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Abstract
Let T be a tree and e an edge in T . If C is a component of T \e and both C and its complement
are infinite we say that C is a half-tree. The main result of this paper is that if G is a closed
subgroup of the automorphism group of T and G leaves no non-trivial subtree invariant and fixes
no end of T then the subgroup generated by the pointwise stabilizers of half-trees is topologically
simple. This result is used to derive analogues of recent results of Caprace and De Medts [3]
and it is also applied in the study of the full automorphism group of a locally finite primitive
graph with infinitely many ends.

Introduction
In the first half of this paper we study a variant of Tits’ simplicity result from his ground breaking
paper [15] on automorphism groups of trees. Tits studies a group action on a tree T such that
the action satisfies a certain independence property called property P. Here we look at a different
property which can also be thought of as an independence property. This property is defined in
terms of half-trees. If e is an edge in a tree T and both components of T \ e are infinite then we call
these components half-trees. A group acting on T has property H if the pointwise stabilizer of every
half-tree is non-trivial. The main result of this paper is

Theorem 6 Let G be a closed subgroup of the automorphism group of some tree T . Assume
that no proper non-empty subtree of T is invariant under G and no end of T is fixed by G. Suppose
also that G has property H. Let G++ denote the closure of the subgroup generated by all pointwise
stabilizers in G of half-trees. If N is a non-trivial closed subgroup of G normalized by G++ then N
contains G++. In particular, the subgroup G++ is topologically simple.

It is also shown that many of the results in a recent paper of Caprace and De Medts [3] that are
proved for groups satisfying property P are also true if property H is assumed instead.

In the second half of the paper the full automorphism group of a graph with infinitely many ends
is studied. Such groups satisfy a certain independence property because if A is a set of vertices or
edges in a graph X such that X\A is not connected then the subgroup of the full automorphism group
fixing all the elements in A and leaving invariant each component of X \A acts on each component
independently of what it does on the other components. First we look at the automorphism group
of a transitive graph with connectivity 1, i.e. connected graphs were the removal of a single vertex
produces a disconnected graph. The automorphism group of such a graph can be studied with the
aid of Tits’ original result and is shown to be simple under general conditions (proof in Appendix
A). The final result of the paper is the following theorem where the automorphism group is thought
of as a topological group with the permutation topology inherited from the action on the vertex set
of the graph.
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Theorem 15 Let X be a locally finite connected primitive graph (meaning that the automorphism
group is transitive and the automorphism group preserves no non-trivial proper equivalence relation
on the vertex set) with infinitely many ends. Then G = Aut X has an open topologically simple
subgroup of finite index.

A crucial part in the proof of this theorem is the fact that if G is the automorphism group of
a locally finite primitive graph with infinitely many ends then G is non-discrete. This follows from
[13, Theorem 2.5] as is explained in Appendix B.

1 General background and terminology

1.1 Graphs
We think of a graph X as a pair (V X,EX) where V X is the vertex set and EX is the set of edges.
An edge is a two element subset of V X. If e = {x, y} is an edge we say that x and y are adjacent
and that x and y are the end-vertices of e.

The degree of a vertex x is the number of vertices adjacent to x. A graph is said to be locally
finite if all its vertices have finite degree. A path in X is a sequence v0, v1, . . . , vn of distinct vertices
such that vi is adjacent to vi+1 for all i = 0, 1, . . . , n− 1. If the condition that the vertices be distinct
is dropped then we speak of a walk. A ray (also called a half-line) in a graph X is a sequence {vi}i∈N

of distinct vertices such that vi is adjacent to vi+1 for all i ∈ N. A line (also called a double ray)
in X is a sequence {vi}i∈Z of distinct vertices such that vi is adjacent to vi+1 for all i ∈ Z. For
vertices u and v such that there is a path starting with u and ending with v we let d(u, v) denote
the minimum length of such a path. A path of length d(u, v) starting with u and ending with v is
called a geodesic. If X is connected then d is a metric on V X.

The notion of a graph described above is often called a simple graph where an edge always has
two distinct end-vertices and an edge is completely determined by its end-vertices. When discussing
quotients of graphs with a group action we need the more general concept of a multigraph. A
multigraph X is a pair (V X,EX) together with a map t defined on the set EX of edges such that
the values of t are either single vertices from V X or two element subsets of V X that represents the
end vertices of e.

An end of a graph X is defined as an equivalence class of rays such that two rays are said to
be equivalent if there is a third ray that contains infinitely many vertices from both of them. A
connected graph X has more than one end if and only if there is a finite set of vertices F such that
X \F has two distinct components that both contain rays. If X is a tree then two rays belong to the
same end if and only if their intersection is a ray. For more information about this concept consult
[5, Chapter 8] and [9].

1.2 Permutation groups
Let G be a group acting on a set Y . For x ∈ Y let Gx denote the stabilizer of x in G; that is, Gx is
the subgroup of all elements in G that fix x. For a subset A of Y , define

G(A) = {g ∈ G | g(a) = a for all a ∈ A}

and
G{A} = {g ∈ G | gA = A}.

The group G(A) is called the pointwise stabilizer of A and the group G{A} the setwise stabilizer of
A. Two points x, y are said to be in the same orbit of G if there is an element g ∈ G such that
g(x) = y. If any two elements in Y are in the same orbit then we say that G is transitive on Y . The
orbits of a stabilizer Gx of a point x ∈ Y are called the suborbits of G.
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An action of a group G on a set Y defines a homomorphism from G to the group Sym Y of all
permutations of Y . If this homomorphisms is injective, i.e. the only element of G that fixes all the
points in Y is the identity, we say the action is faithful. Then we can think of G as a subgroup of
Sym Y and speak of G as a permutation group.

The automorphism group of a graph X is denoted by Aut X, and we think of Aut X primarily
as a permutation group on V X. If Aut X acts transitively on V X then the graph X is said to be
transitive. Varying slightly from the terminology above we define the stabilizer of an edge in a graph
X to be the subgroup fixing both end vertices of the edge.

If a group G acts on a set Y we can construct a graph X with vertex set Y such that the action
of G on Y gives an action on X by automorphisms. This is done by insisting that the edge set EX
is a union of orbits of G on the set of two element subsets of Y . Such graphs are called (undirected)
orbital graphs.

A group is said to act primitively on a set Y if the only G-invariant equivalence relations on Y
are the trivial one (each equivalence class contains only one element) and the universal one (there
is only one equivalence class). If a group G acts transitively on a set Y the following conditions are
equivalent:

(i) G acts primitively.
(ii) if y is a point in Y then the subgroup Gy is a maximal subgroup of G.
(iii) for every pair x and y of distinct points in Y the orbital graph with edge set G{x, y} is

connected.
We say that a graph X is primitive if Aut X acts primitively on V X.

1.3 The permutation topology
Let G be a group acting on a set Y . The permutation topology on G is defined by choosing as a
neighbourhood basis of the identity the family of pointwise stabilizers of finite subsets of Y , i.e. a
neighbourhood basis of the identity is given by the family of subgroups

{G(F ) | F is a finite subset of Y }.

For an introduction to the permutation topology see [10].
From this definition it is apparent that a sequence (gi)i∈N of elements in G has an element g ∈ G

as a limit if and only if for every point y ∈ Y there is a number N (possibly depending on y) such
that gn(y) = g(y) for every n ≥ N . One could also use the property above describing convergence of
sequences as a definition of the topology and think of the permutation topology as the topology of
pointwise convergence. If we think of Y as having the discrete topology and elements of G as maps
Y → Y , then the permutation topology is equal to the compact-open topology.

A subgroup U of G is open if and only if there is a finite subset F of Y such that G(F ) ⊆ U . One
can also note that if G is a permutation group on Y then the permutation topology makes G totally
disconnected. Compactness has a natural interpretation in the permutation topology. A subset of a
topological space is said to be relatively compact if it has compact closure.

Lemma 1 ([16, Lemma 1 and Lemma 2], cf. [10, Lemma 2.2]) Let G be a group acting transitively
on a set Y . Assume that G is closed in the permutation topology and that all suborbits are finite.

(i) The stabilizer Gy of a point y ∈ Y is compact.
(ii) A subset A of G is relatively compact in G if and only if the set Ay is finite for every point

y in Y .
Furthermore, if A is a subset of G and Ay is finite for some y ∈ Y then Ay is finite for every y

in Y .

A subgroup H in a topological group G is said to be cocompact if G/H is a compact space. This
concept has also a natural interpretation in terms of the permutation topology.
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Lemma 2 ([11, Proposition 1], cf. [10, Lemma 2.3]) Let G be a group acting transitively on a set Y .
Assume that G is closed in the permutation topology and all suborbits are finite. Then a subgroup
H of G is cocompact if and only if H has finitely many orbits on Y .

2 Groups acting on trees

2.1 Preliminaries on trees and group actions on trees
In the present context a tree is a connected graph that has no non-trivial cycles (i.e. there are no
walks v0, v1, . . . , vn such that v0 = vn and v0, v1, . . . , vn−1 are distinct and n ≥ 3).

In [15] Tits classifies the automorphisms of a tree T . First there are automorphisms that fix
some vertex of T , then there are automorphisms that leave some edge of T invariant but transpose
its end-vertices and finally there are translations. An automorphism g of T is called a translation
if there is a line L = {vi}i∈Z that is invariant under g and there is a non-zero integer k such that
g(vi) = vi+k for all i ∈ Z. The line L is called the axis of the translation. Suppose e is an edge
and T1 is one of the components of T \ e. If g is an automorphism of T such that g(T1) is a proper
subset of T1 then g is a translation and the edge e lies on the axis of g.

When L is a path (finite or infinite) in a tree there is a well-defined map from the vertex set
of the tree to the vertex set of L such that a vertex x is mapped to the unique vertex in L that is
closest to x. This map will be denoted with prL. For a vertex x in L the set pr−1

L (x) is the vertex
set of a subtree of T which we call the branch of T at x (relative to L). Let G be a group acting
on T . Note that the set pr−1

L (x) is invariant under the group G(L). Define Gx
(L) as the permutation

group that we get by restricting the action of G(L) to pr−1
L (x). From the maps G(L) → Gx

(L) we get
a homomorphism from the group G(L) to the group

∏
x∈L Gx

(L). Following Tits in [15] we say that
a group G acting on a tree T has property P if the homomorphism G(L) →

∏
x∈L Gx above is an

isomorphism for every path L in T . In [3] property P is called Tits’ independence property. The
essence of property P is that G(L) acts on each branch of T at L independently of how it acts on
the other branches. In his groundbreaking paper Tits then goes on to prove [15, Théorème 4.5] that
if a group G acts on a tree T such that property P is satisfied and no proper non-empty subtree
is invariant under G and no end of T is fixed by G then the subgroup G+ of G generated by the
stabilizers of edges is simple. (Recall that the stabilizer of an edge e = {x, y} in G is defined as the
subgroup fixing both x and y.)

2.2 Properties P, E and H
A subtree T ′ of a tree T is called a half-tree of T if T ′ is one of the components of T \ {e} for some
edge e in T and both components of T \ {e} are infinite. For an edge e = {u, v} in T we let Tu,e

denote the component of T \ {e} that contains u.
A group acting on a tree T is said to have property E if for every edge e = {u, v} the stabilizer

of e acts independently on the two components of T \ {e}, i.e. Ge = G(Tu,e)G(Tv,e). If G is a closed
subgroup of Aut T then properties P and E are equivalent, see [1, Lemma 10].

Lemma 3 Let G be a subgroup of Aut T for some infinite tree T .
(i) ([15, Lemme 4.1]) The following two conditions are equivalent: (a) no proper non-empty

subtree of T is invariant under G and (b) for every vertex x in T the orbit Gx intersects every
half-tree of T .

Furthermore if (a) (and then (b) also) holds then the tree T has no leaves (vertices of degree 1)
and every edge defines two half-trees that both have unbounded diameter.

(ii) ([15, Lemme 4.4]) Suppose N is a non-trivial subgroup of Aut T normalized by G. If no
proper non-empty subtree of T is invariant under G and no end of T is fixed by G then the same is
true about N .
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(iii) Suppose that no proper non-empty subtree of T is invariant under G. If e is an edge in T
then G contains a translation g such that e is in the axis of g.

Proof. We only need to prove part (iii); parts (i) and (ii) are proved in [15] except the addendum
in part (i) which is obvious. Let u and v denote the end vertices of e. By part (i) we can find an
element g1 ∈ G such that g1(u) ∈ Tv,e. If g1(Tv,e) ⊊ Tv,e then g1 is the translation we are seeking.
If not we find an element g2 ∈ G such that g2(v) ∈ Tu,e. As before, if g2(Tu,e) ⊊ Tu,e then g2 is
the translation we are seeking but if not then g = g1g

−1
2 is the translation we are after. The result

in part (iii) and the argument in the proof are well-known and can for example be seen in a more
general context in [6].

Lemma 4 Let T be a tree and G a subgroup of Aut T . Assume that no proper non-empty subtree
of T is invariant under G.

(i) Suppose that there is some edge e = {u, v} in T such that the pointwise stabilizers of both the
half-trees Tu,e and Tv,e are trivial. Then the stabilizer of every half-tree in T is trivial.

(ii) Suppose that there is some edge e = {u, v} in T such that the pointwise stabilizers of both
the half-trees Tu,e and Tv,e are non-trivial. Then the stabilizer of every half-tree in T is non-trivial.

(iii) Suppose that there is some edge e = {u, v} in T such that the pointwise stabilizer of Tu,e is
trivial but the pointwise stabilizer of Tv,e is non-trivial. Then G must fix an end of T .

Proof. (i) Let f be an edge in T . This edge defines two half-trees of T which we denote with T1

and T2. By Lemma 3(i) there is an element g ∈ G such that g(e) ∈ T1. Then either g(Tu,e) ⊆ T1 or
g(Tv,e) ⊆ T1. If we assume, for instance, that g(Tu,e) ⊆ T1 then G(T1) ⊆ G(g(Tu,e)) = gG(Tu,e)g

−1 =
{1}. In the same way we show that G(T2) is trivial.

(ii) Let f , T1 and T2 be as above. Find an element g ∈ G such that g(e) ∈ T1. Then either
g(Tu,e) ⊆ T1 or g(Tv,e) ⊆ T1. Say, for the sake of the argument, g(Tu,e) ⊆ T1 and then T2 ⊆ g(Tv,e).
Then f ∈ Tv,e and T2 ⊆ g(Tv,e). Hence G(T2) ⊇ G(gTv,e) = gG(Tv,e)g

−1 ̸= {1}. So G(T2) is
non-trivial. In the same way we show that G(T1) is also non-trivial.

(iii) Looking at parts (i) and (ii) we conclude that it is true for every edge f = {w, z} in T that
the pointwise stabilizer of one of the half-trees defined by f is trivial and the pointwise stabilizer of
the other one is non-trivial. If the pointwise stabilizer of Tw,f is trivial then we think of f as an
directed arc with initial vertex w and terminal vertex z. The edge e = {u, v} is oriented so that u is
the initial vertex and v the terminal vertex. Do this for every edge in T and note that the direction
of the edges is preserved by the action of G.

Consider an edge f = {w, z} that is contained in the half-tree Tv,e. Assume that w is closer to
v than z. Then Tw,f ⊇ Tu,e and thus G(Tw,f ) ⊆ G(Tu,e) = {1}. Hence the initial vertex of f is w
and the terminal vertex is z. Another way to describe this is to say that the edge f is directed away
from v. We see that every vertex in Tv,e is the terminal vertex of precisely one directed edge. The
half-tree Tv,e contains vertices from every G-orbit on the vertex set of T and thus it is true for every
vertex in T that it is the terminal vertex of precisely one directed edge. Let R1 = v0, v1, . . . be a
ray in T such that each edge {vi, vi+1} is directed so that vi is the terminal vertex. Suppose now
that R2 = w0, w1, w2, . . . is another such ray in T . If the two rays intersect then they both belong
to the same end. Suppose the two rays are disjoint. Select a path u0, u1, . . . , un of shortest possible
length such that u0 is a vertex in R1 and un is a vertex in R2. Then u1 is not in R1 and thus the
edge {u0, u1} is directed so that u0 is the initial vertex. Note also that u1 is not on R1. Similarly
the edge {un−1, un} has un as an initial vertex. Now we see that there must be a number k such
that the edges {uk−1, uk} and {uk, uk+1} both have uk as a terminal vertex. This is a contradiction
and thus the two rays R1 and R2 belong to the same end ω, which is clearly fixed by G.

Definition 5 A group G that is a subgroup of the automorphism group of some tree T is said to
have property H if the pointwise stabilizer of every half-tree in T is non-trivial.
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Let G++ denote the closure of the subgroup generated by the pointwise stabilizers of all the
half-trees in T. Clearly G++ is normal in G. If G has no proper non-empty invariant subtree and
does not fix an end of T then Lemma 4 above shows that if G does not have property H then the
pointwise stabilizer of every half-tree is trivial and then property H is equivalent to the property
that the group G++ is non-trivial. Note also that if G has property H then G is not discrete.

The relationship between properties P and H is not simple. In the case that G is not discrete
and has no non-empty proper invariant subtree then property P implies property H. On the other
hand the example below shows that property H does not imply property P.

Example. Let T be a tree and f : V T → I some map defined on the vertex set of T . In his paper
Tits [15] studies the group Autf T = {g ∈ Aut T | f ◦ g = f}. This group clearly has property P.
One can also study the group G of all automorphisms of T that preserve the equivalence relation
defined by the fibers of f . It is not to be expected that this group has property P, but in many cases
it will have property H.

Consider the case of a regular tree T of degree 6. Colour all the vertices in one part of the
natural bipartition red and then colour the vertices in the other part of the natural bipartition with
three different colours so that each red vertex is adjacent to two vertices of each colour. The group
C of automorphisms of T that map every vertex to a vertex of the same colour has property P
and is simple by Tits’ theorem [15, Théoréme 4.5]. The group G of automorphisms that leave the
partitioning of the vertices given by this colouring invariant does not have property P but it has
property H and it is easy to see that G++ = C.

Theorem 6 Let G be a closed subgroup of the automorphism group of some tree T . Assume that no
proper non-empty subtree of T is invariant under G and no end of T is fixed by G. Assume also that
G has property H. If N is a non-trivial closed subgroup of G normalized by G++ then N contains
G++. In particular, the subgroup G++ is topologically simple.

Proof. First note that by Lemma 3(ii) we see that G++ does not leave any proper non-empty
subtree invariant and G++ does not fix an end. Now we apply Lemma 3(ii) again but this time to
G++ and N and find out that N does not leave any proper non-empty subtree invariant and does not
fix an end. Let e = {u, v} be an edge in T . By part (iii) of Lemma 3 we see that there is a translation
h ∈ N such that h(Tv,e) ⊊ Tv,e and Tu,e ⊊ h(Tu,e). Suppose g ∈ G(Tu,e). Set fn = ghng−1h−n.
Since N is normalized by G++ we see that fn ∈ N for every n ≥ 0. The element hng−1h−n fixes
the half-tree hn(Tu,e) and in particular Tu,e is fixed by fn. If we consider Tv,e \ hn(Tv,e) then this
part of the tree is fixed by hng−1h−n and thus fn acts on this part like g. Whence we see that
fn → g when n → ∞. From this argument we conclude that G(Tu,e) is contained in N . Of course
one can apply the same argument to show that G(Tv,e) is contained in N . We conclude that G++ is
contained in N . Now it is clear that G++ is topologically simple.

Remark. The contraction group for an automorphism α of a topological group G is defined as
the subgroup of all elements g ∈ G such that αn(g) → 1, see [2]. In the above proof hng−1h−n → 1
and hence g−1 belongs to the the contraction group for the inner automorphism of G defined by h.

Corollary 7 Let G be a closed subgroup of Aut T for some tree T . Suppose that G has property H
and does not stabilize a proper non-empty subtree or fix an end. Then G++ is the unique minimal
closed normal subgroup of G.

The quasi-center QZ(G) of a topological group G consists of all elements with an open centralizer.
Caprace and De Medts show in [3, Proposition 3.6] that a closed subgroup G of the automorphism
group of some tree T such that G satisfies property P and does not have any proper non-empty
invariant subtrees has a trivial quasi-center. A simple adaptation of their proof gives an analogous
result for groups with property H.
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Proposition 8 Let G be a closed subgroup of Aut T for a tree T . Assume that G has property H
and that G leaves no proper non-empty subtree of T invariant. Then the quasi-center of G is trivial.

Proof. Suppose g is an element of G that has an open centralizer. Let v be a vertex of T . Then
there is a finite set S of vertices such that G(S) is contained in the centralizer of g. If necessary we
can replace S with S ∪ {v} so we can assume that v ∈ S and we may also safely assume that S is a
subtree of T . Let S̃ be the subtree of T containing every vertex of T that is fixed by G(S). Because
g centralizes G(S) the tree S̃ is invariant under g. Suppose e = {u,w} is an edge in T such that
the vertex u is in S̃ but w is not. Using property H we can find a nontrivial element h ∈ G(Tu,e).
But S̃ ⊆ Tu,e so h ∈ G(S) and g commutes with h and ghg−1 = h. Note that h = ghg−1 fixes
g(Tu,e) = Tg(u),g(e). Since g(S̃) = S̃, we see that if g(u) ̸= u then Tw,e ⊆ g(Tu,e) and then h would
fix pointwise both Tu,e and Tw,e – a contradiction. Hence we conclude that g(u) = u. Therefore g

fixes every vertex in S̃ that is adjacent to some vertex not in S̃. Suppose now that e = {u,w} is an
edge in T such that u is in S but w is not in S. If the edge e is not in S̃ then the above argument
shows that g fixes u. On the other hand, if e is in S̃ then G(Tu,e) ̸= {1} and G(Tu,e) ⊆ G(S) and thus
G(S) moves some vertex in Tw,e. Therefore Tw,e is not contained in S̃. From this we infer that Tw,e

contains a vertex z in S̃ that is adjacent to a vertex not in S̃ and thus z is fixed by g. Applying this
argument to every edge with precisely one of its end vertices in S and we conclude that g must fix
a vertex in every component of T \ S. Since S is finite we now see that every vertex in S is fixed by
g and in particular g fixes v. Since v was arbitrary we conclude that that g fixes every vertex of T
and that g = 1.

The following is an analogue of Proposition 3.8 from the paper [3] of Caprace and De Medts and
the proof uses the same argument.

Proposition 9 (Cf. [3, Proposition 3.8]) Let G be a closed subgroup of the automorphism group of
some tree T that leaves no proper non-empty subtree invariant. Suppose H is a non-compact open
subgroup of G that does not fix an end of T and T ′ is a minimal invariant subtree for H. Then
for every edge e in T ′ the group H contains the pointwise stabilizers in G of the two half-trees of T
defined by the edge e.

Proof. Since H is non-compact the tree T ′ is infinite and every edge e in T ′ splits T ′ up into two
half-trees. From Lemma 3(iii) above we see that for every edge e in T ′ there is a hyperbolic element
h in H such that e is on the axis of h. Since H is open there is a finite set of vertices such that the
pointwise stabilizer G(S) is contained in H. Let T1 and T2 denote the two half-trees of T defined by
e. Using a suitable power of h we can assume that hn(S) ⊆ T1 and then G(T1) ⊆ hnG(S)h

−n ⊂ H.
Similarly we can show that G(T2) ⊆ H.

If H is compact then the tree T ′ either has just a single vertex or consists of an edge with its
end vertices and H then contains an element that transposes the two end vertices. If it is assumed
that G is topologically simple (like in [3, Proposition 3.8]) then G acts without inversion on T and
the latter possibility above can not occur and the conclusion of Proposition 9 holds trivially.

Lemma 10 (Cf. [3, Lemma 3.11]) Let G be a closed edge transitive subgroup of the automorphism
group of some tree T . If G is simple and has property H then there is no vertex v in T such that the
action of Gv on the set of edges with v as an end vertex is free.

The argument in the proof of lemma above is the same as in [3].
The following is an version of [3, Theorem A], but here property H is assumed instead of property

P. Caprace and de Medts derive their theorem from [3, Theorem 3.9] and their argument also works
for this version where we use Proposition 9 instead of [3, Proposition 3.8] and Lemma 10 instead of
[3, Lemma 3.11].
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Theorem 11 (Cf. [3, Theorem A and Theorem 3.9]) Let T be a tree all of whose vertices have
degree at least 3. Suppose G is a topologically simple closed subgroup of Aut T which does not
stabilize any proper non-empty subtree and which satisfies property H. Then the following conditions
are equivalent.

(i) Every proper open subgroup of G is compact.
(ii) For every vertex v ∈ V T , the induced action of Gv on the edges that have v as an end vertex

is primitive. In particular the action of G on the set of edges of T is transitive.

3 The automorphism group of a graph with
connectivity one

A connected graph X is said to have connectivity 1 if there is a vertex x in X such that X \ x is not
connected. Such a vertex x is called a cutvertex. If a transitive graph has a cutvertex then every
vertex is a cutvertex.

The blocks (called lobes in [7]) of a graph X with connectivity 1 are the maximal connected
subgraphs that do not have connectivity 1.

In this section, we obtain some simplicity results on the automorphism group of a transitive
graph X with connectivity one. We use Tits’ simplicity theorem [15, Théorème 4.5].

From a graph X with connectivity 1 we can construct a tree TX called the block graph of X.
The vertex set of TX is the union of the set of blocks of X and the set of cutvertices in X. The set
of edges in T consists of all pairs {x,B} where x is a cutvertex and B a block and x is in B. The
set of cutvertices and the set of blocks thus form the parts of the natural bipartition of the tree TX .
The automorphism group of X acts on TX .

Lemma 12 Let X be a transitive graph with connectivity 1. The action of G = Aut X on TX has
property P.

Proof. This can be seen directly or by noting that the action of G on TX clearly has property E,
and as G is a closed permutation group, the action has property P.

This lemma allows us to prove certain simplicity results for Aut X. We say that a group G acting
on a set Y is generated by stabilizers of points if the stabilizers in G of the points in Y generate G.

Theorem 13 Let X be a transitive graph with connectivity 1 and G = Aut X. Let n be the number
of blocks a vertex in X lies in.

(i) If the automorphism group of some block is not transitive, then G is not simple.
(ii) If the automorphism group of every block is transitive and generated by vertex stabilizers,

then G is simple, unless n = 2 and any two blocks are isomorphic, in which case G has a normal
simple subgroup of index 2.

Corollary 14 Let X be a primitive graph with connectivity 1. If each vertex is contained in more
than two blocks then the group G = Aut X is simple. If each vertex is only contained in two blocks
then G has a simple normal subgroup of index 2.

The proofs of Theorem 13 and Corollary 14 can be found in Appendix A together with the
necessary background.

4 Automorphism groups of primitive graphs with infinitely
many ends

Theorem 15 Let X be a locally finite connected primitive graph with infinitely many ends. Then
G = Aut X has an open topologically simple subgroup of finite index.
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Proof. Step 1 in the proof is to define an action of G on a tree T . It is shown in [8, Proposition 3]
that if X is a locally finite primitive graph with more than one end and G is a group acting primitively
on X by automorphisms then there is a pair of vertices x, y in X such that the graph Y with the
same vertex set as X and edge set EY = G{x, y} is connected and has connectivity 1. Note that
the action of G on the vertex set of X (the same as the vertex set of Y ) gives an action of G by
automorphisms on Y . The group G now acts on the block graph TY that is a tree, as explained in
Section 3.

Step 2 is to show that the action of G on TY is faithful, fixes no end of TY and leaves no proper
non-empty subtree invariant. As explained in Section 3 we can think of a vertex in X also as a
vertex in TY and identify the vertex set of X with one of the parts of the natural bipartition of the
vertex set of TY . The action of G on TY is thus obviously faithful and there is no proper non-empty
invariant subtree. Suppose that G fixes some end of TY . We want to define a G invariant proper
non-trivial equivalence relation on the vertex set of X contradicting the assumption that G acts
primitively on X. Take a ray R = v0, v1, v2, . . . in T belonging to an end ω fixed by G and say that
vertices u and v are related if there is a number N(u, v) such that d(u, vi) = d(v, vi) for all numbers
i larger than N(u, v). It is left to the reader to show that this is an equivalence relation and does
not depend on the choice of the ray R. The equivalence classes are often called horocycles. Since
the end ω is fixed by G this equivalence relation is invariant under G. Restricting to the vertex set
of X (which we think of as a subset of the vertex set of TY ) we see that this would give a proper
non-trivial G invariant equivalence relation on the vertex set of X contradicting the assumption that
G acts primitively on X. Hence it is impossible that G fixes an end of TY .

Step 3 is to show that the action of G on TY has property H. An edge {x,B} in TY where x
is a vertex in Y and B is a block in Y gives a partition of TY into two half-trees and that in turns
gives a partition of the vertex set of Y into two disjoint parts Cx and CB . Let SY be the set of all
the edges in the block B that have x as a endvertex. If we remove the edges in SY from Y then we
get a graph with two components that have vertex sets Cx and CB , respectively.

Define now SX as the set of edges in X that have one endvertex in Cx and the other one in
CB . Because X is locally finite and G is transitive on the vertex set of X we see that G has only
finitely many orbits on pairs {u, v} of adjacent vertices in X. The action of G on the vertex set of
X (the same as the vertex set of Y ) induces automorphisms of both X and Y and we see that there
is a constant k such that if u and v are adjacent vertices in X then dY (u, v) ≤ k. The graph Y is
locally finite and thus there are only finitely many pairs of vertices u ∈ Cx and v ∈ CB such that
dY (u, v) ≤ k. Now it follows from the above that the set SX is finite.

Define H as the subgroup of G consisting of all the elements of G that fix all the edges in SX and
their endvertices. Since the set SX is finite, the group H is open in the permutation topology on G.
This groups leaves the sets Cx and CB invariant. It follows from [13, Theorem 2.5] that the group
G in the permutation topology is non-discrete (see Appendix B for a detailed explanation). The set
SX separates the sets Cx and CB (i.e. any path between an vertex in Cx and a vertex in CB contains
an edge from SX). Because G is the full automorphism group of X then H acts independently on
Cx and CB , i.e. H = H(Cx)H(CB). As H is nontrivial, H(Cx) or H(CB) is non-trivial. But H(Cx) is
contained in G(Tx,e) and H(CB) is contained in G(TB,e). Hence the action of G on TY has property
H.

The final step is an application of Theorem 6. As stated above the group G++ is in this case
a non-trivial topologically simple open normal subgroup of G and every closed non-trivial normal
subgroup of G contains G++. Since G acts primitively on the vertex set of X the normal subgroup
G++ acts transitively on the vertex set of X. By Lemma 2 we conclude that G++ is cocompact in
G. Because G++ is open we know that the quotient space G/G++ is discrete and since it is also
compact we see that it must be finite. Hence G++ has finite index in G.

Remark. The result [8, Proposition 3] about primitive graphs referred to above is proved by
using the theory of structure trees developed and described for instance in [4], [9] and [14]. Using
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this theory it is possible to apply Theorem 6 more generally to automorphism groups of locally finite
graphs with infinitely many ends.

Appendix A: Automorphism groups of graphs with connectivity
one
This appendix contains the proofs of Theorem 13 and Corollary 14 together with necessary back-
ground discussion.

For a graph X with connectivity 1 we let Bi, i ∈ I, denote a family of representatives for the
isomorphism types of blocks in X. Furthermore, use B

(j)
i for j ∈ Ji to denote the orbits of Aut Bi

on the vertex set of Bi. For a vertex x in X we let m
(j)
i (x) be the number of blocks of type Bi

that contain x in the orbit B
(j)
i . Jung and Watkins in [7, Theorem 3.2] show that a graph X of

connectivity 1 is transitive if and only if all the functions m
(j)
i (x) are constant on V X.

Consider an action of a group G on a tree T and assume that the action has property P. Let
G+ denote the subgroup of G generated by the stabilizers of edges. The subgroup G+ is simple by
Tits’ theorem [15, Théorème 4.5]. To decide if G is simple we must investigate when G = G+. For
a vertex x in T we define T1(x) as the set of vertices adjacent to x. The set T1(x) is invariant under
Gx and we define G

T1(x)
x to be the permutation group that Gx induces on T1(x).

Lemma 16 If x is a vertex in T then the group G+ contains the group G(T1(x)). If the group
F = G

T1(x)
x is generated by stabilizers of vertices (thought of as a permutation group on T1(x)) then

G+ contains Gx.

Proof. The first part of the Lemma is obvious because if e is an edge in T with x as an end-vertex
then G(T1(x)) is contained in Ge and thus G(T1(x)) is contained in G+.

Consider now the action of G+
x on T1(x). For a vertex y in T1(x) the group G+ contains the

stabilizer of the edge between x and y and thus the stabilizer of y in G
T1(x)
x is contained in the

permutation group induced by G+ on T1(x). Hence, if F is generated by stabilizers then G+ induces
the full group F on T1(x). Since G+ contains the group G(T1(x)) we conclude that G+ contains the
full stabilizer Gx.

Lemma 17 Let Y denote the quotient graph of T by the action of G. If the graph Y is not a tree
then G is not simple. If Y is a tree then G is generated by stabilizers of vertices.

Proof. Let R denote the normal subgroup of G generated by all the stabilizes of vertices. By [12,
Corollary 1 in §5.4] the quotient group G/R is isomorphic to the fundamental group of Y , and this
is non-trivial if Y is not a tree.

Proof of Theorem 13. (i) Suppose that B is some block of X such that the automorphism group
of B is not transitive. Say x and y are vertices in B that belong to different orbits of Aut B. The
edges {x,B} and {y,B} in TX belong then to different orbits of Aut X and have therefore different
images in the quotient graph of TX under the action of G. But their images in the quotient graph
have the same end-vertices and thus the quotient graph is not a tree. By Lemma 17, Aut X is not
simple.

(ii) The stabilizer in G of a vertex x in X acts on the set of blocks that contain x as a direct
product of symmetric groups. If n > 2 the permutation group induced by Gx on the neighbours of
x in T is generated by stabilizers, and therefore Gx ≤ G+.

If n = 2 and the two blocks containing a given vertex are not isomorphic, the same conclusion
obviously holds since Gx acts trivially on T1(x).
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Let B be a block of X and think of B as a vertex in TX . The vertices in TX contained in T1(B)
correspond to the vertices in the block B and GB induces the full automorphism group of B on
T1(B). Since Aut B is generated by stabilizers, we have GB ≤ G+.

The quotient graph Y of TX by the action of G has one vertex x̃ for the orbit of G on the vertices
in TX corresponding to vertices in X and one vertex for each orbit on the blocks, joined to x̃. This is
a tree and by Lemma 17 we see that G is generated by the stabilizers of vertices and hence G+ = G.

Finally assume n = 2 and all blocks are isomorphic. In this case each vertex in the tree TX

corresponding to a vertex in X has degree 2. Construct a new graph T ′
X such that the set of vertices

is the set of blocks of X and two vertices in T ′
X are adjacent if and only if the corresponding blocks

have a common vertex. The condition that each vertex is contained in just two blocks guarantees
that T ′

X is a tree. The assumption that all the blocks are isomorphic says that G acts transitively
on the vertex set of T ′

X . One now sees that G cannot be simple because the subgroup N of G
preserving the classes of the natural bipartition of T ′

X is normal in G with index 2. It is clear that
N is generated by the stabilizers of vertices in T ′

X (i.e. the stabilizers in G of the blocks of X).
The argument above shows that the group G+ contains all the stabilizers of blocks in X and thus
N = G+ and N is simple.

Comment. Assume n = 2 and the two blocks containing a given vertex are not isomorphic. By
the classification of Jung and Watkins of transitive graphs with connectivity 1 described above we
see that the automorphism group of each block must be transitive.

Proof of Corollary 14. Jung and Watkins in [7] also give a complete description of primitive
graphs with connectivity 1. In these graphs each block is a primitive graph, any two blocks are
isomorphic and each block has at least three vertices.

Each block is a primitive graph (therefore, transitive) with at least three vertices and therefore the
automorphism group of a block is generated by stabilizers. (It is impossible that the automorphism
group of a primitive graph is regular.) Because all the blocks are isomorphic the result now follows
from Theorem 13.

Appendix B: Primitive graphs with infinitely many ends
The purpose of this appendix is to explain how Theorem 2.5 in Smith’s paper [13] implies that if a
group acts primitively on an infinite locally finite graph with more than one end then the stabilizer
of a vertex is infinite.

We start by proving a results for group actions on trees and then use the tree described in Step
1 of the proof of Theorem 15 to prove our results for a group acting primitively on a locally finite
graph with infinitely many ends.

Lemma 18 Let G be a group acting on a tree T . Let x and y be distinct vertices in T . Assume
that on the path between x and y is a vertex z, distinct from both x and y, such that Gx,z = Gy,z.
Suppose that d(x, z) ≤ d(z, y). If h ∈ H = ⟨Gx, Gy⟩ then either h fixes y or dT (y, h(y)) > d(x, y).

Proof. Set A = Gx, B = Gy and C = A∩B = Gx,y. Let {ai}i∈I be a set of coset representatives
for C in A and, similarly, let {bj}j∈J be a set of coset representatives for C in B. Assume that the
identity element is included in both families.

Set k = dT (x, y). For g ∈ A we define x(g) as a vertex in [x, y] that is fixed by g and is in the
greatest distance from x. If g ∈ B define y(g) similarly. For an element g ∈ A \ C the condition
in the lemma means that dT (x, x(g)) < dT (x, z) ≤ k/2 and then dT (y, x(g)) > dT (y, z) ≥ k/2.
Similarly, if g ∈ B \ C then dT (y, y(g)) < dT (y, z) and dT (x, y(g)) > dT (x, z). Recall that if v is a
vertex in T then pr[x,y](v) is defined as the vertex on the geodesic [x, y] that is closest to v.
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Write h ∈ H as h = bjlail · · · bj2ai2bj1ai1c where c ∈ C and none of the ai’s and bj ’s is the
identity element with the possible exceptions of ai1 and bjl . We use induction over l. Our induction
hypothesis is that if h is as above and h does not fix y then dT (y, h(y)) > k and if bjl ̸= 1 then
pr[x,y](h(y)) = y(bjl).

To start with it is obvious that if l = 0 or l = 1 and ai1 = 1 then h fixes y. Assume now that
ai1 ̸= 1. Then ai1 is in A \ C and does not fix y. Recall that dT (y, x(ai1)) > dT (y, z) ≥ k/2. The
geodesic from y to ai1(y) goes through the vertex x(ai1). Hence dT (y, ai1(y)) = 2dT (y, x(ai1)) > k.
Because bi1 fixes y we see that dT (y, bi1ai1(y)) = dT (y, ai1(y)) > k. Let us look closer at what
happens if bi1 ̸= 1. The geodesic from y to ai1(y) goes through the vertex x(ai1) and thus also
through that vertex y(bi1). Note that the vertex y(bi1) is the vertex in [y, bi1ai1(y)] ∩ [x, y] that is
furthest away from y and thus dT (y,pr[x,y](h(y))) = dT (y, y(bi1)) < dT (y, z).

Assuming the induction hypothesis above we write h = bjl+1
ail+1

bjlail · · · bj1ai1c with all the ai’s
and bj ’s occurring non-trivial except possibly ai1 and bjl+1

. Write h′ = bjlail · · · bj1ai1c and note
that bjl ̸= 1. The induction hypothesis says that dT (y,pr[x,y](h

′(y))) < dT (y, z). Observe that

d(y,pr[x,y](h
′(y)) + d(pr[x,y](h

′(y)), h′(y)) = d(y, h′(y)) > k.

The geodesic from x to h′(y) contains x(ail+1
) and pr[x,y](ail+1

h′(y)) = x(ail+1
). Clearly d(pr[x,y](ail+1

h′(y)), ail+1
h′(y)) >

d(pr[x,y](h
′(y)), h′(y)) and

d(y,pr[x,y](ail+1
h′(y))) = d(y, x(ail+1

)) > d(y,pr[x,y](h
′(y)).

Hence dT (y, ail+1
h′(y)) > d(y, h′(y)) > k. Therefore

dY (y, h(y)) = dT (y, bil+1
ail+1

h(y)) > k.

Note that the geodesic from y to aik+1
h(y) goes through the vertex y(bil+1

) and thus pr[x,y](bil+1
ail+1

h(y)) =
y(bil+1

) and therefore dT (y,pr[x,y](h(y))) < dT (y, z).

Theorem 19 (Cf. [13, Theorem 2.5]) Let G be a group acting on a tree T with two orbits V1 and
V2 on the vertex set. Suppose that there are distinct vertices x and y in V1 and that on the path
between x and y is a vertex z, distinct from both x and y, such that Gx,z = Gy,z. Then G does not
act primitively on V1.

Proof. Let x, y and z be as in the Theorem. Suppose that G acts primitively on V1. Then G acts
transitively on V1 and, since Gx is a maximal subgroup of G, then ⟨Gx, Gy⟩ = G. But now we have
a contradiction with Lemma 18 because k = dT (x, y) ≥ 2 and the orbit of y under ⟨Gx, Gy⟩ = G
would have to contain vertices in distance 2 from y but by the Lemma that is impossible.

Corollary 20 Let G be a group acting on a tree T with two orbits V1 and V2 on the vertex set.
Suppose that G acts primitively on V1 and that the tree has infinite diameter. Then the stabilizer
Gx of a vertex x in V1 is infinite.

Proof. Suppose the stabilizers of vertices in V1 are finite. Let g be an element in G that acts like
a translation on T and let {vi}i∈Z be the line L that g acts on by translation. (Such an element
exists by Lemma 3 part (iii).) Assume that v0 is in V1. Set uj = hj(v0). Define G(i) as the stabilizer
of ui and G(i, j) as Gui

∩Guj
. Note that G(i, j) fixes all the vertices in the path between ui and uj .

Hence G(0) ⊇ G(0, 1) ⊇ G(0, 2) ⊇ · · · . Because G(0) is finite this sequence must eventually stop.
So there is a number m such that G(0,m) is equal to G(0, j) for all j ≥ m, i.e. the group G(0,m)
fixes all vertices uj with j ≥ m. Now G(0,m) ⊇ G(−1,m) ⊇ G(−2,m) ⊇ · · · . Since G(0,m) is
finite there is number n ≤ 0 such that G(n,m) = G(j,m) for all j ≤ n. The conclusion is that the
group G(n,m) fixes all the ui’s and hence fixes all the vertices on the line L and G(n,m) is indeed
equal to the pointwise stabilizer of the line L. Note that gm−nG(n,m)g−(m−n) = G(m, 2m− n).
We now set x = un, z = um and y = u2m−n, and see that Gx,z = Gy,z and by Theorem 19 it is
now impossible that G acts primitively on V1. We have reached a contradiction and therefore the
assumption that the stabilizer of a vertex in V1 is finite must be wrong.
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Corollary 21 Let G be a group acting primitively on a locally finite connected graph X with in-
finitely many ends. Then the stabilizer Gx of a vertex x in X is infinite and the group G with the
permutation topology is not discrete.

Proof. The action of G on the tree TY as described in Step 1 of the proof of Theorem 15 satisfies
the conditions in Corollary 21 with V1 being the set of vertices in the tree T that corresponds to
the vertex set of X. The stabilizer of a vertex x in T is equal to the stabilizer of the corresponding
vertex in X and the conclusion follows from Corollary 20. Keeping in mind that the graph X is
locally finite we conclude that G is not discrete.
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