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Abstract. We investigate the geometry of finite maps and correspondences between curves, and
construct canonical trace and pullback maps between Hyodo–Kato integral structures on de Rham
cohomology of curves, which are functorial for finite morphisms of the generic fibres. This leads to a
crystalline version of the étale cohomology of towers of modular curves considered by Hida and Ohta,
whose ordinary part satisfies Λ-adic control and Eichler–Shimura theorems.
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Introduction

We study finite maps between curves as geometric objects, and investigate their semi-stable models
and functoriality of extra structures on various cohomology theories on the generic fibre.

A. Stable models of correspondences. The first part is preliminary, and mainly recalls language
and techniques pertaining to semi-stable models of curves. As a by-product, we generalise and slightly
strengthen work of Coleman [Col03] and Liu [Liu06] to correspondences between curves. More precisely,
let C : Y1 ← X → Y2 be a correspondence between smooth, proper, geometrically connected curves
X,Y1 and Y2 over a non-Archimedean field K, with finite maps.

Theorem A. After passing to a finite separable extension L/K, we can find a correspondence

X
Y1 Y2

π1 π2
C :

where X ,Y1, and Y2 are semi-stable models for XL, Y1,L, and Y2,L over the valuation ring of L, the
morphisms π1 and π2 are finite, and C restricts to C on the generic fibres of the curves.

If C is a hyperbolic correspondence, which may be achieved after adding a finite number of punctures,
there is a canonical stable model which is minimal for the relation of domination. We prove that under
certain conditions we may even find semi-stable models that are skeletal, see 2.4. The finiteness of
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the maps between the models is crucial, and is what gives us precise information about the spectral
properties of various linearisations, such as for instance:

C∗ét : Hi
ét(Y1,K ,Ql) −→ Hi

ét(Y2,K ,Ql), C∗Nér : ΦNér

1 −→ ΦNér

2 .

As a toy example, we exhibit stable models at p of various Hecke operators Tl on quaternionic Shimura
curves, both for l 6= p and l = p. We also present a mild generalisation of the work on canonical
subgroups of Goren–Kassaei [GK06] in Theorem 2.2.

B. Integral structures on de Rham cohomology. We then turn to the main result, which provides
functorial integral structures on de Rham cohomology of smooth, proper curves XK with semi-stable
reduction over the integers R of a non-Archimidean local field K. These cohomology groups have a
canonical filtration, as well as Frobenius and monodromy operators ϕ and N . A functorial R-structure
of the Hodge filtration

0 −→ H0(X,Ω1
X/K) −→ H1

dR(X/K) −→ H1(X,OX) −→ 0

was constructed by Cais [Cai09]. In this paper, we address functorial integral structures for the (ϕ,N)-
module H1

dR(X) when X has semi-stable reduction over R. Hyodo–Kato cohomology provides us with
a lattice over the Witt vectors W of the residue field, with operators ϕ and N , depending on a choice
of uniformiser $ ∈ R. We show that these lattices, together with their concomitant operators ϕ and
N , are in fact functorial for morphisms between generic fibres:

Theorem B. Let f : X → Y be a finite map of smooth, proper, geometrically irreducible curves over
K with semi-stable reduction, then there exist canonical trace and pullback maps of (ϕ,N)-modules

f∗ : H1
HK(X+

s /W ) −→ H1
HK(Y+

s /W ),

f∗ : H1
HK(Y+

s /W ) −→ H1
HK(X+

s /W ),

between cohomology of the special fibres of any semi-stable R-models X ,Y, which recover the usual trace
and pullback maps on de Rham cohomology of the generic fibres via the Hyodo–Kato isomorphism ρ$.

For instance, given a correspondence C as in the previous paragraph, it follows that the (ϕ,N)-
modules over W provided by Hyodo–Kato cohomology are preserved by the de Rham linearisation

C∗dR : Hi
dR(Y1/K) −→ Hi

dR(Y2/K).

In fact, the trace and pullback maps in Theorem B are already constructed on the level of de Rham–
Witt complexes in the derived category. More precisely, we first establish a result that provides a
canonical isomorphism between de Rham–Witt complexes of different semi-stable models. Then, for
a certain choice of semi-stable models we obtain an extension f : X → Y to a finite map, and we
construct pullback and trace maps on de Rham–Witt complexes Wω• and the extensions Wω̃• used to
define the monodromy operator, that make the following diagram commute:

Rf∗Wω•X+
s

[−1]

Wω•Y+
s

[−1]

Rf∗Wω̃•X+
s

Wω̃•Y+
s

Rf∗Wω•X+
s

Wω•Y+
s

f∗[−1] f∗[−1] f∗ f∗f̃∗ f̃∗

+1

+1

C. Log-crystalline cohomology of towers. The above construction of trace maps between Hyodo–
Kato cohomology gives us a way to define crystalline analogues of completed cohomology and Eichler–
Shimura cohomology. More precisely, consider a tower

. . .
f4−→ X3

f3−→ X2
f2−→ X1

f1−→ X0
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of finite maps between smooth, proper, geometrically irreducible curves over K/Qp. Every curve Xr

has a semi-stable model X r over some finite Kr/K. By Theorem B, we may consider the limits

(1)

{
H̃1

HK(X∞) := lim←−n lim−→f∗r
H1

HK

(
X+
r ⊗ Fp,W/p

nW
)

Ĥ1
HK(X∞) := lim←−fr,∗ H1

HK

(
X+
r ⊗ Fp,W

)
Even though the field extensions Kr may quickly become highly ramified, the Hyodo–Kato cohomology
is always defined over the ring of Witt vectors W of Fp. For towers of modular curves, these form
crystalline analogues of completed cohomology, and Eichler–Shimura cohomology respectively.

To reassure us that these crystalline objects encode interesting arithmetic information, we investigate
a special case. The Up-ordinary part of the Eichler–Shimura cohomology for the Γ1(pr) tower is a
Λ = ZpJ1 + pZpK-module. The following crystalline control and Eichler–Shimura theorems follow
immediately from the work of Cais [Cai16a, Cai16b] who obtains crystalline objects via Dieudonné
theory.

Theorem C. The projection Ĥ1
HK(X∞)′ord of crystalline Eichler–Shimura cohomology is a finite free

Λ-module. There is a canonical decomposition of finite free Λ-modules

Ĥ1
HK(X∞)′ord ' H1

cris(Ig
∞
∞)′F−ord ⊕H1

cris(Ig
0
∞)′V−ord.

Our approach provides a larger context for the ordinary cohomology studied by Cais, with a vast
amount of non-ordinary spectral information encoded in it. Recent advances in the explicit determi-
nation of semi-stable models of towers of modular curves furthermore suggest a concrete geometric
approach for studying this non-ordinary part, which will be addressed in future work.

1. Specialisation maps and formal fibres

We start by recalling the notion of semi-stable vertex sets of smooth quasi-projective curves. They
provide us with a combinatorial tool to study semi-stable models and finite maps between them, via
the specialisation map. The material in this section can be found in Baker–Payne–Rabinoff [BPR11]
and Amini–Baker–Brugallé–Rabinoff [ABBR15] though we adopt the language of adic spaces.

1.1. Notation. Let K be an algebraically closed, complete, non-Archimedean field with topology in-
duced by a non-trivial valuation | · | of rank 1. Let R be its valuation ring with maximal ideal m and
residue field k. For a curve X over R, we write X s for its special fibre, and X for its generic fibre. We
let f : X → Y be a finite morphism between smooth proper connected curves over K, and Xad, Y ad the
adic spaces associated to X,Y . We will abuse notation and write f for the induced map fad between
these adic spaces. Given a point x ∈ Xad, we write K(x) for the residue field of OXad,x and K(x)+ for
the image of O+

Xad,x
, with residue field k(x).

1.2. Hyperbolic curves and stable reduction. To include curves of small genus in our discussion,
we will allow punctures DX ⊂ X(K) and DY ⊂ Y (K), which are finite sets of Type-I points with
f−1(DY ) = DX . Recall that a punctured curve (X,DX) is said to be hyperbolic if χ(X,DX) < 0,
where χ(X,DX) = 2−2g(X)−|DX | is the Euler characteristic. A semi-stable formal model of (X,DX)

is an integral proper admissible formal R-scheme X such that its adic generic fibre is isomorphic to Xad,
and moreover

• Xs is a reduced connected curve over k with at most ordinary double points for singularities,
• all points in DX reduce to distinct smooth points on Xs.

The category Formss
X consists of semi-stable formal models of (X,DX), together with an isomorphism

between the adic generic fibre and Xad. A morphism between two such models is a morphism of formal
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R-schemes that induces the identity on Xad via the chosen isomorphisms. When (X,DX) is hyperbolic,
there exists a terminal object, which we call the stable formal model.

Finally, we note that for curves there is no essential difference between working with semi-stable
formal models, or algebraic semi-stable models, as follows from the following well-known result.

Lemma 1.1. Let X/K be a proper smooth connected curve. Then completion along the special fibre
defines an equivalence between semi-stable R-models of X and semi-stable formal R-models of X.

1.3. Wide open disks and annuli. We follow Coleman in defining a wide open disk to be the
complement of the set |t| = 1 in Spa(K〈t〉, R〈t〉). A wide open annulus is the complement in a wide
open disk of the set |t| ≤ p−w for some w ∈ R>0 ∪ {∞} which we call the width of the annulus. We
note that a wide open disk possesses exactly one Type-V point which is not the specialisation of any
Type-II point. This Type-V point is called the apex point of the open disk. Similarly, wide open annuli
have exactly 2 such points, which we also call apex points.

1.4. The specialisation map. Let X be an admissible formal R-scheme with generic fibre Xad. The
specialisation map is a canonical morphism of locally ringed topological spaces

(2) spX :
(
Xad,O+

Xad

)
→ (X,OX) ,

whose fibres are called formal fibres. When X is semi-stable, it is possible to determine the nature of
the formal fibres by combining the work of Bosch-Lütkebohmert [BL85, Propositions 2.2 and 2.3] and
Berkovich [Ber90, Proposition 2.4.4]. We obtain the following theorem, see also [BPR11, Theorem 4.6].

Theorem 1.2 (Bosch–Lütkebohmert, Berkovich). Let ξ be a point of Xs. Then

• ξ is a generic point if and only if sp−1
X (ξ) consists of a single Type-II point of Xad,

• ξ is a smooth closed point if and only if sp−1
X (ξ) is a wide open disk,

• ξ is an ordinary double point if and only if sp−1
X (ξ) is a wide open annulus.

1.5. Semi-stable vertex sets and skeleta. A semi-stable vertex set of a smooth, proper, punctured
curve (X,DX) is a finite set V of Type-II points of Xad such that

• the space Xad\V is a disjoint union of wide open disks and finitely many wide open annuli,
• the points in DX belong to distinct wide open disks in Xad\V .

For a Type-II point x in a semi-stable vertex set V , call its valency the number of apex points of wide
open annuli in Xad\V in the topological closure of x. The category Vertss

X consists of semi-stable
vertex sets of (X,DX), where morphisms are given by inclusion. Theorem 1.2 allows us to attach to a
semi-stable formal model X the finite set VX := {sp−1

X (ξ)}ξ, where ξ ranges over the generic points of
the irreducible components of Xs. It follows from Theorem 1.2 that VX is a semi-stable vertex set for
(X,DX), and we obtain a functor from Formss

X to Vertss
X . This is an anti-equivalence, as proved in

[BPR11, Theorem 4.11].

Theorem 1.3. The functor Formss
X → Vertss

X : X 7→ VX induces an anti-equivalence of categories.

To a semi-stable vertex set V for (X,DX), we associate its skeleton ΣV , which is the set of points of
Xad that are not contained in a wide open disk which is disjoint from V ∪DX . As an example, consider
the projective closure of y2 = x3 + x2 + p3 as a formal scheme over OCp , and let X be the blow-up at
a smooth point of the special fibre. Set X to be the generic fibre of X, and DX = {(0, 1, 0)} the point
at infinity. Then X is a semi-stable model of (X,DX) whose special fibre consists of a nodal curve C1

and a projective line C2, crossing transversally. The skeleton can be visualised as
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Type-V:

3

1

∞Type-V:
spX

C2

C1

spX(D)

The Type-II points in the corresponding semi-stable vertex set VX have valencies 1 and 4, and are both
of genus 0. The widths of the wide open annuli in Xad\VX are 1, 3 and ∞.

The following theorem is proved in [ABBR15, Theorem 5.13].

Theorem 1.4. Let X,Y be semi-stable formal models of (X,DX) and (Y,DY ), then f extends to a
morphism X→ Y if and only if f−1(VY) ⊆ VX. This extension is finite if and only if f−1(VY) = VX.

We will be interested in base fields K0 that are not necessarily algebraically closed or complete. Let
K0 with a non-trivial non-Archimedean valuation of rank 1 and valuation ring R0. Let K = K

∧
0 be the

completion of an algebraic closure of K0, which is itself algebraically closed, and let R be the valuation
ring of K. The following lemma is proved in [ABBR15, Lemma 5.5].

Lemma 1.5. Let f : X → Y be a finite morphism between smooth, proper, geometrically connected
curves over K0, with semi-stable R0-models X and Y respectively. Suppose that fK extends to a finite
morphism XR → YR, then f extends uniquely to a finite morphism X → Y defined over R0.

2. Stable models of correspondences and their skeleta

As a toy application of these analytic techniques, we prove an analogue for correspondences of the
stable reduction theorem of Deligne–Mumford [DM69]. This generalises the results for finite maps
proved by Coleman [Col03] and Liu [Liu06]. We also prove a stronger skeletal version under some
additional hypotheses, and discuss examples coming from Hecke operators on Shimura curves.

2.1. Definitions. Let K be a field equipped with a non-trivial non-Archimedean valuation of rank 1,
whose valuation ring R has maximal ideal m. A punctured correspondence is a diagram

(3) (X,DX)

(Y1, D1) (Y2, D2)
C :

π1 π2

where X,Y1, Y2 are smooth, proper, geometrically connected K-curves, π1, π2 are finite K-morphisms;
and DX , D1, D2 are finite sets of K-points with π−1

1 (D1) = DX = π−1
2 (D2). A punctured correspon-

dence C is said to be hyperbolic if its objects are hyperbolic punctured curves in the sense of 1.2.
A semi-stable R-model of C is a diagram C : Y1 ← X → Y2 with finite morphisms, together with

isomorphisms XK ' X as well as Y1,K ' Y1 and Y2,K ' Y2, so that their formal completions along
the special fibre are semi-stable formal R-models for (X,DX), (Y1, D1) and (Y2, D2) in the sense of 1.2
and C restricts to C via the given isomorphisms. A morphism C−→C′ is a commutative diagram

(4) X
Y1 Y2

X ′

Y ′1 Y ′2
where the dashed arrows are morphisms of semi-stable models as in 1.2. We say that C−→C′ is dominant
if the dashed arrows in the above diagram are dominant. A model is called stable if it is minimal with
respect to the relation of domination. Clearly, the stable model of a hyperbolic correspondence is unique
up to isomorphism if it exists.
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2.2. Stable models of Galois morphisms. Before coming to a proof of potentially stable reduction
of correspondences, we prove a lemma about Galois maps f : X −→Y to which the general case will
be reduced. The weaker statement, not insisting that the extension of f should be finite, was proved
by Liu–Lorenzini [LL99, Proposition 4.4] when R is a DVR. A proof for K = Cp is given in Coleman
[Col03, Section 3]. We note also that this result is false without the assumption that f is Galois.

Lemma 2.1. Let f : (X,DX) −→ (Y,DY ) be a finite Galois morphism of smooth, proper, geometrically
connected, hyperbolic punctured curves over K. Assume (X,DX) has stable model X over R. Then
after a finite separable base change, there exists a unique semi-stable model Y of (Y,DY ) such that f
extends to a finite X −→Y.

Proof. Extend scalars to K
∧
, and let V ⊂ Xad be the stable vertex set of (X,DX) and set

W = f(V ). By [ABBR15, Theorem 5.25], the set W contains the stable vertex set V of (Y,DY ).
There is a minimal semi-stable vertex set W ′ ⊂ Y ad for (Y,DY ) containing W , see [ABBR15,
Lemma 3.15]. Pick any element y ∈W ′\W , and any element x ∈ f−1(y). By construction, y must
lie on a path between two vertices in W , and is therefore contained in f(ΣV ). Since f is Galois,
the automorphism group of Xad over Y ad acts transitively on the fibres, so that we must have
x ∈ ΣV . Since y ∈ W ′\W , we know that y must be of valency at least 3 in ΣW ′ , whereas x must
be of valency 2 in ΣV .

ΣV ΣW ′

y
f

x

It is shown in the proof of [ABBR15, Theorem 5.25] that this can not occur, and hence the set
W = f(V ) is semi-stable. Since f is Galois, we necessarily have f−1(W ) = V .

Theorem 1.4 then assures the existence of a finite morphism f : X → Y of semi-stable formal
models over the ring of integral elements in K

∧
, where X is in fact stable. We obtain algebraic

models X and Y by Lemma 1.1, and both X and Y descend to the integral closure of R in some
finite separable extension of K, see [ABBR15, Lemma 5.4]. Finally, the morphism f descends to a
finite morphism over the same field by Lemma 1.5. �

2.3. Potentially stable reduction for correspondences. We now show that the theorem of Deligne–
Mumford [DM69, Corollary 2.7] on potentially semi-stable reduction of smooth proper curves can be
bootstrapped to an analogous statement for hyperbolic correspondences.

Theorem A. Let C be a hyperbolic punctured correspondence over K. There is a finite separable
extension of K over which C has a stable R-model.

Proof. Change scalars to K
∧
. Consider the Galois closure g : (X̃, D̃)→ (X,DX) of both π1 and

π2, where we set D̃ = g−1(DX). We see that (X̃, D̃) is hyperbolic, and as such there is a unique
stable vertex set Ṽ ⊂ X̃ad. Set V := g(Ṽ ) and Wi = πi(V ), which are semi-stable vertex sets
by Lemma 2.1. The uniqueness of Ṽ implies that it is preserved by the action of Galois. This
action is transitive on fibres, so that we must have V = π−1

i (Wi). It follows that πi extends to
a finite morphism between the corresponding formal models. Using Lemma 1.1, this yields three
semi-stable curves over the ring of integral elements in K

∧
, which descend to a finite separable

extension of K by [ABBR15, Lemma 5.4]. We then get a semi-stable model C from Lemma 1.5.
To construct a minimal such model, consider the stable vertex set S ⊂ Xad of (X,DX) and

the smallest semi-stable vertex sets Ti ⊇ πi(S). Now iterate the following steps: Enlarge S to
contain π−1

i (Ti), and then enlarge the sets Ti to contain πi(S). This procedure terminates, as
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all newly introduced Type-II points are necessarily contained in the finite semi-stable vertex sets
corresponding to the semi-stable model C constructed above via the Galois closure. This yields a
semi-stable model C′ for C which is minimal with respect to the relation of domination. �

We note that in general, the stable model of C does not consist of the stable models of its objects.
As can be seen below for the case of Hecke operators at p, typically some extra components appear.
These could be considered as manifestations of the internal geometry of a correspondence C.

2.4. Skeleta of correspondences. Given a finite morphism f : X → Y of semi-stable curves, it is
not true that f−1(ΣY) = ΣX, see [ABBR15, Remark 5.23]. When this holds, we say that f is skeletal.
A semi-stable model C of a punctured correspondence C is skeletal if π1 and π2 are both skeletal. A
skeletal model of C effectively decomposes it as a sum of correspondences between open disks and open
annuli, and may therefore be considered a non-Archimedean triangulation of C that is particularly
convenient for analysing its spectral properties. Not every semi-stable model C of C is skeletal, and the
question arises whether it is always possible to modify C to make it skeletal.

Let V,W1,W2 be the semi-stable vertex sets for the objects of the stable model C, so that in particular
π−1

1 (W1) = π−1
2 (W2) = V . We can now attempt to adjust C by doing the following:

(1) As is shown in [ABBR15, Remark 4.19], πi(ΣV ) is the union of ΣWi
and a finite set of edges.

These edges are disjoint, by the proof of [ABBR15, Proposition 5.25]. Enlarge the sets Wi to
contain the endpoints of these edges, then enlarge the set V to contain π−1

i (Wi).
(2) Enlarge the set W1 to contain π1(V ), then
(3) enlarge the set V to contain π−1

1 (W1), then
(4) enlarge the set W2 to contain π2(V ), then
(5) enlarge the set V to contain π−1

2 (W2), then go back to step (2).

The question now becomes whether this procedure always terminates. The answer is no, as the example
of the Hecke operator Tp in section 2.6 shows. However, the answer is yes if we assume that either

(i) π1, π2 are Galois, or
(ii) either π1 or π2 is the identity.

First, if either π1 or π2 is the identity, there is no iteration and the procedure ends after the first step.
Assume now that π1, π2 are Galois. Call Σ the stable skeleton of X, then any vertex of V introduced
in step (1) must lie exactly in the middle of some edge in Σ, since it subdivides that edge into two
edges which are Galois conjugate, and therefore have the same widths. After step (1), the skeleta of all
three curves remain constant, as Σ is preserved by both Galois groups G1 and G2. Any subsequently
introduced vertex then lies exactly in the middle of an edge of Σ, which is furthermore a G1 × G2-
translate of an edge that was previously subdivided in half. This shows not only that the procedure
terminates, but that in fact the minimal width that occurs remains constant after step (1). This allows
for some control over the ramification of the field extension we need to make C skeletal.

Theorem A’. Let C be a hyperbolic punctured correspondence over K, and assume that either (i) both
morphisms are Galois, or (ii) one of the morphisms is the identity. Given semi-stable models X ,Y1,Y2

for the objects of C, there is a finite separable extension of K over which C has a unique minimal
skeletal semi-stable model whose objects dominate X ,Y1,Y2 pairwise.

Skeletal semi-stable models f : X −→Y are especially convenient, since they decompose the map
into a finite collection of maps between components in the special fibres, and a finite collection of finite
maps of annuli. Étale locally around a singularity of X s, a skeletal morphism f is of the form

(5) R[x, y]/(xy −$ne) −→ R[x, y]/(xy −$n) : (x, y) 7−→ (xe, ye)
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for some n, e ≥ 1, see for instance Mochizuki [Moc95, §3.9]. The ramification index e is constant along
both components of X s passing through the singularity, as it is equal to the quotient of the widths of
the annuli corresponding to the singularities, see [ABBR15, Theorem 4.23].

2.5. Hecke operators away from p. As a toy example, we now consider stable models of certain
Hecke operators. Let F be a totally real number field, and B/F a quaternion algebra which is split
at exactly one infinite prime. We fix a prime p above p at which B is split, and a sufficiently small
level structure away from p. We denote XB for the corresponding Shimura curve, and XB

0 (p) for the
Shimura curve with additional Iwahori level structure at p.

Let q be coprime to both p and the implicit tame level. By the work of Deligne–Rapoport, Carayol,
and Buzzard [DR73, Car86, Buz97] we obtain a skeletal semi-stable model Tq over Osh

F,p for the Hecke
operators Tq on XB

0 (p), with skeleton as depicted in Figure 1.

XB
s XB

s

XB
0 (q)s XB

0 (q)s XB
0 (q)s XB

0 (q)s

XB
s XB

s

Edge mixing

Figure 1. The stable skeleton of Tq

This gives geometric description of a special case of the Jacquet–Langlands correspondence. We have
the weight-monodromy filtration

(6) 0 −→ H1
ét(X̃s,Ql) −→ H1

ét(XK ,Ql) −→ H1(Γ,Ql)(−1) −→ 0,

where Γ is the dual graph of the special fibre of XB0 (p), X̃ s denotes the normalisation of its geometric
special fibre, and l 6= p is a prime. The space of p-new forms is identified as a Hecke module with
the top graded piece, and is therefore isomorphic to the set of supersingular points. The action of Tq
is therefore described by the edge mixing, which one may compute as in Mestre–Oesterlé [Mes86] and
Dembélé–Voight [DV13]. Via the monodromy pairing, we likewise recover that Tq acts on the Néron
component group as multiplication by NmF/Q(q) + 1.

2.6. Hecke operators at p. The morphisms π1, π2 : XB0 (p) −→ XB defining Tp on XB are finite
flat, and hence define a semi-stable model for Tp. If we attempt to make this model skeletal using
the procedure outlined in 2.4, we keep introducing components which accumulate at the ordinary
components. Figure 2 depicts the first few iterations of this process.

Assume henceforth that B = M2(Q) and consider Up on X0(Np2) where (N, p) = 1. To increase
the number of cases in which Up is hyperbolic, we puncture the modular curves at the cusps. From the
work of Edixhoven [Edi90], we easily recover the stable skeleton, which is pictured in Figure 3. The
four outer components are quotients of Igusa curves, whereas Z is a hyperelliptic curve. The degrees of
the induced finite maps of annuli are indicated whenever they are different from 1.

We see that Up acts on the edges as Frobenius, so that in particular we obtain from the weight-
monodromy filtration the well-known fact that

(7) U2
p = pk−2 on H1

ét

(
X0(p), Symk−2 Ql

)p-new
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π1 π2

=

XB
s

XB
s

XB
s

XB
s

XB
s

XB
s

Figure 2. The stable model Tp

π2π1

=

∞ 00∞

Z2

Z2

Z2

X+

X−

Z

Z

Z

Frp

Z1

Z1

Z1

X+

X−

Z

Z

Z p

p

p

p−1
2

p−1
2

p

p

p

p−1
2

p−1
2

Figure 3. The stable skeleton of Up

The stable model of a hyperbolic correspondence typically does not consist of the stable models
of its components, as the above examples show. In general, additional (but canonical) components
appear whose significance is not always clear. In the case of the stable model Up above, the additional
components Z1 and Z2 have a clear moduli interpretation. An elliptic curve over Cp is said to be too
supersingular if it does not have a canonical subgroup in the sense of Katz–Lubin. It is nearly too
supersingular if it is p-isogenous to such a curve. It is clear that sp−1(Zsm

1 ) and sp−1(Zsm
2 ) classify

those elliptic curves over Cp with Hasse invariants p/(p+ 1) and 1/(p+ 1) respectively, which therefore
classify too supersingular, resp. nearly too supersingular, elliptic curves with Γ0(N)-structure.

2.7. Canonical subgroups for curves. In the theory of p-adic modular forms, it is important to iden-
tify the maximal section of forgetful maps between certain Shimura curves. The underlying geometric
mechanism is most easily phrased in our language of skeletal stable models, leading to the following
generalisation of Goren–Kassaei [GK06, Theorem 3.9].

Theorem 2.2. Assume K is complete with respect to its valuation, and let

g : X −→ Y

be a skeletal finite morphism of semi-stable curves over R, with generic fibre gad : Xad → Y ad. Assume
that g is an isomorphism on some component Z of X s. Then gad is an isomorphism on sp−1

X (Z).

Proof. By Goren–Kassaei [GK06, Proposition 3.1] the section g(Z)→ Z gives rise to a section

s : sp−1
Y (g(Z)sm) −→ Xad

as R is complete and thus Henselian. By Coleman–Gouvêa–Jochnowitz [CGJ95, Lemma 6], we
may extend s to a section s† : U → Xad, for U ⊂ Y ad some open subspace strictly containing
the domain of s. Since g is skeletal, the induced map gad : Xad\VX −→Y ad\VY decomposes as a
collection of finite maps of annuli and finite maps of disks. The degree on the collection of wide
open annuli sp−1

X (Zsing) is equal to the ramification index of g at the corresponding singular point.
Therefore the annuli are mapped isomorphically onto their image by gad. The inverse of gad on
these annuli agrees with s† on the intersection with the open set U , and hence it glues with s† to
produce a section of gad on the image of sp−1

X (Z) under gad. �

We obtain a section of g onto the union of sp−1
X (Z) over all components Z on which g induces an

isomorphism. The restriction of this section onto any connected component A is maximal in the sense
that it does not extend to a section onto any connected open properly containing A. Indeed, any such
open must contain an element in the semi-stable vertex set of X corresponding to a component of X s on
which g is not an isomorphism, which means that the corresponding map on residue fields cannot be an
isomorphism. Theorem 2.2 is hence a version of the result of Goren–Kassaei, where all the assumptions
on the shapes of the dual graphs made in loc. cit. may be dropped.
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3. De Rham–Witt complexes

In what follows, we come to the main subject of this paper, and construct trace maps for crystalline
lattices in de Rham cohomology of curves. Our main tool will be the de Rham–Witt complexes on the
special fibres of semi-stable models, and this section recalls some results in the literature which we will
need in the sequel. It contains no new results.

Henceforth, K will denote a finite extension of Qp, with ring of integers R and residue field k.

3.1. Logarithmic schemes. We will use logarithmic structures in the étale topology. Suppose X
is a scheme, and MX a sheaf of commutative monoids on Xét defining a logarithmic structure with
exponential map α : M−→OX . We write X+ for the logarithmic scheme defined by this data, and
conversely, if we are given a logarithmic scheme X+ we write X for its underlying scheme, andMX for
its sheaf of monoids. The sheaf of groups associated toMX is denoted byMgp

X .
We choose a uniformiser $ of R. The fs logarithmic structure on Spec R with pre-logarithmic chart

(8) (N−→R : 1 7−→ $),

defines a logarithmic scheme which we refer to as R+. Let W = W (k) be the ring of Witt vectors of
the residue field k of R, K0 its field of fractions, and σ the lift to W of the Frobenius map x 7→ xp on
k. Set Wn = W/pnW . We denote k+ for the logarithmic scheme Spec k with pre-logarithmic chart

(N−→ k : 1 7−→ 0).

If X is a k-scheme and n ≥ 1, then we denote Wn(X) for the scheme over Wn with the same
underlying topological space as X, and with structure sheaf WnOX of p-typical Witt vectors over OX
of length n. For a section x ∈ OX we denote [x] for its Teichmüller lift (x, 0, . . . , 0) ∈ WnOX , and
[x]i = V i[x] for the vector (0, . . . , x, . . . , 0) with x as its i-th entry.

3.2. De Rham–Witt complexes. As we are interested in comparisons with de Rham cohomology,
it will be most convenient to introduce crystalline cohomology using the de Rham–Witt complex, as
opposed to working directly with the log-crystalline topos. The main reference here is [HK94].

Assume now that X+ is a proper, logarithmically smooth scheme over k+ of Cartier type (see [HK94,
§2.12]), then Hyodo and Kato define for any n ≥ 1 a complex of sheaves of WnOX -modules Wnω

•
X+ .

We briefly recall the construction, and some basic properties. DenoteW+
n for the scheme Spec Wn with

its canonical lift logarithmic structure, which has a chart given by

(9)
(
N⊕Ker[Wn(k)×−→ k×]→Wn : (a,w) 7−→ (0, w)

)
,

and let

(10) ucris
X+/W+

n
:
(
X+/W+

n

)∼
cris
−→ (X)

∼
ét

be the natural morphism from the log-crystalline topos to the étale topos of X, see [Kat89, Section 5].
Then define for any q ≥ 0 the de Rham–Witt sheaf

Wnω
q
X+ := Rqucris

X+/W+
n ,∗
O,

which is made into a complex Wnω
•
X+ via a certain Bockstein homomorphism d constructed on the

right hand side. It has the structure of a differential graded algebra, endowed with operators
π : Wn+1ω

•
X+ −→ Wnω

•
X+

F : Wn+1ω
•
X+ −→ Wnω

•
X+

V : Wnω
•
X+ −→ Wn+1ω

•
X+ ,

satisfying the relations FV = V F = p and FdV = d. The map π is called the restriction map. It is
surjective and commutes with F and V . The absolute Frobenius map on X+ induces a morphism of
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differential graded algebras ϕ : Wnω
•
X+ →Wnω

•
X+ , and we have ϕ = piF on Wnω

i
X+ . Finally, there is

a canonical, functorial, inverse system of isomorphisms

(11) Rucris
X+/W+

n ,∗
O ∼−→Wnω

•
X+ .

On cohomology, one constructs through this isomorphism the higher Cartier operators

(12) C−n : Wnω
q
X+

∼−→ Hq (Wnω
•
X+) .

Multiplication by p on de Rham–Witt complexes induces an exact triangle which is frequently useful
in dévissage arguments. More precisely, it is shown in Hyodo–Kato [HK94, Corollary 4.5] that there is
an exact triangle

(13) Wn−1ω
•
X+

·p−→Wnω
•
X+ −→W1ω

•
X+

+1−→ .

Apart from the above structures, which all have counterparts in the non-logarithmic setting, we get
an additional feature in the form of a canonical morphism

dlog :MX −→Wnω
1
X+ such that d[α(m)] = [α(m)] dlog m.

3.3. Hyodo–Kato cohomology. The Hyodo–Kato cohomology of X+ is the hypercohomology

Hi
HK(X+/W ) = Hi(X,Wω•X+), where Wω•X+ = lim←−

n

Wnω
•
X+ ,

which is a finitely generated W -module. The absolute Frobenius map induces a σ-linear endomorphism

ϕ : Hi
HK(X+/W ) −→ Hi

HK(X+/W )

The Hyodo–Kato cohomology groups come equipped with a monodromy operator N , as follows. For
any n ≥ 1, there exists a canonical extension

(14) 0−→Wnω
•
X+ [−1]−→Wnω̃

•
X+ −→Wnω

•
X+ −→ 0,

where Wnω̃
•
X+ is also a WnOX -complex, which comes equipped with operators F, V and π with the

same properties as before, and the extension is compatible with these operators. One defines

N : Hi
HK(X+/W ) −→ Hi

HK(X+/W )

to be the connecting homomorphism on cohomology obtained from taking the inverse limit over n of
the extension (14). The operators ϕ and N satisfy the relation pϕN = Nϕ.

We have the following explicit presentation, proved by Nakkajima [Nak05, Theorem 11.1]:

(15) Wnω
1
X+ ' (WnOX ⊕ (WnOX ⊗ZMgp

X /(N⊕k×)gp)) / ∼,
Wnω̃

1
X+ ' (WnOX ⊕ (WnOX ⊗ZMgp

X /k
×)gp) / ∼,

where the equivalence relation ∼ is generated by the relations

pi([α(m)]i, 0) ∼ (0, [α(m)]i ⊗m), m ∈Mgp
X , 0 ≤ i ≤ n− 1.

The presentation for Wnω
1
X+ already appears in [HK94, Proposition 4.6]. Though we only need the

result for q = 1, we note that the statement in loc. cit. contains a mistake in the presentation of the
de Rham–Witt sheaves Wnω

q
X+ when q ≥ 2, as was noticed, and corrected, by Nakkajima. We refer

the interested reader to Nakkajima [Nak05] for a very thorough treatment of de Rham–Witt theory,
containing a plethora of useful facts about de Rham–Witt complexes.

Finally, we note that the de Rham–Witt complexes are contravariantly functorial in the sense that
if f : X+ → Y + is a k+-morphism, there is an adjunction map OY +/Wn

→ Rf∗OX+/Wn
on the

log-crystalline topoi of X+ and Y +, giving us via the isomorphism (11) a natural pullback map

f∗ : Wω•Y + −→Rf∗Wω•X+

which for curves is given via the obvious map on the presentation 15, see [Nak05, Lemma 9.1].
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3.4. Relation with de Rham cohomology. We now discuss the relation between the de Rham
complex of a semi-stable model of a curve, and the de Rham–Witt complex of its special fibre. Let R
be the ring of integral elements in a finite extension K of Qp, of ramification degree e, and let R+ be
the logarithmic scheme defined by (8). The following theorem was proved by Berthelot–Ogus [BO83]
in the case of good reduction, and in general by Hyodo–Kato [HK94, Theorem 5.1].

Theorem 3.1 (Berthelot–Ogus, Hyodo–Kato). Let X+ → R+ be proper fs logarithmically smooth such
that X+

s → k+ is of Cartier type. Then there are canonical isomorphisms

ρK$ : H1
HK(X+

s /W )⊗W K ' H1
dR(X/K)

ρR$ : H1
HK(X+

s /W )⊗W R ' H1
dR(X+ /R+) (if e ≤ p− 1).

More precisely, Hyodo–Kato show the existence of an isomorphism

ρ$ : Q⊗
{
Rn ⊗LWn

Wnω
•
X+
s

}
n

∼−→ Q⊗
{

Ω•X+
n /R

+
n

}
n

of projective systems in D((X+
s )ét), where Q⊗− denotes the image in the isogeny category.

Although we will not need it, let us say a few words about this isomorphism. When X is a relative
curve, we may find a global deformation Z+ which is log smooth over Spf W JtK+ such that the local
structure at a singular point of X s is given by W Jx, y, tK/(xy − tn). We obtain a Cartesian diagram

X+

Spf R+

Z+

Spf W JtK+
t 7→$

and a Frobenius map t 7→ tp. Let RPD
n be the PD-envelope of Rn in W [t], then the crystalline complex

of X+
s /R

PD
n , which is closely related to the de Rham complex of X+, arises as the fibre of an F -crystal

on W [t] at t = $. Hyodo–Kato prove a rigidity theorem that shows that this crystal is constant over
W 〈t〉. After successive applications of Frobenius, which is an isogeny, we can shrink the disk and get
our “de Rham” fibre sufficiently close to t = 0 to obtain the isomorphism from the rigidity theorem.
The need to conjugate by powers of Frobenius is the underlying reason that in general, the comparison
isomorphism in Theorem 3.1 requires us to invert p.

4. Crystalline lattices in de Rham cohomology

Let f : X −→Y be a finite map between proper, smooth, geometrically connected curves over a
finite extension K of Qp. If X and Y have semi-stable reduction, Theorem 3.1 endows the de Rham
cohomology groups H1

dR(X/K) and H1
dR(Y/K) with W -lattices with operators ϕ and N , depending

on the choice of a uniformiser $ of the valuation ring R ⊂ K. These W -lattices are provided by the
Hyodo–Kato, or log-crystalline, cohomology groups

H1
HK(X+

s /W ) and H1
HK(Y+

s /W ) with (ϕ,N)-structure

of the special fibres of the minimal regular semi-stable models X and Y over R.
There exist canonical trace and pullback maps on de Rham cohomology

(16) f∗ : H1
dR(X/K) −→ H1

dR(Y/K) and f∗ : H1
dR(Y/K) −→ H1

dR(X/K),

In this section, we show that the W -lattices provided by Hyodo–Kato cohomology are preserved by f∗
and f∗. We do this on the level of the derived category, by constructing canonical trace and pullback
maps between between the de Rham–Witt complexes, for any choices of semi-stable models X and Y.
We show that the induced maps on cohomology preserve the (φ,N)-structure, and that they recover
the maps f∗ and f∗ on de Rham cohomology through the Hyodo–Kato isomorphism.



CRYSTALLINE COHOMOLOGY OF TOWERS OF CURVES 13

4.1. Logarithmic structures on semi-stable curves. In order to prove our main theorem, we will
make use of the existence of semi-stable models of finite maps. In the case of bad reduction, this
essentially always forces the semi-stable models of the curves to be non-regular. We start by defining
the logarithmic structures we wish to consider on such curves.

Assume X is a (not necessarily regular) semi-stable model for X over R. There is a natural divisorial
logarithmic structure on X , defined by MX = OX ∩ j∗O×X , where j : X ↪→ X is the inclusion of the
generic fibre. We may find étale local charts on X at a singular point of the special fibre given by

(17)
1
n∆(N) + N2 −→ R[x, y]/(xy −$n)
1
n∆(c) + (a, b) 7−→ xayb$c,

where ∆ : N → N2 is the diagonal embedding and the sum 1
n∆(N) + N2 is taken inside Q2. It is

shown in [AI12, Lemma 3.1] that the induced structure morphism X+ → R+ is logarithmically smooth.
We record some more properties in the following lemma, most importantly that for this logarithmic
structure, the curve is of Cartier type [Kat89, Definition 4.8].

Lemma 4.1. The logarithmic scheme X+ is fine and saturated, and X+ → Spec R+ is logarithmically
smooth and integral with special fibre X+

s → Spec k+ of Cartier type.

Proof. It is clear that X+ is fine and saturated. The logarithmic structure is trivial away from
the singularities of the special fibre, and étale locally around such a singularity, we have a chart

1

n
∆ : N −→ 1

n
∆(N) + N2

for the structural morphism. The induced map on groups has trivial kernel, with cokernel isomor-
phic to Z. As both are torsion-free, f is logarithmically smooth. It follows from [Kat89, Corollary
4.4] that f is integral. Let Frk : Spec k+ → Spec k+ be the absolute Frobenius on the logarithmic
point, which on logarithmic structures Fr−1

k N ' N → N is just multiplication by p. The relative
Frobenius map X+

s → X
(p)+
s is therefore given on charts by the multiplication by p map

1

np
∆ + N2 ·p−→ 1

n
∆ + N2 .

This map on monoids is the restriction to the first quadrant of the induced map on groups. Relative
Frobenius is therefore an exact morphism, and hence the special fibre is of Cartier type. �

The divisorial logarithmic is functorial, in the following sense. Let f : X → Y be a finite map
between semi-stable R-models for smooth proper geometrically connected curves X,Y over K. If we
endow these models with the logarithmic structure of the previous subsection, the map f is a morphism
of logarithmic schemes via the natural map

f−1MY = f−1
(
OY ∩ j∗O×Y

)
−→ OX ∩ j∗O×X .

The induced map fs : X+
s → Y

+
s is a finite morphism of fs smooth logarithmic schemes over k+.

4.2. Adjusting semi-stable models. We will frequently need to pass between different semi-stable
models, and we now relate their de Rham–Witt complexes. The crucial property that gives us the
flexibility we need is the fact that semi-stable models have rational singularities, and we deduce several
properties of de Rham–Witt complexes by reducing via a dévissage argument to the following:

Lemma 4.2. Let π : Z → X be a birational map between semi-stable models of X. Then the adjunction
map and natural pullback map yield (quasi-)isomorphisms

Rπ∗π
!Ω1
X+ /R+

∼−→ Ω1
X+ /R+

Ω•X+ /R+

∼−→ Rπ∗Ω
•
Z+ /R+ .
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Proof. First, it is a classical result that the sheaves of logarithmic differentials Ω1
X+ /R+ and

Ω1
Z+ /R+ are the relative dualising sheaves of X and Z over Spec(R). For a general statement, see

for instance Tsuji [Tsu99b, Theorem 2.21]. Both statements then follow from the theory of rational
singularities, see Cais [Cai09, Proposition 4.6]. �

Any two semi-stable models may be related by a chain of blow-ups and blow-downs, and hence it
suffices to investigate how these two operations affect de Rham–Witt complexes. More precisely, we
need to investigate maps which are one of the two following types:

• Type A: The blow-up of the singularity xy = $n at (x, y,$) for n ≥ 2,
• Type B: The blow-up of a smooth point in the special fibre.

In both cases π is a logarithmic blow-up along a coherent ideal. The work of Vidal [Vid04, Théorème
2.4.3.1] proves for more general logarithmic blow-ups that the Hyodo–Kato lattice in de Rham coho-
mology is unaffected by this. We give a proof that uses the specifics of the case at hand.

Theorem 4.3. Let π : Z+
s −→X

+
s be a blow-up of type A or B as above. Then the induced maps

(18)
ψn : Wnω

•
X+
s
−→ Rπ∗Wnω

•
Z+
s

ψ̃n : Wnω̃
•
X+
s
−→ Rπ∗Wnω̃

•
Z+
s

are Wn-linear isomorphism in D+(X s,ét) for every n.

Proof. From (13) we get a commutative diagram of exact triangles

Wn−1ω
•
X+
s

Rπ∗Wn−1ω
•
Z+
s

Wnω
•
X+
s

Rπ∗Wnω
•
Z+
s

W1ω
•
X+
s

Rπ∗W1ω
•
Z+
s

·p

·p

ψn−1 ψ1ψn

+1

+1

from which we see that by a dévissage argument we are reduced to proving ψ1 is an isomorphism.
When n = 1 the de Rham–Witt complex is the logarithmic de Rham complex of the special fibre,
so that ψ1 is the reduction of the natural map

(19) Ω•X+ /R+ −→Rπ∗Ω
•
Z+ /R+ .

It follows from Lemma 4.2 that ψ1, and hence by induction ψn for all n ≥ 1, is an isomorphism.
From the explicit presentation (15) and [Nak05, Theorem 11.1], we see that the canonical pull-

back maps give rise to a commutative diagram of exact triangles

Wnω
•
X+
s

Rπ∗Wnω
•
Z+
s

Wnω̃
•
X+
s

Rπ∗Wnω̃
•
Z+
s

Wnω
•
X+
s

Rπ∗Wnω
•
Z+
s

ψn ψnψ̃n

+1

+1

Since ψn is an isomorphism, it follows that ψ̃n is an isomorphism. �

4.3. Poincaré duality. We now discuss a duality result for logarithmic de Rham–Witt complexes. A
general theory in the smooth case was initiated by Ekedahl [Eke85]. An extension to regular semistable
families was proved by Hyodo [Hyo91], from which we may deduce the following result.

Theorem 4.4 (Ekedahl, Hyodo). Let X+
s −→ k+ be as above, and denote the structural morphism of

Wn(X s) by an : Wn(X s)−→ Spec Wn. Then there is a canonical isomorphism

(20) Wnω
1
X+
s
' a!

nWn[−1].
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Furthermore, we have canonical isomorphisms

(21)
Wnω

•
X+
s

∼−→ RHom(Wnω
•
X+
s
,Wnω

1
X+
s

[−1]),

Wnω̃
•
X+
s

∼−→ RHom(Wnω̃
•
X+
s
,Wnω

1
X+
s

[−2]).

induced by a commutative diagram of perfect pairings:

(22)

0

0

× × ×
Wω0

X+
s

Wω1
X+
s

Wω1
X+
s

Wω̃1
X+
s

Wω̃1
X+
s

Wω1
X+
s

Wω1
X+
s

Wω0
X+
s

Wω1
X+
s

0

0

Proof. Let π : Z+
s −→X

+
s be the special fibre of the minimal desingularisation Z+ of X+, endowed

with the logarithmic structure induced by its special fibre. Since Z is regular semi-stable, the results
follow for Z+

s by [Hyo91, Theorem 3.1/3.2]. We now deduce them for X+
s .

Using the higher Cartier morphisms (12) and the isomorphism (18) we get a composite map

Wnω
1
X+
s

H1
(
Wnω

•
X+
s

)

R1π∗Wnω
•
Z+
s

π∗H1(Wnω
•
Z+
s

)

Rπ∗Wnω
1
Z+
s

υn

C−n

H1(ψn) can

π∗(C
n)

where the map π∗(Cn) is obtained from the higher Cartier isomorphism Cn via the natural map
π∗Wnω

1
Z+
s
−→Rπ∗Wnω

1
Z+
s
. It was shown in [Nak05, Lemma 9.1] that the map υn is given by the

obvious map on the presentation (15). We may now define a morphism by composition

Υn : Wnω
1
X+
s

υn−→ Rπ∗Wnω
1
Z+
s∼−→ Rπ∗(an ◦ π)!Wn[−1] = Rπ∗π

!(a!
nWn[−1])

Tr−→ a!
nWn[−1]

Since the Cartier morphisms are a functorial inverse system of isomorphisms [Nak05, Theorem
7.19], we obtain a commutative diagram with exact rows

Wn−1ω
1
X+
s

a!
n−1Wn−1[−1]

Wnω
1
X+
s

a!
nWn[−1]

W1ω
1
X+
s

a!
1W1[−1]

0
·p

·p

Υn−1 Υ1Υn

+1

Let us first investigate the map Υn when n = 1. In this case, the de Rham–Witt sheaf is just the
sheaf of logarithmic differentials Ω1

X+
s /k+

, and it suffices to show that the two morphisms

υ1 : Ω1
X+
s /k+ −→Rπ∗Ω

1
Z+
s /k+ , Tr : Rπ∗π

!Ω1
X+
s /k+ −→Ω1

X+
s /k+

are isomorphisms. The latter immediately follows from Lemma 4.2. To see that υ1 is an isomor-
phism, we note that R1π∗OZs = 0, so that the Grothendieck spectral sequence

Rpπ∗Hq(Ω•Z+
s /k+) ⇒ Rp+qπ∗Ω

•
Z+
s /k+
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degenerates at E2 and the map ‘can’ in the definition of υ1 is an isomorphism. Étale locally, the
morphism π has a chart g : P → Q such that ggp is bijective, and such that the induced map

Zs−→X s×Spec(Z[P ])Spec(Z[Q])

is an isomorphism, so that π is log-étale. It follows from [Kat89, Proposition 3.12] that

Ω1
Z+
s /k+ = π∗Ω1

X+
s /k+ .

Therefore, by the projection formula, we have

π∗Ω
1
Z+
s /k+ −→Rπ∗Ω

1
Z+
s /k+ ' (π∗OZs −→Rπ∗OZs)⊗ Ω1

X+
s /k+

The natural map on the right hand side is an isomorphism, since R1π∗OZs = 0. We conclude that
Υ1, and hence Υn for all n ≥ 1 by dévissage, is an isomorphism.

For the duality statement, we deduce formally that if q = 0, 1 we have

RHom(Wnω
1−q
X+
s
, a!
nWn) ' RHom(Rπ∗Wnω

1−q
Z+
s
, a!
nWn)

' Rπ∗RHom(Wnω
1−q
Z+
s
, (an ◦ π)!Wn)

' Rπ∗Wnω
q

Z+
s
'Wnω

q

X+
s

and similarly for Wnω̃
q

X+
s
, so that we obtain the desired diagram of perfect pairings (22) from the

corresponding statement for Z+
s via (18). This induces maps

Wnω
•
X+
s
−→ RHom(Wnω

•
X+
s
,Wnω

1
X+
s

[−1]),

Wnω̃
•
X+
s
−→ RHom(Wnω̃

•
X+
s
,Wnω

1
X+
s

[−2]).

which must both be isomorphisms. Indeed, take for instance the first map, which fits in a commu-
tative diagram of exact triangles

Wnω
1
X+
s

[−1] −−−−−→ RHom(Wnω
0
X+
s
,Wnω

1
X+
s

[−1])y y
Wnω

•
X+
s

−−−−−→ RHom(Wnω
•
X+
s
,Wnω

1
X+
s

[−1])y y
Wnω

0
X+
s

−−−−−→ RHom(Wnω
1
X+
s

[−1],Wnω
1
X+
s

[−1])y+1

y+1

Since the top and bottom maps are isomorphisms, we conclude the same for the middle map.
Similarly for Wnω̃

•
X+
s
, whence we establish (21). �

4.4. Construction of trace maps. A trace map f∗ on logarithmic de Rham–Witt complexes may
now be constructed in the usual fashion, see Gros [Gro85, Section II.1] for the smooth case. We start
by noting that Ekedahl duality (20) implies that Wω1

X+
s
'W (f)!Wω1

Y+
s
, so that

γ1 : Rf∗Wω•X+
s
' Rf∗RHom(Wω•X+

s
,Wω1

X+
s

[−1])

' Rf∗RHom(Wω•X+
s
,W (f)!Wω1

Y+
s

[−1]),

where the first isomorphism follows by auto-duality (21). The adjunction maps

Trn : RWn(f)∗Wn(f)! −→ 1

on Wn(Ys) commute with restriction in n. We obtain by composition a map

γ2 : Rf∗RHom(Wω•X+
s
,W (f)!Wω1

Y+
s

[−1]) −→ RHom(Rf∗Wω•X+
s
,Rf∗W (f)!Wω1

Y+
s

[−1])

−→ RHom(Rf∗Wω•X+
s
,Wω1

Y+
s

[−1]).
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The natural pullback morphism f∗ : Wω•Y+
s
→ Rf∗Wω•X+

s
induces a map

γ3 : RHom(Rf∗Wω•X+
s
,Wω1

Y+
s

[−1]) −→ RHom(Wω•Y+
s
,Wω1

Y+
s

[−1]) 'Wω•Y+
s
,

where the last isomorphism is the auto-duality (21). Putting everything together, we define

(23) f∗ := γ3 ◦ γ2 ◦ γ1 : Rf∗Wω•X+
s
−→ Wω•Y+

s
.

4.5. Functoriality of integral structures on de Rham cohomology. We now compile the results
established in the previous sections to prove the main result of this paper, providing trace and pullback
maps between the de Rham–Witt complexes of semi-stable models X and Y.

Theorem B. Let f : X → Y be a finite map of semi-stable models of smooth, proper, geometrically
irreducible curves over K. There exist canonical pullback and trace maps (f∗, f∗) and (f̃∗, f̃∗) that make
the following diagram of exact triangles commute:

(24)

Rf∗Wω•X+
s

[−1]

Wω•Y+
s

[−1]

Rf∗Wω̃•X+
s

Wω̃•Y+
s

Rf∗Wω•X+
s

Wω•Y+
s

f∗[−1] f∗[−1] f∗ f∗f̃∗ f̃∗

+1

+1

As a consequence, we obtain that when f : X → Y is a finite map of smooth, proper, geometrically
irreducible curves over K with semi-stable reduction, then for any semi-stable models X ,Y there exist
canonical pullback and trace maps of (ϕ,N)-modules

f∗ : H1
HK(Y+

s /W ) −→ H1
HK(X+

s /W ),

f∗ : H1
HK(X+

s /W ) −→ H1
HK(Y+

s /W ).

For any uniformiser $ ∈ R, they induce the usual trace and pullback maps on de Rham cohomology of
the generic fibres via the Hyodo–Kato isomorphism ρK$ of Theorem 3.1.

Proof. From the presentation (15) and [Nak05, Theorem 11.1], we see that the pullback maps

f∗ : Wω•Y+
s
−→ Rf∗Wω•X+

s

f∗ : Wω̃•Y+
s
−→ Rf∗Wω̃•X+

s

make (24) commute. In the construction of the trace map f∗ in 4.4, we may replace Wω• with
Wω̃•, using (21). This yields a trace map f̃∗, which by (22) makes (24) commute.

By Theorem 4.3, this induces trace and pullback maps between the Hyodo–Kato cohomology
groups of any semi-stable models X ,Y. The trace map f∗ on de Rham–Witt complexes commutes
with F and V , so that the resulting map on cohomology commutes with the Frobenius operator
ϕ. By the commutativity of (24), it also commutes with the monodromy operator N . Finally1,
since we constructed f∗ as the Poincaré dual of f∗ it follows from the compatibility results of Tsuji
[Tsu99a, §4.4] that f∗ recovers the usual trace map on de Rham cohomology. �

4.6. Remark. Let X be a smooth, proper, geometrically irreducible curve over K with semi-stable
reduction. Choose a uniformiser $ ∈ R, then we have two canonical lattices

(25) H1
HK(X+

s /W ) ⊆$ H1
dR(X/K), H1

dR(X/R) ⊆ H1
dR(X/K).

The W -lattice of Hyodo–Kato cohomology is independent of the choice of semi-stable model X , and
is functorial in finite morphisms in X. The same is true for the R-lattice of de Rham cohomology of
X . The question arises how the two integral structures are related. It follows from Theorem 3.1 that

1We are very grateful to the anonymous referee for making this observation.
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whenever the ramification index e of R is less than p, both lattices coincide after tensoring with R.
In highly ramified situations, it is unclear how the two relate. This comparison becomes especially
mysterious when one considers the cohomology of towers of curves, and we are forced to abandon any
geometric relation to de Rham cohomology completely.

5. Crystalline cohomology of towers of curves

We now define the log-crystalline cohomology of towers of curves, and make some brief comments
about it. We do not explicate the link with the de Rham cohomology of towers considered by Cais
[Cai16a]. Therefore, the difficulty of having to choose appropriate sequences of uniformisers and Hyodo–
Kato isomorphisms, and dealing with growing ramification of the base ring, is avoided by working purely
with the collection of special fibres, endowed with their divisorial logarithmic structures.

By abandoning the effort to compare this new crystalline cohomology group of a tower to its de
Rham cohomology, which is known to contain a great deal of arithmetic information by the work of
Cais [Cai16a], we introduce (a priori) some doubts about having defined a meaningful object. In an
attempt to alleviate such doubts, we show that the Up-ordinary part of the crystalline cohomology of the
tower {X1(Npr)}r is related to the work of Cais [Cai16a, Cai16b]. His arguments then show crystalline
analogues of the Λ-adic control theorem, and the Λ-adic Eichler–Shimura decomposition.

5.1. Towers of curves. A tower of curves is a chain

(26) . . .
f4−→ X3

f3−→ X2
f2−→ X1

f1−→ X0

of finite maps between smooth, proper, geometrically irreducible curves over a finite extension of Qp.
For any such tower of curves, we may apply Theorem B to find trace and pullback maps between
Hyodo–Kato cohomology groups attached to semi-stable models over some finite field extension. As a
consequence of Theorem 4.3, we see that we may define these trace maps for any choice of semi-stable
models over some finite field extension. Taking limits, we obtain two cohomology groups

(27)
H̃1

HK(X∞) := lim←−n lim−→f∗r
H1

HK

(
X+
r ⊗ Fp,Wn

)
Ĥ1

HK(X∞) := lim←−fr,∗ H1
HK

(
X+
r ⊗ Fp,W

)
Here, W = W (Fp) is the ring of integers in the completion of the maximal unramified extension of Qp.
The former will be called the log-crystalline “completed” cohomology of our tower, whereas the latter
will be called the log-crystalline (or simply crystalline) “Eichler–Shimura” cohomology of our tower.

5.2. Crystalline completed cohomology for Shimura curves. Let F be a totally real number
field, and BF a quaternion algebra split at exactly one infinite place and some finite place p. We
let Xr be the Shimura curve for B with sufficiently small level structure away from p, as well as
full pr-level at p. The forgetful maps fr : Xr → Xr−1 form a tower, giving rise to the crystalline
“completed cohomology” group H̃1

HK(X∞). The full level structure at p induces an action of GL2(Fp)

on H̃1
HK(X∞)[1/p]. Extracting non-trivial information about this representation would require a precise

description of semi-stable models of the Xr, and we will not attempt to analyse it here. See 5.5 for
some further comments on this.

5.3. Crystalline Eichler–Shimura cohomology for modular curves. Consider the modular curves
X1(pr), with an implicit fixed tame level Γ that is small enough, as well as Γ1(pr)-structure at p. These
curves are defined over Qp, and classify pairs (E,ψr) where E is a (generalised) elliptic curve over a
Qp-scheme with Γ-level structure, and ψr : µpr ↪→ E[pr] is a point of order pr. We have a tower

(28) . . . −→ X1(pr)
π2−→ . . . −→ X1(p2)

π2−→ X1(p), π2(E,ψr) = (E/ψr(µp), ψr/ψr(µp))
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We work with quotient degeneracy maps, rather than forgetful degeneracy maps, to make the trace
map Hecke equivariant. We will consider the crystalline “Eichler–Shimura” cohomology

(29) Ĥ1
HK(X∞) = lim←−

π2,∗

H1
HK

(
X+
r ⊗ Fp,W

)
.

This group should be thought of as a crystalline analogue of the cohomologies of towers in the étale and
de Rham settings considered by Ohta [Oht00] and Cais [Cai16a] respectively. It follows from Theorem
B that crystalline Eichler–Shimura cohomology is a W JZ×p K-module via the diamond operators on the
generic fibres, and is equipped with an action of the completed Hecke algebra H = lim←−π2

H (Xr). It
has an action of the Galois group Γ = Gal(K∞/Qp), where K∞ is the compositum of all the finite
extensions Kr/Qp where the Xr obtain semi-stable reduction. Note that this is strictly larger than
the cyclotomic p-extension of Qp, and hence Γ has Gal(Qp(µp∞)/Qp) ' Zp as a proper quotient. For
precise information on the fields Kr, see Krir [Kri96].

5.4. Ordinary Eichler–Shimura cohomology for modular curves. It is not a priori clear that
the crystalline Eichler–Shimura cohomology Ĥ1

HK(X∞) is an interesting invariant to attach to a tower of
curves. As a sanity check, we investigate the Up-ordinary part for the Γ1(pr)-tower of modular curves,
and prove analogues of the main results in Hida theory. The ordinary setting is very well-studied, so
we frequently omit details which are readily found in [MW86, Cai16a, Cai16b].

Let eord = limUn!
p ∈ H be the ordinary projector in the completed Hecke algebra H generated by

Tp, Ul, and the diamond operators 〈d〉. The diamond operators make H into a module over ZpJZ×p K.
For any module M over H, we write Mord for eordM , and M ′ for the projection onto the part where
µp−1 ⊂ Z×p acts non-trivially. Note that M ′ ord is naturally a module over Λ = ZpJ1 + pZpK.

The key observation, which is due to Mazur–Wiles [MW86], is that the natural map

(30) Ĥ1
HK(X∞)′ ord −→ lim←−

π2,∗

(
H1

cris

(
Ig∞r ⊗ Fp,W

)′ ord ⊕H1
cris

(
Ig0
r ⊗ Fp,W

)′ ord
)

is an isomorphism, where Ig∞r and Ig0
r are the unique distinct irreducible components of the stable

model of Xr intersecting the cuspidal divisors ∞ and 0. As the Igusa curves Igr are defined over Fp,
we may naturally consider Ĥ1

HK(X∞)′ ord as a module over Λ. Let us define the following Λ-modules:

(31)

{
H1

cris(Ig
∞
∞)′F-ord := lim←−π2,∗

H1
cris(Ig

∞
r ,Zp)

′F-ord,

H1
cris(Ig

0
∞)′V-ord := lim←−π2,∗

H1
cris(Ig

0
r,Zp)

′V-ord.

where the superscripts denote the parts which are ordinary for the Frobenius operator F and Ver-
schiebung operator V respectively. Using the above observation of Mazur–Wiles, the following crys-
talline analogue of Hida theory for Ĥ1

HK(X∞)′ord follows immediately from Cais [Cai16a, Cai16b].

Theorem C. The projection Ĥ1
HK(X∞)′ord of crystalline Eichler–Shimura cohomology is a finite free

Λ-module. There is a canonical decomposition of finite free Λ-modules

Ĥ1
HK(X∞)′ord ' H1

cris(Ig
∞
∞)′F−ord ⊕H1

cris(Ig
0
∞)′V−ord.

Proof. By the isomorphism (30), we reduce to an analysis of the Up-ordinary part of the crystalline
cohomology of two Igusa towers. The correspondence Up decomposes as:

Ig∞r
Ig∞r Ig∞r

Id Frobp
Up : Ig0

r

Ig0
r Ig0

r

Frobp Id+

These two correspondences are interchanged under the Atkin–Lehner involution, see Cais [Cai16a,
Propositions B.9 and B.25]. This allows us to identify the Up-ordinary part of H1

cris(Ig
∞
r )′ with the
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Frobenius-ordinary part, and the Up-ordinary part of H1
cris(Ig

0
r)
′ with the Verschiebung-ordinary

part. The Λ-freeness of the Frobenius- and Veschiebung-ordinary parts

H1
cris(Ig

∞
∞)′F-ord, and H1

cris(Ig
∞
0 )′V-ord

was proved in [Cai16b, Theorems 1.2.1 and 1.2.3], so the result follows from (30). �

5.5. The non-ordinary part of Eichler–Shimura cohomology. In the discussion above, we applied
the ordinary projector, after which most information encoded in the tower of semi-stable models is lost.
In addition, this did not give us an object for which a clear need existed, as Cais [Cai16b] has already
constructed a crystalline analogue of Eichler–Shimura cohomology in the ordinary case, using Dieudonné
theory. Clearly, the main interest of Ĥ1

HK(X∞) lies in its non-ordinary part.
One is particularly led to wonder what can be said about the Lubin–Tate tower, which is the super-

singular part of the tower. The crystalline cohomology of this part can be understood via a detailed
description of the geometry of the Lubin–Tate tower, which was recently achieved by Weinstein [Wei16],
resulting in a complete determination of the supersingular components in the special fibres of the stable
models of the modular curves in the tower, as well as their incidence structure. This suggests a concrete
approach for the study of the non-ordinary part of Ĥ1

HK(X∞), which we will pursue in the future.

Funding. The author is supported by a CRM/ISM Postdoctoral Fellowship at McGill University. Some
of this work was done while the author was visiting the University of Chicago. We thank the London
Mathematical Society and Matthew Emerton for making this possible.

Acknowledgements. We are greatly indebted to Netan Dogra and Matthew Emerton for countless
enlightening discussions, and to Minhyong Kim for suggesting a geometric study of correspondences.
We thank Alexander Betts, Kęstutis Česnavičius, Adrian Iovita, Farbod Shokrieh, and John Voight for
helpful comments and suggestions. The influence of the work of Bryden Cais is hard to overstate, and
many of our results are directly inspired by his work, as will be abundantly clear to the reader. Finally,
we thank the anonyomous referee for their patience and very thorough dissection of this manuscript,
spotting a number of mistakes in the original version, and making several suggestions that greatly
improved the paper.

References

[ABBR15] O. Amini, M. Baker, E. Brugallé, and J. Rabinoff. Lifting harmonic morphisms I: Metrized complexes and
Berkovich skeleta. Res. Math. Sci., 2(7):67, 2015. ↑3, 5, 6, 7, 8.

[AI12] F. Andreatta and A. Iovita. Semistable sheaves and comparison isomorphisms in the semistable case. Rend.
Semin. Mat. Univ. Padova, 128:131–285, 2012. ↑13.

[Ber90] V. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields, volume 33 of Math. Surv.
and Monographs. Amer. Math. Soc., 1990. ↑4.

[BL85] S. Bosch and W. Lütkebohmert. Stable reduction and uniformization of abelian varieties I. Math. Ann.,
270:349–379, 1985. ↑4.

[BO83] P. Berthelot and A. Ogus. F-isocrystals and de Rham cohomology I. Invent. Math., 72:159–199, 1983. ↑12.
[BPR11] M. Baker, S. Payne, and J. Rabinoff. On the structure of non-Archimedean analytic curves. ArXiv preprint,

2011. ↑3, 4.
[Buz97] K. Buzzard. Integral models of certain Shimura curves. Duke Math., 87:591–612, 1997. ↑8.
[Cai09] B. Cais. Canonical integral structures on the de Rham cohomology of curves. Ann. Inst. Fourier, 59(6):2255–

2300, 2009. ↑2, 14.
[Cai16a] B. Cais. The geometry of Hida families I: Λ-adic de Rham cohomology. 2016. ↑3, 18, 19.
[Cai16b] B. Cais. The geometry of Hida families II: Λ-adic (ϕ,Γ)-modules and Λ-adic Hodge theory. 2016. ↑3, 18, 19,

20.
[Car86] H. Carayol. Sur la mauvaise réduction des courbes de Shimura. Compositio Math., 59:151–230, 1986. ↑8.
[CGJ95] R. Coleman, F. Gouvêa, and N. Jochnowitz. E2, θ, and overconvergence. Int. Math. Res. Not., (1):23–41,

1995. ↑9.



CRYSTALLINE COHOMOLOGY OF TOWERS OF CURVES 21

[Col03] R. Coleman. Stable maps of curves. Documenta Math., Extra Volume Kato:217–225, 2003. ↑1, 5, 6.
[DM69] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Publ. Math. IHÉS,

36:75–110, 1969. ↑5, 6.
[DR73] P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. In W. Kuyk, editor, Modular

forms in one variable II, volume 349 of LNM, pages 143–316. Springer-Verlag, 1973. ↑8.
[DV13] L. Dembélé and J. Voight. Explicit methods for Hilbert modular forms. In Elliptic curves, Hilbert mod-

ular forms and Galois deformations, Adv. Courses Math. CRM Barcelona, pages 135–198, Basel, 2013.
Birkhäuser/Springer. ↑8.

[Edi90] B. Edixhoven. Minimal resolution and stable reduction of X0(N). Ann. Inst. Fourier, 40(1):31–67, 1990. ↑8.
[Eke85] T. Ekedahl. On the multiplicative properties of the de Rham–Witt complex II. Ark. Mat., 23(1):53–102, 1985.

↑14.
[GK06] E. Goren and P. Kassaei. The canonical subgroup: a "subgroup-free" approach. Comment. Math. Helv.,

81(3):617–641, 2006. ↑2, 9.
[Gro85] M. Gros. Classes de Chern et classes de cycles en cohomologie de Hodge–Witt logarithmique. Mémoires de la

Société Mathématique de France, 21:1–87, 1985. ↑16.
[HK94] O. Hyodo and K. Kato. Semi-stable reduction and crystalline cohomology with logarithmic poles. Astérisque,

223:221–268, 1994. ↑10, 11, 12.
[Hyo91] O. Hyodo. On the de Rham–Witt complex attached to a semi-stable family. Compositio Math., 78(3):241–260,

1991. ↑14, 15.
[Kat89] K. Kato. Logarithmic structures of Fontaine–Illusie. In J.-I. Igusa, editor, Algebraic Analysis, Geometry and

Number Theory (Baltimore, MD, 1988), pages 191–224. Johns Hopkins Univ. Press, Baltimore, MD, 1989.
↑10, 13, 16.

[Kri96] M. Krir. Degré d’une extension de Qnr
p sur laquelle j0(n) est semi-stable. Ann. Inst. Fourier, 46(2):279–291,

1996. ↑19.
[Liu06] Q. Liu. Stable reduction of finite covers of curves. Compositio Math., 142:101–118, 2006. ↑1, 5.
[LL99] Q. Liu and D. Lorenzini. Models of curves and finite covers. Compositio Math., 118:62–102, 1999. ↑6.
[Mes86] J.-F. Mestre. La méthode des graphes. Exemples et applications. In Proceedings of the international conference

on class numbers and fundamental units of algebraic number fields, pages 217–242. Nagoya Univ., 1986. ↑8.
[Moc95] S. Mochizuki. The geometry of the compactification of the Hurwitz scheme. Publ. RIMS, 31(3):355–441, 1995.

↑8.
[MW86] B. Mazur and A. Wiles. On p-adic analytic families of Galois representations. Compositio Math., 59(2):231–264,

1986. ↑19.
[Nak05] Y. Nakkajima. p-Adic weight spectral sequences of log varieties. J. Math. Sci. Univ. Tokyo, 12:513–661, 2005.

↑11, 14, 15, 17.
[Oht00] M. Ohta. Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves II. Math.

Ann., 318(3):557–583, 2000. ↑19.
[Tsu99a] T. Tsuji. p-Adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math.,

137(2):233–411, 1999. ↑17.
[Tsu99b] T. Tsuji. Poincaré duality for logarithmic crystalline cohomology. Compositio Math., 118:11–41, 1999. ↑14.
[Vid04] I. Vidal. Monodromie locale et fonctions zêta des log schémas. In Adolphson et. al., editor, Geometric aspects

of Dwork theory, volume II, pages 983–1038. De Gruyter, 2004. ↑14.
[Wei16] J. Weinstein. Semistable models for modular curves of arbitrary level. Invent. Math., 2016. ↑20.

Department of Mathematics and Statistics, Burnside Hall, 805 Sherbrooke Street West, Montreal,
QC, Canada, H3A 0B9

E-mail address: jan.vonk@mcgill.ca


	Introduction
	1. Specialisation maps and formal fibres
	2. Stable models of correspondences and their skeleta
	3. De Rham–Witt complexes
	4. Crystalline lattices in de Rham cohomology
	5. Crystalline cohomology of towers of curves
	References

