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Abstract. These are the notes for a seminar talk which took place virtually on 7 April 2020 during the coron-

avirus lockdown. They are undoubtedly full of mistakes, and I greatly welcome comments and corrections.
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1. Introduction

In this talk, we will give a very brief overview of some compelling analogies that exist between the

spectral theory of the hyperbolic Laplacian on Maaß forms, and the operator Up on p-adic overconver-

gent modular forms. We will mostly focus on the conjectures made by Blasius, which were substantially

developed and popularised by Calegari, exhibiting precise instances of a more vague analogy:

{
Maaß forms M an

∞

Laplacian ∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

) } ←→
{

Overconvergent forms M an,r
p

“Laplacian” ∆ = log |Up|

}

Since the left side has been extensively studied for about a century, a much clearer picture is available,

and we shall therefore focus on the more speculative right side of this analogy. Nonetheless, perhaps mainly

for my own edi�cation, we give some of the basic de�nitions of Maaß forms, and compute some explicit

examples. Overconvergent forms were de�ned by Koji last week, and we recall this notion by treating a

simple example in level 1, for p = 2, which is due to Buzzard–Calegari [BC05]. The subject of this talk is

the spectral questions on the right side which are informed by known statements and conjectures on the

left side, such as the Weyl law and spectral gap, and some related topics. We present some evidence for

overconvergent forms in § 3, building on some simple extensions of the methods of Lauder [Lau11].
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2 JAN VONK

2. Basic definitions and examples

We begin by illustrating the basic de�nitions of Maaß forms and overconvergent forms with some explicit

examples, before we dive into the spectral theory of the Laplacians in section § 3.

2.1. Maaß forms. This will be familiar to most people in the audience. For the purposes of this talk, we

will use the phrase Maaß form of level N and character χ to mean any complex valued smooth function on

the upper half planeH that satis�es

• We have f(γz) = χ(d)f(z), for all γ =
(
a b
c d

)
∈ Γ0(N),

• We have ∆f = λf , for some λ ∈ C,

• At the cusps, f has at most polynomial growth.

If f vanishes at every cusp then we say f is a Maaß cusp form. The space of cusp forms is denoted by

M an
∞ , or M an

∞(N,χ) if we want to make the level and/or nebentypus explicit. There is a natural outer

automorphism of the modular group, and its congruence subgroups, given by the re�ection z 7→ −z̄ along

the imaginary axis. We say a Maaß form is even (resp. odd) if it is invariant (resp. negated) by this involution.

In order to obtain the analogue of the q-expansion of a holomorphic modular form, we need to introduce

the Bessel function de�ned by

(1) Kν(y) =
1

2

∫ ∞
0

exp

(
−y · t

−1 + t

2

)
· tν · dt

t
,

where ν ∈ C, and y ∈ R>0. Bessel functions appear all over the literature, and there are many variants such

as the modi�ed, Hankel, and spherical incarnations one may encounter in di�erent sources. This version

above is usually referred to as the modi�ed Bessel function of the second kind.

The function Kν for ν ∈ R The function Kν for ν ∈ iR

For us, the case where ν is purely imaginary is most relevant, with exponential decay at in�nity and accel-

erated oscillation at zero. The Bessel function Kν is in the kernel of the di�erential operator

(2) y2
∂2

∂y2
+ y

∂

∂y
− (y2 + ν2) = 0.

Using this di�erential equation, one can check directly that the function

(3)

√
y Kν(2πy) e2πix
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is an eigenfunction for the Laplacian ∆, with eigenvalue 1/4− ν2. Any even Maaß cusp form may then be

written as an in�nite linear combination

(4) f(z) =

∞∑
i=1

an
√
y Kν(2πny) cos(2πnx)

with cos(2πnx) replaced by sin(2πnx) when f is odd. Here, the an are complex numbers, which we will

refer to as the Fourier coe�cients of f in what follows.

Maaß forms are very di�cult to construct, and even where we succeed in constructing them, the arith-

metic meaning of their Fourier coe�cients is less apparent at �rst sight than is the case for holomorphic

modular forms. The �rst examples were constructed by Maaß [Maa49] and remain today the most well-

understood ones. They are associated to Hecke Grössencharakters of real quadratic �elds.

Example 1. Let us start with an algebraic example corresponding to an even Artin representation. Take

K = Q(
√

205), which has class number two, but narrow class group

Cl+(K) = Z/4Z .

The narrow Hilbert class �eld H+
is a D4-extension, and since it must be a CM �eld, complex conjugation

acts as the non-trivial central element. This means the associated Maaß form is odd. We can easily �nd that

H+
is the �eld with LMFDB label 8.0.1766100625.1 and de�ning polynomial

(5) x8 + 15x6 + 48x4 + 15x2 + 1.

This �eld contains the biquadratic �eld Q(
√

5,
√

41), so it is quite easy to compute the Fourier coe�cients

of the associated Maaß form, which are just the traces of Frobenius for the associated even Artin represen-

tation, which has determinant character χ =
(
205
•
)

and is determined by the rules

• Computing inertia invariants, we �nd a5 = 1 and a41 = −1.

• If p is inert in either Q(
√

5) or Q(
√

41), then ap = 0.

• If p splits completely in Q(
√

5,
√

41), then

(6)

ap = 2 if p splits completely in H+
,

ap = −2 otherwise.

Given p, one easily decides which is the case from the factorisation of the polynomial (5) over Fp.

We see that the coe�cients of this Maaß form are quite sparse, since about 3/4 of primes have vanishing

coe�cient ap. Here is a table of a few small nonzero values of ap:

p 31 59 61 131 139 241 251 269 271 349

ap −2 2 −2 2 2 2 −2 2 2 −2
p 359 379 389 401 409 419 431 449 461 491

ap 2 −2 −2 −2 2 −2 −2 −2 −2 −2

Using the above description, in reality we computed this table for 106 coe�cients in a matter of a few

seconds, and extend by the usual multiplicativity relations to get all the coe�cients an up to that bound.

As was made explicit in the original construction by Maaß, the spectral parameter ν is determined by the

in�nity type, which is trivial here, giving us an explicit odd Maaß form of level 205 and characterχ =
(
205
•
)
,

https://www.lmfdb.org/NumberField/8.0.1766100625.1
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with eigenvalue λ = 1/4 and Fourier expansion

(7) f205(x+ iy) =

∞∑
n=1

an
√
y K0(2πny) sin(2πnx).

So how do we come up with a useful check, to assure that we did these computations correctly? My �rst

inclination was to look it up in the LMFDB, which at the time of writing (April 2020) contains 15659 examples

of Maaß forms. Unfortunately, it’s not there! In fact, I couldn’t seem to �nd a single λ = 1/4 example in

the entire database. The range of composite levels considered there only goes up to about 100, which is not

enough for us to �nd such an example there.

We know by the results of Maaß that this function must be invariant under the action of Γ1(205), and

with the above we can hope to get a convincing sanity check out of this. With about a million coe�cients

at our disposal, we get decent approximations of the values, as long as y is not too small. We compute that

(8)

f205(z) ≈ −0.0329258531808939434846607, where z = − 1
159 + i

147

f205

(
z

205z+1

)
≈ −0.0329258531808939434846607.

The point z here is chosen randomly, but I �ddled around with it a bit so that both z and z/(205z + 1)

had comparable imaginary parts – which are then necessarily quite small – for precision reasons, as well as

running times. Other random points and matrices in Γ1(205) also showed agreement. We can also check

decay at the cusps. It seems that the exponential decay of the Bessel function implies this at∞, but at most

of the other cusps some non-trivial cancellation should happen, since the Bessel function has a singularity

at y = 0. Let us test this at the cusps 1/5 and 1/41:

z f205
((

1 −1
5 −4

)
· z

)
f205

((
1 −1
41 −40

)
· z

)
i 0.28938791323581092313 −0.00000000013831183226
2i 0.27394178958472227820 −0.00000001076504097306
3i 0.25081145098182262108 0.00000028030710513947

4i 0.22489469378987509144 −0.00000414269572531373
5i 0.19905036102642492449 −0.00001567413089581437
6i 0.17465665398778523978 −0.00000574090965257855
7i 0.15234632535756018371 0.00006881303091392039

8i 0.13233932568466237909 0.00024080092127293898

9i 0.11462694863937518081 0.00052466858846924810

10i 0.09908042495654999596 0.00091944836621727120

We see convincing decay at the cusp 1/5, whereas at the cusp 1/41 we observe a discouraging growth.

Continuing this table to higher and higher multiples of i, we see it turn around in the numbers (of which I

will spare the reader), and at z = 30i the value is down to about −0.0936 and starts decaying slowly.

Remark. Note that the invariance and decay the cusps are really the only content to the statement

that the above example is a Maaß cusp form. Indeed, by construction the in�nite sum (7) is already is an

eigenform for the Hecke algebra, and every individual term is an eigenvector for ∆ of eigenvalue 1/4.

Remark. More generally, Maaß [Maa49] shows how to attach such an automorphic form to Hecke

characters of real quadratic �elds K with suitable non-trivial in�nity types. Since we failed to construct

even one of the examples contained in LMFDB, let us do one example of this form to see how this works.

The advantage here is that we can drop the level down, at the cost of raising the spectral parameter ν. Recall
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that a Hecke Grössencharakter is a character

(9) ψ : A×K /K
× → C×

of the idèle class group. The following example involves Hecke characters which are unitary in the sense

that their imagine is contained in the unit circle. When K has narrow class number one, such characters

admit an especially simple description, since A×K = K×Ô
×
K R2

>0. Thus a Grössencharakter is just

(10) ψ : R2
>0 /(O

+
K)×−→C× .

Example 2. Take the real quadratic �eld K = Q(
√

5) which has the smallest possible discriminant,

namely 5. Its unit group (resp. totally positive unit group) is given by

(11)

O×K = ±
(

1+
√
5

2

)Z
,

(O+
K)× =

(
3+
√
5

2

)Z
.

By the preceding remark, we see that for any m 6= 0, the following de�nes the Grössencharakter:

(12) ψm : (a, b) 7−→ a
iπm/ log

(
1+

√
5

2

)
· b−iπm/ log

(
1+

√
5

2

)
The Maaß form wit the same associated L-function as this character has Laplacian eigenvalue

(13) λ =
1

4
+

(
πm

log
(
(1 +

√
5)/2

))2

whereas its Fourier coe�cients ap are determined by the rules

• For p = 5, we compute that a5 = 1,

• If the prime p is inert in K , then ap = 0,

• If the prime p = αα′ splits in K , then

(14)

ap = 2 Re
∣∣∣ α
α′

∣∣∣iπm/ log( 1+
√

5
2

)

= 2 cos

(
πm

log(α)− log(α′)

log
(
(1 +

√
5)/2

)) .
Let us choose m = 1, then we get an explicit odd Maaß form of level 5 and Fourier expansion

(15) f5(x+ iy) =

∞∑
n=1

an
√
y Kν(2πny) cos(2πnx).

where we list here a table of a few small nonzero values of ap, where in reality we computed 105 coe�cients

to 100 digits of precision, which only takes a few seconds:

p ap p ap

11 −0.760821475828 . . . 61 1.341882064886 . . .

19 −1.970563138731 . . . 71 −0.312009656935 . . .
29 −1.800993877371 . . . 79 0.209316308437 . . .

31 0.778492130648 . . . 89 0.053978048745 . . .

41 −1.284802072271 . . . 101 1.592962957055 . . .

59 −1.641914084178 . . . 109 0.348617043298 . . .
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We get the very convincing sanity check

(16)

f5(z) ≈ −2.2094847821266402728339875, where z = − 1
19 + i

17

f5

(
z

5z+1

)
≈ −2.2094847821266402728339875.

Decay at the cusps seems less strong as a check, since unlike the growth in th previous example, the Bessel

function is now bounded as we approach zero. As we approach the cusps 0 and 1/2, we get

z f5
((

0 −1
1 0

)
· z

)
f5

((
1 −1
2 −1

)
· z

)
i 2.985861 · 10−5 8.091818 · 10−85

2i −1.812735 · 10−5 −1.492931 · 10−5

3i 6.936199 · 10−6 5.610642 · 10−6

4i 3.742521 · 10−5 3.027763 · 10−5

5i 2.985862 · 10−5 2.415613 · 10−5

6i 1.573027 · 10−5 1.272606 · 10−5

7i 6.813508 · 10−6 5.512244 · 10−6

8i 2.637609 · 10−6 2.133871 · 10−6

9i 9.505706 · 10−7 7.690278 · 10−7

10i 3.262883 · 10−7 2.639728 · 10−7

11i 1.081678 · 10−7 8.750959 · 10−8

12i 3.494493 · 10−8 2.827104 · 10−8

It would be nice to double check our example in the LMFDB database. This example has eigenvalue λ ≈
42.871346267056 . . . and since the level is 5, we are now well in the range of levels that appear in the

database at the time of writing. But alas, in spite of our e�orts, this form does not appear to be there yet!

Remark 1. For an alternative example of the second form, see Gelbart [Gel75, § C.]. He constructs one

for Q(
√

2) and claims it has level 2, but as Buzzard points out, the level is really equal to 8. Following also

the computation there, we obtain a Maaß form whose eigenvalue for the Laplacian is given by

(17) λ =
1

4
+

(
π

log
(
1 +
√

2
))2

≈ 12.9551466562

which once more does not appear in the LMFDB. With such a small level and spectral parameter, this

surprises me a little. The database does seem to contain many forms with non-trivial nebentype, in the

range 1 ≤ N ≤ 10, and with spectral parameter bounded by 10 (which includes the above examples). Also,

I found that the website often says “Eigenvalue” in the table header, where really the spectral parameter

is what is displayed, so be very careful with that. Nonetheless, I looked around a bit and did some more

examples of the above form (which all passed very convincing invariance checks), but could not recover a

single example in LMFDB. Maybe the way their data was computed is biased in some way not to pick up

examples that come from Grössencharakters. The website currently says the following

“It is believed that each database entry corresponds to an actual Maass form and the given

decimal numbers are reasonable approximations to the true value. However, some eigen-

values may be missing. Using current methods it is not feasible to prove that the data for

an individual Maass form is correct, nor that the list of Maass eigenvalues in a given range

is compete.”
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It is extremely di�cult to construct examples beyond the ones coming from Grössencharakters. Note that

such examples are never of level 1, even though the space M an
∞ is already very rich there. It is my under-

standing that this problem was the main motivation for Selberg [Sel56] to develop his trace formula. This

can also be turned into practical algortihms, see Booker–Strömbergsson–Venkatesh [BSV06, BS07].

Remark 2. Notice the striking contrast between the Fourier coe�cients in the �rst example, which were

all integers, and those in the second example, which are transcendental. It was shown by Sarnak [Sar02]

that any Maaß cusp form with integer coe�cients must be of the �rst type, and be attached to an even Artin

representation which is conjugate to one with projective image contained in C2 × C2, S3, or A4.

2.2. Overconvergent forms. Last week, Koji gave us a beautiful overview of the theory of overconvergent

modular forms. To avoid repetition, I will simply recall the relevant objects from last week on one simple

example. As we did for Maaß forms above, I will only discuss the case of weight zero in these notes.

Let us take p = 2, and work in level N = 1. In this case, we can be very explicit about the spaces of

p-adic and r-overconvergent modular forms. We will use the Klein j-invariant

(18) j(q) =
1

q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 + . . .

which is a level one modular form of weight zero with a simple pole at the cusp. Let X be the moduli stack

of elliptic curves. Koji de�ned overconvergent modular forms to be the analytic functions on X , where we

remove certain supersingular disks. Of the 4 values in F4 for the j-invariant, only j = 0 is supersingular,

corresponding to the supersingular elliptic curve

(19) y2 + y = x3 over F2 .

In other words, the special �bre of X at p = 2 has a unique supersingular point corresponding to the

vanishing locus of j. It follows that the ordinary locus on X is described by |j−1| ≤ 1, and hence the space

of 2-adic modular forms of weight 0 which Koji introduced last week
1

is isomorphic to

(20) C2〈j−1〉 =
{
a0 + a1j

−1 + a2j
−2 + . . . | an → 0

}
.

Remark. We will be concerned mainly with spectral theory, and therefore we must pass immediately to

the more sophisticated – but still explicit – notion of overconvergent forms due to Katz [Kat73] and Coleman

[Col97]. However, let us not dismiss the much bigger space of p-adic modular forms as useless, and recall

also that last week, Koji explained that the notion of p-adic modular forms can be put to great use, and was,

by Serre [Ser72]. An old idea of Hecke [Hec24] that was developed by Klingen [Kli62] and Siegel [Sie68]

aims to prove the rationality of special values of zeta functions for totally real �elds F by viewing them

as the constant term of a Hilbert Eisenstein series, and restricting it to the diagonal. The higher Fourier

coe�cients are rational, and therefore this diagonal restriction must be a rational combination of a rational

basis for the space of classical modular forms containing it. The rationality of ζF (1− k) then follows, and

for small values it even leads to an explicit formula for it. Serre pushed this idea much further, and deduced

the p-adic analytic nature of the variation in the weight k of this constant term, from on the (elementary)

p-adic analytic variation of the higher Fourier coe�cients.

Recall that Koji showed us that the space of p-adic modular forms comes equipped with an action of the

Hecke algebra, but that their spectral theory is not particularly interesting. Concretely, Koji showed that

1
Recall that this is the set of 2-adic limits of q-expansions of classical modular forms, whose weights tend to 0.
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the Hecke operator Up de�ned by

(21) Up :
∑
n

anq
n 7−→

∑
n

anpq
n

has almost any eigenvalue we like, and we produced hosts of ‘random’ eigenforms for them. He resolved

this (or rather, Katz did) by considering for any r, the space M an,r
p of r-overconvergent modular forms

consisting of functions on the space

(22) Xr = X \ {slightly smaller supersingular disks}

where r is a measure for how small these disks are. Concretely, in this example, we can identify this

space through growth conditions on the coe�cients an appearing in (20). Note that j = E3
4 /∆, where

E4 = 1 + 240q + . . . is the normalised Eisenstein series of weight 4, which is a lift of the fourth power of

the Hasse invariant A4
mentioned by Koji, and ∆ is the Ramanujan form of weight 12. This is important,

since the Hasse invariant is a modular form that vanishes with simple zeroes at supersingular points, and

therefore tells us how to parametrise the supersingular disks correctly. In particular, we �nd that on the

supersingular disk (where ∆ is invertible, and hence v2(∆) = 0, we have that

(23) v2(A) ≤ r ⇐⇒ v2(j) ≤ 12r.

and as a consequence, we get that the subspace of r-overconvergent forms is given by

(24) M an,r
2 =

{
a0 + a1j

−1 + a2j
−2 + . . . : |an|p12nr → 0

}
.

Remark. Whereas we can happily work with the space M an,r
2 via the description (24), a much better

description is given by power series in the Hauptmodul h = ∆(2z)/∆(z) = q
∏
n≥1(1 + qn)24 which is

a modular unit on X0(2). The justi�cation for this lies in the theory of the canonical subgroup due to Katz

[Kat73, § 3], which shows that there is a section of the forgetful map X0(p)→ X over the region Xr . One

huge advantage of doing this is apparent in the observation

(25)

U2j
−1 = −744 j−1 − 140914688 j−2 + . . . = Horrible power series

U2h = 24h+ 2048h2 = Simple polynomial

which is not surprising, since U2 is de�ned as a correspondence onX0(2). This lies at the basis of the work

of Buzzard–Calegari [BC05], who �nd an explicit recursion for the matrix entries of U2, and �nd the exact

values of the 2-adic valuations of its eigenvalues. This brings us to the main topic of today’s lecture.

3. Spectral properties of Laplacians overR andQp

Now that we have some examples under the belt, we turn to spectral questions about Laplacians. These

have been the subject of a huge amount of intensive study by generations of brilliant researchers for the

spaces M an
∞(N). For the spaces M an,r

p (N) we have only just begun our investigations. The study of

slopes was very popular in the early 21
st

century, see for instance [Buz05, BC04, BC05, BP16, BG16] and the

references contained therein. This domain has in recent years shifted its fashions towards the boundary of

weight space, such as the works [BK05, Roe14, LWX17, AIP18] and many others. This is a notion that falls

outside the narrative we take here, and whereas all indications are that it started o� as a bit of a curiosity, it

found a spectacular recent application in the proof by Newton–Thorne [NT19] of modularity of Symn(f)

when f is a cuspidal eigenform satisfying certain conditions, including all forms of level 1.

In this talk however, we stick with weight zero, and discuss some of the analogies suggested by Blasius

and Calegari. These suggest very original avenues of investigation, most of which are, as far as I am aware,
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not yet explicitly addressed in any of the research literature. Therefore this is still virgin soil, which perhaps

forms a good justi�cation for our choice to illustrate these phenomena with lots of explicit data.

Goal. In what follows, we attempt to exhibit various analogies between the set of eigenvalues of ∆ in

the discrete spectrum of M an
∞(N), and the set of p-adic valuations of the eigenvalues of Up on M an,r

p (N).

We also discuss some conjectural properties of the eigenfunctions in both situations.

3.1. Spectral gap andWeyl’s law. We start by a discussion of two important aspects of the discrete spec-

trum of the Laplacian operator ∆ on M an
∞ : The Selberg 1/4 conjecture on the spectral gap, and the statistical

distribution of eigenvalues inside R>0 as made precise by Weyl’s law. We then investigate the analogous

statements for the spectrum of the Atkin operator Up on M an,r
p .

The ∞-adic case. The central actor here is the hyperbolic Laplacian ∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
, acting on

the space of smooth automorphic functions for a congruence subgroup Γ, which will henceforth usually

be taken to be Γ0(N) for some level N . On the subspace of bounded and smooth functions with bounded

image under ∆ inside the Hilbert space L2(Γ\H), we have

(26)

〈∆f, g〉 = 〈f,∆g〉
〈∆f, f〉 ≥ 0

and the density of such functions implies that ∆ has a unique self-adjoint extension to L2(Γ\H). It follows

that every eigenvalue of ∆ on the space M an
∞ of Maaß cusp forms is of the form

λ =
1

4
− ν2

for some ν which is either purely imaginary, or contained in the real interval [−1/2, 1/2]. The latter case

is called an exceptional eigenvalue. One of the most celebrated conjectures in this area is the following.

Conjecture 1 (Selberg). Any positive eigenvalue λ of ∆ on M an
∞ is at least 1/4.

For small levels N , the smallest positive eigenvalue (sometimes called the spectral gap) is in fact much

larger than that. For instance, in level one it is roughly λ ≈ 91.1413. With so much space, it is perhaps not

surprising that one can �nd relatively elementary estimates that are strong enough in small levels to prove

Selberg’s conjecture. The following can be proved elementarily, via a nice argument that uses only things

we have discussed so far, incorporating ideas of Roelke [Roe56]. See Iwaniec [Iwa95, Theorem 11.4].

Theorem 1. The cuspidal eigenvalues λ for Γ0(N) satisfy the lower bound

(27) λ ≥ 3

2

( π
N

)2
.

Remark. Selberg’s conjecture is therefore true in level at most 7. The above argument readily generalises

to subgroups of �nite index, where the denominator N is replaced by the maximal width of a cusp. In

general, the Selberg conjecture is open, but very good bounds have been established. Initially, Selberg

[Sel65] proved a lower bound of 3/16, and Luo–Rudnick–Sarnak [LRS95] later improved this to 21/100.

Given how di�cult it seems in general to give good bounds, or to even determine the spectrum of ∆

computationally, it is perhaps more fruitful do approach the spectrum from a statistical point of view. From

the LMFDB database, which is extensive (in spite of our experiences with Hecke Grössencharakters), we

obtain the following visualisation for the distribution of the spectrum in the level range 1 ≤ N ≤ 10.
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Here every dot corresponds (conjecturally) to a Maaß form, and the plot shows the spectral parameter

R, which in the language we have been using is just R = |ν|. The colour coding is blue for even Maaß

forms, and yellow for odd ones. Note the gigantic spectral gap in level one, which is quite substantially

larger than in higher levels. Moreover, if we count the number of Maaß forms in a very large range, and

amazing regularity emerges from the set of eigenvalues, which sadly is not really re�ected in the small

range represented in the above picture. Selberg showed the following.

Theorem 2 (Weyl’s law). Suppose that N(T ) = |{λ < T}| is the counting function for the eigenvalues in
the discrete spectrum of ∆, then as T tends to in�nity we have

(28) N(T ) =
Vol X0(N)

4π
T +O(

√
T log T ).

This is a landmark theorem. It has been hugely improved upon, and has analogues in various settings.

The p-adic case. When one attempts to parallel the above story, an immediate obstacle is the Hilbert

spaces are a hard notion to come by in the non-Archimedean world. On the other hand, we may endow

M an,r
p with the structure of a p-adic Banach space with respect to the supremum norm. A remarkable fact

is that the operator Up is the limit of operators of �nite rank, which is a property that goes by the name

compactness, see [Dwo62, Ser62, Col97]. It implies that there is a good spectral theory available, and in

particular Up has a discrete spectrum of non-zero eigenvalues

(29) |λ1| ≥ |λ2| ≥ . . .

where |λi| → 0 as i→∞, and it gives us license to work with Up through its in�nite matrix representation

with respect to some suitable basis. For instance, in the example above, where p = 2 and the level is one,

we may show very concretely what compactness really means in practice. If we compute the �rst 10× 10

submatrix with respect to the basis of Buzzard–Calegari [BC05] mentioned at the end of the last section,

the 2-adic valuations of its entries are as follows:

(30) v2(U2(i, j))i,j =



3 8

3 7 11 16

8 12 17 19 24

7 11 15 21 23 27 32

11 19 20 25 27 35 35 · · ·
11 16 20 24 27 33 35

17 19 24 29 34 35

15 20 23 27 31 38

19 24 27 37 36
.
.
.

.
.
.
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Here, we omitted the entries of U2 that were equal to zero. The compactness of Up in orthonormalisable

situations like this one is equivalent to the statement that the column vectors converge uniformly to 0 in

the in�nite matrix representation. In the above example, that certainly looks plausible, as the entries of the

columns seem to have valuation which grows roughly at the same rate. To contrast this with an example

that fails to have this property, let us compute with respect to the same basis the �rst 10× 10 submatrix for

T3:

(31) v2(T3(i, j))i,j =



2 12 16

7 2 11 20 27 32

8 8 2 14 17 28 34 46 48

11 8 2 12 19 29 36 43

16 9 10 2 12 16 32 34 · · ·
16 15 12 7 2 11 22 28

18 19 8 8 2 16 18

23 19 17 12 9 2 13

24 25 18 17 10 12 2
.
.
.

.
.
.


Notice the stark contrast with the matrix of U2. Whereas the general entry of every column seems like it

tends to zero (as it should, since T3 still de�nes an operator on M an,r
2 after all) it does not look like the

general column tends uniformly to zero. Most strikingly, the diagonal entries all seem to have valuation 2,

suggesting this operator may not have a convergent “trace”.

Continuing this example, we may now easily compute an approximation for the characteristic series of

U2. One can easily analyse to which precision the given answer is correct, but we will ignore such issues

here. We truncate the matrix for U2 as above, and obtain a polynomial whose coe�cients are 2-adically

close to those of its characteristic series. Looking at the Newton polygon, we see that the valuations of the

eigenvalues of U2 on the full space M an,r
2 (for any small value of r) are as follows:

(32) 01, 31, 71, 131, 151, 171, . . .

Here, we denote the valuations of the eigenvalues by bold type, and the multiplicity of that valuation by a

subscript. In this particular example, Buzzard–Calegari [BC05] show that the n-th term in this sequence is

given by the formula

(33) 1 + 2v2

(
(3n)!

n!

)
.

Note that every valuation in this in�nite sequence is an integer, and occurs with multiplicity one. With a

complete knowledge of the set of valuations of the eigenvalues of Up – quantities referred to as slopes – we

are in a good position to investigate the analogues of the spectral properties discussed for Maaß forms:

• The spectral gap: Note that the initial term 01 in the slope sequence corresponds to the constant

function, and the others are cuspidal. The spectral gap, which is the smallest positive slope, is equal

to 3. This has very concrete consequences, for instance we can recover some very old congruences

of Lehner. Start by observing that U2j − 744 is holomorphic at∞, and de�nes a cuspidal element

in M an,r
2 for any r < 2/3. If we expand it in terms of eigenforms

2
, it follows from the fact that the

spectral gap is 3 that Un2 (U2j − 744) is divisible by 23n+C for some implicit constant, which we

2
This is a subtle point in general, but in this case it is justi�ed by Loe�er [Loe07].
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may easily determine to be 11. This results in the classical congruence of Lehmer [Leh49] for the

Fourier coe�cients an of j(q), which states that

an ≡ 0 (mod 23n+8) whenever n ≡ 0 (mod 2n).

Clearly, Lehmer did not use the same methods to establish these congruences, but they follow very

nicely from the spectral gap computation we did above. This argument furthermore generalises to

various other settings, and gives a systematic way to obtain such congruences.

• Weyl’s law: With such a complete description (33) of the set of slopes for this example, it now

becomes possible to analyse the asymptotic behaviour of slopes very precisely. This yields the

following analogue of Weyl’s law for this example

(34) |{λ : v2(λ) ≤ T}| = Vol X0(2)

4π
T +O(log(T )).

Whereas this example is certainly encouraging, we wonder what can be said for general primes p and levels

N . The explicit determination (32) of the slope sequence by Buzzard–Calegari relies on a large number of

numerical coincidences, and even then necessarily combined with a great amount of stamina and vision, all

of which seem impossible to reproduce in other settings. It remains essentially the only complete description

of a slope sequence in weight zero, and not for a lack of trying, see Loe�er [Loe07] for references.

One aspect in which Buzzard–Calegari were particularly lucky is that the modular curveX0(2) has genus

zero, and the overconvergent regionsXr are isomorphic to a rigid analytic disk, for which we could identify

an explicit parameter. This procedure can be repeated for any prime p for which X0(p) has genus zero (i.e.

for p = 2, 3, 5, 7, 13), see Loe�er [Loe07]. For general values of p, we are faced with a more complicated

geometric picture, as the overconvergent regions Xr are isomorphic to the complement of a �nite number

of analytic open disks in P1
, functions on which are therefore much more challenging to describe:

Moreover, in cases where we also have a nontrivial tame levelN , the modular curve from which we remove

these �nitely many disks is no longer isomorphic to P1
. Therefore, �nding an explicit basis for the set of

sections over the overconvergent regions Xr becomes signi�cantly more subtle.

In his foundational paper on the subject, Katz [Kat73, Chapter 2] identi�es an explicit basis for these

spaces, such that any overconvergent form may be written as a unique linear combination of it, referred

to as its Katz expansion. This, together with a precision analysis of Wan [Wan98], resulted in an explicit

algorithm by Lauder [Lau11]. This algorithm assumes p ≥ 5, but it is not so di�cult to extend in general,
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which we did. This gives us the ability to experiment in great generality. As a taste, we tabulate here the

start of the slope sequences for p = 2 and all levels up to 100.

N λ N λ

1 01 31 71 131 151 171 . . . 47 09 116 24 328 54 760 . . .

3 02 11 33 75 133 155 . . . 49 014 116 3/24 22 334 52 . . .

5 02 11 3/22 33 62 75 . . . 51 012 1/24 118 3/28 338 13/48 . . .

7 03 12 36 710 136 1510 . . . 53 010 113 3/210 331 17/33 64 . . .

9 04 13 3/22 37 62 713 . . . 55 012 1/24 118 3/28 344 42 . . .

11 02 1/22 13 38 41 715 . . . 57 012 1/28 120 3/24 346 13/48 . . .

13 04 13 3/22 39 62 715 . . . 59 08 1/26 115 3/24 338 43 . . .

15 06 16 3/24 314 64 726 . . . 61 012 115 3/210 337 17/33 64 . . .

17 04 14 3/24 310 64 718 . . . 63 020 124 3/216 356 616 7104 . . .

19 04 1/22 15 311 13/44 725 . . . 65 016 120 3/216 348 616 788 . . .

21 08 18 3/24 320 64 736 . . . 67 012 1/22 121 24 342 41 . . .

23 05 18 22 314 52 730 . . . 69 018 128 3/28 24 356 54 . . .

25 08 17 3/26 317 66 731 . . . 71 013 124 26 342 56 790 . . .

27 08 1/22 19 3/24 319 13/44 . . . 73 014 122 3/24 24 344 54 . . .

29 06 17 3/26 317 66 731 . . . 75 024 1/24 130 3/216 372 42 . . .

31 07 110 22 320 52 740 . . . 77 014 1/28 124 3/28 354 13/48 . . .

33 08 1/24 112 3/24 330 42 . . . 79 015 124 3/24 24 348 54 . . .

35 08 1/24 112 3/24 324 13/48 . . . 81 022 1/24 129 3/210 22 359 . . .

37 06 1/24 19 3/22 322 13/44 . . . 83 012 1/26 121 3/28 352 43 . . .

39 012 114 3/28 334 68 762 . . . 85 020 126 3/220 362 620 7114 . . .

41 08 110 3/28 324 68 744 . . . 87 022 134 3/212 24 370 54 . . .

43 06 1/26 111 5/22 328 41 . . . 89 016 122 3/216 352 29/55 66 . . .

45 016 118 3/212 342 612 778 . . . 91 016 1/212 128 3/24 5/24 367 . . .

Note that the example from Buzzard–Calegari above, which corresponds to the �rst sequence in this

table, exhibits an amusing analogy with the situation for Maaß forms, whereby there is an unseasonably

large spectral gap in level one, as compared to higher levels. We conclude with a few comments about

spectral properties of Up on the spaces M an,r
p (N).

• Spectral gap: The smallest spectral gap we observe in this table is 1/2, which remains the smallest

in all experiments with higher levels or primes I have done. Note that slopes are very frequently

integers. See Buzzard–Gee [BG16] for an overview of related conjectures and partial progress.

• Weyl’s law: The precise estimates of the previous example are unfortunately not known in general,

though the aforementioned precision analysis of Wan [Wan98] comes very close, and implies

(35) |{λ : vp(λ) ≤ T}| ≤ Vol X0(Np)

4π
T + o(T ).
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3.2. Nodal domains of eigenforms. We �nish with a few brief words about the zero sets of the eigen-

forms, speci�cally as the eigenvalue grows. In the case of Maaß forms, this has been intensely studied for

decades, and leads to very intriguing pictures of their nodal domains, and estimates of the number of them.

In the p-adic case, there are no known general results, so we focus on the toy example of Buzzard–Calegari,

and do numerical experiments with other cases.

The ∞-adic case. Let us henceforth focus on the level one case, i.e. Γ = SL2(Z). Hejhal–Rackner

[HR92] have produced a fascinating set of data and visualisations of the zero locus of Maaß cusp forms on

this group. We include two of them here, and note that the notation R is used in loc. cit. to denote the

spectral parameter |ν| in our notation.

We see that on the quotient SL2(Z)\H the zero set consists of a �nite union of real analytic curves. The

complement of this zero set naturally breaks up into a disjoint union of connected components, which

are called nodal domains. This is a subject that has been very intensely studied since the appearance of

Hejhal–Rackner [HR92]. For the state of the art, see Ghosh–Reznikov–Sarnak [GRS13, GRS17].

We wish to highlight here two of its features, namely the asymptotic behaviour of the number of nodal

domains, and the equidistribution of the zero locus. The eigenvalues in the discrete spectrum may be ar-

ranged according to increasing size, and if any multiplicities should arise
3
, we sort them in an arbitrary way.

For any eigenfunction φ, we denote nφ for its numbering in this list.

• The �rst question is simply to determine, as nφ grows, the number of nodal domains. This is an open

question, and it is expected that the asymptotics should be predicted by the Bogomolny–Schmit

conjecture, which states that

(36) |{Nodal domains for φ}| ∼ 3
√

3− 5

π
nφ, as nφ →∞.

A very general bound of Courant [CH53] shows that the number of nodal domains is at most nφ.

Establishing a lower bound that still goes to in�nity with nφ is di�cult (but possible), and one needs

a good method to produce nodal domains, see Ghosh–Reznikov–Sarnak [GRS13].

3
It is presumed that the multiplicity is always one, but to the best of my limited knowledge this is an open question.
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• The second question is how the zero set distributes as nφ → ∞. Looking at the above picture, we

may guess that it equidistributes on the modular curve. There is substantial numerical evidence

for this, but it remains an open problem. For holomorphic modular forms the statement is known

[Rud05], and the mass of cuspidal Maaß eigenforms is also known to equidistribute [HS10].

The p-adic case. We now turn to the case of overconvergent modular forms, and consider the eigen-

functions in the space M an,r
p for the full Hecke algebra. A fair question is what the analogue should be

of the notion of nodal domain. Let us go out on a limb, and work under the assumption that the number
of zeroes of an eigenfunction φ is the right analogue of its number of nodal domains. Do we still expect a

Courant bound, where φ has at most nφ zeroes?

First, let us explore the paradise that is the Buzzard–Calegari example, where we can be completely

explicit. We know that the cuspidal slope sequence is

31,71,131,151,171, . . . =

{
1 + v2

(
(3n)!

n!

)}
n=1,2,...

all with multiplicity one, and therefore there is no ambiguity on how to sort the corresponding eigenfunc-

tions φi. In this special case, not only the slopes are known, but also a completely explicit pair of matrices

that give us the analogue of a singular value decomposition for the matrix ofUp. These mysterious matrices

were found by Buzzard–Calegari for r = 1/2, and Loe�er [Loe07] for 5/12 < r < 7/12, and their prop-

erties imply that the eigenfunction φ has exactly nφ zeroes in Xr . In other words, the Courant bound does

hold, and becomes an equality! Such an exact description is of course much more than we could ever hope

for in the Maaß form case. This answers the question on the number of zeroes, but it does not tell us where

these zeroes are. Any cuspidal eigenfunction vanishes simply at the cusp, where r = 0. We computed the

values of r at which the other zeroes occur:

nφ r(zeroes) nφ r(zeroes)

1 01 9 01,1/41,1/35,5/122

2 01,1/41 10 01,1/41,7/242,1/32,3/84

3 01,1/41,1/31 11 01,1/41,31/968,1/31

4 01,1/41,7/242 12 01,1/41,7/242,5/164,1/34

5 01,1/41,1/31,5/122 13 01,1/41,31/968,1/31,5/122

6 01,1/41,7/242,1/32 14 01,1/41,7/242,1/310

7 01,1/41,1/35 15 01,1/41,1/313

8 01,1/41,7/242,5/164 16 01,1/41,7/242,5/164,31/968

Here are a few tantalising observations about this Buzzard–Calegari case.

• The individual eigenfunctions exhibit a great deal of congruences with each other, in such a way

that suggests very strongly that the function

N −→ Z2JqK : n 7−→ φn

is continuous. A re�ection of this can be seen in the above picture, in the relative similarity of

sequences as the index numbers are 2-adically close. A really striking observation by Calegari is

that experimentally, it seems that

φ2i −→
∑
n≥1
n odd

(∑
d|n

d−1
)
qn,
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which is an overconvergent modular form of in�nite slope on the regions Xr for any r < 1/3, but

for no larger r. Since it is completely explicit, one can show directly via a short calculation that it

has in�nitely many zeroes, all of which are located on the “boundary” r = 1/3.

• In reality, we computed the �rst 70 eigenfunctions, and determined the values of r at which its zeroes

occur. This gives us very strong evidence for the statement that the zeroes accumulate around the

p-adic unit circle r = 1/3 in the sense that

1

n

∑
φn(x)=0

r(x) =
1

3
as n→∞

This is also in line with the previous observation.

After these observations, it would seem interesting to leave the comforts of the Buzzard–Calegari exam-

ple, and see what remains true in general. We have done computations of the above sort for any genus zero

prime p = 2, 3, 5, 7, 13 and observed similar phenomena. To give a �avour, here is a table for p = 7:

nφ r(zeroes) nφ r(zeroes) nφ r(zeroes)

1 01 12 04,1/88 23 01,1/820,1/42

2 02 13 01,1/126,1/84,1/42 24 04,3/2020

3 01,1/42 14 02,1/1212 25 01,1/1020,1/84

4 04 15 01,1/126,1/84,1/44 26 02,1/1212,1/812

5 01,1/84 16 04,1/88,1/44 27 01,1/126,3/2814,1/84,1/42

6 02,1/84 17 01,1/126,1/84,1/46 28 04,5/4824

7 01,1/126 18 02,1/816 29 01,126,3/2814,1/84,1/44

8 04,1/84 19 01,1/126,1/612 30 02,1/1212,1/812,1/44

9 01,1/126,1/42 20 04,1/84,1/612 31 01,1/1020,1/84,1/46

10 02,1/88 21 01,126,1/714 32 04,1/828

11 01,1/126,1/84 22 02,1/820 33 01,1/832

I computed as far as the 49-th eigenfunction, which had zeroes with r-values 01,1/126,5/4242. Then

I also computed lots of examples for other primes, and hope to do more if I don’t lose my motivation after

this talk. If anyone wants to join, please get in touch. An interesting case is p = 11, with two supersingular

j-invariants 0 and 1728, so the domains Xr are isomorphic to annuli.
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