
MODULAR EIGENFORMS AT THE BOUNDARY OF WEIGHT SPACE

JAN VONK

Abstract. Andreatta, Iovita, and Pilloni recently introduced Fp((t))-Banach spaces of overconvergent

t-adic modular forms, whose weight may be considered a “boundary” point of weight space. In an

e�ort to make them concrete and accessible to explicit experimentation, we construct orthonormal

bases, deduce t-adic analogues of certain p-adic results in the literature, and exhibit explicit examples.
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Introduction

This note investigates theFp((t))-Banach spaces of overconvergent modular forms de�ned in [AIP15]

motivated by a desire to make them as concrete as possible. We explicitly construct an orthonormal

basis, which implies that there is a quadratic lower bound for the Newton polygon of the compact

operatorUp on these spaces. The main virtue of our results is that they make these spaces amenable to

explicit computation, and we present some �rst examples of �nite slope eigenforms at the boundary.

Finally, we include a strong t-adic analogue of an observation of Calegari on in�nite slope limits of

sequences of �nite slope overconvergent eigenforms in §3.3.

Coleman’s conjecture on boundary forms. Choose a prime p ≥ 3, and let Λ = ZpJZ×p K be

the Iwasawa algebra. Setting ∆ ⊂ Z×p to be the torsion subgroup, we obtain an isomorphism Λ '
Zp[∆]JtK de�ned by 1 + p 7→ 1 + t. Let Λ◦ = ZpJtK ⊂ Λ be the identity component.

The p-adic theory of modular forms [Kat73, Col97b] gives us, for any weight κ ∈ Spm Λ, a col-

lection of Qp-Banach spaces of r-overconvergent modular forms M †κ(r) of some �xed tame level.
1

These spaces arise as sections of rigid analytic line bundles, de�ned by Pilloni [Pil13] and Andreatta–

Iovita–Stevens [AIS13], and they come equipped with an action of the Hecke algebra. The operator

Up is compact and, in particular, possesses a characteristic power series.

1
We follow the notation of [AIP15], so that sections converge less far into the supersingular locus as r gets larger.

1
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The characteristic power series of Up varies analytically in the weight, yielding

P (t, X) ∈ ZpJtK{{X}},

an entire power series with coe�cients in Λ◦. This integrality was proved by Coleman [Col97a], and

led him to conjecture that an integral theory of p-adic variation of overconvergent modular forms

should exist, so that reduction modulo p of this power series is a meaningful operation:

Conjecture 1 (Coleman). There exists an Fp((t))-Banach space with an action of a compact operator
Up whose characteristic series is the reduction of P (t, X) modulo p.

This conjecture was recently proved by Andreatta–Iovita–Pilloni [AIP15], who constructed such

Banach spaces M†(r) for r large enough using the Igusa tower over Fp. The authors then proceed

by giving an integral geometric construction of modular sheaves on certain formal schemes arising

from modular curves, whose sections are shown to recover M†(r) in characteristic p, and the spaces

M †κ(r) of overconvergent modular forms in characteristic 0. Analogous spaces were constructed for

de�nite quaternion algebras in [LWX17] and for overconvergent cohomology in [JN17].

t-Adic variation of modular forms. The integrality of the theory of Andreatta–Iovita–Pilloni al-

lows one to systematically investigate modular forms over regions of weight space hitherto left largely

unexplored. The most mysterious of these settings is the “boundary weight” which gives rise to the

Fp((t))-Banach spaces M† discussed above. In order to include such forms into the discussion, we will

consider the t-adic regionWt of weight space, which consists of all the valuations | · | ∈ Spa(Λ,Λ)an

for which | t | ≥ |p|. Due to a need to invert p at an early stage in the theory, many results in the

literature are restricted to the p-adic regionWp. In contrast, the integrality of the theory of Andreatta–

Iovita–Pilloni allows us to work in the t-adic region, which we will do below.

Orthonormal basis for M†. The main result of this note is the construction of an explicit orthonor-

mal basis of the Fp((t))-Banach spaces M†(r) for large enough r, which shares similarities with the

basis of Katz expansions considered in [Kat73]. The particular nature of this basis immediately implies

the following e�ective version of the compactness of Up, by an argument due to Wan [Wan98].

Corollary. Let p ≥ 3. There is a quadratic lower bound for the Newton polygon of the characteristic
series of Up on M†(r) for any r ≥ 2.

Explicit experimentation. TheFp((t))-Banach spaces M†(r) are of clear interest, but it is at present

not possible to write down interesting examples beyond reductions of Hida families. As a by-product

of the construction of our basis, we obtain an algorithm for computing M† in the spirit of Lauder

[Lau11]. We present some �rst examples of boundary eigenforms. We then address the phenomenon

of t-adic congruences between eigenforms, and elaborate on a t-adic analogue of an observation of

Calegari in the p-adic setting related to in�nite slope limits of sequences of �nite slope eigenforms.

We note that explicit experimentation with the characteristic series P (t, X) has long been possible,

and has led to the discovery of an abundance of symmetry in the slopes of modular forms, the p-adic

valuation of Up-eigenvalues. Such computations were performed by Bergdall–Pollack [BP16] using a

formula for the coe�cients due to Koike, or in the author’s doctoral dissertation, using the work of

Lauder [Lau11, Von15]. The approach of this note goes further, in that it computes the operator Up
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directly in an explicit basis, rather than just its characteristic series.
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1. The spectral halo

We start by recalling some of the main de�nitions and results from [AIP15]. This section contains

only preliminary material, and no new results.

1.1. The weight space. Let Λ = ZpJZ×p K be the Iwasawa algebra. If we denote ∆ ⊂ Z×p for the

torsion subgroup, then we have an isomorphism Λ ' Zp[∆]JtK de�ned by 1 + p 7→ 1 + t. For any

adic space X , we denote Xan
for its set of analytic points, which are those whose corresponding

valuation has non-open support. The weight space is

W = Spa(Λ,Λ)an,

whose points contain the weight characters Homcts(Z
×
p ,C

×
p ), as well as the boundary points χ cor-

responding to the �nite set of valuations

χ : Λ
red−→ Fp[∆]JtK χ−→ FpJtK

|·|t−−→ R,

where vt : Fp((t))→ R is the t-adic valuation, and χ : ∆→ F×p is any character. There is a bijection

between the charactersχ, the boundary pointsχ, and the connected componentsWχ
of weight space.

Any connected componentWχ
has Λχ ' ZpJtK as its ring of functions, and we simply write Λ◦ for

the ring corresponding to the trivial character.

The regions of weight space de�ned by |p| ≥ | t |, which we call the p-adic regionWp, and |p| ≤ | t |,
which we call the t-adic regionWt, correspond to the Zp-algebras{

Λp = Λ〈t /p〉, Wp = Spa(Λp,Λp)
an

Λt = Λ〈p/ t〉, Wt = Spa(Λt,Λt)
an

We denote Λχt and Λ◦t for the direct factors attached to χ and the trivial character, respectively.

1.2. Modular curves. Let X→ Spf Zp be the formal completion along the special �bre of the mod-

ular curve of full level N ≥ 3 at p - 2N , and let ω = s∗ΩE/X be de�ned via the identity section

s : X→ E to the universal generalised elliptic curve. For any r ≥ 1, we choose a section

H̃ap
r ∈ H0(X, ω⊗p

r(p−1))

that lifts the pr-th power of the Hasse invariant. De�ne for ? ∈ {p, t} the opens X?,r of the admis-

sible blow-ups of X×Spf Zp Spf Λ◦? along (H̃ap
r
, ?) by the following conditions: Locally on any open
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a�noid Spf A such that ω |Spf A ' A, we have

(1)

{
Xp,r ×(X× Spf Λ◦p) Spf A = Spf A〈x〉/(xH̃ap

r − p)
Xt,r ×(X× Spf Λ◦t ) Spf A = Spf A〈x〉/(xH̃ap

r − t)

These formal schemes come equipped with natural inclusion maps and lifts of Frobenius

ι : X?,r+1 ↪→ X?,r, ϕ : X?,r+1 → X?,r, where ? ∈ {p, t}.

1.3. Modular sheaves. The X?,r have a moduli interpretation, and one may construct Igusa cover-

ings on them, which are overconvergent analogues of the coverings in the Igusa tower IG∞?,ord →
X?,ord over the ordinary locus X?,ord of X?,r . Using these Igusa towers, Andreatta–Iovita–Pilloni con-

struct invertible sheaves wp on Xp,r and wt on Xt,r for any r ≥ 3. These sheaves glue on the overlap

of Xp,r and Xt,r , and interpolate the tensor powers of the modular sheaf ω on X in the sense that on

the �bre of

k : Λ◦ → Zp : t 7→ (1 + p)k − 1

the sheaf wp is isomorphic to ω⊗k. The line bundles w? come equipped with a Frobenius operator,

see [AIP15, Theorem 6.2], which is an isomorphism

(2) F : ι∗w? ' ϕ∗w?, ? ∈ {p, t}.

1.4. Spaces of t-adic forms. De�ne the space of t-adic forms by

M†t(r) = M†t(r)[1/ t], where M†t(r) := H0(Xt,r,wt).

Then M†t(r) is a (t)-adically complete and separated Λ◦t -module, and the space of t-adic forms is a

Banach module over Λ◦t [1/ t]. It was shown in [AIP15, Prop. 6.9] that it is a projective Banach module.

We will show in the next section that it is in fact orthonormalisable, by constructing a basis for it.

Finally, we de�ne the Fp((t))-Banach space of boundary forms

M†(r) = M†t(r)⊗Λ◦t
Fp((t)).

Alternatively, it will be denoted by M†(N, r) when we want to explicate the implicit tame level.

The space of t-adic modular forms has a Hecke action via the usual correspondences on modular

curves. Of particular interest for us is the operator Up, which is de�ned via the correspondence

Xt,r+1

Xt,r Xt,r

ι ϕUp :

The operator Up is de�ned as the resulting map

(3) Up : H0(Xt,r,wt)
res−−→ H0(Xt,r+1, ι

∗wt) ' H0(Xt,r+1, ϕ
∗wt)

p−1Trϕ−−−−→ H0(Xt,r,wt),

where the Tate trace p−1Trϕ was constructed in [AIP15, Section 6.3]. This de�nes a compact operator

which has the usual e�ect on q-expansions.
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1.5. Ordinary t-adic forms. We now recall the de�nition of Λ◦-adic modular forms, and establish

that an ordinary Λ◦-adic modular form arises as the q-expansion of a unique section of the line bundle

wt on the ordinary locus. This will be applied to the Eisenstein family in the next section.

A Λ◦-adic modular form of level Γ(N) is an element of Λ◦OJqK, whose specialisation at the ideal

pk,ψ =
(

1 + t−ψ(1 + p)(1 + p)k
)

with k ∈ Z su�ciently large is the q-expansion of a classical weight k modular form of level Γ(N)∩
Γ0(p) with character τ−kψ, where τ is the Teichmüller character. Here, O is the ring of integers in

a �nite extension of Qp and Λ◦O ' OJtK is the corresponding �nite extension of Λ◦. The image of

the ordinary projector eord = limk→∞ U
k!
p is called the space of ordinary Λ◦-adic forms. The space of

Λ◦-adic modular forms of level Γ(N) is denoted by M(Λ◦, N).

Hida gave a geometric interpretation of the space of Λ◦-adic modular forms in terms of the Igusa

tower over the ordinary locus of X. More precisely, de�ne the Igusa tower

π : IG∞ord = Isom
(
Zp, (TpE)ét

)
−→ Xord

to be the Z×p -torsor of trivialisations for the étale part of the Tate module of the universal ordinary

elliptic curve E. If we let κuniv : Z×p → (Λ◦)× be the universal character, then:

Theorem 1.1 (Hida). The q-expansion map from sections that transform via (κuniv)−1

H0(Xord, π∗OIG∞ord
)[(κuniv)−1] −→M(Λ◦, N),

is a Hecke equivariant isomorphism. The space of ordinary Λ◦-adic forms is a �nite free Λ◦-module, and
any specialisation of an ordinary Λ◦-adic form at integer weight k ≥ 1, is overconvergent.

The main idea of [AIP15] is to make an overconvergent construction of an “Igusa tower" analogous

to IG∞ord, trading o� the local analyticity of the universal character near the centre of weight space,

against the existence of higher canonical subgroups near the boundary. As a consequence of the

construction, as well as the theorem of Hida above, it follows that any Λ◦-adic modular form arises

as the q-expansion of a unique section of wt. More precisely, we have

Corollary 1.2. Let χ : ∆→ C×p , then we have by construction

wt |Xt,ord
' Λ◦t ⊗ π∗OIG∞ord

[(κuniv)−1].

In particular, any ordinary Λ◦-modular form is the q-expansion of a unique section of wt over Xt,ord.

We mention also that the results of [AIP15, Section 6] imply that in fact, one may likewise identify

non-ordinary q-expansions of Λ◦-adic modular forms with t-adic modular forms. This follows from

the Riemann Hebbarkeitssatz, known in the context of rigid spaces as the Remmert–Stein theorem,

which guarantees that a bounded function on a dense Zariski open of a normal rigid space must

necessarily extend to a global analytic function. This result is known not to hold for general adic

spaces, but for the sheaves under consideration, it was proved by Andreatta–Iovita–Pilloni.
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1.6. Remark. We brie�y point out how our notation compares to that of [AIP15]. The development

of the theory of t-adic forms in loc. cit. requires a plethora of objects which we did not recall in this

note, allowing us to work with less heavy notation. We have still opted to mimic their notation fairly

closely. The following table compares the notation for some of the objects considered here.

This paper Xt,r Xp,r IGt,r wt

[AIP15] Xr,[1,∞] Xr,[0,1] IG1,r,[1,∞] w[1,∞]

2. Orthonormal bases

In this section, we will show thatM†t(r) is an orthonormalisable Banach module for large r, by

exhibiting an explicit basis for it. We will do this by �rst trivialising wt by a t-adic Eisenstein series,

and then �nding an explicit description of the functions on Xt,r .

2.1. The t-adic Eisenstein family. We start by showing that the q-expansion of the Eisenstein fam-

ily de�nes an overconvergent t-adic modular form in the sense of Andreatta–Iovita–Pilloni [AIP15].

Let ζp(t) ∈ t−1(Λ◦)× be the p-adic zeta function with trivial tame character. The prototypical example

of an ordinary Λ◦-adic modular form is the level 1 Eisenstein family

E(q) = 1 +
2

ζp(t)

∑
n≥1

σ(n)qn ∈ Λ◦JqK,

where σ is the power series that specialises to

∑
d|n,(p,d)=1 ψ(d)dk−1

at pk,ψ . We show that in fact,

this is the q-expansion of an element in M†t(r) for any r ≥ 3.

Proposition 2.1. For any r ≥ 3, there is a unique form E ∈ M†t(r) whose q-expansion is the series
E(q) de�ned above. It trivialises the line bundle wt over Xt,r for some large enough r.

Proof. From Corollary 1.2, we know that the formal series E(q) ∈ Λ◦JqK is the q-expansion

of a unique section in H0(Xt,ord,wt). From the natural inclusion Xt,ord ↪→ Xt,r , we obtain a

morphism on Up-ordinary sections:

ψ : eordH0(Xt,r,wt) −→ eordH0(Xt,ord,wt).

For all r ≥ 2, this is an isomorphism after we tensor with Λ◦t/pk,χΛ◦t when k ≥ 2. It follows from

the topological Nakayama lemma that ψ is an isomorphism of Λ◦t -modules, from which it follows

that E(q) is the q-expansion of a section over Xt,r for all r ≥ 3. Since E(q) ≡ 1 (mod t), it

de�nes an invertible section on Xt,ord, which by the maximum principle means it is an invertible

section on Xt,r for some large enough value of r. �

2.2. A basis forM†t(r). We will now �nd an explicit basis for the space of t-adic modular forms, for

r large enough. We note that the basis we construct depends on a choice of splittings of multiplication

by our lift of the Hasse invariant, and is not canonical.

Proposition 2.2. For r large enough, M†t(r) admits an orthonormal Λ◦t -basis of the form

(4)

{(
t

H̃ap
r

)n
E bm,n

}
m,n

where the bm,n are classical modular forms of weight npr(p− 1).
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Proof. Let π : L → Xt the line bundle attached to the invertible sheaf ω⊗p
r(p−1)

. The partial

blow-up ι : Xt,r → Xt gives an exact sequence

0→ π∗OL
·(H̃ap

r−t)−−−−−−→ π∗OL −→ ι∗OXt,r → 0

of sheaves on Xt. The sheaf π∗OL is the direct sum of the line bundles ω⊗ip
r(p−1)

for i ≥ 0.

When i ≥ 1, the Kodaira–Spencer isomorphism shows that ω⊗ip
r(p−1)

has degree at least 2g−1,

where g is the genus of X. By Serre duality,

H1(Xt, ω
⊗ipr(p−1)) = 0, for i > 0.

From the long exact sequence in cohomology, we extract the 4-term exact sequence

0 −→ H0(Xt, π∗OL)/(H̃ap
r − t) −→ H0(Xt,r,OXt,r) −→ H1(Xt,OXt)

·(− t)−→ H1(Xt,OXt)

As H1(Xt,OXt) is a �nite free Λ◦t -module, multiplication by − t is injective. It follows that the

�rst injection is an isomorphism, so that the ring of functions on Xt,r is isomorphic to⊕
n≥0

H0(Xt, ω
⊗npr(p−1))/(H̃ap

r − t).

From this description, we obtain an explicit basis in essentially the same way as Katz [Kat73], by

noting that the maps of �nite free Zp-modules

·H̃ap
r

: H0(X, ω⊗np
r(p−1)) −→ H0(X, ω⊗(n+1)pr(p−1))

given by multiplication by H̃ap
r

are split, since the cokernel on sheaves reduces to a skyscraper

sheaf mod p, which is acyclic, see [Kat73, Lemma 2.6.1]. We may therefore choose a basis

{am,n}m,n for a complementary subspace of the image, consequently giving us a basis for the

space of functions on Xt,r . �

Remark. The above result resolves the tension observed by Coleman [Col97a, Col13] in the rate

of p-adic overconvergence of the explicit orthonormal bases of Katz as one approaches the boundary

of weight space, by working with the t-adic topology instead of the p-adic topology.

2.3. Specialisation to the boundary. By the previous result, we obtain the q-expansions

(5) {tnE bm,n}m,n
of an explicit orthonormal basis of M†(r), for large enough r, by reduction modulo p of the basis for

the space of t-adic modular forms. We now make a few observations about this basis.

We start by noting that a �nite slope eigenform in M†(r) may be analytically continued to r = 2

using standard arguments. Indeed, if we assume that Upf = λf , for some λ 6= 0. Then

f = λ−1Upf ∈ M†(r − 1)

when r ≥ 3, from the contractiveness ofUp. This shows that f analytically continues to an eigenform

in M†(2). We would be able to continue it further, but the boundary modular sheaves were only

de�ned for r ≥ 2 in [AIP15]. This analytic continuation compensates the lack of control on r in

Proposition 4, and we will henceforth often drop r from the notation.
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Following an argument of Wan [Wan98], we may ‘quantify’ the compactness of the operator Up
on M†(r), and prove that there is a quadratic lower bound for its Newton slopes. It is quite possible

that one could have deduced such a bound prior to the work of Andreatta–Iovita–Pilloni. However,

the estimate (6) appearing in the proof is an ingredient for the algorithms discussed below.

Corollary 2.1. Let p ≥ 3. There exists a quadratic lower bound for the Newton polygon of the charac-
teristic series of Up on M†(N, r) for any level N ≥ 3.

Proof. Choose r ≥ 2 large enough, and choose a basis {em,n}m,n of M†(N, r) as in the statement

of Proposition 4. We write

Up(em,n) =
∑
a,b

ca,bm,nea,b,

for some ca,bm,n ∈ FpJtK, which we think of as the matrix entries of Up with respect to our chosen

basis. Since Up maps M†(r) to M†(r − 1), we get the estimate

(6) vt

(
ca,bm,n

)
≥ b(p− 1)p−r.

The dimension of the spaces H0(X, ω⊗np
r(p−1)) of classical mod p modular forms has linear

growth in n by Riemann–Roch, so that after taking determinants, we obtain a quadratic lower

bound on the Newton polygon of Up, see also [Wan98, Lemma 3.1]. �

This result is consistent with - though much weaker than - the expectation that the slope sequence

of boundary forms is a superposition of a �nite number of arithmetic progressions.

2.4. Non-trivial characters. We make some comments about the spaces of boundary forms M†χ(r)

at boundary points χ corresponding to the p − 2 non-trivial characters χ : ∆ → F×p . To de�ne the

spaces M†χ(r), denote the �rst layer of the aforementioned overconvergent Igusa tower by

h : IG?,r −→ X?,r

which is a Galois cover with group ∆. Furthermore, [AIP15, Section 6.8] de�nes for any character

χ : ∆→ F×p the coherent sheaf

τχ? = h∗OIG?,r [χ−1]

whose analytic �bre is an invertible sheaf, and wχ
? = w? ⊗ τχ? . There is a Frobenius operator F as in

(2) on the analytic �bre of the sheaves wχ
? , though such a structure is not available integrally.

We de�ne the space of t-adic forms with nebentype χ by

M†t(r)χ = M†t(r)
χ[1/ t], where M†t(r)

χ := H0(Xt,r,w
χ
t ).

and likewise we de�ne the Fp((t))-Banach space of boundary forms

M†χ(r) = M†t(r)
χ ⊗Λ◦t

Fp((t)).

The spaces M†t(r)χ are very similar to the spaces M†t(r) considered above, and a similar analysis

should lead to an explicit basis of the shape of (4), where the bm,n are mod pmodular forms of weight

npr(p−1) and character χ on the Igusa curve. Some issues arise when making this into an algorithm,

most notably that [AIP15, Theorem 6.2.4] does not guarantee thatUp preserves the integral structures

M†t(r)
χ

. This might be resolved when bypassing M†t(r)
χ

and using the direct construction of the
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spaces M†χ in characteristic p given in [AIP15, Section 4]. We will not undertake a careful study of

these issues here, as we expect to be able to see most interesting behaviour for the trivial character

already. Ignoring these issues, we still obtain an algorithm for non-trivial characters, see §3.1.

3. t-Adic Hecke eigenfunctions

Our results were primarily motivated by the desire to �nd a method for explicit experimentation

with the space of boundary forms M†. Inspired by the work of Lauder [Lau11], see also [Von15], we

have implemented an algorithm in magma [BCP97], and will present some �rst examples here.

3.1. The algorithm of Lauder. The algorithm of Lauder [Lau11] in the setting of p-adic modular

forms may be adapted to compute with the spaces of boundary forms M†. We will not discuss the

complexity or precision bounds. For simplicity, we focus on working in level 1.

Approximating boundary forms is computationally challenging, and whereas the work of Lauder

is aided by heavily optimised linear algebra routines over Z /pm in magma, we work over FpJtK/ tm,

a�ecting the speed and memory requirements. One may use an explicit presentation of the ring of

modular forms to obtain an e�cient algorithm in level 1, which is available on the author’s webpage,

in the hope that it might be of use to someone. We were able to do some computations in higher level,

though making our implementation practical in general would require more work.

When χ is not trivial, in addition to the theoretical gaps in §2.4, there are other justi�cations nec-

essary, e.g. in our computation of forms on the mod p Igusa curve. Ignoring all issues, we do seem to

obtain output as expected. As the computation requires working in level Γ1(p), obtaining eigenforms

is prohibitively di�cult, though we do obtain some slope sequences that behave as expected.

3.2. t-Adic eigenfunctions. Given an eigenform f =
∑

n≥0 anq
n ∈ M†χ(N) for all Hecke operators

which has non-zero Up-eigenvalue, we may �nd a t-adic family f passing through f . The Galois

representations associated to a dense set of specialisations at arithmetic weights in characteristic 0

interpolate to give a semi-simple continuous representation

ρf : Gal(Q/Q) −→ GL2

(
Fp((u))

)
,

where Fp((u)) is a �nite extension of Fp((t)). This representation is unrami�ed outside Np, and for

all primes l - Np we have that Tr ρf (Frobl) = al.

Example 1. Let p = 5 and χ both the trivial character, and the quadratic Dirichlet character of

modulus 5. We compute that the compact operator U5 on M†χ(SL2(Z)) has t-adic slope sequences

χ = 1 : 01,11,31,41,61,81,91,111,121,141,161,171,191,201,221,241, . . .

χ =
( ·

5

)
: 01,21,41,51,71, . . .

where the slope is given by the bold number, and the subscript denotes its multiplicity as a zero of

the characteristic series. We remind the reader that the computation for the non-trivial character

relies on a number of unchecked assertions. As was pointed out by an anonymous referee, it is worth

noting that as predicted by [LWX17, Theorem 1.5] the �rst sequence has period (p− 1)2/2 = 8, and

is obtained from the second by adding 4. We compute that the unique eigenform f of slope 4 has the

following Fourier coe�cients, where we have normalised the form so that a1(t) = 1:
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n Fourier coe�cient an(t), for χ = 1

2 1 + 3 t+4 t2 +4 t4 +3 t5 +4 t6 +3 t7 +2 t8 +3 t9 +O(t10)

3 2 + t+4 t2 +t3 +3 t4 +2 t7 +2 t8 +t9 +O(t10)

4 3 + 4 t2 +4 t3 +4 t4 +3 t5 +4 t6 +2 t7 +t9 +O(t10)

5 4 t4 +2 t5 +3 t6 +t9 +O(t10)

6 2 + 2 t+2 t3 +3 t5 +4 t6 +3 t7 +t8 +3 t9 +O(t10)

7 1 + t5 +3 t6 +4 t7 +t8 +3 t9 +O(t10)

8 4 t+3 t2 +3 t3 +4 t7 +4 t8 +4 t9 +O(t10)

9 2 + t+4 t3 +3 t4 +4 t5 +4 t7 +t8 +4 t9 +O(t10)

10 4 t4 +4 t5 +2 t7 +3 t8 +t9 +O(t10)

The Hecke algebra relations are visibly satis�ed for the coe�cients tabulated here, we see for in-

stance that a2(t)a3(t) ≡ a6(t) (mod t10). All Hecke algebra relations were in fact satis�ed for the

�rst 200 coe�cients, which we computed up to precision t100
. The author �nds this a very convincing

con�rmation of the correctness of our algorithms, which solely involves the operator U5.

Example 2. We compute that the operator U11 on M†(SL2(Z)) has slope sequence

01,11,21,31,42,51,61,71,92, . . .

We computed the eigenforms f, g of slopes 3 and 5, which have the same residual representations,

but di�erent �rst order deformations. The �rst few prime coe�cients of f and g are:

n an(f) an(g)

2 6 + 4 t+7 t2 +9 t3 +7 t4 +4 t5 +2 t6 +O(t7) 6 + 3 t+8 t2 +7 t3 +7 t4 +5 t5 +O(t7)

3 8 + 8 t+7 t2 +10 t3 +4 t4 +8 t5 +10 t6 +O(t7) 8 + 5 t+6 t2 +10 t3 +8 t4 +t5 +8 t6 +O(t7)

5 9 + 3 t2 +4 t3 +4 t5 +4 t6 +O(t7) 9 + 9 t+5 t2 +5 t3 +8 t4 +9 t5 +7 t6 +O(t7)

7 6 + 5 t+ t2 +7 t3 +t4 +2 t5 +t6 +O(t7) 6 + 5 t2 +3 t3 +6 t4 +2 t5 +4 t6 +O(t7)

11 t3 +8 t4 +9 t5 +3 t6 +O(t7) t5 +8 t6 +O(t7)

13 6 + 10 t+5 t2 +6 t3 +2 t4 +7 t5 +6 t6 +O(t7) 6 + 10 t+ t2 +t3 +2 t4 +7 t5 +3 t6 +O(t7)

17 1 + 10 t2 +3 t3 +4 t4 +5 t5 +10 t6 +O(t7) 1 + 9 t+8 t2 +5 t3 +2 t4 +6 t5 +9 t6 +O(t7)

19 9 + 4 t+9 t3 +9 t4 +8 t5 +3 t6 +O(t7) 9 + 8 t+4 t2 +2 t4 +4 t5 +8 t6 +O(t7)

23 2 + 8 t+6 t2 +7 t3 +6 t4 +5 t5 +9 t6 +O(t7) 2 + 3 t+7 t2 +10 t3 +2 t4 +4 t5 +9 t6 +O(t7)

29 6 + 8 t+6 t2 +t3 +8 t4 +9 t5 +t6 +O(t7) 6 + 9 t+7 t2 +7 t3 +8 t4 +7 t5 +4 t6 +O(t7)

3.3. Limits of in�nite t-adic slope. It was proved in [BC05] by an explicit parametrisation of the

relevant region in X0(2), which has genus 0, that when k = 0, the n-th slope of 2-adic eigenforms in

M †0 is equal to

v2(λn) = 1 + 2v2

(
(3n)!

n!

)
,

with multiplicity 1. Calegari [Cal13] observes that if one lets ϕn be the 2-adic overconvergent eigen-

form in M †0 of eigenvalue λn, then it seems that on the level of q-expansions we have

ϕ2n −→ ϕ∞ =

∞∑
n=1

∑
2-d|n

1

d

 qn,

which is the 2-depletion of the weight 0 Eisenstein series, a form of in�nite slope. This has the �avour

of the results of Coleman–Stein [CS04] on the approximation of in�nite slope twists of �nite slope

eigenforms by sequences of �nite slope eigenforms of various weights, except that the weight in
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Calegari’s observation remains constant throughout. Below, we will describe a similar phenomenon

at the boundary. It is not hard to show that in the particular case we will consider, a convergent

sequence of eigenforms must exist:

Proposition 3.1. If all �nite slope eigenforms fi ∈ M†χ(N) are de�ned over FpJtK, then the sequence
of q-expansions with the uniform p-adic topology {fi(q)}i contains a convergent subsequence.

Proof. Consider a modular representation ρ : GQ → GL2(Fp) unrami�ed outside Np. The

functor from the category of complete local NoetherianZp-algebras to the category of sets, which

sends an object A to the set of continuous representations ρ : GQ → GL2(A) such that ρ is

unrami�ed outside Np, and reduces to ρ modulo the maximal ideal, is represented by

ρ� : GQ → GL2(R�
ρ ),

for a topologically �nitely generated Zp-algebraR�
ρ . This implies that the set of FpJtK-points on

Spf R�
ρ is pro�nite. Any eigenform f ∈ M†χ(N) whose associated representation reduces to ρ

gives rise to a point of Spf R�
ρ , and as the number of residual representation unrami�ed outside

Np is �nite, the compactness of the set of FpJtK-points forces the sequence of q-expansions of

eigenforms in M†χ(N) to have a convergent subsequence. �

Experimentally, we observe even more: a strong form of continuity in the index set, and very rapid

convergence. Let p = 3, then we compute that the t-adic slope sequence of U3 on M†(SL2(Z)) is

01,21,41,61,81,101,121,141, . . .

It was shown by Roe [Roe14] that indeed v3(λn) = 2n, where Upfn = λnϕn is ordered by ascending

slope. In fact, a computation of the �rst 12 eigenforms suggests that the leading coe�cient is

λn = (−1)n t2n + O(t2n+1).

All ϕn are then (provably) de�ned over FpJtK, so that there certainly must be a subsequence of (ϕn)n
that converges as a q-expansion. Our computations suggest something much more precise. For in-

stance, we compute the following table:
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n an(ϕ0) an(ϕ1)

2 t+2 t2 +2 t3 +t4 +2 t5 +2 t9 +O(t10) 2 t+2 t2 +2 t4 +t5 +2 t6 +t7 +t8 +2 t9 +O(t10)

3 1 2 t2 +2 t4 +t5 +t6 +2 t7 +O(t12)

5 2 t+ t3 +t4 +2 t6 +2 t7 +t9 +O(t10) t+2 t2 +2 t3 +t6 +t8 +O(t10)

7 2 + 2 t+ t2 +2 t3 +t4 +2 t5 +t6 +2 t7 +t8 +O(t10) 2 + 2 t+ t2 +2 t4 +2 t7 +2 t8 +O(t10)

11 t+2 t2 +t9 +O(t10) 2 t+2 t2 +2 t3 +t5 +2 t8 +O(t10)

n an(ϕ3) an(ϕ4)

2 2 t+ t2 +t3 +2 t4 +t5 +t6 +t7 +2 t9 +O(t10) t+ t2 +t4 +2 t5 +O(t10)

3 2 t6 +t9 +2 t10 +2 t11 +t12 +2 t13 +t14 +t15 O(t16) t8 +t10 +t11 +2 t13 +2 t14 +2 t16 +O(t18)

5 t+2 t3 +2 t4 +2 t7 +2 t8 +t9 +O(t10) 2 t+ t2 +t3 +O(t10)

7 2 + 2 t+ t2 +2 t3 +t4 +2 t5 +t6 +2 t9 +O(t10) 2 + 2 t+ t2 +2 t4 +t8 +2 t9 +O(t10)

11 2 t+ t2 +t6 +t7 +t9 +O(t10) t+ t2 +t3 +2 t5 +2 t6 +t7 +2 t8 +t9 +O(t10)

n an(ϕ9) an(ϕ10)

2 2 t+ t2 +t3 +2 t4 +t5 +t9 +O(t10) t+ t2 +t4 +2 t5 +t6 +2 t7 +2 t8 +t9 +O(t10)

3 2 t18 +O(t19) t20 +O(t21)

5 t+2 t3 +2 t4 +t6 +t7 +2 t9 +O(t10) 2 t+ t2 +t3 +2 t6 +2 t8 +O(t10)

7 2 + 2 t+ t2 +2 t3 +t4 +2 t5 +t6 +2 t7 +t8 +O(t10) 2 + 2 t+ t2 +2 t4 +2 t7 +2 t8 +O(t10)

11 2 t+ t2 +2 t9 +O(t10) t+ t2 +t3 +2 t5 +t8 +O(t10)

As the reader may observe, this suggests, amongst other things, the continuity of the map N →
Spf R�

ρ at the boundary. We calculated the �rst 300 coe�cients up to precisionO(t200), and compiled

some experimentally observed congruences between the �rst 12 eigenforms below. We will use the

notation f (i)
for the twist of a form f by the i-th power of the Teichmüller character:

i j vt
(
ϕ

(i)
i − ϕ

(j)
j

)
i j vt

(
ϕ

(i)
i − ϕ

(j)
j

)
i j vt

(
ϕ

(i)
i − ϕ

(j)
j

)
0 1 2 1 2 2 2 3 2

0 2 2 1 3 2 2 4 2

0 3 6 1 4 6 2 5 6

0 4 2 1 5 2 2 6 2

0 5 2 1 6 2 2 7 2

0 6 6 1 7 6 2 8 6

0 7 2 1 8 2 2 9 2

0 8 2 1 9 2 2 10 2

0 9 18 1 10 18 2 11 18

This table suggests that any Teichmüller twist of any boundary eigenform, which is of in�nite slope,

arises as the limit of a convergent sequence of �nite slope eigenforms at the boundary. Moreover, it

is suggested by our data that perhaps the rate of convergence is linear, in the sense that

v3(i− j) ≥ n ⇒ ϕ
(i)
i ≡ ϕ

(j)
j (mod t2·3n)

We note that the simplicity of the expression 2·3n is in stark contrast with the observations of Calegari

in the p-adic case. Finally, one is led to speculate that similar in�nite slope limits might exist even in

Coleman families, if one considers the (p, t)-adic topology on q-expansions.
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