classical modular forms g of
weight (k,, w,) and with Fourier coefficients a4, given by the image of ay,,, under 7,. Combining
the relations for classical forms proved in [Hi91, Eqn. (2.3) et seq./Eqn. (1.5)], one obtains

Trg(T(l/)O) = Qgu- Ve
7Tg (Tp'm) = ag7p7n

where as before vy = w, — k; + t. The quantity V¢ may be identified with the weight (ky, w)-
specialisation of the universal character k""" evaluated at (1, 7). The image of K"V (1, v) under the
morphism (69) defining the anti-parallel direction is given by

1 +e¢log,(v)
so that the density of classical points in V' implies that
ay = (1 - EIng(V))ﬁ-f(T(u)b)
The result follows. O

4. DIAGONAL RESTRICTIONS AND RM VALUES

This section describes how to parlay Theorem 3.13 of § 3 into a proof of Theorem C. In a nutshell, the
generating series of Theorem C is obtained from the ordinary projection of the diagonal restriction of a
modification of the anti-parallel cuspidal deformation F described in Theorem 3.13.

Retain the setup of §3.5. Namely, F' denotes a real quadratic field, and %) is a totally odd unramified
character. Let D be the discriminant of F', with ring of integers OF, set of integral ideals .#p, and different
ideal 0. The notation 0;1 is used for the subset of totally positive elements of the inverse different 9~ 1.
Write Nm and Tr for the norm and trace functions from F' to Q. If 7 € ’HPD is an RM point of discriminant
D, denote by a, € Cl(D) the narrow ideal class attached to 7. If J is a rigid cocycle, then

JWl= ] I ecy @)
TESLy(Z)\Hp' "

Remark 8. The character 1) was assumed to be unramified for simplicity, and it would be interesting to
generalise the arguments to the case of an arbitrary totally odd ring class character

(75) ¢ : CI(D) — CX
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of discriminant D = f2Dg with Dy fundamental, and (p, f) = 1. The deformations studied in § 3 are not
sensitive in an essential way to this additional ramification. Moreover, a version of Lemma 4.2 for non-
trivial conductors can be found in [LV], and the explicit formula (78) continues to hold. One may therefore
expect that Proposition 4.7 is amenable to this generalisation via the strategy of this paper, provided that
the left hand side of the equality is replaced by the series obtained by taking the trace to level I'g(p):

(76) Tr 0P (e29(0. 1)) € Ma(To(p))-

4.1. The RM values of the winding cocycle. In contrast the approach of [DD06], the calculations below
build on the viewpoint of rigid (theta) cocycles introduced in [DV, §3], by making essential use of the
winding cocycle J,, of the prequel [DPV21], some of whose properties were already recalled in § 2.2. This
section describes some further results from [DPV21] concerning its RM values. The first key result is an
explicit formula for T, J,, [7], which was established in [DPV21, Theorem 2.9].

In order to state it, choose, for any integer n > 1 and any RM point 7 in H,, a finite set M, (7) of
representatives for the double coset space SLa(Z)\M2(Z),, /T, where

Ms(Z),, := {a € My(Z) with det(a) = n}, I'; = Stabgy,, z) (7).
In other words
(77) My(Z)n = || SL2(Z)-6-T-.
€M, (1)

Let ' := GLJ (Z[1/p]) be the group of invertible matrices over Z[1/p] with positive determinant.
Theorem 4.1. Letn > 1 be an integer coprime to p. Then

9) L= I [ .
SEMA(T) weldr
vp(w) =0
Proof. See [DPV21, Theorem 2.9]. O

Lemma 4.2 below states there is a bijection between “level n” sets of RM points and ideals [DPV21, § 1].
Define the (multi)set

(79) RM (1) := |_| {w eTor :

w>0>w }
SEM,, (T)

vp(w) = 0, vy (dise(w)) < vy(n)

where disc(w) is defined to be the discriminant of a primitive integral quadratic form that has w as a root.
Similarly, define RM,, (7) as above, with the condition w > 0 > w’ replaced by w’ > 0 > w.

Remark 9. Note that an RM point w may appear several times in the set RM;" (7), and the multiplicity with
which it does is a subtle actor in the bijections discussed below. It is therefore important to use a disjoint
union in this definition. The nature of the matrices §, which index the multiplicity with which an RM point
w arises, was explained in the proof of [DPV21, Lemma 1.9].

The sets RM% (7) play a crucial role in the explicit formulae for the Fourier coefficients of the diagonal
restrictions of the Eisenstein family £ investigated in [DPV21]. It will be observed below that they appear
again in the analysis of the diagonal restriction of the anti-parallel family F studied in § 3.

Lemma 4.2. There exist two bijections
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such that, after writing v = p™ vy, we have

pr(w) = —w,
pa(I,v) = wVA/Nm(I).

Proof. A bijection ¢, as required may be constructed using the diagonal matrix W, with eigenvalues
1 and —1. Precisely, if w € I'd7, then define

o1(w) == —w = Wew € T8 (—7)
where 0’ € M,,(7) is the double coset representative of W,,dW,. To obtain a bijection y9 with the
required properties, one first uses a bijection

: covedl,  I[wp : /
D : {(I,I/). Te(w) = n, I~ (1,7) —>66]\|7|( ){weSLg(Z)5T tw>0>w'}

which satisfies ®(I, ) = vv/A/Nm(I). Such a bijection was constructed in [DPV21, Lemma 1.9].
Note that the source of ® is almost equal to the source of the desired bijection, minus the condition
p 1 I. Under the bijection ®, the condition p 1 I is equivalent to the condition that w = wp™ for some
m > 0 and p t wg. The map w — wy then defines a bijection between

w>0>w }
b

{w € SLy(Z)oT - w = wep™, ptwg, m>0

and the set

- !/
{’LUGF(ST: w>0>w },

0y (W) = 0, vy (disc(w)) < vy(n)
so the result follows by definition of RM,! (7). O

4.2. Derivatives of diagonal restrictions. The modular generating series for the RM values of the wind-
ing cocycle that is the subject of Theorem C will be constructed from three different analytic families that
specialise to the Eisenstein series of parallel weight one. More specifically, the anti-parallel cuspidal family
from § 3.5, and the two Eisenstein families of Lemma 3.1:

BYL(L) and  E{(u,1).
The modularity of the generating series of Theorem C will follow from two simple results:

(1) The vanishing of the diagonal restriction of £ %p ) (1,4), the p-stabilisation of the parallel weight one
Eisenstein series (for which the shorthand f was used in § 3),

(2) For any analytic family of p-adic modular forms whose specialisation vanishes, the specialisation
of its derivative is also a p-adic modular form.

These results were also used in [DPV21], where full proofs may be found. Since they play an important role
in the argument, they will be briefly reviewed here.
Lemma 4.3. Suppose p is inert in F', and 1) is an odd unramified character of F'. Then

BP(1,9)(2,2) = 0.

Proof. Recall that the diagonal restriction of any Hilbert modular form with Fourier coefficients a,
has the following g-expansion:

(80) ag + Z Z a, q".

n>1 uebll
Tr(v)=n
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For the Eisenstein series E}” ) (1,4)), the Fourier coefficient a, is equal to

43 ()
ptI|(v)o

For any ideal I in the index set of this summation, we may write I.J(p®) = (v)d for some uniquely
determined ideal J coprime to p, since p is inert in F. The conjugate .J’ then defines an ideal coprime
to p, dividing (¢’)d. Observe that, since 9 is odd, we have

D(J) = ()7 = (DY) = —p(D),

and it follows that a,, = —a, . Therefore the diagonal restriction vanishes. O

The three analytic families that specialise to E;p ) (1,4) therefore give families of diagonal restrictions
that specialise to zero. It is easy to see that the specialisation of the derivative of each of these families of
diagonal restrictions is a p-adic modular form of weight two. The following result, appearing as Lemma 2.1
in [DPV21], ascertains that it is even overconvergent, though this is not used in what follows.

Lemma 4.4. Suppose F(t) is a family of overconvergent forms of weight x(t), indexed by a parameter t on a
closed rigid analytic disk D in weight space. Suppose that

e the disk D is centred at an integer k = k(0) € Z,
e the specialisation at 0 vanishes: F(0) = 0.

Then the derivative 0y F (0) is an overconvergent modular form of weight k.

4.3. Proof of Theorem C. Theorem 3.13 will now be used to construct the modular generating series G,
of Theorem C, and calculate its constant term. The argument involves three main steps:

(1) The definition of the power series 5]—‘1'; , a combination of the g-expansions of the first derivatives
of the anti-parallel cuspidal family 7, of Theorem 3.13 and a parallel Eisenstein family &y;
(2) The computation of its diagonal restriction J fJ ;

(3) The computation of its ordinary projection e° (9 f;r ).

The forms constructed in these three steps lie in increasingly structured spaces: 0 fJ is a p-adic modular
form of weight two and tame level one, and ¢°"4(9 fl ) is a classical modular form on I'g(p). The power
series 5]:,2' however lacks the modularity properties of a traditional (classical or p-adic) Hilbert modular

form, and is perhaps best envisaged as an instance of a “p-adic mock modular form", of the kind that make
an appearance in [DT08, DLR15] for instance.

The series }"J is a combination of first order families of modular forms passing through the same Eisen-
stein series of parallel weight one in different weight directions. Its definition was dictated by the algebraic
shape of the Fourier coefficients of the anti-parallel family F, arising from Theorem 3.13, as it causes the
desired algebraic cancellation. Precisely, define

]:J = .Flp“r&/; = &0(.7:12_) +Zay(]:j[)qy7 au(}—{};—) GE[‘C:]/(62)7

where the first term F, is the anti-parallel weight cuspidal deformation of Theorem 3.13. The second term
&y is the following explicit combination of parallel weight Eisenstein families

(81) Ey = "i}’(%) (BR.(L) = ER.(6,1).
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Recall the Gross—Stark unit u,; attached to the odd character 9, defined in (53). Henceforth, the unit w,; is
identified with its image under the p-adic embedding & in order to lighten the notations and view it as an
element of F ® Q(v), to which the p-adic logarithm log,, may be unambiguously applied.

Proposition 4.5. The Fourier coefficients of]iz' are given by

aO(FJ) = §~logp(uw).

a(FL) = Zw (1_510gp<1\£m>>

I|(vo)
Proof. Since 9 is odd, we have 1)(d) = —1. The constant term of &, given by (40), is therefore

(€)= G (an(1,0) = ol 1)) = § - G (Ty0.0) + L w7 0)

4 2(Y)
Since p is inert in the real quadratic field F and ) is unramified, the inverse ¢! is obtained from 1)
by conjugation in Q2 /Q,. Therefore, using the Gross—Stark theorem (43) we obtain

L (¥,0) = £()L(v,0)
= LW L(L0) = Ly 1,0),

and hence, using Lemma 3.5, we obtain

a0() = 5 ﬁ_ﬁ?((j)) L(6,0) = & - B()L05,0) = & 1o, (ug).

At v # 0, the Fourier coefficient of & is given by

a(Ey ) (bg,, Nm(I) - log, (Nr’f(j) )) ,

Combining this with the formula for the Fourier coefficients of the anti-parallel deformation F, given
in Theorem 3.13, gives the required identity

(83) w(F) = ) v <1_810gp<1\frlr/10(1)>>

Il(Vo

(82)

O

Next, we consider the diagonal restriction fJ of the series }"J , defined as the sum of the diagonal restric-
tions of the families 7, and &,. Its derivative with respect to ¢ is modular. More specifically:

Proposition 4.6. The power series
vovV' D
(84) off(q) = logp ug) =y >y W ( - (1)>q

n>1 VED_l I|(vo)0
Tr(u):n

is the q-expansion of a p-adic modular form of weight two and tame level one.

Proof. Lemma 4.3 implies that the diagonal restriction fJ vanishes at € = 0, so that the derivative
0 fwj is a p-adic modular form (by Lemma 4.4 it is even overconvergent). The statement about its
g-expansion follows from (80) using the observation that 0 flj (q) differs from the desired result by

Z (1) log,(VD),

Ve,
Tr(l/) =n
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which is proportional to the n-th Fourier coefficient of the diagonal restriction of the Hilbert Eisenstein
series E;p ) (1,4)), and is therefore identically zero by Lemma 4.3. 0

Finally, we explicitly compute the ordinary projection of the p-adic modular form 0 fdf . This ordinary
projection is a classical modular form in M3(T'o(p)), and its Fourier coefficients can be related to the RM
values of the winding cocycle J,,, using the explicit formula for the latter stated in § 4.1.

Proposition 4.7. The ordinary projection of the p-adic modular form [“)fJ is a classical modular form in the
space Mo(Do(p)). Its g-expansion is given by:

(85) 2e°4(0f ) = log,(uy) — Y _log, (TnJu[t]) ¢"

n>1

Proof. Note that the ordinary projection is classical of level I'g (p), by Coleman’s classicality theorem.
The statement about the constant term follows from (83). For any n > 1, the bijection @2 of Lemma
4.2 allows us to rewrite the n-th Fourier coefficient of 20 f;r appearing in (84) in terms of the level n

sets of RM points RM: (7). Since () = —)(—7), this Fourier coefficient is given by

2a, = Z ¢(7) Z logp(w) - Z logp(w)

TESLy(Z)\HS'P w € RM; (1) w € RMf (=)
= S W) > log,(w) — > log,(w)
T€SLa (Z)\HP w e RMY (1) w € RM;, (1)

where the second equality follows from the existence of a bijection ¢; as in Lemma 4.2. Let n > 1 be
coprime to p. Then the n-th coefficient of the ordinary projection of 20 f;“ is given by

202 =2 lim appem = Z P(7) Z Z (10,00] - (w',w)) log, (w)

m— o0 ~
T€SLa(Z)\HyP SEMn(T) weTlsr

vp(w) =0
= Ing (T dw[¥])

where the last equality uses the explicit formula (78).
To obtain the statement for all n > 1, note that

Tn — logp(Tan[w])a
is a linear function from the weight two Hecke algebra of level T'y(p), since the Hecke action on

H'(T', A* /C)) factors through it, and hence there exists f € Ma(To(p)) with higher Fourier co-

efficients as in the statement. By what we showed, the n-th Fourier coefficients of f and 2¢°7(9 f;r )
agree when n is coprime to p. Their difference must therefore be an oldform, and hence zero. O

We are now ready to prove Theorem C of the introduction:

Theorem 4.8. Let D be a fundamental discriminant and let T € H,, be an RM point of discriminant D. There
is a classical modular form G, of weight two on T'(p) with p-adic Fourier coefficients, whose g-expansion is
given by

G (q) = log(u,) + Z IOg((Tan)[Tana
n=1

where log : Oép — C,, is the p-adic logarithm. The modular form G, is non-trivial if and only if Q(v/D)
does not admit a unit of norm —1.
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Proof. Let H be the narrow class field of Q(+/D). Proposition 4.7 produces, for each odd character 1)
of Gal(H/F), a classical modular form in M5 (T'o(p)) with ¢g-expansion in C,[[¢]] given by

Gy(q) =log,(uy) — Y _log, (TnJwlt)]) ¢".

The assignment ¢ — G (q) extends by linearity to a map on the linear span of the odd characters,
which is the space of odd functions on Gal(H/F). Let ¢ be the odd indicator function on the class
of 7, which is equal to 1 on [7], to —1 on [—7| = [0oT], Where 0o, € Gal(H/F) is the complex
conjugation, and vanishes on all the other Pict (O )-translates of 7 € SLy(Z)\H[. With this choice
of ¥, we have

Ing(uw) = 1ng(u‘l') - 1ng(aoou'r) = 21ng(u‘r)a
and

log,, (T Jw[¢]) = log, (TnJw[7]) —log,(TnJuw[=7]) = 2log, (T Jw[7])-
The modular form G of Theorem C is obtained by setting

1
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