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CHAPTER 1

Some results of Euler and Kummer

In this short motivational chapter, we discuss the historical roots of the remarkable subject of cyclotomy
(Greek: ϰύϰλος circle, τέµνειν to cut) and the deep connections that exist between special values of zeta

functions and class groups of cyclotomic �elds. We will focus on the monumental achievements of Euler

and Kummer in seemingly very di�erent contexts, the only common characters in the two stories being the

Bernoulli numbers, which will feature prominently in the body of this course.

1.1. Euler and the Basel problem

Our story begins with the formulation of the famous Basel problem by Pietro Mengoli in 1650. It asks

to evaluate the in�nite sum

ζ(2) := 1 +
1

4
+

1

9
+

1

16
+ . . . =

∑
n≥1

n−2.

This problem eluded mathematicians for nearly a century, until it was solved by a young Leonard Euler in

1734, a feat which brought him instant fame. His solution not only allowed him to evaluate the above sum

as π2/6, but it also gives a closed form expression for the more general quantities

ζ(2k) :=
∑
n≥1

n−2k, k ≥ 1.

The proof of Euler was read on 5 December 1735 in The Saint Petersburg Academy of Sciences, and relied

on a number identities that could not at the time be fully justi�ed in the absence of the theory of Weierstraß

that is known to mathematical audiences today. Euler did produce a proof that was considered fully rigorous

by his contemporaries a few years later. In keeping with the tone of his original proof, we shall present a

version of his argument where the veri�cation of some claims is left to the (contemporary) reader.

Leonhard Euler
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6 1. SOME RESULTS OF EULER AND KUMMER

The starting point for Euler was the identity

(1) sin(πz) = πz
∏
n≥1

(
1− z2

n2

)
By taking the logarithmic derivative, we obtain the following identities

πz cot(πz) = 1− 2

∞∑
n=1

∞∑
k=1

z2k

n2k
(2)

= 1− 2

∞∑
k=1

ζ(2k)z2k(3)

On the other hand, the cotangent function appearing above may be written in terms of exponential

functions using Euler’s formula eiθ = cos(θ) + i sin(θ) as

πz cot(πz) = −πiz e
πiz + e−πiz

eπiz − e−πiz
(4)

= −πiz e
2πiz + 1

e2πiz − 1
(5)

= 1−
∑
k≥1

(−1)k−122kB2k

(2k)!
· (πz)2k(6)

where B2k denotes the 2k-th Bernoulli number, de�ned via the generating series

(7)

t

et − 1
=

∞∑
k=0

Bk
tk

k!

It now follows formally from (3) and (6) that

(8) ζ(2k) =
(−1)k−1(2π)2k

2(2k)!
B2k.

For future reference, we include a table of the �rst few Bernoulli numbers. Note that the �rst entry in this

table gives the conclusion that was most coveted in Euler’s days, namely that ζ(2) = π2/6.

B2
1
6 B14

7
6 B26

8553103
6 B38

2929993913841559
6

B4 − 1
30 B16 − 3617

510 B28 − 23749461029
870 B40 − 261082718496449122051

13530

B6
1
42 B18

43867
798 B30

8615841276005
14322 B42

1520097643918070802691
1806

B8 − 1
30 B20 − 174611

330 B32 − 7709321041217
510 B44 − 27833269579301024235023

690

B10
5
66 B22

854513
138 B34

2577687858367
6 B46

596451111593912163277961
282

B12 − 691
2730 B24 − 236364091

2730 B36 − 26315271553053477373
1919190 B48

5609403368997817686249127547
46410

The investigations of Euler on the Basel problem, and particularly his evaluation of the quantities ζ(2k)

for k ≥ 1, later inspired Riemann to introduce his famous function

ζ(s) :=
∑
n≥1

n−s, Re(s) > 1.
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In his celebrated 1859 paper Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Riemann estab-

lished its meromorphic continuation to all s ∈ C, as well as the functional equation

ξ(s) = ξ(1− s), where ξ(s) := π−s/2Γ
(s

2

)
ζ(s).

This function continues to this day to elude mathematicians, and the end of this story is not yet in sight.

We will content ourselves here with the observation that the functional equation implies a particularly

satisfactory formulation of Euler’s result. Instead of stating his result at positive even integers, its equivalent

statement at negative odd integers becomes

ζ(1− 2k) = −B2k

2k
.

Note in particular that this is a rational number. This extraordinary fact is extremely signi�cant, and lies at

the basis of our later investigations on p-adic L-functions.

1.2. Kummer and Fermat’s Last Theorem

The second part of this motivational diptych comes from the seemingly unrelated work of Kummer on

Fermat’s Last Theorem, where the hinge between both panels is made of Bernoulli numbers. We start with

the following result of Kummer:

Theorem 1.1 (Kummer 1847). Suppose p > 2 is a prime that does not divide the class number of the
cyclotomic �eldQ(ζp). Then there are no solutions in non-zero integers x, y, z to the equation

xp + yp = zp.

From your extensive experience in similar situations that arose in the Mastermath course Algebraic
Number Theory, you will be able to guess the broad strokes of the proof strategy. Particularly, you will be

able to guess how the condition on the class number might be used is Kummer’s proof. The full argument

is quite di�cult, and we shall omit it here, referring instead to the excellent treatment in [Was97].

Ernst Kummer

The arguments of Kummer have been hugely in�uential, well beyond their use for Fermat’s Last The-

orem, and the investigations of Kummer surrounding these results form the cradle of the later established

theory of p-adic numbers. We highlight two statements that occur in the work of Kummer:

• Since already for moderately sized primes p, the computation of the class number of Q(ζp) poses

serious di�culties. Kummer proved a remarkable result that characterises this condition in a much

more computationally e�cient way. Surprisingly, the criterion uses the Bernoulli numbers that
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showed up also in Euler’s results on special values of the zeta function! More precisely, Kummer

showed that p > 2 does not divide the class number of Q(ζp) if and only if p does not divide the

numerator of Bn for any n = 2, 4, . . . , p− 3. Such primes are called regular primes.
For instance, without computing the class number of Q(ζ691), we know that

691 | h(Q(ζ691))

since B12 has numerator divisible by 691. We say 691 is an irregular prime.

• In light of the previous result, it seems interesting to investigate p-adic properties of Bernoulli

numbers. The following result was proved by Kummer:

Let m,n > 0 be even integers, not divisible by (p− 1). If m ≡ n mod (p− 1)pa, then

(9) (1− pm−1) · Bm
m
≡ (1− pn−1) · Bn

n
(mod pa+1).

These identities are known as the Kummer congruences.

The work of Kummer was seminal for several important research themes that arose later. One was the

introduction of p-adic numbers by Hensel in 1897 [Hen97]. Clearly, such a theory is called for by Kummer’s

congruences, which suggest that the quantities

(1− pm−1) · Bm
m

should extend to a continuous function of m in a �xed coset of (p − 1)Z in Z, with respect to a p-adic

notion of distance whereby two numbers are considered “close” if their di�erence is highly divisible by p.

1.3. Historical developments

In these notes, we will continue the natural line of investigation initiated by Kummer, and introduce

some of the most central and heavily studied objects in contemporary number theory: p-adic L-functions.

As we previously pointed out, the origins of p-adic numbers can be traced to the work of Kummer.

They inspired some important early developments, such as the introduction of the abstract notion of �elds

by Steinitz [Ste10] and the work of Minkowski [Min84] on the theory of quadratic forms which was rein-

terpreted and strengthened by Hasse [Has23, Has24] to yield the famous statement that a quadratic form

Q(x1, . . . , xn) = 0

over a number �eld K has a solution (x1, . . . , xn) ∈ Kn
if and only if it has a solution in every completion

of K , which means the completion with respect to both the archimedean places, and the non-archimedean

places corresponding to the primes of K . Further credibility was given to these methods when Cheval-

ley [Che33, Che40] introduced the concept of idèles, and reformulated much of class �eld theory in this

language, leading to a greatly simpli�ed treatment. We will not discuss these developments here, as impor-

tant as they are, and interested students enrolled in the simultaneous course by Arno Kret at the UvA this

semester will be able to learn more about it there.

In these notes, we discuss more recent developments, which transformed the �eld of number theory

after some groundbreaking developments in the �rst two decades after World War II. The various chapters

of these notes have the following historical context:
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• 2. Foundations of p-adic analysis. After the early work of Hensel and Krasner in p-adic analysis,

which was discussed in the notes of Stevenhagen, the subject experienced a hugely in�uential

renaissance starting in the 60’s with the work of Dwork [Dwo60, Dwo62]. Excellent accounts of

the foundations of p-adic analysis and its application to the proof of rationality of zeta functions

of hypersurfaces can be found in the book of Dwork, Gerotto, Sullivan [DGS94]. The insights of

Dwork, Grothendieck, Katz, and many others saw the development of p-adic cohomology theo-

ries, p-adic di�erential equations, and crystals. Their applications range from modern areas like

the Langlands programme to ancient problems like the resolution of Diophantine equations. See

for instance Kedlaya [Ked07, Ked10] and Kim [Kim05, Kim10].

• 3. Distributions and measures. An extremely important development came with the doctoral thesis

of Tate [Tat50] and simultaneous independent work of Iwasawa [Iwa52b, Iwa52a]. It introduced

tools from harmonic analysis and Fourier transforms to the non-archimedean world, and used

them in spectacular fashion to prove statements of analytic continuation and functional equations

for L-functions. This chapter of the notes treats the basics of functional analysis on Zp, in the

spirit of later developments building on Tate’s innovations. We were guided by the treatments of

Washington [Was97], Coates–Sujatha [CS06], and Colmez [Col10].

• 4. p-Adic L-functions. Another big conceptual leap was taken in the work of Kubota–Leopoldt

[KL64] who introduced the p-adic zeta function ζp(s) interpolating certain special values of clas-

sical L-functions, and used it to explain the Kummer congruences that were discovered more than

a century earlier. In these notes we take a more modern viewpoint of their results that makes use of

functional analysis on Zp, following ideas of Manin, Mazur, Tate, and many others. Great sources

for this material are Coates–Sujatha [CS06], Colmez [Col], and Rodrigues–Williams [RW].

• 5. Iwasawa theory. Deep connections between the arithmetic of number �elds and p-adic L-

functions were exhibited by Iwasawa, who gave an algebraic construction based on cyclotomic

units. The celebrated Iwasawa main conjecture asserts the equivalence of the algebraic and ana-

lytic constructions of p-adic L-functions. It was proved by Mazur–Wiles [MW84], and using the

notion of Euler systems by Rubin [Rub00]. The development of Iwasawa theory continues to this

day with greater vigour than ever. A recent advancement of Skinner–Urban [SU14], building on

Kato [Kat04], uses a version of the Iwasawa main conjecture for elliptic curves to prove a p-adic

version of the Birch–Swinnerton-Dyer conjecture due to Mazur–Tate–Teitelbaum [MTT86].

We hope that this overview underscores both the fact that the subject is more active today than it has

ever been, and at the same time retains a strong continuity with themes and ideas that were around since

the time of Kummer and even before. Due to the rapid succession in which groundbreaking insights are

being produced, it becomes especially important to retain a connection with the work of practitioners in

centuries past, and view the subject as part of a growing scienti�c tradition with ancient roots.

1.4. Acknowledgements

Numerous errors in an early version of these notes were pointed out by Mike Daas, and further cor-

rections were suggested by Corijn Rudrum. I am very grateful for their careful reading and comments, and

the improvements to which this led.
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1.5. Exercises

(1) Give a rigorous proof of the identity

sin(πz) = πz
∏
n≥1

(
1− z2

n2

)
.

(2) Using the table of Bernoulli numbers, and Kummer’s criterion, �nd the smallest irregular prime.



CHAPTER 2

Foundations of p-adic analysis

In this chapter, we will develop some foundational results in p-adic analysis. Notably, we prove Mahler’s

theorem about continuous functions on Zp, and we introduce the fundamental tool of Newton polygons to

study the set of zeroes of analytic functions. Even though we take a somewhat minimalist approach, guided

by our ultimate goals in this course, it should be noted that p-adic analysis is a vast and beautiful subject

with very powerful applications. We mention in particular the work of Bernard Dwork and his disciples on

rationality of zeta functions of hypersurfaces, a deep theorem in algebraic geometry.

This chapter was inspired by the excellent treatments of Cassels [Cas86] and Dwork–Gerotto–Sullivan

[DGS94], and to a lesser extent, by the accounts of Koblitz [Kob84] and Washington [Was97].

Notation. Throughout this chapter, we choose a �nite extension L of Qp. We use the notation Qp

for a chosen algebraic closure of Qp, and Cp for its completion with respect to the extension of the p-adic

valuation characterised by |p|p = p−1. It is algebraically closed. We de�ne its order function

ord : Cp−→Q ∪{∞}, x 7−→ ord(x) := − log |x|p
log(p)

which satis�es the following properties

• ord(x) =∞ if and only if x = 0,

• ord(xy) = ord(x) + ord(y),

• ord(x+ y) ≥ min{ord(x), ord(y)} with equality if ord(x) 6= ord(y).

2.1. Continuous functions on Zp

In this section, we will study the space of continuous functions f : Zp−→L, where L is a �nite

extension of Qp. We prove a few structural results on such functions, most notably Mahler’s theorem on

uniform approximation by polynomials, and give a few important examples that play a role later on.

2.1.1. Rearranging in�nite series. Before we delve into the speci�cs of Zp as a domain for continu-

ous functions, we brie�y discuss some of the conveniences of non-archimedean analysis for future reference.

We have seen that for any complete non-archimedean �eld K an in�nite series∑
i

ai

converges in K , if and only if ai → 0. In a similar spirit, rearrangements of series, which require a careful

study in the �elds R and C, are quite straightforward in the setting of non-archimedean �elds.

Lemma 2.1. LetK be a complete non-archimedean �eld.

11



12 2. FOUNDATIONS OF p-ADIC ANALYSIS

• Let an be a sequence of elements ofK such that an → 0 as n grows. For any rearrangement {a′n} of
the sequence {an} we have that the two series∑

n

an
∑
n

a′n

both converge, and are equal to each other.

• Let bmn be a collection of elements inK such that bmn → 0 as max{m,n} grows. Then∑
m

∑
n

bmn
∑
n

∑
m

bmn

both converge, and are equal to each other.

Proof. The proof of both statements is a consequence of the ultrametric inequality, and is left as an

exercise to the reader. �

2.1.2. Two simple properties of Zp. Before we dive into the celebrated theorem of Mahler, we take

some time to highlight two simple, but important, facts aboutZp that underly some of the stronger structural

results we will prove in the future: The compactness of Zp, and the density of N inside Zp.

We begin with the former. Recall the theorem of Heine–Cantor, about continuous real-valued functions

on a closed interval [a, b] ⊂ R. This classical theorem assures that such a function is uniformly continuous.
In other words, for any ε > 0 there exists a δ > 0 such that we have

|f(x)− f(y)| < ε, whenever |x− y| < δ.

This theorem may be proved topologically, relying only on the compactness of the interval [a, b]. Therefore,

it is readily extended to the context of the compact space Zp:

Lemma 2.2 (Heine–Cantor). If f : Zp−→L is continuous, then it is also uniformly continuous.

Proof. Choose a constant ε > 0. The continuity of the function f implies that for any element x0 of

Zp, there exists some constant δx0 > 0 such that

|f(x0)− f(x)| < ε

whenever x ∈ B(x0, δx0) := {x ∈ Zp : |x0 − x| < δx0}. The covering

Zp =
⋃

x0∈Zp

B(x0, δx0)

has a �nite subcovering, by the compactness of Zp. Letting δ be the minimum of the radii δx0 occurring

in this �nite subcovering, we obtain the statement from the ultrametric inequality. �

Most natural examples of continuous functions f : Zp−→L of interest to us are obtained through

the process of p-adic interpolation from functions that are initially de�ned on the dense subset of natural

numbers N inside Zp. This is analogous to the way several functions from real analysis are constructed, for

instance the function s 7→ as on R for a > 0 which interpolates the exponential n 7→ an, or the Γ-function

on R>0 which interpolates the factorial n 7→ n!.

Lemma 2.3. Suppose that f : N−→L is a uniformly continuous function, where N ⊂ Zp is given the
subspace topology. Then f uniquely extends to a continuous function f : Zp−→L.
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Proof. Let s ∈ Zp, then we may de�ne f(s) = limn f(an) where (an) is a Cauchy sequence of natural

numbers that converge to s, which always exists by the density of N in Zp. This limit is independent

from the choice of Cauchy sequence by the uniform continuity of f , and therefore we obtain a unique

f : Zp−→L

which coincides with the given function f on the subset of natural numbers N ⊂ Zp, and which is

easily seen to be continuous. �

2.1.3. Mahler’s theorem. An important structural result states that a continuous function on a closed

real interval can be uniformly approximated by polynomials.
1

For n ∈ N we de�ne the polynomial(
x

n

)
:=

 1 if n = 0
x(x− 1) · · · (x− n+ 1)

n!
if n ≥ 1

This is clearly a continuous function of x ∈ Zp, which takes values in Zp. As we will now see, any continu-

ous function may be written as an in�nite linear combination of these polynomials. The same statement was

proved for compact subsets of Qp by Dieudonné [Die44], and sharpened into the following constructive

version due to Mahler [Mah58]. We follow the proof of Bojanic [Boj74].

Theorem 2.4 (Mahler). Let f : Zp−→L be a continuous function. There exist unique an ∈ L such that

(10) f(x) =
∑
n≥0

an

(
x

n

)
, with lim

n→∞
an = 0.

Proof. We de�ne the �nite di�erences ∆[n]f for n ≥ 0 by the recursion

∆[0]f(x) = f(x)

∆[n+1]f(x) = ∆[n]f(x+ 1)−∆[n]f(x), n ≥ 0.

One directly veri�es the identities

∆[n]f(x) =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ k)

=

m∑
j=0

(
m

j

)
∆[n+j]f(x−m),

valid for any m,n ∈ N. In particular, setting x = m and de�ning an := ∆[n]f(0), we obtain

(11)

m∑
j=0

(
m

j

)
an+j =

n∑
k=0

(−1)n−k
(
n

k

)
f(k +m).

With this de�nition of an := ∆[n]f(0), it remains to prove the following two statements:

I. The right hand side of (10) converges to a continuous function on Zp,

II. This continuous function agrees with f(x) on a dense subset of Zp.

1
This is a p-adic analogue of the Stone–Weierstraß theorem from real analysis
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To prove statement I, note that by the Heine–Cantor lemma, the function f is uniformly continu-

ous on Zp. If we choose s ≥ 1, there exists a t ≥ 1 such that

|x− y| ≤ p−t ⇒ |f(x)− f(y)| ≤ p−s.

Setting m = pt in equation (11), we �nd that

an+pt = −
pt−1∑
j=1

(
pt

j

)
an+j +

n∑
k=0

(−1)n−k
(
n

k

)(
f(k + pt)− f(k)

)
Note that the binomial coe�cients in the �rst sum satisfy(

pt

j

)
≡ 0 (mod p), whenever 1 ≤ j ≤ pt − 1.

so that we obtain the following estimate from the ultrametric inequality:

|an+pt | ≤ max

{
1

ps
,

1

p
|an+j | , 1 ≤ j ≤ pt − 1

}
.

After rescaling f to be valued inOL, we may assume without loss of generality that we have |an| ≤ 1

for all n, from which we inductively deduce that

|an| ≤ p−1 when n ≥ pt
|an| ≤ p−2 when n ≥ 2pt

.

.

.

.

.

.

|an| ≤ p−s when n ≥ spt

Since s may be chosen arbitrarily large, statement I follows.

To prove statement II, note that equation (11) implies that the continuous function de�ned by the

right hand side of (10) agrees with f(x) on x ∈ N, since we �nd

f(m) =

m∑
j=0

aj

(
m

j

)
.

Because N is dense in Zp, the theorem follows. �

The expression (10) is sometimes called the Mahler expansion of the continuous function f , and the

an are sometimes referred to as its Mahler coe�cients. Note that the proof is constructive, and in many

situations one may e�ciently compute the Mahler coe�cients in practice.

The space of continuous functions is denoted by Cont(Zp, L). It is equipped with a supremum norm

‖f‖ := sup
x∈Zp

|f(x)|.

Note that this supremum is �nite, since Zp is compact, which implies that any continuous function on it

must be bounded. The supremum norm makes Cont(Zp, L) into a complete L-vector space which satis�es
‖f‖ = 0 ⇐⇒ f = 0,

‖f + g‖ ≤ max{‖f‖, ‖g‖} ∀ f, g ∈ Cont(Zp, L)

‖λf‖ = |λ| · ‖f‖ ∀ f ∈ Cont(Zp, L), ∀ λ ∈ L.
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These properties, and the completeness of the topology, are sometimes summarised by saying that Cont(Zp, L)

is a Banach space over Lwith respect to the supremum norm. This norm in particular endows Cont(Zp, L)

with a topology. One can show (see exercises) that

‖f‖ = sup
n
|an|,

i.e. the supremum norm of f may be read o� from its Mahler coe�cients.

2.2. Analytic functions

The space of continuous functions on Zp is completely described by the theory of Mahler. However,

this space is in many ways too large to allow us to prove strong results about concepts like convergence,

zeroes, integration, etc. In order to alleviate this, we will now specialise to a more structured subspace,

namely that of analytic functions. In this section, we will denote

f(x) = a0 + a1x+ a2x
2 + . . . , in LJxK

for a power series whose coe�cients ai belong to a �nite extension L of Qp.

Remark 2.5. Note that if ai → 0, this series converges for all x ∈ Zp to a continuous function.

However, the subspace of analytic functions is much smaller than the full space of continuous functions.

More precisely, it can be shown that a continuous function f : Zp−→L with Mahler expansion

f(x) =
∑
n

bn

(
x

n

)
is analytic if and only if limn bn/n! → 0. Therefore the subspace of analytic functions can be easily char-

acterised in terms of its Mahler coe�cients, by a growth condition stronger than bn → 0.

2.2.1. Radius of convergence. One of the perks of an analytic function f(x) = a0 + a1x + . . . is

that it may be evaluated at x in extensions of the �eld of p-adic numbers Qp. In order to solidify this idea,

we will �rst introduce the �eld Cp, and then discuss the notion of radius of convergence for f , determining

for which x ∈ Cp we get a meaningful evaluation.

Consider the algebraic closure Qp of the �eld of p-adic numbers Qp, which is of in�nite degree over

Qp. We have studied the Galois group Gal(Qp/Qp) and endowed it with a rami�cation �ltration, and we

showed also that the p-adic absolute value has a unique extension to Qp. However, this �eld is not complete

with respect to this valuation (see exercises) so it is natural to consider its completion Cp.

Lemma 2.6. The �eld Cp is algebraically closed.

Proof. Consider a polynomial

F (x) =

n∏
i=1

(x− αi) ∈ Cp[x],

and let α = α1 be one of its roots in the algebraic closure of Cp. Choose a polynomial G(x) ∈ Qp[x]

of degree n whose coe�cients are very close to those of F (x), and write

G(x) =

n∏
i=1

(x− βi)
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then we must have that G(α) is very small, and therefore one of the quantities |α− βi| must be very

small. This shows that if we choose G(x) close enough to F (x), we will get

|α− βi| < |α− αj |

for all j > 1. It follows from Krasner’s lemma that Cp(α) ⊆ Cp(βi). However, the polynomialG(x) is

necessarily de�ned over a �nite extension of Qp, and therefore β ∈ Qp. This shows that Cp(α) = Cp

and therefore Cp is algebraically closed. �

Finally, we are ready to de�ne the radius of convergence. Consider an analytic function

f(x) = a0 + a1x+ a2x
2 + . . . ∈ CpJxK

then we de�ne its radius of convergence R by

1

R
= lim sup

n
|an|1/n.

so that 0 ≤ R ≤ +∞ with the obvious conventions. With this de�nition, we �nd that the power series

f(x) converges for a given value x in Cp if and only if we have

|x| ≤ R if |an|Rn → 0

|x| < R otherwise.

Remark 2.7. Note that once again, some subtleties that are present for analytic functions on R or C

resolve themselves in the p-adic context. The notion of radius of convergence of a power series over R or

C is more slippery at the boundary. Consider for instance the series

f(x) = x− x2

2
+
x3

3
+ . . . ∈ CJxK

which is the Taylor expansion of the complex logarithm log(1 +x) in a neighbourhood of 1. One computes

that its radius of convergence isR = 1. Then f(x) converges when |x| < 1 and diverges when |x| > 1, but

the situation on |x| = 1 is more subtle: We get divergence for x = −1 but convergence for any other point

in the boundary |x| = 1. This phenomenon never appears in the p-adic setting, where any power series

either converges on the entire boundary |x| = R or nowhere at all on the boundary.

2.2.2. The p-adic logarithm. A very important analytic function is the p-adic logarithm, de�ned by

(12) logp(1 + x) =

∞∑
i=1

(−1)i+1x
i

i
.

which has radius of convergence R = 1 and does not converge anywhere on the boundary |x| = 1. The

following “extension” of the logarithm to arbitrary arguments inC×p is commonly referred to as the Iwasawa
branch of the p-adic logarithm.

Proposition 2.8. There exists a unique function

logp : C×p −→ Cp

such that

• logp(1 + x) is given by the power series (12) when |x| < 1,
• logp(xy) = logp(x) + logp(y) for all x, y ∈ C×p ,
• logp(p) = 0.
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Proof. Choose an element pr for any r ∈ Q such that pr+s = pr · ps for all r, s ∈ Q. Since Cp is the

completion of Qp it must have value group pQ and therefore we may write any α ∈ Cp as

α = pr · α0, r ∈ Q, |α0| = 1.

The element α0 in turn may be written uniquely as a root of unity w of order coprime to p times an

element α1 such that |α1−1| < 1. To see this, we note once more that Cp is the completion of Qp, and

any sequence of elements in Qp approximating α0 determines a sequence of elements in the residue

�eld of Qp which is eventually constant. By Hensel’s lemma, we may lift this element to a root of unity

w with the required properties. We then de�ne logp(α) by

logp(α) := logp(α1)

where the right hand side is de�ned by (12). This satis�es all the required properties. �

Remark 2.9. Prom the proof we see that the above theorem remains true if we instead demanded

logp($) = 0 for some element $ of positive order. The choice of logarithm function de�ned by this choice

of $ is typically called a branch of the p-adic logarithm. Only the natural choice of $ = p made in the

above proposition is what typically goes by the name of the Iwasawa branch of the p-adic logarithm.

2.2.3. The p-adic exponential. Consider the analytic function de�ned by

(13) expp(x) =

∞∑
i=0

xi

i!
.

We see that determining its radius of convergence is essentially equivalent to bounding ord(i!). The trivial

estimates on the �oor functions allow the following simple upper bound by a geometric series
2

ord(i!) =

⌊
i

p

⌋
+

⌊
i

p2

⌋
+ . . . <

i

p− 1
.

On the other hand, suppose that pa ≤ i < pa+1
then we have

⌊
i

p

⌋
+

⌊
i

p2

⌋
+ . . . >

i

p
+ . . .+

i

pa
− a

=
i

p− 1
− ip−a

p− 1
− a

>
i− p
p− 1

− log(i)

log(p)
.

It follows that, as i grows, we have asymptotically that ord(i!) ∼ i/(p− 1) and thus the radius of conver-

gence of the p-adic exponential function is given by

R = p−1/(p−1) < 1.

2
In fact, by counting slightly more carefully it is not much harder to show the stronger upper bound ordp(i!) ≤ i−1

p−1
. For an

even more precise estimate of the valuation in terms of the p-adic expansion of i, see Exercise 14.
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In contrast with the relative ease with which we were able to extend the logarithm to C×p , there is

no similar extension of the the exponential to larger disks. It is sometimes useful to consider the Artin–

Hasse exponential instead, see § 2.4, which has slightly better convergence properties. Restricted to the

appropriate domains of convergence, the p-adic logarithm and exponential are mutually inverse:

Proposition 2.10. If |x| < p−1/(p−1) then

logp(expp(x)) = x

expp(logp(1 + x)) = 1 + x

Proof. When |x| < p−1/(p−1) we have that |xn/n!| < 1 for all n ≥ 1 so that | expp(x) − 1| < 1

and therefore the p-adic logarithm is given by the power series (12) which formally satis�es the �rst

identity. For the second identity, using Exercise 14 we �nd that for any n ≥ 2 we have

|xn−1/n!| < p−(n−1)/(p−1)/|n!| < 1.

Therefore

| logp(1 + x)| = |x− x2/2 + . . . | = |x|

which is smaller than the radius of convergence for expp so that expp(logp(1 + x)) converges. The

second identity follows from the corresponding identity of formal power series. �

2.2.4. The power function. We now want to de�ne a p-adic version of s 7→ as. Assume for sim-

plicity that p is odd, the case p = 2 being similar. Recall that the Teichmüller representatives gave us an

isomorphism Z×p ' µp−1 × (1 + pZp), and we denote the projections onto the factors by

ω : Z×p −→ µp−1
〈 · 〉 : Z×p −→ 1 + pZp

In other words, ω is the function that sends x to the Teichmüller representative of the reduction of xmodulo

p, and then 〈x〉 := xω(x)−1. We may now de�ne the power function of any a ∈ Z×p by

〈a〉s : s 7−→ expp(s · logp(〈a〉)).

Its radius of convergence depends on a, but it is larger than 1 (see exercises).

2.3. Newton polygons

One of the most useful tools for studying roots of polynomials over complete non-archimedean �elds

are Newton polygons. They allow us to easily infer information about the valuations of the roots of polyno-

mials or power series, using only their coe�cients. This yields a remarkably simple procedure that allows

us to quickly access very useful information about roots that may otherwise be completely intractable.

Remark 2.11. In our discussion of Newton polygons, we work for simplicity over a sub�eld K ⊂ Cp

which is complete with respect to the induced valuation. This is justi�ed by the fact that it covers all the

cases of interest to us, but it should be clear to the reader that most of the proofs, and all of the results,

remain valid for any complete non-archimedean �eld K .
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2.3.1. Polynomials. Suppose we have a polynomial over K of degree n

f = anx
n + . . .+ a1x+ a0 ∈ K[x]

then we de�ne its Newton polygon NP(f) to be the lower convex hull of the �nite set of points

S = {(i, ord(ai)) : i = 0, . . . , n} ⊂ R2 .

This means that NP(f) is the union of all line segments joining two of the points in S which do not run

strictly above any of the other points. Every such segment has a slope, and we call itsmultiplicity the positive

di�erence between the �rst coordinates of its endpoints. In other words, the multiplicity of a segment is the

length of its projection to the horizontal axis. The multiplicity is extended to arbitrary λ ∈ Q by setting it

to be zero if λ does not arise as the slope of a segment of NP(f).

Example 2.12. Consider the polynomial

(14) f = 100x4 + 75x2 +
5

2
x+ 10 Q[x].

Since f has rational coe�cients, we may view it as a polynomial over any p-adic completion K = Qp and

determine its Newton polygon. Viewed as a polynomial over Q2 and Q5, we obtain the following pictures

for the corresponding Newton polygons NP(f):

(0,1)

(1,-1)

(2,0)

(4,2)

Figure 1. NP(f) for K = Q2

(0,1) (1,1)

(2,2)

(4,2)

Figure 2. NP(f) for K = Q5

We see that the Newton polygon over Q2 has precisely two slopes. The �rst slope is −2 and has

multiplicity 1. The second slope is 1 and has multiplicity 3. Over Q5 on the other hand, there are two

slopes, namely 0 with multiplicity 1 and 1/3 with multiplicity 3.

On the other hand, when viewed as a polynomial over K = Qp for any p 6∈ {2, 5}, we see that

ord(ai) = 0 for all coe�cients ai of the polynomial f ∈ K[x]. As a consequence, the Newton polygon

NP(f) over all these completions is given as in Figure 3. It has a single slope 0 with multiplicity 4.

(0,0) (1,0) (2,0) (4,0)

Figure 3. NP(f) for K = Qp where p 6∈ {2, 5}

These de�nitions are justi�ed by the following theorem, which states that the number of roots of f of

order −λ is given by the multiplicity of the slope λ in the Newton polygon NP(f). Note that the proof of

this theorem relies on little more than the ultrametric inequality.
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Theorem 2.13. Let f ∈ K[x], and write f = an
∏
λ∈Q

fλ where

fλ(x) =
∏

f(r)= 0
ord(r)=−λ

(x− r).

Then fλ(x) ∈ K[x], and its degree is equal to the multiplicity of λ in the Newton polygon NP(f).

Proof. Suppose g ∈ K[x] is any irreducible factor of f . Then the roots of g form a single orbit for the

action of the Galois group Gal(K/K). Since the valuation is preserved by this action, all the roots of

g must have the same valuation. This implies that fλ ∈ K[x].

Note that the statement about the multiplicities of the slopes is invariant under scaling by K and

multiplication by powers of x, so that it su�ces to prove the statement when f is of the form

f = 1 + a1x+ . . .+ anx
n =

n∏
i=1

(1 + αix).

Order the factors such that

ord(α1) ≤ ord(α2) ≤ . . . ≤ ord(αn).

Suppose that {ord(α1), . . . , ord(αn)} = {ν1, . . . , νl} for ν1 < . . . < ν`, and let κi be the number of

αj such that ord(αj) = νi. In other words, our numberings are such that

ord(α1) = . . . = ord(ακ1
) = ν1,

ord(ακ1+1) = . . . = ord(ακ1+κ2
) = ν2,

.

.

.

.

.

.

ord(ακ1+κ2+...+κ`−1+1) = . . . = ord(ακ1+κ2+...+κ`) = ν`.

Note that for any 1 ≤ s ≤ n we have the following expression for the coe�cient as of f :

(15) as =
∑

1≤i1<...<is≤n

αi1αi2 · · ·αis

From this expression, we estimate ord(as) via the ultrametric inequality. There are two cases.

(I) s = κ1 + κ2 + . . .+ κρ, for some 0 ≤ ρ ≤ `:
In this case ord(αs+1) > ord(αs) so that (15) implies the equality

ord(as) = ord(α1 · · ·αs)
= ν1κ1 + . . .+ νρκρ.

(II) κ1 + κ2 + . . .+ κρ < s < κ0 + κ1 + κ2 + . . .+ κρ + κρ+1, for some 0 ≤ ρ < `:

In this case (15) merely implies the estimate

ord(as) ≥ ord(α1 · · ·αs)
= ν1κ1 + . . .+ νρκρ − νρ+1(s− κ1 − . . .− κρ).
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This shows that in case (I) the point Pρ := (s, ν1κ1 + . . .+ νiκi) is in the set S de�ning the Newton

polygon NP(f). In case (II) on the other hand, the inequality on ord(as) is equivalent to the statement

that (s, ord(as)) lies on or above the line segment fro m Pρ to Pρ+1. This implies that [Pρ, Pρ+1] is a

segment of the Newton polygon NP(f) for each 0 ≤ ρ < `, from which the theorem follows. �

2.3.2. Power series. The construction of Newton polygons, and the relation between roots and slopes,

have suitable counterparts for power series. More precisely, let

f = a0 + a1x+ a2x
2 + . . . ∈ KJxK

be a power series with radius of convergenceR. We de�ne the Newton polygon exactly as before, by setting

NP(f) to be the lower convex hull of the set of points

S = {(i, ord(ai)) : i = 0, 1, 2, . . .} ⊂ R2 .

The Newton polygon NP(f) now has a possibly in�nite set of �nite slopes, and we de�ne its multiplicity

to be the length of the projection of the corresponding edge of the Newton polygon to the horizontal axis.

Note that the multiplicity may be in�nite. There are three basic possibilities.

(1) The set of �nite slopes is empty: This happens for instance for the series

f =

∞∑
n=0

p−n
2

xn

The Newton polygon NP(f) in this case consists of a single vertical line (which we say is of “in-

�nite slope”) that coincides with the vertical coordinate axis.

(2) The set of �nite slopes is �nite: This happens for example in the case of the power series

f(X) = −p2 + x+

∞∑
n≥2

pnxn.

The Newton polygon NP(f) is now easily seen to have two �nite slopes. The �rst is −2 and has

multiplicity one. The second is 1 and has in�nite multiplicity.

(0,2)

(1,0)

(2,2)

(3,3)

(4,4)

(3) The set of �nite slopes is in�nite: This happens for example in the case of the power series

f(X) =

∞∑
n=0

pn
2+nxn,

in which case the Newton polygon has in�nitely many �nite slopes, which are precisely the pos-

itive even integers, all with multiplicity one. Pictorially, we have:
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(0,0)

(1,2)

(2,6)

(3,12)

The additive counterpart of the radius of convergence is the order of convergenceM , de�ned by

−M = lim inf
n

ord(an)

n
.

This quantity is characterised as the smallest number such that f(x) converges whenever x ∈ Cp is such

that ord(x) > M . Alternatively, −M may be characterised as the supremum of all the slopes of NP(f).

Just like the case of polynomials, there is a very close relation between the p-adic valuations of the roots

of a power series, and the slopes of its Newton polygon. More precisely, we have the following analogon

of Theorem 2.13. The main idea of the proof is to truncate the power series at some large degree, apply

Theorem 2.13, and pass to the limit. The details and casework are somewhat lengthy, so we omit the proof.

Theorem 2.14. Let f(x) ∈ KJxK and suppose λ is a slope of NP(f) of �nite multiplicitymλ. Then f has
preciselymλ roots αi of order ord(αi) = −λ and we have a factorisation

f(x) = P (x)Q(x), P (x) =

mλ∏
i=1

(x− αi),

where Q(x) ∈ KJxK is such that NP(Q) does not have a side of slope λ.

Proof. See [DGS94, Theorem 2.1]. �

Example 2.15. Let us look once more at the p-adic logarithm logp which is given by

logp(1 + x) = x− x2

2
+
x3

3
− . . .

de�ned on {x ∈ Cp : |x| < 1}. Its Newton polygon is given by

(1, 0)

(p,−1)

(p2,−2)

(p3,−3)
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As a consequence, the logarithm function logp(1 + x) has

1 zero of order ∞
p− 1 zeroes of order (p− 1)−1

p2 − p zeroes of order (p2 − p)−1
.
.
.

.

.

.

in the set {x ∈ Cp : |x| < 1}. Furthermore, in this case we know precisely what the zeroes are. The single

zero of order∞ is x = 0, whereas the set of zeroes of order (pt − pt−1)−1 certainly contains

x = ζjpt − 1 for j ∈ (Z /pt Z)×

since logp(1 + x) = logp(ζ
j
pt) = 0. There are precisely pt − pt−1 zeroes of this form, and therefore this

accounts for all the zeroes of the p-adic logarithm logp in the set {x ∈ Cp : |x| < 1}.

We end this discussion with a classical result known as the Weierstraß preparation theorem. We say a

polynomial P (x) ∈ OK [x] is distinguished if we have

P (x) = xn + an−1x
n−1 + . . .+ a0, with ord(ai) > 0.

In other words, a polynomial is distinguished if it is monic and all of its roots have positive order. The

Weierstraß preparation theorem states that, up to a power of the uniformiser, any power series over a

discrete valuation ring can be written as a distinguished polynomial times an invertible series. It follows as

a corollary from our discussion of Newton polygons. For a direct proof, see [Was97, Theorem 7.3].

Corollary 2.16 (Weierstraß preparation). Suppose K is discretely valued, with uniformiser $ and val-
uation ring OK , and let f ∈ OKJxK be non-zero. Then there is a unique factorisation

f = $µ · P (x) · U(x)

where µ is a non-negative integer, P (x) is a distinguished polynomial, and U(x) is a unit.

Proof. First, we set µ = minn{ordp(an) : n ≥ 0} so that f ·$−µ has coe�cients of trivial valuation.

Let d be the smallest natural number such that ord(ai) = 0, then (i, ord(ai)) must be a vertex of the

Newton polygon NP(f). This implies that that

P (x) =
∏

f(α)= 0
ord(α)>0

(x− α)

is a distinguished polynomial of degree i such that f · $−µ = P (x) · U(x) for a power series U(x)

which has no roots of positive valuation, and is therefore a unit. �

2.4. Dwork’s lemma

Though it will not be needed for our purposes, we would be remiss here not to mention Dwork’s

lemma, and its signi�cance in the context of the rationality of zeta-functions of hypersurfaces, a deep and

very important theorem in algebraic geometry that was one of the big early triumphs of p-adic analysis.

If the scope of these notes were to be expanded some day, this may be a natural point to treat in more

detail the arguments and mathematics of this particular direction of the �eld. At the core of many of its

most celebrated developments lies the following innocent looking lemma:
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Lemma 2.17. Let F (x) ∈ 1 + x ·QpJxK. Then

F (x) ∈ 1 + x · ZpJxK
⇐⇒ F (xp)/(F (x))p ∈ 1 + px · ZpJxK.

Proof. Assume �rst that F (x) ∈ 1 + x · ZpJxK then we have

(F (x))p = F (xp) + pG(x)

for some G(x) ∈ x · ZpJxK. Because (F (x))p is invertible in ZpJxK we obtain the desired claim.

Conversely, assume that F (xp) = (F (x))pG(x) for some

G(x) ∈ 1 + px · ZpJxK.

Let F (x) =
∑
i aix

i
, then we will show by induction that ai ∈ Zp. We know that a0 = 1. Suppose

we have shown that ai ∈ Zp for all i < n, then computing the coe�cient of xn of the identity

F (xp) = (F (x))pG(x)

gives us by the induction hypothesis the relation{
an/p ≡ apn/p + pan (mod pZp) if p | n
0 ≡ pan (mod pZp) otherwise.

from which we conclude that in either case an ∈ Zp. The lemma follows by induction. �

The signi�cance of this result and its variants is hard to overestimate in the context of modern devel-

opments in p-adic cohomology, which have their roots in the highly original work of Bernard Dwork.

2.4.1. TheArtin–Hasse exponential. An important function in p-adic analysis is the so-calledArtin–
Hasse exponential. We barely scratch the surface here, and regard it somewhat naively as an “improvement”

of the p-adic exponential expp, converging on the open unit disk in Cp.

Lemma 2.18. De�ne the Artin–Hasse exponential by

E(x) = exp

(
x+

xp

p
+
xp

2

p2
+ . . .

)
.

We have E(x) ∈ 1 + x · ZpJxK.

Proof. By Dwork’s lemma, it su�ces to check that

E(x)p

E(xp)
=

exp
(
px+ xp + xp

2

p + . . .
)

exp
(
xp + xp2

p + . . .
) = exp(px) ∈ 1 + px · ZpJxK

This follows from the estimates in our discussion of the exponential function expp in § 2.2.3. �

The above lemma shows that the Artin–Hasse exponential converges for all x in {x ∈ Cp : |x| < 1},
which is an improvement on the radius of convergence p−1/(p−1) of the p-adic exponential expp. The

comparison between the two functions has a similar �avour to the theme of removing the “Euler factors”

at p which we will see in our discussion on p-adic L-functions.
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More precisely, de�ne the Möbius function µ : N−→Z by

µ(n) :=

{
(−1)k if n is squarefree, with k prime divisors,

0 otherwise.

One can then show that

expp(x) =
∏
n≥1

(1− xn)−µ(n)/n E(x) =
∏
n≥1
p-n

(1− xn)−µ(n)/n

In other words, the two functions are given by similar in�nite product expansions, where the Artin–Hasse

exponential has the factors ‘at p’ removed. This is a common phenomenon, whose roots are already present

in the work of Kummer on congruences between Bernouilli numbers, as discussed in § 1.

2.5. Exercises

(1) Prove that the supremum norm of f ∈ Cont(Zp, L) is obtained from the Mahler coe�cients an
of the continuous function f by the equality

‖f‖ = sup
n≥0
|an|.

(2) Extend the de�nition of the power function s 7→ 〈a〉s to all primes p, including p = 2, and deter-

mine its radius of convergence for s ∈ Cp, in terms of the chosen 〈a〉 ∈ 1 + pZp.

(3) De�ne the Fibonacci sequence Fn by F0 = 1, F1 = 1 and

Fn+1 = Fn + Fn−1
∀n ≥ 1.

De�ne the function

f : N→ Z, n 7→ Fn.

Does f extend to a uniformly continuous function f : Zp → Zp for all primes p?

(4) De�ne the Nagell sequence an by a0 = 0, a1 = 1 and

an+1 = an − 2an−1
∀n ≥ 1.

Show that there are precisely 5 values of n ≥ 1 such that an = ±1. [Hint: Show that for a �xed

r, the function m 7→ ar+10m is analytic in m over Q11, and compute its �rst few coe�cients.]

(5) Use the previous exercise to �nd all integer solutions (x, y) ∈ Z2
to

x2 + 7 = 2y.

(6) De�ne the Courgette sequence cn by c0 = 0, c1 = 1 and

cn+1 = 14cn + 11cn−1
∀n ≥ 1.

• Find the smallest value of n > 0 such that cn ≡ 0 (mod 74).

• Show that there are n > 0 such that cn is divisible by an arbitrarily high power of 7.
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(7) Let cn be the Courgette sequence, de�ned in the previous question. Show that there are n > 0

such that cn is divisible by an arbitrarily high power of 7, and such that n is not divisible by 6.

Can you also take n not divisible by 2?

(8) Prove the following identities:∑
n≥1

2n

n
= 0 ∈ Q2∑

n≥1

(−1)n
32n

n42n
= 2

∑
n≥1

32n

n4n
∈ Q3

(9) Let p be a prime. This exercise will show that Qp is not complete with respect to the unique

extension of the absolute value on Qp. Assume on the contrary that Qp were complete, then:

• For any n ≥ 1, choose a primitive n-th root of unity ζn in Qp, and de�ne ζ̃n := ζn when

(n, p) = 1, and ζ̃n = 1 otherwise. For any N ≥ 1, de�ne

αN :=

N∑
n=1

ζ̃n · pn ∈ Qp

Show that (αN )N is a Cauchy sequence.

• Show that this sequence converges to an element α in a �nite extension K/Qp.

• Let m ≥ 1 be the smallest integer such that ζ̃n ∈ K for all n < m, and ζ̃m 6∈ K . Consider

β = p−m

(
α−

m−1∑
n=1

ζ̃n · pn
)
.

Show that β ∈ K , and β ≡ ζm (mod p).

• Use Hensel’s Lemma to derive a contradiction, and conclude that Qp cannot be complete.

(10) Let K be a �nite extension of Qp of degree n. Show that there is a constant M depending only

on n, such that | logp(x)| ≤M for all x ∈ K .

(11) Show that the Iwasawa branch of the logarithm logp : C×p → Cp

• is surjective,

• cannot be extended to a continuous function Cp → Cp.

(12) Suppose that x ∈ {x ∈ Cp : |x− 1| < 1}. Show that

logp(x) = lim
n→∞

xp
n − 1

pn
.

(13) Suppose n ∈ N and denote its p-adic expansion by

n = a0 + a1p+ . . .+ akp
k, ai ∈ {0, . . . , p− 1}
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Sharpen the estimates for the factorial n! that were proved above, by showing the exact formula

ordp(n!) =
n− (a0 + . . .+ ak)

p− 1
.

(14) Let f ∈ KJxK be a power series over a sub�eld K ⊂ Cp. Show that the slopes of NP(f) of �nite

multiplicity are rational numbers (or in�nity). Show that the slopes of NP(f) that do not have

�nite multiplicity need not be rational, by giving a counterexample.

(15) Consider the power series

f(x) = expp

(
b0 + b1x

p + b2x
p2 + . . .

)
with bi ∈ Qp. Use Dwork’s lemma to prove that

f(x) ∈ 1 + x · ZpJxK ⇐⇒ bi−1 − pbi ∈ pZp, ∀i ∈ {1, 2, . . .}.

(16) Prove that expp(x) and E(x) have no zeroes in their regions of convergence.





CHAPTER 3

Distributions and measures

In this chapter we study p-adic functional analysis, and discuss measures and their Mahler transforms.

The material in this chapter is inspired by the excellent treatments of Koblitz [Kob80, Kob84], Rodrigues–

Williams [RW], and Washington [Was97] as well as the much more thorough account of the theory by

Colmez [Col10], which we recommend to any reader who wants to know more.

Notation. The results in this chapter are valid for any pro�nite abelian groupG, but the only examples

of interest to us in this course are the following groups

G = Zp = lim←−n Z /pnZ

G = Z×p = lim←−n (Z /pnZ)×.

We �x G to be either of these two in what follows, and let L ⊂ Cp be a complete sub�eld.

3.1. Distributions

A function f : G→ L is said to be locally constant if every point of G has an open neighbourhood on

which f is constant. The L-vector space of locally constant functions on G is denoted by LC(G,L). Any

locally constant function is continuous. The space LC(G,L) is reminiscent of the ‘step functions’ which

occur in the theory of integration for real analytic functions, in the notion of Riemann sums. In our p-adic

context, such a theory of integration is procured through the notions of distributions and measures.

We de�ne a distribution µ to be an element of the dual space of LC(G,L), i.e. a linear functional

µ : LC(G,L)−→L.

The space of distributions µ on G is denoted by Dist(G,L). Suppose that f is a locally constant function

on G, then the value µ(f) of the distribution µ at the function f is denoted by the symbol∫
G

f(x) · µ(x) := µ(f).

When no ambiguity can arise, we often omit the variable name and simply write∫
G

f · µ := µ(f).

Example 3.1. A simple example is the Dirac distribution δa where a is an element of G, de�ned by

δa(f) = f(a).

The datum of a distribution µ contains a vast amount of information, since there is a tremendous

amount of locally constant functions. Since G is compact, any locally constant function must be a �nite

29
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linear combination of characteristic functions 1U on disjoint compact open subsets U ⊂ G, de�ned by

1U (x) :=

{
1 if x ∈ U ,

0 otherwise.

We therefore see that a distribution µ on G is determined by the function µ(U) := µ(1U ) on compact

open subsets, which is �nite additive in the sense that if U ⊆ G is the disjoint union of compact open sets

U1, . . . , Uk we have

µ(U) = µ(U1) + . . .+ µ(Uk).

Conversely, we see that any such �nite additive function on compact open subsets uniquely extends to a

distribution µ in Dist(G,L). This alternative way of describing a distribution is frequently useful, partic-

ularly on the group G = Zp where the basis of open neighbourhoods of the form a + pn Zp allows us to

describe a distribution µ by an even smaller amount of data.

Lemma 3.2. Every map µ from the collection of open sets a+ pn Zp to L for which

(16) µ(a+ pn Zp) =

p−1∑
b=0

µ(a+ bpn + pn+1 Zp)

for all a ∈ Zp and n ≥ 0, extends uniquely to a distribution µ in Dist(Zp, L).

Proof. Let U be a compact open subset of Zp, write it as a �nite union of subsets Vi of the form

Vi = a+ pn Zp,

and de�ne µ(U) = µ(Vi). To prove the lemma, we need to show that (1) this de�nition is well-de�ned,

i.e. it is independent of the chosen partition ofU into subsets of the form a+pn Zp, and (2) this function

µ is �nite additive on compact opens U . The second property is clear. To check the well-de�nedness

of µ(U), note that whenever we have

U =
⋃
i

Vi =
⋃
j

V ′i

there is a common re�nement

⋃
kWk of both coverings, where all Wk are of the form a + pn Zp. By

the property (16) we have that ∑
i

µ(Vi) =
∑
k

µ(Wk) =
∑
j

µ(V ′j ).

and therefore the value µ(U) is well-de�ned, and the lemma follows. �

The above lemma is what frequently allows one to describe explicit distributions µ in Dist(Zp, L) of

arithmetic interest. All we need to do is describe the value of a tentative distribution on the basis of compact

open neighbourhoods, and check that it is additive in the sense of the above lemma.

Example 3.3. We de�ne the Haar distribution µHaar by

µHaar(a+ pn Zp) = p−n.

The name comes from the fact that this coincides with the Haar measure on the open set a+ pn Zp, but we

do not need to know what that means to verify that this simple de�nition gives a distribution, since

p−1∑
b=0

µHaar(a+ bpn + pn+1 Zp) =

p−1∑
b=0

p−n−1 = p−n.
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so that µHaar uniquely extends to a distribution in Dist(Zp,Qp).

Example 3.4. We de�ne the Mazur distribution µMazur by

µMazur(a+ pn Zp) =
a

pn
− 1

2
,

where 0 ≤ a ≤ pn − 1. Once again, we easily check that it satis�es the additivity condition of Lemma 3.2.

3.2. Measures

We have seen that distributions are formally what we need to integrate locally constant functions onG.

Since locally constant functions LC(G,L) are dense in the space of continuous functions Cont(G,L) (see

exercises) it is tempting to ask which distributions can be used to integrate continuous functions instead.

This leads us to the notion of measures, which are elements of the dual space of Cont(G,L).

We de�ne a measure µ to be an element of the continuous dual of Cont(G,L), i.e. a functional

µ : Cont(G,L)−→L

which is continuous with respect to the topology on Cont(G,L) induced by the supremum norm. The

space of measures µ on G is denoted by Meas(G,L). Note that since any locally constant function is

continuous, any measure de�nes in particular a distribution, i.e. Meas(G,L) ⊂ Dist(G,L). Suppose that f

is a continuous function on G. Then as before the value µ(f) of the measure µ at the function f is denoted

by the symbol ∫
G

f(x) · µ(x) := µ(f).

When no confusion can arise, we will omit the variable from this notation, and simply write∫
G

f · µ := µ(f).

Example 3.5. The Dirac distribution δa de�ned in § 3.1 extends to a measure, with the same de�nition.

In other words, we have δa ∈ Meas(G,L) ⊂ Dist(G,L). This is indeed clear from its de�nition

δa(f) = f(a).

which makes sense for general continuous functions f , and not just locally constant ones.

Since Zp is compact, any continuous function is also uniformly continuous by Lemma 2.2. This implies

that any continuous function on Zp is the limit of a sequence of locally constant functions with respect

to the supremum norm. In other words, the subspace LC(Zp, L) ⊂ Cont(Zp, L) is dense. Therefore a

measure µ on Zp is determined by the �nite additive function µ(U) := µ(1U ) on compact open subsets.

Now suppose conversely that we are given a distribution µ and we want to know whether it determines

a measure. In other words, we would like to know how to integrate a continuous function f against µ. Since

any continuous function f is the limit of a sequence f1, f2, . . . of locally constant functions, we are led to

wonder whether the limit

µ(f) := lim
n→∞

µ(fn)

exists. This is analogous to the concept of Riemann sums in the theory of integration of real functions,

whereby the integral of a function f : [a, b] → R on a closed interval in R is de�ned as the limit of
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integrals of step functions that converge to f , if this limit exists. Therefore we can use the same mental

picture in the non-archimedean theory as we did in the archimedean theory of integration:

If the distribution µ comes from a measure, then one can show (see exercises) that µ is bounded, i.e.

there exists a constant C such that

|µ(U)| ≤ C

for all compact open subsets U ⊂ Zp. It turns out that the converse is also true, namely if a distribution is

bounded, then we can de�ne µ(f) for any continuous function f by the limit above, which is convergent.

Lemma 3.6. Let X ⊂ Zp be a compact open subset. Suppose µ ∈ Dist(X,L) is bounded, and let f ∈
Cont(X,L). De�ne an in�nite sequence of “Riemann sums”

Sn :=
∑

a+pn Zp⊂X

f(xa,n) · µ(a+ pn Zp)

where xa,n is an arbitrarily chosen point in a + pn Zp. Then Sn converges to a limit µ(f) as n → ∞ which
does not depend of the choices of points xa,n and f 7→ µ(f) de�nes a measure on X .

Proof. Choose ε > 0 arbitrary, and suppose C > 0 is such that

|µ(U)| ≤ C

for all compact open subsets U of X . Taking n to be very large, we may assume that

• Every subset a+ pn Zp in Zp is either contained in X or disjoint from X ,

• We have |f(x)− f(y)| < ε for all x, y ∈ a+ pn Zp.

For any m > n we then obtain the following estimates

|Sm − Sn| ≤ ε ·

∣∣∣∣∣∣
∑

a+pm Zp⊂X

µ(a+ pm Zp)

∣∣∣∣∣∣ ≤ εC
by the ultrametric inequality. Since ε was arbitrary and C was �xed, we see that the sums have a limit

which is independent of choices, from which all statements immediately follow. �
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In conclusion, we found that measures are the same as bounded distributions. This means that we may

always rescale a measure so as to obtain a measure valued in OL, i.e.

Meas(G,OL)⊗ L = Meas(G,L).

Note that in contrast with the Dirac distribution, neither the Haar distribution µHaar nor the Mazur distri-

bution µMazur described in § 3.1 de�ne measures, since we can easily see neither of them is bounded.

3.3. Mahler transforms

Measures encode a large amount of information. We have two ways to determine a measure µ:

• By its values µ(U) on all compact open subsets U of G,

• By the integrals of all binomial polynomials, which determine µ uniquely by Mahler’s theorem.

All the data in the �rst description can be encoded into a single element of a certain ring Λ(G) that goes by

the name of the Iwasawa algebra. The data in the second description is encoded into a single power series

in OLJT K, called the Mahler transform of µ. We will see that there is an isomorphism Λ(G) ' OLJT K of

OL-algebras, giving an identi�cation between these two di�erent descriptions of a measure. This allows us

to produce and study arithmetically interesting measures with great ease later.

De�ne the Iwasawa algebra Λ(G) as the projective limit

Λ(G) := lim←−
U

OL[G/U ]

where U ranges over all open subgroups U of G, and OL[G/U ] denotes the group algebra
1

over the �nite

group G/U . It is an OL-algebra. The Iwasawa algebra is naturally isomorphic to the space of measures

Meas(G,OL). To see this, we begin by choosing an open subgroup U of G, and de�ning the map

αU : Meas(G,OL) −→ OL[G/U ]

µ 7−→
∑

g∈G/U

µ(g + U)[g].

By the additivity of µ, the maps αU form a projective system as U varies, so that we obtain a map

α := lim←−
U

αU : Meas(G,OL)−→Λ(G).

Lemma 3.7. The map α is an isomorphism of OL-modules.

Proof. The map α is clearly OL-linear. Suppose we are given an element f of the Iwasawa algebra

Λ(G). Let U be an open subgroup of G, and we denote the image of f in the group ring over G/U by

fU =
∑

a∈G/U

ca[a+ U ] ∈ OL[G/U ]

De�ne µ(a + U) := ca, then µ de�nes a measure: Since f is an element of the inverse limit, the map

µ is �nite additive and de�nes a distribution. Since ca ∈ OL, the distribution is bounded, so that µ

de�nes a measure. It is clear that α(µ) = f , so α is surjective. It is clear that α is injective. �

1
Suppose A is a group, and R is a ring, then the group ring R[A] is de�ned as the free R-module with generators [a] indexed by

a ∈ A. It is naturally an R-algebra with multiplication determined by the relations [a1] · [a2] = [a1a2] for any a1, a2 ∈ A.
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This isomorphism gives us two fundamentally di�erent ways to think about measures, and depending

on the situation it may be fruitful to change your point of view from one to the other via the above iso-

morphism α. Moreover, note that the Iwasawa algebra is naturally anOL-algebra! The multiplication may

therefore be carried over to the space of measures Meas(G,OL), where it obtains the following concrete

description: The product µ1 ? µ2 of two measures µ1 and µ2 is given by convolution, de�ned by∫
G

f · (µ1 ? µ2) =

∫
G

(∫
G

f(x+ y) · µ2(y)

)
· µ1(x)

Suppose µ ∈ Λ(Zp) is a measure on Zp. De�ne its Mahler transform to be

A µ(T ) =

∫
Zp

(1 + T )xµ(x)

=
∑
n≥0

(∫
Zp

(
x

n

)
µ

)
Tn.

In other words, the Mahler transform of a measure is the generating series of its values on the basis of con-

tinuous functions provided by Mahler’s theorem. From this observation, we see that the Mahler transform

uniquely determines the measure, so the Mahler transform is injective. It is in fact also surjective.

Theorem 3.8. The Mahler transform gives an OL-algebra isomorphism

Λ(Zp)
∼−→ OLJT K

Proof. We will de�ne an explicit inverse. Suppose we are given a power series

f(T ) = a0 + a1T + a2T
2 + . . .

in OLJT K. Let U be an open subgroup in Zp. Then for each a ∈ Zp /U the characteristic function on

a+ U is continuous, so that by Mahler’s theorem we may write it as a linear combination

1a+U (x) =
∑
n≥0

ba,n

(
x

n

)
for some coe�cients ba,n ∈ OL. Now de�ne the quantity

µ[a] :=
∑
n≥0

anba,n

which converges since an → 0, and de�ne furthermore

µU :=
∑

a∈Zp/U

µ[a][a] ∈ OL[Zp /U ].

If we let V ⊂ U another open subgroup, then we likewise obtain µV ∈ OL[Zp /V ] which maps to µU
in the natural quotient, since 1a+U (x) is the sum of the characteristic functions on all the cosets of V

contained in aU , and the de�nition of µ[a] is linear in the coe�cients ba,n. Therefore we obtain

µ := lim←−
U

µU ∈ Λ(Zp)

whose Mahler transform is clearly equal to f(T ). �
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Example 3.9. Let us illustrate the various ways of thinking about measures on the example of the Dirac

measure δa ∈ Meas(Zp, L). As an element of the Iwasawa algebra [a] ∈ Λ(Zp) we �nd that it has image

[a+ pn Zp] ∈ OL[Zp /p
nZp]

in the �nite group ring of Zp /p
nZp over OL. Its Mahler transform is

A δa(T ) =
∑
n≥0

(
a

n

)
Tn = (1 + T )a.

Remark 3.10. Note that for any measure µ ∈ Meas(Zp, L) we have

(17)

∫
Zp

µ = A µ(0).

3.4. Operations on measures

Finally, we introduce a number of operations on measures, such as multiplication by functions, restric-

tion to compact open subsets, and actions of Z×p and the operators ϕ and ψ.

3.4.1. Multiplication by a function. Suppose f ∈ Cont(Zp, L) and µ ∈ Meas(Zp, L) then we

de�ne a new measure fµ by the rule∫
Zp

g(x) · (fµ)(x) =

∫
Zp

f(x)g(x) · µ(x).

Some examples of particular importance are the following:

• Multiplication by x. It follows from the identity

x ·
(
x

n

)
= (x− n+ n) ·

(
x

n

)
= (n+ 1)

(
x

n+ 1

)
+ n

(
x

n

)
that in this example we have

A xµ(T ) = ∂A µ, where ∂ = (1 + T )
d

dT
.

• Multiplication by zx. Suppose z ∈ Z×p satis�es |z − 1| < 1, then the Mahler transform of zxµ is

A zxµ(T ) = A µ((1 + T )z − 1),

which one can deduce from the formal identity

A µ((1 + T )z − 1) =

∫
Zp

((1 + T )z)xµ.

Remark 3.11. Note that as an immediate consequence, we �nd the following generalisation of (17). For

any µ ∈ Meas(Zp, L) and any k ≥ 0 we have the following expression for the “k-th moment” of µ:

(18)

∫
Zp

xk · µ = ∂k A µ(0).
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3.4.2. Restriction to compact subgroups. Another important operation is restriction to a compact

open subset X ⊂ Zp, which is de�ned to be the measure obtained by multiplication with the characteristic

function 1X on X . In other words, the measure ResX(µ) is de�ned by∫
Zp

f · ResX(µ) =

∫
Zp

f1X · µ.

In the special case where X = a+ pn Zp we can write 1X explicitly as

1X(x) =
1

pn

∑
ζpn =1

ζx−a

which shows that the Mahler transform of ResX(µ) is given by

A ResX(µ) =
1

pn

∑
ζpn=1

ζ−a A µ((1 + T )ζ − 1).

Finally, we come to one of the most important operations on Meas(Zp, L): Restriction to the compact

open X = Z×p . By the above, we �nd that the Mahler transform of ResZ×
p

(µ) is given explicitly by

A Res
Z
×
p
(µ)(T ) = A µ(T )− 1

p

∑
ζp=1

A µ((1 + T )ζ − 1).

3.4.3. Actions of Z×p , φ and ψ. The space of measures is endowed with an action of the group Z×p ,

as well as operators ϕ and ψ. These play an important role in our analysis of the Kubota–Leopoldt zeta

function, and permit to establish connections with the Galois theory of cyclotomic �elds.

• Suppose a ∈ Z×p and µ ∈ Meas(Zp, L) then we de�ne σa(µ) by∫
Zp

f(x)σa(µ) =

∫
Zp

f(ax)µ.

One checks that this measure has Mahler transform

A σa(µ)(T ) = A µ((1 + T )a − 1).

• We de�ne the operator ϕ by ∫
Zp

f(x)ϕ(µ) =

∫
Zp

f(px)µ.

One checks that this measure has Mahler transform

A ϕ(µ)(T ) = A µ((1 + T )p − 1).

• We de�ne the operator ψ by∫
Zp

f(x)ψ(µ) =

∫
pZp

f(p−1x)µ.

The Mahler transform of the measure ψ(µ) is more complicated, and given by

A ψ(µ)(T ) = ψ(A µ),

where the operation ψ on a power series F (T ) is determined by the condition

ψ(F )((1 + T )p − 1) =
1

p

∑
ζp=1

F ((1 + T )ζ − 1).
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One can check that σa and ϕ are injective, but the operator ψ is not, see Exercise 11. These actions

satisfy various relations. For any a ∈ Z×p we have

(19)

ψ ◦ σa = σa ◦ ψ
ϕ ◦ σa = σa ◦ ϕ

and the operators ϕ and ψ furthermore satisfy

(20)

(ψ ◦ ϕ) (µ) = µ

(ϕ ◦ ψ) (µ) = RespZp(µ).

The operator ψ lies deeper than the rest, and its action on power series via the Mahler transform is di�cult

to make explicit. In certain special cases, we can however compute it explicitly, using the following Lemma.

Lemma 3.12. Suppose µ is a measure whose Mahler transform can be written in the form

A µ(T ) =
∑
n≥0

bn(1 + T )n,

for some bn ∈ L. Then the Mahler transform of ψ(µ) is given by

A ψ(µ)(T ) =
∑
n≥0

bnp(1 + T )n.

Proof. Since (ϕ ◦ ψ) (µ) = RespZp(µ) we have

(ϕ ◦ ψ)(A µ) =
1

p

∑
n≥0

∑
ζp=1

bnζ
n(1 + T )n.

For any n ≥ 0 we have the relation

1

p

∑
ζp=1

ζn =

{
0 if p - n
1 if p | n

which implies that

ϕ
(
A ψ(µ)

)
= (ϕ ◦ ψ)(A µ) =

∑
n≥0

bnp(1 + T )np = ϕ

∑
n≥0

bnp(1 + T )n


since the operator ϕ is injective, the statement follows. �

Finally, we note that a measure µ is supported on Z×p if and only if ψ(µ) = 0.

Corollary 3.13. Let µ ∈ Λ(Zp) be a measure. Then µ is supported on Z×p if and only if ψ(A µ) = 0.

Proof. There is a natural injection ι : Λ(Z×p ) ↪→ Λ(Zp) given explicitly by∫
Zp

f · ι(µ) =

∫
Z×
p

f |Z×
p
·µ

Suppose that µ ∈ Λ(Zp), then µ has support in Z×p if and only if it is in the image of ι, which is

equivalent to saying that ResZ×
p

(µ) = µ or in other words

A µ = A µ −ϕ ◦ ψ(A µ).

It is clear that ϕ has trivial kernel, so that the latter is equivalent to ψ(A µ) = 0. �
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3.5. Exercises

(1) Let f : Zp → Qp be the function that sends a ∈ Zp to the �rst digit a0 in the p-adic expansion

a = a0 + a1p+ a2p
2 + . . . with respect to the standard choice of digits

ai ∈ {0, 1, . . . , p− 1} ⊆ Qp

Show that f is locally constant, and compute the integrals∫
Zp

f · δa
∫
Zp

f · µHaar

∫
Zp

f · µMazur

(2) Let µ be the function on compact opens a+ pn Zp de�ned by

µ(a+ pn Zp) := p−b
n+1
2 c

if the �rst bn/2c digits of the p-adic expansion of a corresponding to odd powers of p vanish, and

µ(a+ pn Zp) = 0 otherwise. Prove that µ extends to a distribution on Zp.

(3) Let ζ ∈ Cp be a root of unity whose order is a power of p, then show that x 7→ ζx is a locally con-

stant function. Show that theCp-subspace of Cont(Zp,Cp) generated by these functions is dense.

(4) Let X be a compact open subset of Zp. Show that LC(X,L) is dense in Cont(X,L). In other

words, show that any continuous function f : X → L may be approximated arbitrarily closely

by a locally constant function, with respect to the supremum norm.

(5) Recall that we de�ned a measureµ to be an element of the continuous dual Homcts(Cont(G,L), L).

Prove that the continuity of µ implies that it is bounded. [Hint: Use that G is compact.]

(6) De�ne the vector space of Lipschitz functions to consist of f : Zp → L for which there exists

some positive constant A ∈ R such that we have

|f(x)− f(y)| ≤ A|x− y|

for all x, y ∈ Zp. Show that the space Lip(Zp, L) of all Lipschitz functions satis�es

LC(Zp, L) ⊂ Lip(Zp, L) ⊂ Cont(Zp, L).

(7) Suppose that a distribution µ ∈ Dist(Zp, L) is “boundedly increasing”, meaning that

|pnµ(a+ pn Zp)| → 0

as n → 0, for any a ∈ Zp. Show that µ may be integrated against Lipschitz functions, i.e. that it

can be extended to an element of the continuous dual of Lip(Zp, L):

µ ∈ Homcts(Lip(Zp, L), L).

(8) Show that convolution of measures µ1 ? µ2 de�ned by∫
G

f · (µ1 ? µ2) =

∫
G

(∫
G

f(x+ y) · µ2(y)

)
· µ1(x)
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makes Meas(Zp,OL) into an OL-algebra. Show that the Mahler transform to the ring of power

series OLJT K is an isomorphism of OL-algebras, by showing that

A µ1?µ2
(T ) = A µ1

(T ) A µ2
(T ).

(9) The space Meas(G,OL) can be equipped with two topologies, namely

(a) The strong topology: This is the topology induced by the norm

‖µ‖ := sup
f∈Cont(G,OL)

‖µ(f)‖
‖f‖

.

In other words, this is the topology of uniform convergence.

(b) The weak topology: This is the topology in which a sequence µn → µ if and only if

µn(f)→ µ(f)

for all f ∈ Cont(G,OL).

Show that under the Mahler transform, the strong topology corresponds to the p-adic topology

on ZpJT K, whereas the weak topology corresponds to the (p, T )-adic topology.

(10) Show that the OL-module generated by the Dirac measures δa for a ∈ N is dense in Λ(Zp).

(11) Let a ∈ Zp and δa the associated Dirac measure.

• Compute ϕ(δa) and ψ(δa), as well as σb(δa) for any b ∈ Z×p ,

• Show that the operator ψ : ZpJT K −→ ZpJT K is not injective,

• Show that the operators ϕ and σb for any b ∈ Z×p are injective.

(12) Show that for any a ∈ Z×p , the map

σa : ZpJT K −→ ZpJT K

is an isometry for the p-adic topology. Show this is not true for ϕ and ψ.





CHAPTER 4

p-Adic L-functions

In this chapter we introduce and study p-adic L-functions, and discuss their special values and explicit

calculation. The approach is an outgrowth of the in�uential viewpoint pioneered by Tate [Tat50] and Iwa-

sawa [Iwa52a, Iwa52b] whereby L-functions are thought of as measures. We construct p-adic L-functions

as the Mazur–Mellin transform of certain (pseudo-)measures, which are constructed via their Mahler trans-

forms. This gives a more streamlined and powerful approach than the historical analytic treatment in the

visionary work of Kubota–Leopoldt [KL64] in the early 60’s.

4.1. The Riemann zeta function

We begin with a discussion of the analytic continuation and special values of the Riemann ζ-function.

Our treatment here di�ers slightly from the historical approach following Euler we adopted in § 1, since it

may be carried over to the p-adic setting in a way that is more compellingly analogous.

Lemma 4.1. Suppose f : R≥0−→R is a C∞ function that decays exponentially at in�nity. Then

L(f, s) :=
1

Γ(s)

∫ ∞
0

f(t)ts
dt

t
, Re(s) > 0

admits an analytic continuation to the whole complex plane s ∈ C, and for any n ∈ Z≥0 we have

L(f,−n) = (−1)n
dn

dtn
f(0).

Proof. Using the identity Γ(s+ 1) = (s+ 1)Γ(s) and integration by parts, we �nd

L(f, s) = −L(f ′, s+ 1)

where the right hand side now converges for Re(s) > −1. By iteration of this identity, we obtain

analytic continuation to all s ∈ C, and we �nd furthermore that

L(f,−n) = (−1)n+1L(f (n+1), 1), where f (n)(t) :=
dn

dtn
f(t)

= (−1)n+1

∫ ∞
0

f (n+1)(t)dt

= (−1)nf (n)(0)

which proves the required statement. �

This function L(f, s) is called the Mellin transform of f . For the Riemann ζ-function, we choose

f(t) =
t

et − 1
=
∑
n≥0

Bn
tn

n!

41
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which has exponential decay at in�nity. Its Mellin transform is easily computed

L(f, s− 1) =
1

Γ(s− 1)

∫ ∞
0

t

et − 1
ts−1

dt

t

=
s− 1

Γ(s)
·
∑
n≥1

∫ ∞
0

e−ntts
dt

t

=
s− 1

Γ(s)
·
∑
n≥1

n−s
∫ ∞
0

e−vvs
dv

v

= (s− 1)ζ(s)

In particular, from Lemma 4.1 we recover
1

the special values

ζ(1− k) = −Bk
k

which we obtained in § 1 as a consequence of the work of Euler. Though seemingly very di�erent to the

argument of Euler based around the sine function, some essential content of both his calculation and the

one here are the same. It is worth re�ecting on the similarities and di�erences.

4.2. The Kubota–Leopoldt zeta function

We will now emulate the story for ζ(s) by de�ning ζp(s) as a p-adic Mellin transform of a wisely chosen

generating series for Bernoulli numbers. Like ζ(s), the p-adic zeta function ζp(s) has a simple pole at s = 1,

which causes an additional technical complication. We �rst avoid it by considering a “smoothened” version

of ζp, eliminating the pole. For ζp itself, we work with pseudo-measures instead.

4.2.1. The “smoothened” Kubota–Leopoldt zeta function. We �rst introduce a “smoothing” by

choosing an integer a coprime to p and de�ning the function

fa(t) :=
1

et − 1
− a

eat − 1
=
∑
n≥0

(1− an+1) · Bn+1

n+ 1
· t
n

n!
,

which is related by the variable substitution T = et − 1 to the integral (see exercises) power series

Fa(T ) :=
1

T
− a

(1 + T )a − 1
∈ ZpJT K.

Consider the measure µa ∈ Meas(Zp,Zp) whose Mahler transform is given by the power seriesFa(T ).

The variable substitution T = et − 1 gives us the identity

∂ := (1 + T )
d

dT
=

d

dt

1
Note that Bk = 0 for odd k, so we may replace (−1)k+1

by −1 in this formula.
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of di�erential operators. Using equation (18) we may deduce that∫
Zp

xk · µa = (∂kFa)(0)

=

(
dk

dtk
fa

)
(0)

= (−1)k(1− ak+1)
Bk+1

k + 1

= (1− ak+1)ζ(−k)

for all k ≥ 0. The following lemma studies the restriction to Z×p of the measure µa:

Lemma 4.2. We have ∫
Z×
p

xk · µa = (1− pk)(1− ak+1)ζ(−k).

Proof. First, we will show that ψ(µa) = µa by looking at the Mahler transform of µa. Note that

A µa(T ) =
a

1− (1 + T )a
− 1

1− (1 + T )

=
∑
n≥0

λn(1 + T )n

where the coe�cients λn are given by

λn :=

{
a− 1 if a | n,
−1 if a - n.

Since p does not divide a, the condition a | n is equivalent to a | pn, so that λn = λnp for all n ≥ 0. It

now follows from Lemma 3.12 that ψ(µa) = µa. Since ResZ×
p

= 1− ϕ ◦ ψ we deduce that∫
Z×
p

xk · µa =

∫
Zp

xk · (1− ϕ)µa = (1− pk)

∫
Zp

xk · µa

which proves the lemma. �

4.2.2. Pseudo-measures. In order to remove the smoothing factor, which depends on the choice of

a, we want to “divide out” the factor (1− ak+1) that appears above. Note that

(1− ak+1) =

∫
Z×
p

xk · x([1]− [a])

where [1] and [a] are the Dirac measures at 1 and a respectively. It therefore seems natural to try to divide

the measure ResZ×
p
µa by the measure x([1]− [a]), which motivates the notion of pseudo-measures.

We writeQ(Z×p ) for the ring of fractions of the Iwasawa algebra Λ(Z×p ), which consists of all quotients

r/s where s is not a zero divisor in Λ(Z×p ). We say that an element λ of Q(Z×p ) is a pseudo-measure if

([g]− [1])λ ∈ Λ(Z×p )

for all g ∈ Z×p . The set of all pseudo-measures is a Zp-module which we denote by Λ̃(Z×p ), so that

Λ(Z×p ) ⊂ Λ̃(Z×p ) ⊂ Q(Z×p ).
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When λ is a pseudo-measure, we would like to still be able to integrate functions against it, as we are

able to with measures. This is possible for the special case where we have a group homomorphism

f : Z×p → L×

Consider two measures µ1, µ2 in Λ(Z×p ), then we compute that the integral of their convolution is∫
Z×
p

f · (µ1 ? µ2) =

∫
Z×
p

(∫
Z×
p

f(xy) · µ2(y)

)
· µ1(x)

=

(∫
Z×
p

f(x) · µ1(x)

)(∫
Z×
p

f(y) · µ2(y)

)
.

In other words, we �nd that if f is a group homomorphism, then the map Λ(Z×p ) → L given by integra-

tion of f over Z×p is an algebra homomorphism. If f is a group homomorphism that is not identically one,

we may choose a g ∈ Z×p such that f(g) 6= 1. We now see that for any pseudo-measure λ the following

quantity is independent of the choice of g ∈ Z×p :

∫
Z×
p

f · λ :=

∫
Z×
p
f · ([g]− [1])λ

f(g)− 1
∈ L.

The following lemma, whose proof is left as an exercise for the reader, assures that the integrals against the

basic homomorphisms x 7→ xk for k > 0 characterise λ uniquely.

Lemma 4.3. Suppose λ ∈ Λ̃(Z×p ) is a pseudo-measure. Then we have∫
Z×
p

xk · λ = 0, ∀k > 0 ⇐⇒ λ = 0.

The simplest example of a pseudo-measure is constructed as follows: First choose an integer a whose

reduction modulo p2 generates the cyclic group (Z /p2Z)×. It then automatically generates the cyclic group

(Z /pnZ)× for every n ≥ 1. With such a choice of a, one checks (see exercises) that

• [1]− [a] is not a zero divisor in Λ(Z×p ),

• 1/([1]− [a]) is a pseudo-measure.

To check the latter, we need to verify that

[1]− [g]

[1]− [a]
∈ Λ(Z×p )

for any g ∈ Z×p . Since the image of a generates the cyclic quotient (Z /pnZ)× for any n ≥ 1, the image of

g is a power of the image of a, and the divisibility holds compatibly in every �nite quotient.

4.2.3. The Kubota–Leopoldt zeta function. We can now de�ne the Kubota–Leopoldt p-adic zeta

function. Choose an integer a that generates the cyclic group (Z /p2Z)×. De�ne the pseudo-measure

ζp :=
x−1 ResZ×

p
(µa)

[1]− [a]
∈ Λ̃(Z×p ).
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Proposition 4.4. With these de�nitions, ζp is a pseudo-measure independent of the choice of a, and∫
Z×
p

xk · ζp = (1− pk−1)ζ(1− k).

Proof. We know that ζp de�nes a pseudo-measure, and compute that∫
Z×
p

xk · ([1]− [a1])(x−1 ResZ×
p
µa2) = (1− ak1)(1− ak2)(1− pk−1)ζ(1− k)

=

∫
Z×
p

xk · ([1]− [a2])(x−1 ResZ×
p
µa1)

so that it follows from Lemma 4.3 that

([1]− [a1])(x−1 ResZ×
p
µa2) = ([1]− [a2])(x−1 ResZ×

p
µa1)

from which the independence of ζp on the choice of a follows. The rest of the proposition follows. �

What gives us the right to refer to the pseudo-measure ζp as the Kubota–Leopoldt zeta “function”? We

will now see how to interpret it as a function
2

via the p-adic Mellin transform, sometimes known as the

Mazur–Mellin transform. Recall that the domain of Riemann zeta function ζ(s) is s ∈ C. By sending s ∈ C

to (x 7→ xs), the domain of ζ(s) is naturally identi�ed with the set of continuous homomorphisms

Homcts(R
×
>0,C

×).

We argue that the above de�nition of ζ(s) as a Mellin transform shows that this description of the domain

of the Riemann zeta function is much more natural. This is precisely the type of description we have for

the domain of the Kubota–Leopoldt zeta function, which is the set of continuous homomorphisms

Homcts(Z
×
p ,C

×
p ).

Reversing the process, we may try to view ζp as a function of a variable s ∈ Cp, by evaluating ζp at some

continuous homomorphism resembling (x 7→ xs). This is what we will now make precise.

Recall the notation q = p when p is odd, and q = 4 when p = 2. We also discussed the Teichmüller

map ω which sends an element of Z×p to the unique root of unity in Z×p closest to it, and 〈x〉 = xω(x)−1.

The number of roots of unity in Z×p is equal to

ϕ(q) =

{
p− 1 if p > 2

2 if p = 2.

Suppose i is a class in Z /ϕ(q)Z, then for any s ∈ Zp we have

x 7→ ω(x)i〈x〉s ∈ Homcts(Z
×
p ,C

×
p ).

We de�ne the i-th Mellin transform of the pseudo-measure ζp to be the function

ζp,i(s) :=

∫
Z×
p

ω(x)i〈x〉1−s · ζp

So we see that rather than a single function, we obtain rather a collection of functions, one for every root

of unity in Z×p . We will now prove that all of these functions are analytic, with the exception of a simple

pole at s = 1 when i = 0, whose residue is (p− 1)/p.

2
Or rather, a set of functions indexed by (Z /qZ)×.
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Theorem 4.5. For any i ∈ Z /ϕ(q)Z the function

(s− 1)ζp,i(s) : Zp−→Cp

is analytic. This collection of functions satis�es the following properties:

(1) When k ≥ 1 satis�es k ≡ i (mod ϕ(q)) then

ζp,i(1− k) = (1− pk−1)ζ(1− k).

(2) At s = 1 we have

lim
s→1

(s− 1)ζp,i(s) =

{ p−1
p if i = 0

0 else.

Proof. Let us �rst show that (s− 1)ζp,i(s) is analytic. For any measure µ on Z×p , de�ne a measure

µ̃i := Res1+qZp

(∑
τ

τ iστ (µ)

)
where the sum runs over all Teichmüller representatives of the classes in (Z /qZ)× in Z×p , or, said

di�erently, over all the roots of unity contained in Z×p . We may view µ̃i as a measure on Zp by

composing any f in Cont(Zp, L) with the map

θ : 1 + qZp −→ Zp

x 7−→
logp(x)

logp(1 + q)

Writing y = θ(x) we �nd

(1 + q)sy = expp(s logp(x)) = 〈x〉s,

so that the Mahler transform of the measure µ̃i on Zp satis�es

A µ̃i

(
(1 + q)s − 1

)
=

∫
Zp

(1 + q)sy · µ̃i(y)

=

∫
1+qZp

〈x〉s ·

(∑
τ

τ iστ (µ)

)
(x)

=

∫
Z×
p

ω(x)i〈x〉s · µ

where we used that 〈τx〉 = 〈x〉, and if x is contained in τ + qZp then we have ω(x) = τ . The function

ζp,i(s) is obtained from the Mellin transform of the measure x−1µa, after dividing by∫
Z×
p

ω(x)i〈x〉1−s · ([1]− [a]) = 1− ω(a)i〈a〉1−s

Note that since 〈a〉1−s ∈ 1 + qZp, this is an analytic function which is invertible if i 6≡ 0 (mod ϕ(q)),

and which is the product of (s − 1) and an invertible function when i = 0. The statement about its

special values at s = 1 − k follows immediately from Proposition 4.4. The calculation of the residue

at s = 1 for i ≡ 0 is omitted, see for instance [Col]. �

Note that the analytic nature of the p-adic zeta function immediately puts into perspective many of the

historical investigations of Kummer, like the following congruences between Bernoulli numbers:
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Theorem 4.6 (Kummer). Letm,n > 0 be even integers, not divisible by p− 1. When

m ≡ n mod (p− 1)pa,

then the following congruence holds:

(21) (1− pm−1) · Bm
m
≡ (1− pn−1) · Bn

n
(mod pa+1).

Proof. By assumption we have m ≡ n ≡ i 6≡ 0 (mod p − 1) for some i. The Kubota–Leopoldt zeta

function ζp,i(s) is analytic in s, and we learned in the proof of Theorem 4.5 that it is in fact even an

analytic function evaluated at the expression

(1 + q)1−s − 1 = expp((1− s) logp(1 + q))− 1 ∈ pZpJsK.

Since this expression is divisible by p, every coe�cient of the power series ζp,i(s) – except possibly

the constant coe�cient – must also be divisible by p. From this observation, we deduce

ordp

(
(1− pm−1) · Bm

m
− (1− pn−1) · Bn

n

)
= ordp (ζp,i(1−m)− ζp,i(1− n))

≥ ordp(n−m) + 1

�

It is truly remarkable that these results by Kummer only found their natural interpretation after a

multitude of highly innovative developments of mathematics, and they were discovered in particular long

before the inception of p-adic zeta functions, or even p-adic numbers.

4.3. Special values of p-adic L-functions

We now come to a property of the Kubota–Leopoldt zeta functions that is quite striking. Since we

have presented the constructions of the Riemann and Kubota–Leopoldt zeta functions in parallel, centered

around the same generating series for Bernoulli numbers, it may not have come as a complete shock that

their special values at negative integers were closely related. However, the p-adic zeta function is also

closely related to (complex) Dirichlet L-functions of characters χ of prime power conductor.

Remark. Previous comparisons of p-adic and complex numbers were restricted to rational numbers,

which have a canonical interpretation through the embeddings Q ↪→ C and Q ↪→ Cp. We shall now leave

the realm of rational numbers, and to get meaningful comparisons we �x a pair of embeddings

Q ↪→ C, Q ↪→ Cp .
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Let us begin by de�ning Dirichlet L-functions, which form a very natural generalisation of the Riemann

zeta function. Let N > 1 be a positive integer. Let

χ : (Z /NZ)×−→Q
×

be a group homomorphism (typically called a Dirichlet character), extended to a function χ : Z−→Q by

sending any element that is not coprime with N to zero. We say χ is primitive if there does not exist a

χ′ : (Z /dZ)× → Q for a proper divisor d of N , such that χ(n) = χ′(n) for all n coprime to N . In other

words, χ is primitive if it is not constant on any subgroup {n ≡ 1 (mod d)} of (Z /NZ)×.

We de�ne the Dirichlet L-function by

L(χ, s) :=
∑
n≥1

χ(n)

ns

which converges for Re(s) > 1. Dirichlet L-functions are common generalisations of the Riemann zeta

function, and have many important applications in number theory, some of which you may already be

familiar with. Their theory may largely be developed in analogy to our previous investigations into the

Riemann zeta function. Choose a primitive N -th root of unity ζN and de�ne

fχ(t) =
1

G(χ−1)

∑
a∈ (Z/NZ)×

χ−1(a)

etζaN − 1
, where G(χ) =

∑
a∈ (Z/NZ)×

χ(a)ζaN

=
∑
k≥1

Bk,χ
k
· tk−1

(k − 1)!
.

The quantity G(χ) is called the Gauß sum of the character χ, and the constants Bk,χ ∈ Q are known as

generalised Bernoulli numbers. With these de�nitions, we check (see exercises) that

L(χ, s) =
1

Γ(s)

∫ ∞
0

fχ(t)ts
dt

t
.

It now immediately follows from Lemma 4.1 that L(χ, s) has an analytic continuation to all s ∈ C, and the

special values at non-positive integers are given by

L(χ, 1− k) = −Bk,χ
k

.

4.3.1. Interpolation of characters at p. The Kubota–Leopoldt p-adic zeta function was constructed

from the special values ζ(1 − k) ∈ Q of the Riemann zeta function. We now show that it also knows the

special values of Dirichlet L-functions associated to Dirichlet characters whose conductor is a power of p.

Theorem 4.7. Suppose χ : (Z /pnZ)× → Qp is a primitive Dirichlet character, then∫
Z×
p

χ(x)xk · ζp = L(χ, 1− k)

Proof. We begin with the observation that if µ is any measure in Meas(Zp, L), then we may multiply

it by the locally constant function χ on Zp – which is supported on Z×p – to obtain a measure χµ. The

Mahler transform of this measure χµ satis�es

A χµ(T ) =
1

G(χ−1)

∑
j ∈ (Z /pnZ)×

χ(j)−1 A µ

(
(1 + T )ζjpn − 1

)
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by the formal laws established in § 3.4, after a short calculation. When applied to the measures µa and

[1]− [a] we obtain after a direct calculation that∫
Z×
p

χ(x)xk · x−1µa =

∫
Zp

xk−1 · χµa

= ∂k−1Fχ,a(0)

= (−1)k−1
(
d

dt

)k−1
fχ,a(0)

= −(1− χ(a)ak)L(χ, 1− k)∫
Z×
p

χ(x)xk · ([1]− [a]) = −(1− χ(a)ak)

where we de�ned Fχ,a(T ) to be the Mahler transform of χµa, explicitly given by

Fχ,a(T ) =
1

G(χ−1)

∑
j ∈ (Z /pnZ)×

χ(j)−1

(
1

(1 + T )ζjpn − 1
− 1

(1 + T )aζajpn − 1

)

and fχ,a(t) is obtained from Fχ,a(T ) by substituting T = et − 1. It satis�es

L(fχ,a, s) = χ(−1)(1− χ(a)a1−s)L(χ, s).

Taking the quotient, we obtain the required statement for ζp. �

4.3.2. Special values at s = 1. Even though at positive integers no direct equality is expected to

exist between the special values of p-adic and complex zeta functions (since they are not expected to be

contained in Q, there exist nonetheless compelling analogies between them. Of special importance is the

value at s = 1, just beyond the jurisdiction of the interpolation range.

Since we have come this far, it will now seem natural to expect that one may de�ne in an entirely

analogous fashion the p-adic L-function Lp(χ, s) for any Dirichlet character χ : (Z /NZ)× → Q, whose

special values in the interpolation range are related to the values of L(χ, s) by the rule

Lp(χ, 1− k) = (1− χω−k(p)pk−1) · L(χω−k, 1− k), k ≥ 1.

The required calculations and generating series are not more complicated than those appearing in the pre-

vious section, so we will leave them to the imagination (or indeed, determination) of the individual student.

We note that the Kubota–Leopoldt p-adic zeta functions de�ned before are simply

ζp,i(s) = Lp(ω
i, s),

where ω : (Z /pZ)× → Q is the Teichmüller character. The special values we have so far encountered are

therefore summarised in the following table, with the special appearances of the Riemann zeta function –

the only piece of input for our de�nition of ζp – highlighted to bring them out more clearly:
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s · · · −3 −2 −1 0 1

ζp,0(s) · · · L(ω−4,−3) L(ω−3,−2) L(ω−2,−1) L(ω−1, 0) pole

ζp,1(s) · · · 0 0 0 0 0

ζp,2(s) · · · L(ω−2,−3) L(ω−1,−2) (1− p)ζ(−1) L(ω1, 0) ?

ζp,3(s) · · · 0 0 0 0 0

ζp,4(s) · · · (1− p3)ζ(−3) L(ω1,−2) L(ω2,−1) L(ω3, 0) ?

.

.

.

There is therefore a close relation between the special values of the Kubota–Leopoldt zeta function and

the Riemann zeta function at arguments

s ∈ { . . . , −3, −2, −1, 0}

which is typically referred to as the interpolation range. Outside the interpolation range, the special values

of the p-adic and complex L-functions Lp(χ, s) and L(χ, s) have no direct relation, and both are often

transcendental, so that no direct comparison is even possible. However, the following theorem shows that

there is nonetheless a compelling analogy between the special values at s = 1.

Theorem 4.8. Let χ : (Z/NZ)× → Q be a non-trivial character with χ(−1) = 1, then

L(χ, 1) = − 1

G(χ−1)
·
∑

a∈(Z/NZ)×

χ−1(a) log (1− ζaN ),(
1− χ(p)

p

)−1
Lp(χ, 1) = − 1

G(χ−1)
·
∑

a∈(Z/NZ)×

χ−1(a) logp(1− ζaN ).

4.4. Explicit examples.

To de�ne p-adic L-functions, we encountered a multitude of sophisticated and abstract notions. This

may cloud these objects in a rather mysterious and seemingly impenetrable fog. Whereas it is true that

many basic questions about them remain open to this day, it is also true that

(s− 1)ζp,i(s) ∈ QpJsK

are simply power series, and we know their special values at in�nitely many negative integers. By the Weier-

straß preparation theorem, this characterises them uniquely! When expanded upon, this simple observation

allows us to compute some explicit examples. To explain how, take a non-zero congruence class i modulo

ϕ(q), so that the function ζp,i(s) is analytic. Then do the following:

• For a large amount of k ≡ i (mod ϕ(q)), compute the values

vk = −(1− pk−1)
Bk
k
.

• Using interpolation, compute a polynomial P (s) ∈ Q[s] such that, for all these k, we have

P (1− k) = vk.
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If one is slightly careful, one can argue that the polynomialP (s) must agree with ζp,i(s) modulo some power

of p, which gets larger as the “large amount” of values vk gets larger (this can be quanti�ed). We encourage

the reader with basic familiarity of programming to try this out for themselves, as it is an enlightening

exercise that allows a newcomer to the theory to dispel a large part of the mystery that shrouds the Kubota–

Leopoldt zeta functions at �rst sight.

The inspired reader can furthermore extend the above method to include ζp,i for i ≡ 0, when the zeta

function has a pole. The truly inspired reader can also attempt to quantify the p-adic precision to which

P (s) can be guaranteed to agree with ζp,i(s).

Example 1. Let us begin by carrying out this procedure for the case p = 2. In this case, we have q = 4
and ϕ(q) = 2. We compute the special values vk for the �rst few values of k, to obtain

i ≡ 0 :
k 0 2 4 6 8 10

vk −1/6 7/30 −31/42 127/30 −2555/66 1414477/2730

i ≡ 1 :
k 1 3 5 7 9 11

vk 0 0 0 0 0 0

where in reality we computed about one hundred values, though we will spare the reader of it here.

Finding the polynomial P (s) which has these special values at 1 − k can be done, for instance, using

Newton’s divided di�erences method. When truncating the rational numbers to a low 2-adic precision, we

keep the output manageable enough to be included here:

(1− s)ζp,0(s) = 2−1 + 261s+ 257 · 2s2 + 137 · 24s3 − 83 · 23s4 + 119 · 26s5 − 221 · 26s6 (mod 27),

ζp,1(s) = 0 (mod 27).

Example 2. Now let us consider p = 5, which gives rise to ϕ(q) = 4 functions. As before, we have

ζp,1(s) = ζp,3(s) = 0,

and we may compute the non-trivial 5-adic zeta functions using the same interpolation property we used

above. This time, let us compute the expansions around s = 1. Working numerically modulo 510 we �nd

the following power series

(s− 1)ζp,0(s) = 4 · 5−1 +(4838826 · 5)(s− 1) +(439093 · 5)(s− 1)2 −(2691469 · 52)(s− 1)3

+(2187444 · 52)(s− 1)4 −(3051329 · 54)(s− 1)5 +(855172 · 54)(s− 1)6

−(3669287 · 55)(s− 1)7 +(938714 · 55)(s− 1)8 +(3981241 · 57)(s− 1)9

+(4589083 · 58)(s− 1)10 −(2979334 · 58)(s− 1)11 +(1938174 · 58)(s− 1)12

Whereas for i = 2 we obtain the following function modulo 510:

ζp,2(s) = 4163682 −(3097056 · 5)(s− 1) +(2446323 · 52)(s− 1)2 −(4645477 · 53)(s− 1)3

−(178876 · 54)(s− 1)4 −(1218884 · 54)(s− 1)5 −(1054906 · 55)(s− 1)6 −(3200479 · 56)(s− 1)7

+(914234 · 57)(s− 1)8 −(2434086 · 58)(s− 1)9 −(3550587 · 58)(s− 1)10 +(1286609 · 59)(s− 1)11

What can we learn from the above computations? The best way is to experiment yourself, but just

looking at the above data we may point out a few things that are worth recording.

• Note that all p-adic zeta functions for i odd must vanish, as we observe here, since all Bernoulli

numbers of odd index vanish. Since the p-adic zeta function is analytic, it can have at most �nitely
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many zeroes if it is non-zero, by the Weierstrass preparation theorem.

• The above examples illustrate very nicely the notion of the radius of convergence of these p-adic

L-functions, which by its construction we can show to be qp−1/(p−1). This means that the order

ordp(an) of the n-th coe�cient in the power series expansion should grow asymptotically as

ordp(an) ∼ n(p− 2)/(p− 1) if p > 2

ordp(an) ∼ n if p = 2

which we see borne out in the data very nicely, especially when we compute more terms.

• We see that the residue of the pole that appears in ζp,0(s) at s = 1 is indeed found experimentally

to agree with (p−1)/p. This is very convincing in the second example, where we actually worked

to a much higher p-adic precision than we displayed here. In the �rst example, it appears when

we make the variable transformation s 7→ s + 1 to obtain the power series with respect to the

variable (s − 1). Somewhat confusingly, we already see the constant term 1/2 appearing in the

power series expansion around s = 0, which is not to be confused with the residue at s = 1. In

other words, we observe experimentally that

ζp,0(0) = 1/2.

Can you explain this?

Example 3. Let us compute the p-adic zeta functions for p = 37, of which there are 36. Instead of

viewing them as an analytic function of the variable s, we say that in fact we may view as an analytic

function of the variable

T = (1 + 37)1−s − 1

with respect to which it is an integral series in Z37JT K which converges in the open unit disk. This pa-

rameter is better suited to a study of the zeroes, about which easy information may be accessed through its

Newton polygon. An explicit computation yields

Tζp,0 (T ) = 28552494 +23400121 T +2718936 · 37 T 2 −5756294 T 3 (mod 375, T 4)

ζp,2 (T ) = 25436652 +8029343 T +16870708 T 2 −7435444 T 3 (mod 375, T 4)

ζp,4 (T ) = −17811582 +29378992 T +5926627 T 2 +14608764 T 3 (mod 375, T 4)
.
.
.

.

.

.

ζp,30(T ) = −28603965 −6348916 T +1410038 · 37 T 2 +33287940 T 3 (mod 375, T 4)

ζp,32(T ) = 10665687 · 37 −28026406 T +1063943 T 2 +27968927 T 3 (mod 375, T 4)

ζp,34(T ) = 14108187 +2407041 T −30261768 T 2 −6096126 T 3 (mod 375, T 4)

Notice something quite remarkable here. All of the p-adic zeta functions (including the ones we did not

show here) do not have a zero in their domain of convergence, except for ζp,32(s) which has a single zero

T0 with ordp(T0) = 1 by a Newton polygon argument. Note that the above computation does show this

rigorously, in spite of it being only a numerical approximation. We may even compute an approximation

of the zero itself, which yields:

T0 = 25 · 37 + 20 · 372 + 5 · 373 + 7 · 374 + 33 · 375 + . . .
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Example 4. Now let p = 157. This is the smallest prime for which several of the Kubota–Leopoldt

zeta functions have a zero in their domain. It concerns the following two:

ζp,62(T ) = −16646489529 · 157 −4338338876 T +20635641878 T 2 (mod 1575, T 3)

ζp,110(T ) = +2286894025 · 157 −36040391173 T +24461630362 T 2 (mod 1575, T 3)

4.5. Exercises

(1) Show that for any integer a prime to p we have Fa(T ) ∈ ZpJT K where, as above, we de�ne

Fa(T ) :=
1

T
− a

(1 + T )a − 1
.

(2) Choose an integer a that generates the cyclic group (Z /p2Z)×.

• Prove that a generates the cyclic group (Z /pnZ)× for each n ≥ 1.

• Prove that [1]− [a] is not a zero divisor in the Iwasawa algebra Λ(Z×p ).

• Prove that 1/([1]− [a]) is a pseudo-measure.

(3) Let i be a non-zero residue class modulo p− 1, and ζp,i(s) its associated Kubota–Leopoldt p-adic

zeta function. Prove that ζp,i(s) has a zero if and only if

Bk ≡ 0 (mod p), ∀k ≡ i (mod p− 1).

(4) Let χ : (Z /NZ)× → Q be a Dirichlet character. Choose a primitive N -th root of unity ζN in Q

and de�ne the function

fχ(t) :=
1

G(χ−1)

∑
a∈ (Z/NZ)×

χ(a)

etζaN − 1
.

Prove that its Mellin transform is the Dirichlet L-function L(χ, s). In other words, prove that

L(χ, s) =
1

Γ(s)

∫ ∞
0

fχ(t)ts
dt

t
.





CHAPTER 5

Class numbers of cyclotomic �elds

The study of p-adic L-functions has been a dominant theme in the second half of the 20th century, and

has led to many spectacular applications in number theory. One of the most celebrated early discoveries is

the connection with the class groups of the cyclotomic extensions

Q(ζpn)/Q

where ζpn is a primitive pn-th root of unity. A very precise version of this relationship goes by the name of

the Iwasawa main conjecture, after Kenkichi Iwasawa, the most important pioneer of this research �eld.

岩澤健吉 Iwasawa Kenkichi

If we hearken back to the examples computed above, we will explore that it is no coincidence that one
of the p-adic zeta functions had a simple zero when p = 37, and on the other hand, we have

| Cl(Q(ζ37)) | = 37.

Even more strikingly, we found two p-adic L-functions with simple zeroes when p = 157, and on the other

hand a formidable class number computation has revealed that

| Cl(Q(ζ157)) | = 56234327700401832767069245

= 5 · 132 · 1572 · 1093 · 1873 · 418861 · 3148601

In this chapter, we will explore some of the deep connections between p-adic zeta functions and the class

groups of cyclotomic �elds, which are studied in Iwasawa theory. This is not a formal part of the course

material, and the further completion of these notes is not guaranteed. Rather, it is conditional on a large

enough group of advanced students expressing their interest strongly enough, as well as their unquestion-

able dedication to a continuation of these proceedings, perhaps in the form of a collaborative seminar.

55





Bibliography

[Boj74] R. Bojanic. A simple proof of Mahler’s theorem on approximation of continuous functions of a p-adic variable by polyno-

mials. J. Number Theory, 6:412–415, 1974. ↑13.

[Cas86] J. W. S. Cassels. Local Fields. Cambridge University Press, 1986. ↑11.

[Che33] C. Chevalley. La théorie des corps de classes pour les corps �nis et les corps locaux (thesis). J. Fac. Sci. Univ. Tokyo, 2:365–474,

1933. ↑8.

[Che40] C. Chevalley. La théorie des corps de classes. Ann. of Math., 41:394–418, 1940. ↑8.

[Col] P. Colmez. La fonction zeta p-adique. Notes du cours de M2. ↑9, 46.

[Col10] P. Colmez. Fonctions d’une variable p-adique. Astérisque, 330:13–59, 2010. ↑9, 29.

[CS06] J. Coates and R. Sujatha. Cyclotomic �elds and zeta values. Springer Monographs in Mathematics. Springer-Verlag, Berlin,

2006. ↑9.

[DGS94] B. Dwork, G. Gerotto, and F. Sullivan. An introduction to G-functions, volume 133 of Annals of Mathematics Studies. Princeton

University Press, 1994. ↑9, 11, 22.

[Die44] J. Dieudonné. Sur les fonctions continues p-adic. Bull. Sci. Math., 68:79–95, 1944. ↑13.

[Dwo60] B. Dwork. On the rationality of the zeta function of an algebraic variety. Amer. J. Math., 82(3):631–648, 1960. ↑9.

[Dwo62] B. Dwork. On the zeta function of a hypersurface. Publ. Math. IHÉS, (12):5–68, 1962. ↑9.

[Has23] H. Hasse. über die Darstellbarkeit von Zahlen durch quadratischen Formen im Körper der rationalen Zahlen. J. Reine Angew.
Math., 152:129–148, 1923. ↑8.

[Has24] H. Hasse. Darstellbarkeit von Zahlen durch quadratischen Formen in einem beliebigen algebraischen Zahlkörper. J. Reine
Angew. Math., 153:76–93, 1924. ↑8.

[Hen97] K. Hensel. über eine neue Begründung der Theorie der algebraischen Zahlen. Jahresber. Deutsch. Math. Verein., 6(3):83–88,

1897. ↑8.

[Iwa52a] K. Iwasawa. Letter to j. dieudonné. Published in “Zeta functions in geometry (Tokyo 1990)”, Adv. Stud. Pure Math. 21, 1952.

↑9, 41.

[Iwa52b] K. Iwasawa. A note on functions. Proceedings of the ICM 1950, 1952. ↑9, 41.

[Kat04] K. Kato. p-adic Hodge theory and values of zeta functions of modular forms. Astérisque, 295:117–290, 2004. ↑9.

[Ked07] K. Kedlaya. p-Adic cohomology: from theory to practice. Arizona Winter School Notes, 2007. ↑9.

[Ked10] K. Kedlaya. p-adic di�erential equations, volume 125 of Cambridge Studies in Advanced Mathematics. Cambridge University

Press, 2010. ↑9.

[Kim05] M. Kim. The motivic fundamental group of P1\{0, 1,∞} and the theorem of Siegel. Invent. Math., 161:629–656, 2005. ↑9.

[Kim10] M. Kim. Massey products for elliptic curves of rank 1. J. Amer. Math. Soc., 23(3):725–747, 2010. ↑9.

[KL64] T. Kubota and H.-W. Leopoldt. Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-

Funktionen. J. Reine Angew. Math., 214/215:328–339, 1964. ↑9, 41.

[Kob80] N. Koblitz. p-Adic analysis: A short course on recent work. Number 46 in London Math. Soc. Lecture Note Ser. Cambridge

University Press, 1980. ↑29.

[Kob84] N. Koblitz. p-Adic numbers, p-adic analysis, and zeta-functions. Number 58 in Graduate Texts in Mathematics. Springer-

Verlag, New York, 2nd edition edition, 1984. ↑11, 29.

[Mah58] K. Mahler. An interpolation series for continuous functions of a p-adic variable. J. Reine Angew. Math., 199:23–34, 1958. ↑13.

[Min84] H. Minkowski. Grundlagen für eine Theorie der quadratischen Formen mit ganzzahligen Koe�zienten. Mémoires présentés

par divers savants a l’Académie des Sciences de l’institut national de France, 1884. ↑8.

[MTT86] B. Mazur, J. Tate, and J. Teitelbaum. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math.,
84(1):1–48, 1986. ↑9.

[MW84] B. Mazur and A. Wiles. Class �elds of abelian extensions of Q. Invent. Math., 76(2):179–330, 1984. ↑9.

[Rub00] K. Rubin. Euler systems. Annals of Mathematics Studies. Princeton University Press, 2000. ↑9.

57



58 BIBLIOGRAPHY

[RW] J. Rodrigues and C. Williams. An introduction to p-adic l-functions. Notes from a TCC Course. ↑9, 29.

[Ste10] E. Steinitz. Algebraische Theorie der Körper. J. Reine Angew. Math., 137:167–309, 1910. ↑8.

[SU14] C. Skinner and E. Urban. The Iwasawa main conjectures for GL(2). Invent. Math., 195(1):1–277, 2014. ↑9.

[Tat50] J. Tate. Fourier analysis in number �elds, and Hecke’s zeta-functions. In Algebraic Number Theory (Proc. Instructional Conf.,
Brighton, 1965), pages 305–347, Washington, D.C., 1950. Thompson. ↑9, 41.

[Was97] L. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, 2nd edition

edition, 1997. ↑7, 9, 11, 23, 29.


	Chapter 1. Some results of Euler and Kummer
	1.1. Euler and the Basel problem
	1.2. Kummer and Fermat's Last Theorem
	1.3. Historical developments
	1.4. Acknowledgements
	1.5. Exercises

	Chapter 2. Foundations of p-adic analysis
	2.1. Continuous functions on `39`42`"613A``45`47`"603AZp
	2.2. Analytic functions 
	2.3. Newton polygons
	2.4. Dwork's lemma 
	2.5. Exercises 

	Chapter 3. Distributions and measures
	3.1. Distributions
	3.2. Measures
	3.3. Mahler transforms
	3.4. Operations on measures
	3.5. Exercises

	Chapter 4. p-Adic L-functions
	4.1. The Riemann zeta function
	4.2. The Kubota–Leopoldt zeta function
	4.3. Special values of p-adic L-functions
	4.4. Explicit examples. 
	4.5. Exercises

	Chapter 5. Class numbers of cyclotomic fields
	Bibliography

