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Abstract. In these notes, we aim to give a friendly introduction to the theory of overconvergent modular forms

and some examples of recent arithmetic applications. The emphasis is on explicit examples and computations.

Introduction

The theory of p-adic modular forms has its origins in the work of Serre and Katz in the 1970’s, and has

seen a spectacular amount of development and applications in number theory since then. In this note, we

aim to provide its context and sketch the rudiments of the theory, adopting an approach where we favour

explicit examples and computations over proofs. This is done with the hope that the uninitiated reader

may build up some intuition and working knowledge as a stepping stone to the literature on the subject,

which can be somewhat daunting to outsiders, but for which there is no substitute if one wants to become

a serious user. We have included references to many of the original texts.

We should warn the reader that by its very design, this article is doomed to be incomplete, and several

crucial developments are not discussed in this text. One notable example is that we have omitted a discussion

of the theory of overconvergent modular symbols, which often provides an alternative framework that is in

its own way highly suited for explicit computation. The author wishes to apologise for this omission, and

many others, with the added clari�cation that this is merely a re�ection of his own lack of experience with

this approach. Likewise, many recent exciting developments in the area, such as the burgeoning topic of

higher Hida theory, will unfortunately not be discussed in any detail here. Finally, it is important to note

that a great many excellent (expository) sources on the theory of overconvergent modular forms already

exist, which include for instance the beautiful treatments of Emerton [Eme11] and Calegari [Cal13].

This article is a reworked version of the notes for a mini-course taught by the author at a summer school

on Iwasawa theory, held in Bordeaux 19–22 June 2019. We are grateful to the organisers of this conference

for the invitation to give these lectures, and to Mark Goresky for the invitation to publish them in the

Bulletin of the AMS. The author is supported by NSF Grant No. DMS-1638352. All computations were

performed using the Sage [S
+

20] and Magma [BCP97] computer algebra systems.
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1. Congruences between modular forms

We start by recalling some basic de�nitions, and motivate the theme of these notes by discussing some

classical congruences for the Ramanujan ∆-function, a weight 12 modular form of level 1. These illustrate

di�erent types phenomena, and we highlight the features we wish to explore in these notes.

1.1. Modular forms. Suppose Γ ⊆ SL2(Z) is a �nite index subgroup, then Mk(Γ) denotes the space of

modular forms of weight k ∈ Z, that is the space of holomorphic functions f on the Poincaré upper half

planeH := {z ∈ C | Im(z) > 0} which satisfy the transformation law

(1) f

(
az + b

cz + d

)
= (cz + d)kf(z), for all

(
a b

c d

)
∈ Γ

and are holomorphic at the cusps of Γ. The subspace of cuspforms consists of those functions which vanish

at all the cusps, and is denoted by Sk(Γ). In these notes, Γ will usually be given by the congruence subgroup

(2) Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Any modular form f ∈Mk(Γ0(N)) is invariant under translation, and admits a Fourier expansion

(3) f(q) = a0 + a1q + a2q
2 + . . . , q = e2πiz.

This will be referred to as its q-expansion, and the ai ∈ C are called its Fourier coe�cients. We refer to a0
as the constant term of f , and the ai for i ≥ 1 as its higher Fourier coe�cients. When a1 = 1, we say f is

normalised.

Classical examples of modular forms are given by the Eisenstein series, which are constructed as follows.

For any even k ≥ 4, we have the weight k normalised Eisenstein series

(4)

Gk(z) =
∑

(m,n)∈Z2\(0,0)

(mz + n)−k

=
−Bk
2k

+
∑
n≥1

σk−1(n)qn,

where Bk is the k-th Bernoulli number (see equation (29)) and where σr =
∑
d|n d

r
is the divisor function.

They de�ne modular forms of weight k for the full modular group SL2(Z). We note that for k = 2, the

series de�ning Gk fails to converge absolutely, and indeed we have M2(SL2(Z)) = 0. We will see in § 2.5

that the q-expansion above still has meaning for k = 2 as a p-adic modular form.

The dimension of Mk and Sk may typically be calculated using Riemann–Roch, and the theory of mod-

ular symbols allows one to compute, to any desired q-adic accuracy, a set of q-expansions of a basis for it.

For more details on these computations, see the detailed treatment of Stein [Ste07].
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1.2. The Hecke algebra. Two central aspects of the theory of modular forms are the action of the Hecke

algebra, and associated Galois representations, which we brie�y discuss now.

The spaces of modular formsMk(Γ0(N)) and Sk(Γ0(N)) are �nite-dimensional, and they are equipped

with an action of the Hecke algebra, generated by operators Tp for any prime p, where it is customary to

use the notation Up whenever p | N . In terms of q-expansions (3) they are given by the expressions

(5)

Tpf(q) =
∑
n≥0

anpq
n + pk−1

∑
n≥0

anq
pn p - N,

Upf(q) =
∑
n≥0

anpq
n p | N.

Any modular form that is an eigenvector for all these Hecke operators is called an eigenform. The Eisenstein

series Gk de�ned in (4) is a simple example of an eigenform, which satis�es

(6) TpGk = (1 + pk−1)Gk .

Note that the eigenvalue (1 + pk−1) is equal to the divisor function σk−1(p), and therefore also the p-th

Fourier coe�cient of Gk displayed in (4). One can verify from the expressions (5) that this is always the

case; if f is a normalised eigenform, then its eigenvalue for Tp or Up is equal to its p-th Fourier coe�cient.

For an introduction to the basic properties of Hecke operators, see Diamond–Shurman [DS05].

Many spectacular results in number theory revolve around the notion of Galois representations. In what

follows, this will always mean a continuous representation

(7) ρ : GQ −→ GL2(k)

where GQ = Gal(Q/Q) is the absolute Galois group of Q, and k is either the �eld of complex numbers

C (in which case ρ is called an Artin representation), or a p-adic �eld such as Qp. Important examples of

the latter arise from elliptic curves. Suppose E is an elliptic curve de�ned over Q, choose a prime p, and

consider the p-adic Tate module, obtained from the inverse limit of the torsion points onE of p-power order

(8) Qp⊗Zp

(
lim←−
n

E[pn]

)
, where E[pn] = Ker(E

×pn−→ E),

which is a 2-dimensional Qp-vector space. This space has a natural action of the Galois group GQ, given

by the Galois action on the coordinates of the pn-torsion points on E, which are algebraic numbers. Many

important arithmetic properties of the elliptic curve E can be recovered from this Galois representation.

For instance, for any prime ` 6= p of good reduction for E we have that

(9) Tr ρ(Frob`) = `+ 1− |E(F`)|.

In other words, the trace of the matrix of Frobenius at ` is related to the number of points of E over the

�nite �eld F`. It is striking that this representation depends on the choice of a prime p, but the traces of

Frobenius at primes ` 6= p of good reduction for E are integers, and are independent of the choice of p.

Suppose f is an eigenform of level N and weight k = 2, where N is the conductor of E. We say that f

is attached to E if the traces of Frobenius elements (9) are equal to the Fourier coe�cients a` of f . In other

words, this means that for all but �nitely many ` we have

(10) a` = `+ 1− |E(F`)|.

Important developments, culminating in the work of Wiles [Wil95], Taylor–Wiles [TW95], and Breuil–

Conrad–Diamond–Taylor [BCDT01] show that for any elliptic curveE over Q, there exists a modular form
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that is attached to it in this sense. This has led not just to a proof of Fermat’s Last Theorem, but subsequent

developments continue to this day to settle long-standing conjectures in number theory.

Remark. We brie�y mention that the converse was known much earlier. That is, a construction of

Eichler–Shimura attaches an elliptic curve E to any eigenform of weight k = 2 with integer Fourier co-

e�cients. Generally, to any normalised cuspidal eigenform f of weight k one may attach a 2-dimensional

Galois representation ρ of GQ, which is unrami�ed at all primes ` away from a �nite set, and satis�es

(11) det (1− ρ(Frob`)T ) = 1− a`T + `k−1T 2

where a` is the `-th Fourier coe�cient of f . When k ≥ 2 this representation is valued in a non-archimedean

local �eld, and it was constructed by Deligne [Del71], though it is no longer attached to an elliptic curve as

in the aforementioned construction for k = 2 due to Eichler–Shimura. When k = 1 it is an Artin represen-

tation, constructed by Deligne–Serre [DS74] from the representations in higher weight via congruences.

1.3. Some examples of congruences. The Ramanujan ∆-function is the unique normalised cusp form of

weight 12 for the group Γ = SL2(Z). Its q-expansion is given by the in�nite product due to Jacobi:

(12) ∆(q) = q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn

This explicit product allows us to easily establish a number of congruences between the Fourier coe�cients

of ∆ and those of various other modular forms, going back to the early twentieth century. For the reader

who would like to inspect these manually, we tabulate its �rst few Fourier coe�cients τ(p) for p prime:

(13)

p 2 3 5 7 11 13 17

τ(p) −24 252 4830 −16744 534612 −577738 −6905934

p 19 23 29 31 37 41 43

τ(p) 10661420 18643272 128406630 −52843168 −182213314 308120442 −17125708

Example 1. We begin with a congruence that appears in the work of Ramanujan [Ram16]. Consider the

weight k Eisenstein series Gk introduced in (4). For k = 12, its constant term is equal to
691

65520 , whereas

for k = 6 the constant term is
−1
504 . Since the space M12(SL2(Z)) is two-dimensional, spanned by G12

and ∆, the form G2
6 must be a linear combination of the two. Computing the �rst two terms of all three

q-expansions, we �nd that

(14)

691

65520
· 5042 ·G6(q)2 = G12(q)− 756

65
∆(q)

and since all three modular forms involved have 691-integral q-expansions, we obtain

(15) ∆(q) ≡ G12(q) (mod 691).

In particular, we see that for any prime p, we get the celebrated Ramanujan congruences

(16) τ(p) ≡ 1 + p11 (mod 691).

For a beautiful and very detailed expository discussion of this example in the broader context of ideal class

groups of cyclotomic �elds and Galois representations, see Mazur [Maz11].
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Example 2. This example is due to Wilton [Wil30], and establishes a congruence modulo 23 between

∆ and a certain form of weight 1. We have the following congruences
1

for ∆:

(17)

q

∞∏
n=1

(1− qn)24 ≡ q1/24
∞∏
n=1

(1− qn) · q23/24
∞∏
n=1

(1− q23n) (mod 23)

≡ 1

2

∑
u,v∈Z

(
qu

2+uv+6v2 − q2u
2+uv+3v2

)
(mod 23)

where the �rst is a consequence of the fact that for any prime p, the binomial coe�cient

(
p
i

)
is divisible by

p for all 0 < i < p, and the second follows from a calculation using the Euler identity

(18)

∞∏
n=1

(1− qn) =
∑
n∈Z

(−1)nq
3n2+n

2 .

It is a classical result, see for instance Hecke [Hec26], that right hand side of (17) is a modular form of weight

one. It is in fact a Hecke eigenform, with an associated Artin representation that we can identify easily:

The quadratic �eld Q(
√
−23) has class number 3, and its Hilbert class �eld H is obtained by adjoining a

root of the cubic polynomial

(19) f(x) = x3 − x− 1,

which has discriminant −23. The natural quotient gives us

(20) GQ −→ Gal(H/Q) ' S3 −→ GL2(C)

from the unique 2-dimensional irreducible representation of S3. This is the 2-dimensional Artin represen-

tation attached to the above weight one form. In particular, this means that the congruence class of τ(p)

modulo 23 may be worked out from the splitting behaviour of the prime p in the extension H/Q. The

reader may enjoy verifying in general, or simply checking on a few small values of ` in the table (13), that

this boils down to the statement
2

that for any prime p 6= 23 we have

(21)

τ(p) ≡ 0 (mod 23) if (−23/p) = −1,

τ(p) ≡ 2 (mod 23) if (−23/p) = 1 and p = u2 + 23v2,

τ(p) ≡ −1 (mod 23) if (−23/p) = 1 and p 6= u2 + 23v2.

Example 3. As in the previous example, an elementary divisibility of binomial coe�cients allows us to

obtain from the in�nite product expansion the following congruence for ∆(q)

(22) ∆(q) = q

∞∏
n=1

(1− qn)24 ≡ q
∞∏
n=1

(1− qn)2(1− q11n)2 (mod 11)

The right hand side is a weight 2 normalised cusp form of level Γ0(11). It is associated to the elliptic curve

(23) E : y2 + y = x3 − x2 − 10x− 20,

so that we obtain in particular the following congruences for p 6= 11:

(24) τ(p) ≡ p+ 1− |E(Fp)| (mod 11).

The reader may enjoy verifying this for a few small primes, using the table (13) and the equation (23).

Unfortunately, the law governing the association p 7→ p+ 1− |E(Fp)| cannot be made explicit in the same

elementary terms as we did in the previous two examples in (16) and (21). The reason for this was explained

1
The reader familiar with the Dedekind η-function – which is a modular form of weight 1/2 for some character χ24 of the

metaplectic double cover of SL2(Z) – will recognise the form on the right hand side as η(q)η(q23).

2
We use the notation (a/p) for the Legendre symbol for p - a, which equals 1 if a is a square modulo p, and −1 otherwise.
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by Shimura [Shi66], since this law is governed by the traces of the 11-adic representation attached to the

elliptic curve (23), and Shimura showed that its mod 11 reduction has image GL2(F11). Since this group is

not solvable, the law is equivalent to the splitting behaviour of primes p in a non-solvable extension of Q,

which is in contrast with Example 2, where the relevant group was S3.

1.4. The context of this article. The three examples of congruences (15), (17), (22) are of very di�erent

�avours, and illustrate di�erent but related phenomena that arise in the p-adic theory of modular forms:

• The �rst is a congruence between a cusp form and an Eisenstein series, of the same weight. Such

congruences are central in Iwasawa theory, and related to the notion of the Eisenstein ideal, see

Mazur [Maz77]. We will not discuss this theme, but mention that this is a fascinating topic that re-

mains today an active area of research, see for instance [Mer96, CE05, Lec18, WWE20]. A beautiful

introduction to the ideas in this area can be found in Mazur [Maz11].

• The second and third are both congruences between two cusp forms, of di�erent weights. This res-

onates with the framework of p-adic families of modular forms, as developed by [Hid86b, Hid86a,

Col97b, CM98] and many others, and it is these types of congruences that form the focus of this

document. We note that both these examples are of a very di�erent nature. Example 2 exhibits

a congruence between a modular form of weight 1 and one of higher weight
3
, and results in an

elementary description of the congruence class of τ(p) modulo 23. Example 3 on the other hand

exhibits a congruence with a form associated to an elliptic curve. There is no similarly elementary

characterisation of the congruence class of the τ(p) modulo 11.

In these notes, we will focus primarily on the theme of congruences between modular forms of di�erent

weights, and p-adic families. Traditionally, the theory was built around the prototypical example of the

Eisenstein family, as in Coleman [Col97b], until more recent advances due to Pilloni [Pil13] and Andreatta–

Iovita–Stevens [AIS14] on the geometric interpolation of line bundles, which allows us to develop the theory

abstractly, without relying on the Eisenstein family. From a practical and computational point of view, this

family remains of primordial importance, so the next section will quickly review it, motivated by the strategy

of Serre to show the existence of the Kubota–Leopoldt p-adic L-function.

2. Eisenstein series and Kummer congruences

We begin with a brief discussion of the Kummer congruences, and introduce Serre’s important idea

of inferring the p-adic variation of the constant term of a modular form, from that of its higher Fourier

coe�cients. This idea appeared in Serre [Ser73], and goes back to observations of Hecke [Hec24] and

Siegel–Klingen [Kli62, Sie68]. It will make several appearances throughout these notes.

2.1. The Kummer congruences. Recall that the Riemann zeta function ζ(s) may be analytically contin-

ued to the entire complex plane, except for a simple pole with residue 1 at the point s = 1. It satis�es the

functional equation

(25) π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

3
The existence of such congruences is an important ingredient in the aforementioned work of Deligne–Serre [DS74] on the exis-

tence of Artin representations attached to modular forms of weight 1.
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Of special importance are its values at negative odd integers (or equivalently, by the functional equation,

at positive even integers), which were computed �rst by Euler in 1734, and read on 5 December 1735 in the

St. Petersburg Academy of Sciences. The starting point for Euler was the easily veri�ed identity

(26) sin(πz) = πz
∏
n≥1

(
1− z2

n2

)
By taking the logarithmic derivative, we obtain the following identities

πz cot(πz) = 1− 2

∞∑
n=1

∞∑
k=1

z2k

n2k
(27)

= 1− 2

∞∑
k=1

ζ(2k)z2k(28)

On the other hand, the Bernoulli numbers are de�ned via the generating series

(29)

t

et − 1
=

∞∑
k=0

Bk
tk

k!

and hence we can formally extract the even part of this series as

1

2

(
t

et − 1
− −t
e−t − 1

)
=

t

2
· e

t/2 + e−t/2

et/2 − e−t/2
(30)

=
t

2
· coth

(
t

2

)
(31)

Bearing in mind that icoth(iz) = cot(z), we obtain the identity

(32) cot(z) =
1

z
+

∞∑
n=1

(−1)k22kB2k

(2k)!
z2k−1.

It now follows formally from (28) and (32) that

(33) ζ(2k) =
(−1)k−1(2π)2k

2(2k)!
B2k

and hence by the functional equation

(34) ζ(1− 2k) =
−B2k

2k
.

The fact that the value of the zeta function at negative odd integers is a rational number is remarkable. We

will revisit this in the more general setting of L-functions of totally real number �elds, when we discuss the

‘explicit formula’ for this rational number obtained by Klingen and Siegel [Kli62, Sie68], following an idea

of Hecke [Hec24] using diagonal restrictions of Hilbert Eisenstein series. This is discussed in § 4.5.

The Bernoulli numbers have interesting p-adic properties, notably by two results established in the mid-

19
th

century which are the starting point for our investigations: The Clausen–von Staudt theorem [Cla40,

vS40] and the Kummer congruences [Kum51]. For convenience, we assume henceforth that p 6= 2.

Lemma 2.1. Suppose k, k′ are two positive even integers such that k ≡ k′ (mod (p− 1)pn), then

(35)

If (p− 1) - k : (1− pk−1)Bk/k ≡ (1− pk′−1)Bk′/k
′ (mod pn+1)

If (p− 1) | k : vp (Bk/k) = −1− vp(k)
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The Kummer congruences show in particular that the quantity

(36) (1− pk−1)
Bk
k

k ∈ 1 + (p− 1)Z≥0

exhibits p-adic continuity as a function of k. To the optimistic reader, this may already suggest that there

may be an interesting p-adic analytic function ζp : Zp → Cp whose special values at arguments s = 1− k
of the above form equal the quantities (36). The problem of �nding this function is therefore vaguely akin

to attempting to reconstruct the complex Riemann zeta function ζ(s) just from the knowledge of its special

values −Bk/k at negative odd arguments s = 1− k. Kubota–Leopoldt [KL64] show:

Theorem 2.2 (Kubota–Leopoldt). There is a unique p-adic analytic function ζp : Zp → Cp such that

(37) ζp(1− k) = (1− pk−1)
−Bk
k

for all k ∈ 1 + (p− 1)Z≥0

What it means precisely for a p-adically continuous function Zp → Cp to be analytic will not be impor-

tant for now, and we will not de�ne it precisely until § 3.6 when we introduce the Iwasawa algebra.

2.2. The p-adic family of Eisenstein series. Serre observed that the congruences of Bernoulli numbers

given in (35) can be upgraded to congruences between q-expansions of modular forms. Notice �rst that we

see from the Kummer congruences that the Bernoulli numbers need to be modi�ed by a factor (1−pk−1) in

order to interpolate nicely as a function of k. Likewise, we need to adjust the Eisenstein series introduced

above, by setting

(38)

G
(p)
k = (1− pk−1Up)Gk

= (1− pk−1)
−Bk
2k

+
∑
n≥1

(∑
p-d|n

dk−1
)
qn

which is a modular form for Γ0(p), often referred to as the (ordinary) p-stabilisation of Gk . We de�ne E
(p)
k

to be its unique multiple with constant coe�cient 1. Observe that elementary congruences for the higher

Fourier coe�cients yield an upgraded version of the congruences (35). More precisely, when

(39) k ≡ k′ (mod (p− 1)pn)

we have that dk−1 ≡ dk′−1 (mod pn+1) for any d not divisible by p. Indeed, for n = 0 this is the statement

of Fermat’s little theorem, and the general case follows by induction. Therefore we obtain

(40)

If (p− 1) - k : G
(p)
k (q) ≡ G

(p)
k′ (q) (mod pn+1)

If (p− 1) | k : E
(p)
k (q) ≡ E

(p)
k′ (q) (mod pn+1)

The observation of Serre [Ser73], which was inspired by earlier ideas of Hecke [Hec24] and Siegel [Sie68],

was that in establishing these congruences of Eisenstein series, there is a striking dichotomy between the

congruences between the constant terms (which are the Kummer congruences, and hence somewhat deep)

and the higher coe�cients (which follow trivially from Fermat’s little theorem, and are hence not deep).

His idea was to try and obtain the Kummer congruences, and the construction of the Kubota–Leopoldt zeta

function ζp(s), by inheriting congruences of a more elementary nature from the higher coe�cients.

This idea, whereby information on the constant coe�cient is transferred from the higher coe�cients,

will appear several times throughout these notes, and is very powerful and useful in a variety of contexts.

We will mark the paragraphs where it comes back by a small light bulb in the margin as shown here.
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2.3. Serre’s theory of p-adic modular forms. We now follow Serre [Ser73] and establish some basic

de�nitions of p-adic modular forms. We follow Serre in restricting to the case of level 1 modular forms

de�ned over Qp, but reassure the reader who is nervous about this that these assumptions will eventually

be lifted when we adopt the more geometric viewpoint due to Katz in the next lecture.

For any formal power series in the variable q given by

(41) f(q) = a0 + a1q + a2q
2 + . . . ∈ QpJqK,

we de�ne vp(f) = infn(vp(an)), where vp is the usual p-adic valuation on Qp. We de�ne the space of

p-adic modular forms to be the collection of f(q) ∈ QpJqK such that there is a sequence fi ∈Mki(SL2(Z))

with rational Fourier coe�cients, satisfying

(42) vp(f(q)− fi(q))→∞.

A p-adic modular form f(q) therefore is obtained as a limit of q-expansions of classical modular forms.

The following important proposition of Serre [Ser73, § 1.3 Théorème 1] states that the sequence of their

weights ki must tend to a limit p-adically. Its proof lies signi�cantly deeper than the rest of the contents of

[Ser73] which are otherwise largely established by more elementary means.

Proposition 2.3. Let f, g be two classical modular forms of weights k, ` on SL2(Z), both nonzero and nor-
malised such that vp(f) = 0. Suppose that we have

(43) vp(f − g) ≥ m

for some positive integerm, then it must be true that

(44)

k ≡ ` mod (p− 1)pm−1 if p ≥ 3

k ≡ ` mod 2m−2 if p = 2

As a consequence of this proposition, one easily checks that every p-adic modular form f has a well

de�ned weight

(45) k := lim←−
i

ki ∈ Zp×Z /(p− 1)Z = lim←−
m

Z /(p− 1)pm Z .

For instance, it is not di�cult to see that the q-expansion

E4(q)−1 = (1 + 240q + 2160q2 + 6720q3 + . . .)−1

= 1− 240q + 55440q2 − 12793920q3 + 2952385680q4 + . . .

is a 2-adic, 3-adic, and 5-adic modular form of weight −4.

This is the point where Serre is able to realise the idea of “inheriting” congruences for the constant terms

of Eisenstein series, from the much more elementary congruences between their higher coe�cients. The

following result is a corollary of 2.3, and we leave the proof to the reader.

Theorem 2.4 (Serre). Suppose we have a sequence of p-adic modular forms of weights ki:

(46) fi(q) = a
(i)
0 + a

(i)
1 q + a

(i)
2 q2 + . . .

which satisfy the following two properties:

• The sequences a(i)n tend uniformly to a limit an ∈ Qp,
• The weights ki tend to a limit k 6= 0.
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Then the constant terms a(i)0 tend to a limit a0, and the q-series

(47) f(q) = a0 + a1q + a2q
2 + . . . ∈ QpJqK

is a p-adic modular form.

Notice that we may use the above theorem to show the existence of a continuous function interpolating

the constant terms of the Eisenstein family! Indeed, when a sequence of integers k tends to a limit in Zp,

we already noticed that the higher Fourier coe�cients of G
(p)
k tend uniformly to a limit for elementary

reasons. This implies that its constant term, which is

(48) ζp(1− k) = (1− pk−1)ζ(1− k)

also tends to a limit, and it extends to a continuous function of k in Zp×Z /(p − 1)Z, which is precisely

the Kubota–Leopoldt p-adic L-function. The paper of Serre pushes this idea further, and strengthens this

signi�cantly by deducing also its analytic properties. The above arguments may be strengthened to give

an e�ective version of the claimed convergence, whose rate may be controlled to truly recover the Kummer

congruences for Bernoulli numbers from elementary congruences between the higher coe�cients.

2.4. Hecke operators and their spectrum. The space of p-adic modular forms is equipped with actions

of Hecke operators T`, Up, Vp, as was shown by Serre [Ser73, §2]. Suppose

(49) f(q) = a0 + a1q + a2q
2 + . . .

is a p-adic modular form of weight k, then T`f for ` 6= p and Upf are given by the expressions (5), and

(50) Vpf(q) =
∑
n≥0

anq
np.

One may wonder what can be said about these operators from the point of view of p-adic spectral theory

[Ser62], and what, if any, is the arithmetic signi�cance of the eigenvalues. Despite its great successes on the

Kummer congruences, this is a point where the theory of p-adic modular forms starts lacking. Its de�nition

– based solely on q-expansions – lacks the rigidity to avoid capturing a tremendous amount of power series

in the space of p-adic modular forms whose arithmetic signi�cance is less apparent.

One way to see this is as follows: Let f be any p-adic modular form, and choose any λ ∈ pZp. Then

fλ = (1− λVp)−1(1− VpUp)f

exists as a p-adic modular form, has the same weight as f , and satis�es

(51) Upfλ = λfλ.

This shows that the operator Up has a spectrum that is far from discrete, and contains an overwhelmingly

large continuous spectrum. To discern a discrete spectrum, this suggests that one should seek a more rigid

framework that excludes these pathological eigenforms. We will �nd such a framework in the subspace of

overconvergent modular forms de�ned by Katz, which we discuss in § 3. As we will see, the action of the

operator Up on overconvergent forms has a very rich and interesting discrete spectrum.
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2.5. Eisenstein series of weight two. A celebrated borderline example is given by the Eisenstein series

of weigth two, and is of great arithmetic importance. Serre shows that, for any prime number p, the formal

power series

E2(q) = 1 + 24
∑
n≥1

(∑
d|n

d
)
qn

is a p-adic modular form. Indeed, as is well known, the series E
(p)
2 (q) := (1 − pUp)E2(q) is a classical

modular form of weight 2 and level Γ0(p). Serre shows that any form of level Γ0(p) is a limit of modular

forms of level 1, and therefore de�nes a p-adic modular form in the above sense. It follows that

E2(q) = (1− pUp)−1 E(p)
2

= E
(p)
2 + pUpE

(p)
2 + p2U2

p E
(p)
2 + . . .

is then also a p-adic modular form. Note that this argument is valid for any prime p.

In the next section, we introduce the subspace of overconvergent modular forms according to Katz.

It was shown by Coleman–Gouvêa–Jochnowitz [CGJ95] that the form E2 is never overconvergent. This

example is nonetheless of tremendous arithmetic importance, and we content ourselves by mentioning its

role in the theory of p-adic heights on ordinary elliptic curves. A beautiful discussion, along with a precise

quanti�cation of its failure to overconverge can be found in Mazur–Stein–Tate [MST06].

3. Overconvergent modular forms

We encountered the Kubota–Leopoldt p-adic zeta function, and explored an idea of Serre that uses the

p-adic Eisenstein family to construct it. This involved the notion of p-adic modular forms, which therefore

served a great purpose, but otherwise seemed somewhat lacking in �ner structural properties, as evidenced

by the absence of an interesting discrete spectrum of Hecke operators. We now follow Katz in reinterpreting

the viewpoint of Serre geometrically, and identifying much smaller – though still in�nite-dimensional –

subspaces of the space of p-adic modular forms. Though we recall much of what we need, we will assume

some familiarity with the algebro-geometric theory modular forms. Excellent expositions can be found for

instance in Katz [Kat73], Calegari [Cal13], and Loe�er [Loe14].

3.1. The Hasse invariant. Suppose S is a scheme over Fp, then there is an absolute Frobenius morphism

(52) Fabs : S −→ S

given on a�ne opens by the map on functions f 7→ fp. If X/S is an S-scheme, we de�ne the scheme

X(p) = X ×S S where the �bre product is taken over S, viewed as an S-scheme via Fabs. The relative
Frobenius morphism F = FX/S is de�ned by the following commutative diagram, where the square is

Cartesian:

(53) X(p)

S

X

S

X

Fabs

Fabs

FX/S

Notice that the relative Frobenius is an S-linear morphism, whereas the absolute Frobenius is not! Also,

the scheme X(p)
is hardly a mysterious thing: Suppose X is of �nite type over Fq /Fp, then X(p)

is given
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by the same equations as X , but where all the coe�cients are raised to the p-th power. Note that if q = p,

then we have X(p) = X .

Now suppose that E/S is an elliptic curve, then the relative Frobenius F = FE/S is an isogeny, and

hence has a dual isogeny V :

(54)

F : E −→ E(p)
“Frobenius ”

V : E(p) −→ E “Verschiebung ”

Suppose now that S = Spec(Fp), then we say

(55)

{
E is ordinary if E[p](Fp) 6= 1

E is supersingular if E[p](Fp) = 1

In general, we say E/S is ordinary/supersingular if all its geometric �bres are.

Proposition 3.1. Suppose E/S is an elliptic curve, and S is an Fp-scheme. Then we have:

• E/S is ordinary if and only if V : E(p)−→E is étale.
• E/Fp is supersingular, only if E is de�ned over Fp2 .

Proof. We can factor the multiplication by p map as

[p] : E
F−→ E(p) V−→ E.

This implies that V is separable if and only if Ker(V )(Fp) 6= 1 on all geometric �bres. Since the kernel

of Frobenius only has the trivial geometric point, this is equivalent to Ker([p])(Fp) 6= 1. This proves

the �rst statement. For the second statement, we have that E/S is supersingular if and only if V is

inseparable, which means it must factor through Frobenius:

V : E(p) F−→ E(p2) −→ E

The latter map must be �nite of degree 1, and hence an isomorphism. Thus E is de�ned over Fp2 . �

Finally, we de�ne the Hasse invariant of an elliptic curveE/RwhereR is a ring of characteristic p. First,

choose ω ∈ H0(E,Ω1
E/R) to be anR-basis, and let η be theR-basis of H1(E,OE) de�ned via Serre duality.

The Hasse invariant A(E,ω) is the element of R de�ned by

(56) F ∗abs(η) = A(E,ω) · η

Note that by the previous proposition, E/Fp is ordinary if and only if A(E,ω) 6= 0 for any choice of ω.

3.2. Algebraic modular forms. We will now see how to interpret the Hasse invariant as an algebraic

modular form over Fp of weight p − 1. Over the �eld of complex numbers C, we are used to thinking of

modular forms in terms of their q-expansions, which directly describe them as a function on the upper half

plane in the variable q. Over other base �elds, one adapts a more algebraic viewpoint, where a modular form

becomes a section of a line bundle ω⊗k over a moduli space of elliptic curves. The algebraically de�ned

notion of q-expansion, de�ned by its evaluation on the Tate curve, no longer directly describes the form as

a “function” on classes of elliptic curves. This is quite striking for the Hasse invariant, which vanishes at

supersingular points, yet has q-expansion given by 1. We now discuss these notions, brie�y recalling the

notion of algebraic modular forms, referring to Katz [Kat73, Chapter 1] for more details.

A weakly holomorphic modular form of weight k ∈ Z over a ring A is a rule which assigns to any

isomorphism class of pairs (E/R, ω), where
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• E/R is an elliptic curve over an A-algebra R,

• ω is an R-basis for H0(E,Ω1
E/R),

an element f(E/R, ω) ∈ R such that the following two properties are satis�ed:

f ((E/R, ω)⊗φ R′) = φ (f(E,ω)) for all φ : R→ R′ of A-algebras,

f(E, λω) = λ−kf(E,ω) for all λ ∈ R×.

The q-expansion of a weakly holomorphic modular form f is de�ned as

(57) f(q) := f
(
(Tate(q)Z((q)), ωcan)⊗R

)
∈ R((q)),

where Tate(q) is the Tate elliptic curve over Z((q)) de�ned by

(58) y2 + xy = x3 +Bqx+ Cq, ωcan =
dx

2y + x

with coe�cients de�ned by the explicit q-series in ZJqK

(59)

Bq =
∑
n≥1

−5σ3(n)qn

Cq =
∑
n≥1

−5σ3(n)− 7σ5(n)

12
qn

We say a weakly holomorphic modular form is an algebraic (or holomorphic) modular form if its q-expansion,

which a priori is an element of R((q)), is in fact in RJqK.

Remark. The Tate curve arose �rst in the work of Tate [Tat95] on p-adic uniformisation of elliptic

curves. Over the complex numbers C, any elliptic curve E is isomorphic to C /〈1, τ〉 where 〈1, τ〉 denotes

the lattice spanned by 1, τ in C. By exponentiation, this quotient can also be described as C×/qZ where as

usual q = exp(2πiτ), and the isomorphism with E involves explicit complex analytic functions which go

back at least to Weierstraß. Tate showed that this admits a p-adic analogue; more precisely that for every

E whose j-invariant is not p-adically integral, there exists an isomorphism with Tate(q) for some |q| < 1,

the latter being isomorphic to C×p /q
Z

by explicit p-adic analytic power series.

We now see from the de�nition of the Hasse invariant in the previous section that it is naturally an

algebraic modular form of weight p − 1 over Fp. Indeed, it is a rule that attaches to (E/R, ω) an element

of R whose functoriality is clear by de�nition, and moreover for any λ ∈ R× we see that:

A(E, λω) · λ−1η = F ∗abs(λ
−1η)

= λ−pF ∗abs(η)

= λ1−p ·A(E,ω) · λ−1η

We conclude that the Hasse invariant A de�nes a weakly holomorphic modular form of weight p − 1 and

level one. It has the following important properties, which we will freely use in what follows:

• The q-expansion of the Hasse invariant was computed in [Kat73, KM85] and is given by A(q) = 1.

The proof is a beautiful argument using the Cartier operator.

• We already know that for E/k over k = Fp, the Hasse invariant vanishes if and only if E is

supersingular. In fact, it has simple zeroes, in the sense that if R is a local Artinian k-algebra, and

E/R is such that V : E(p)−→E induces the zero map on tangent spaces, then it must be true that

there is a supersingular elliptic curve E0/k such that

(60) E0 ×k R ' E.
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3.3. Overconvergent modular forms. We now come to the main spaces of interest, which were de�ned

by Katz [Kat73]. They revolve around the properties of the Hasse invariant A over Fp, but are spaces of

forms over a p-adic �eld, and therefore involve liftings Ã of the Hasse invariant to characteristic zero.

Remark. We now come to a point where rigid geometry is most naturally used. The reader unfamiliar

with this framework should not be alarmed, as we take a very pedestrian approach that should be digestible

if one is willing to take a few things on faith. Moreover, the next section will show these notions in action

in an extended example, and the uninitiated reader may prefer to skip ahead. The foundations of rigid

geometry are beautifully summarised in Conrad [Con08].

Suppose
4 N ≥ 5 and p - N prime. We let X /Zp be the modular curve over Zp which classi�es gen-

eralised elliptic curves with Γ1(N)-level structure, universal curve π : E −→X , and closed subscheme of

cusps IC , and denote its generic and special �bres by X and X s respectively. De�ne the line bundle

(61) ω := π∗Ω
1
Esm/X (log π−1 IC).

The Hasse invariant is the unique
5

element of H0(X s, ω⊗p−1) with q-expansion 1. LetCp be the completion

of the algebraic closure of Qp. Since the relative curve X /Zp is proper, every Cp-point extends uniquely

to an OCp-point, and we obtain a reduction map

(62) red : X (Cp)−→X s(Fp).

This map provides our �rst encounter with analytic geometry over the p-adic numbers. The inverse image

red−1(x) of a closed point of the special �bre is isomorphic to a rigid analytic open disk D = {x ∈ Cp :

|x| < 1}. We saw previously that the vanishing locus of the Hasse invariant is precisely the supersingular

locus ofX s, which consists of a �nite set of closed points. The ordinary locusXord
is the a�noid open whose

set of Cp-points correspond to elliptic curves with ordinary reduction, which is therefore the complement

of a �nite number of rigid analytic open disks, indexed by the supersingular points.

4
For simplicity, we will choose some auxiliary level structure to rigidify the moduli problem of elliptic curves and work on modular

curves. If desired, this can be avoided by working on the moduli stack.

5
The q-expansion principle states that any modular form with a given q-expansion and weight is uniquely determined.
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At this point, we are ready to give a geometric reinterpretation of the spaces of p-adic modular forms

introduced by Serre, which were discussed in § 2. The following theorem is due to Katz [Kat73].

Theorem 3.2 (Katz). The space of p-adic modular forms of weight k is isomorphic as a Hecke module to

(63) H0(Xord, ω⊗k).

In light of this theorem, we see in particular that if Ã is a lift of the Hasse invariant, which is any modular

form of weight p− 1 over Zp whose q-expansion is congruent to 1 modulo p, then it must be invertible as

a p-adic modular form. This may be seen explicitly also in Serre’s language, since we have

(64) vp

(
Ã(q)p

n−1 − Ã(q)−1
)
−→ ∞

so that the formal q-expansion Ã(q)−1 is a p-adic modular form in the sense of Serre.

Remark. When we do explicit calculations later on, we will see that the fact that the q-expansion of the

Hasse invariant is 1 usually allows us to choose an Eisenstein series Ep−1 as a lift of the Hasse invariant.

Indeed, when p ≥ 5 this is a modular form of weight p− 1 whose q-expansion is congruent to 1 modulo p.

We saw previously that the space of p-adic modular forms is too large to have nice spectral properties,

prompting Katz to consider subspaces of sections that extend
6

to a�noids strictly containing Xord
. More

precisely, let 0 ≤ r ≤ 1, and de�ne Xord ⊂ Xr ⊂ X rig
by

(65) Xr(Cp) := {x ∈ X(Cp) : vp(Ãx) ≤ r},

where Ãx is a local lift of the Hasse invariant A at x. Note we do not require a global lift of the Hasse

invariant to exist, which may fail when p = 2, 3. We de�ne the space of r-overconvergent modular forms of

integer weight k on Γ1(N) to be

(66) M†k(r) := H0(Xr, ω
⊗k).

These spaces come with an action of Hecke operators T` for ` - Np, and U` for ` | N , de�ned by restricting

the Hecke correspondences on X . They have the usual e�ect on q-expansions.

In addition, the operators Up and Vp de�ned on p-adic modular forms may be de�ned geometrically,

and preserve the subspace of overconvergent modular forms. More precisely, they are de�ned for every

r < 1/(p+ 1) and have the following e�ect on the rate of overconvergence:

(67)

Up : M†k(r) −→ M†k(pr)

Vp : M†k(pr) −→ M†k(r)

In particular, the operator Up improves the rate of overconvergence. The reason for the existence of the

operators Up and Vp is the canonical subgroup section s of the natural forgetful map of modular curves,

which exists for any r < p/(p+ 1):

(68)

X(Γ1(N) ∩ Γ0(p))rig X rig

⊂

Xrs

This yields two equivalent ways to view spaces of overconvergent modular forms:

• As sections on a�noid opens of X , with no level at p (the “tame” viewpoint).

6
This de�nition may seem obscure to the uninitiated, but already at the time of writing of [Kat73] represented a dominant theme

in the school of p-adic analysis surrounding Bernard Dwork and his disciples, and continues to be hugely in�uential to this day.
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• As sections on a�noid opens of the modular curve obtained from X by adding additional Γ0(p)

level structure (the “canonical subgroup” viewpoint).

For theoretical questions, the latter is frequently more convenient, for instance it forms the natural setting

for questions of analytic continuation and Coleman’s classiciality results discussed in § 3.7. On the other

hand, for computational purposes the former often has advantages, since it allows one to compute with

auxiliary classical spaces of modular forms, as we will see in § 4.1.

3.4. Interlude: Extended example. Let us explore these abstract de�nitions in a particular case, to get

a feeling for the various objects involved. Consider the case where p = 2 and k = 0, in level one. In this

case, we can be very explicit about the spaces of p-adic and r-overconvergent modular forms, both from the

“tame” viewpoint (in level one) or via the canonical subgroup section (on X0(2)). This example is centred

around the properties of the Klein j-invariant

(69) j(q) =
1

q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 + . . .

which is a level one modular form of weight zero with a simple pole at the cusp.

3.4.1. The “tame” viewpoint. Consider the moduli stack X of elliptic curves. Of the 4 values in F4 for the

j-invariant, only j = 0 is supersingular, so that its special �bre at p = 2 has a unique supersingular point

corresponding to the vanishing locus of j. It follows that the ordinary locus onX is described by |j−1| ≤ 1,

and hence the space of 2-adic modular forms of weight 0 is isomorphic to

(70) C2〈j−1〉 =
{
a0 + a1j

−1 + a2j
−2 + . . . | an → 0

}
For any r, the space M†0 (r) de�nes a Banach space contained inside of this Tate algebra, which we can

explicitly identify through growth conditions on the coe�cients an. Precisely, we use the observation that

(71) j =
E3

4

∆

and E4 = 1 + 240q+ . . . is the normalised Eisenstein series of weight 4, which is a lift of the fourth power

of the Hasse invariant A4
. In particular, we �nd that on the supersingular disk (where ∆ is invertible, and

hence v2(∆) = 0, we have that

(72) v2(A) ≤ r ⇐⇒ v2(j) ≤ 12r.

and as a consequence, we get that the subspace of r-overconvergent forms is given by

(73) M†0 (r) =
{
a0 + a1j

−1 + a2j
−2 + . . . : |an|p12nr → 0

}
Finally, let us compute some Hecke operators, and see whether the obtained results make sense with what

is said above. First, note that we can compute very rapidly (most serious computer algebra packages like

Magma, PARI/GP, or Sage will already have a function implemented) the q-expansion of j−1. Given

any 2-adic modular form of weight 0, we can then compute its j−1-expansion very rapidly by the simple

observation that j−1 vanishes to order 1 at the cusp in�nity, and hence we can inductively subtract powers
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of j−1 until we are left with zero. Carrying out this procedure in Magma [BCP97], we obtain that

U2j
−1 = −744 j−1

−140914688 j−2

−16324041375744 j−3

−1528926232501026816 j−4

+ . . .

T3j
−1 = 356652 j−1

−16114360320000 j−2

+1298216343568384000000/3 j−3

+ . . .

T5j
−1 = 49336682190 j−1

−122566701099729715200000 j−2

+177278377115100363578123747328000000 j−3

+ . . .

where we calculated in reality hundreds of terms, which look rather unappetising. Things become very

interesting when we look at the 2-adic valuations of the coe�cients a1, a2, a3, . . . of U2j
−1

and T`j
−1

tabulated above, which give us the following sequences:

(74)

U2j
−1 : v2(an) = 3, 12, 20, 28, 35, 46, 52, 60, 67, 76, 86, 94, . . .

T3j
−1 : v2(an) = 2, 16, 32, 45, 60, 79, 91, 105, 120, 136, 154, 165, . . .

T5j
−1 : v2(an) = 1, 18, 33, 47, 61, 80, 92, 107, 121, 138, 155, 167, . . .

We see very clearly that the latter two sequences grow roughly at the same rate, whereas the �rst one grows

signi�cantly more slowly! In fact, if we plot these three sequences in red, green, and blue respectively, for

the �rst two hundred terms, we obtain the following picture:

They all look like linear functions! The green and blue plots are virtually indistinguishable at this scale, and

look roughly like a linear function of slope 15. On the other hand, at this scale the red plot looks roughly

like a linear function of slope 8. This is precisely what we expected from the general theory, since j−1 is

r-overconvergent for any r (indeed, it converges on the entire modular curve X expect for a simple pole

at the cusp 0!) and its image under the U2-operator is therefore only guaranteed to be r-overconvergent

for any r < p/(p + 1) = 2/3. With respect to the identi�cation (73), this shows that the valuation of the

coe�cients should grow at least like a linear function of slope 8 = (2/3) · 12.

3.4.2. The “canonical subgroup” viewpoint. Even though we can compute things to our heart’s desire, it is

hard to get any more speci�c information in the tame description (i.e. onX = X0(1)). Following Buzzard–

Calegari [BC05], we will now see that we can get a lot of mileage from working on X0(2) instead, which
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we know we can by the theory of the canonical subgroup. De�ne the Hauptmodul

(75) h = ∆(2z)/∆(z) = q
∏
n≥1

(1 + qn)24

which is a meromorphic function on X0(2) with a simple zero at the cusp∞, and a pole at the cusp 0. It is

related to the j-function by

(76)

h

(1 + 28h)3
= j−1

Using a Newton polygon argument, we see that we can �nd a canonical section of the forgetful map when-

ever vp(j
−1) > −8 exactly as predicted by the theory of canonical subgroups. Note also that in this case,

we see that this section does not extend to any larger region, so the result was optimal! This means that we

get an alternative description for (73) of the form

(77) M†0 (r) =
{
a0 + a1h+ a2h

2 + . . . : |an|p12nr → 0
}

The advantage is the following: The Hecke operators are de�ned as correspondences on X0(2), and hence

we know thatU2(h) and T`(h) are polynomials in h! This is in stark contrast with the tame situation, where

we got a rather mysterious set of power series, which we could compute to any accuracy, but never exactly.

In contrast, on X0(2) we can do the computation exactly, and we obtain:

U2(h) = 24h+ 2048h2

T3(h) = 300h+ 98304h2 + 16777216/3h3

T5(h) = 18126h+ 40239104h2 + 14696841216h3 + 1649267441664h4 + 281474976710656/5h5

Together with (77), this can be seen as a complete description of the U2-moduleM†0 (r). This is what is used

by Buzzard–Calegari [BC04] to determine the valuations of all the eigenvalues of U2 on this space.

3.5. Spectral theory of Up. We now discuss an important part of the subject, which is the spectral theory

of the Hecke operator Up, acting on the Cp-Banach space of r-overconvergent forms.

We begin by de�ning a norm ‖ · ‖r on M†k(r). Pick a point x ∈ Xr , let K be a �nite extension of the

residue �eld of x, and let Spec(K)→ XQp
be a point whose image corresponds to x. The properness of X

implies that this extends uniquely to a point ϕ : Spec(OK)→ X . Now let f ∈M†k(r), then ϕ∗f = afs for

some section s generating the trivial line bundle ϕ∗ω⊗k and some af ∈ OK . We set

(78) |f(x)| := |af |,

which is independent of the choice of s. The norm

(79) ‖f‖r := sup{|f(x)| : x ∈ Xr}

makes M†k(r) into a p-adic Banach space. This induces the structure of a p-adic Fréchet space on

(80) M†k := lim−→
r>0

M†k(r)

which we call the space of overconvergentmodular forms. The Banach spacesM†k(r) are in�nite-dimensional,

and there is a priori no meaningful way to talk about the spectrum of an operator, unless we know more.

Suppose we have a continuous bounded operator T on a separable Cp-Banach spaceB, then we say that

T is compact if it is the limit of operators of �nite rank. Equivalently, T is compact if and only if the image

of the unit ball is relatively compact. There is a well-developed spectral theory for compact operators, see

[Dwo62, Ser62, Col97b], which has the following pleasant consequences for compact operators:
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• T has a discrete spectrum of non-zero eigenvalues

(81) |λ1| ≥ |λ2| ≥ . . .

where |λi| → 0 as i→∞, whose inverses are the roots of a well-de�ned characteristic series

P (t) = “det(1− Tt)”
= a0 + a1t+ a2t

2 + . . . , where ai → 0 as i→∞.

• For every v ∈ B there are constants ci and generalised eigenvectors vi with eigenvalue λi such

that for any ε > 0 we have (asymptotically in n) that

(82) ε−n

∥∥∥∥∥∥Tnv − Tn
∑
|λi|≥ε

civi

∥∥∥∥∥∥ −→ 0.

The constants ci are often called the coe�cients of the asymptotic expansion of v.

We established that the operator Up exhibits a contractive nature, and improves overconvergence as

described by (67). This implies that Up is compact, and hence possesses a well-de�ned characteristic series.

Here is one concrete way to think about this series (and indeed, to compute it in examples!) as explained

by Serre [Ser62] and Coleman [Col97b, Theorem A2.1]: Suppose we have an orthonormal basis

(83) {f1, f2, f3 . . .} for M†k(r),

then we obtain an in�nite matrix representation of Up. In the example above, where p = 2 and k = 0, we

already noted that we have an algorithm to compute this matrix exactly, or at least any �nite submatrix of

it. To see what compactness really means in practice, we compute the �rst 10× 10 submatrix with respect

to the basis fi = (28h)i of the cuspidal subspace, and look at the 2-adic valuations of its entries:

(84) v2(U2(i, j))i,j =



3 8

3 7 11 16

8 12 17 19 24

7 11 15 21 23 27 32

11 19 20 25 27 35 35 · · ·
11 16 20 24 27 33 35

17 19 24 29 34 35

15 20 23 27 31 38

19 24 27 37 36
.
.
.

.
.
.


Here, we omitted the entries of U2 that were equal to zero. The compactness of Up in orthonormalisable

situations like this one is equivalent to the statement that the column vectors converge uniformly to 0 in

the in�nite matrix representation. In the above example, that certainly looks plausible, as the entries of the

columns seem to have valuation which grows roughly at the same rate. To contrast this with what happens
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in general, let us compute with respect to the same basis the �rst 10× 10 submatrix for T3:

(85) v2(T3(i, j))i,j =



2 12 16

7 2 11 20 27 32

8 8 2 14 17 28 34 46 48

11 8 2 12 19 29 36 43

16 9 10 2 12 16 32 34 · · ·
16 15 12 7 2 11 22 28

18 19 8 8 2 16 18

23 19 17 12 9 2 13

24 25 18 17 10 12 2
.
.
.

.
.
.


Notice the stark contrast with the matrix of U2. Whereas the general entry of every column seems like it

tends to zero (as it should, since T3 still de�nes an operator on the Banach space M†0 (2/3) after all) it does

not look like the general column tends uniformly to zero. Most strikingly, the diagonal entries all seem to

have valuation 2, suggesting this operator may not have a convergent “trace”.

For the operator U2 we can also compute an approximation for its characteristic series P (t), using the

above matrix. One can easily analyse to which precision the given answer is correct, but we will ignore

such issues here. We truncate the matrix for U2 as above, and obtain a polynomial whose coe�cients are 2-

adically close to those ofP (t). Looking at the Newton polygon, we see that the valuations of the eigenvalues

of U2 on the full space M†0 (r) for any r are as follows:

(86) 01, 31, 71, 131, 151, 171, . . .

Here, we denote the valuations of the eigenvalues by bold type, and the multiplicity of that valuation by

a subscript. It is striking that these are all integers, since there is no a priori reason that they should be!

In this particular example, there is an explicit expression for the general term in this sequence, found by

Buzzard–Calegari [BC05]. We give a brief overview of their arguments.

Let h be the Hauptmodul de�ned in (75). Then a basis for the cuspidal subspace S†0(r) ⊂M†0 (r) is given

by the powers h, h2, h3, . . .where a general element is an in�nite sum of these forms, where the coe�cients

decay in a controlled matter, depending on r. We may try to �nd an explicit description of the basis for U2

with respect to this basis. It is easily veri�ed that for n ≥ 2 we have the recursion

U2(hn) = (48h+ 4096h2)U2(hn−1) + hU2(hn−2).

We know from (77) that the powers of 26h form an orthonormal basis ofM†0 (1/2), and the above recursion

implies that the (i, j)-th entry in the matrix for U2 with respect to this basis is given by

3j(i+ j − 1)!22i+2j−1

(2i− j)!(2j − i)!
.

In spite of the matrix for U2 being completely explicit, it is still no laughing matter to compute its slopes,

and more ideas are required. It was shown by Buzzard–Calegari [BC05, Lemma 4] by a really intriguing

direct computation using a hypergeometric summation formula, that there exist matricesA,B with entries

in Z2 which are both congruent to the identity matrix modulo 2, and such that ADB equals the matrix of

U2, where D is the diagonal matrix with (i, i)-th entry given by

24i+1(3i)!2i!2

3(2i)!4
.
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From this, one may deduce that the matrix of U2 has a characteristic series whose Newton polygon is the

same as that for the matrix D, which implies:

Theorem 3.3 (Buzzard–Calegari). The slope sequence of U2 on S
†
0(r) for any r > 0 is given by{

1 + 2v2

(
(3n)!

n!

)}
n=1,...,∞

The study of slopes was very popular in the early 21
st

century, see for instance [Buz05, BC04, BC05, BP16,

BG16] and the references contained therein. A good knowledge of the spectrum, such as the example above,

leads to a streamlined way to prove many classical congruences of modular forms, such as that of Lehner

[Leh49] for the Fourier coe�cients an of the j-function, which states that

an ≡ 0 (mod 23n+8) whenever n ≡ 0 (mod 2n).

The appearance of 3 in the exponent is a re�ection of the �rst positive slope being 3 in the theorem of

Buzzard–Calegari, and it can be strengthened and re�ned using the higher slopes. This domain has in

recent years shifted its fashions towards the boundary of weight space, such as the works [BK05, Roe14,

LWX17, AIP18] and many others. This is a fascinating notion that falls outside the narrative we take here,

but we mention a spectacular recent application in the proof by Newton–Thorne [NT19] of modularity of

Symn(f) when f is a cuspidal eigenform satisfying certain conditions, including all forms of level 1.

3.6. The eigencurve. The above constructions may be extended to incorporate families of modular forms,

culminating in the existence of the eigencurve. This is a geometric object that provides a powerful pic-

ture when thinking about families of overconvergent modular forms. The theory is due mainly to Cole-

man [Col96, Col97b] and Coleman–Mazur [CM98] and was revisited more recently by Pilloni [Pil13] and

Andreatta–Iovita–Stevens [AIS14]. We content ourselves with a very brief discussion in these notes.

Our desire is to explain congruences between modular forms by interpolating between di�erent weights,

as in the theory of Serre. The geometric theory of overconvergent forms is restricted to integral weights

k ∈ Z, and to overcome the lack of a sheaf ωκ for a p-adic weight other than κ ∈ Z, the idea of Coleman

was to turn once more to the Eisenstein family, which is de�ned for any weight-character

(87) κ ∈ W := Homcont(Z
×
p ,C

×
p )

where we can view a pair (k, χ) consisting of k ∈ Z and χ : (Z /pn Z)× → C×p as a subset via the

embedding de�ned by the continuous homomorphism

(88) (k, χ) : Z×p −→C×p , a 7−→ χ(a)ak−1.

where χ is now thought of as a character of Z×p by composing with reduction modulo pn. The subset of

weight characters for which κ induces the trivial character on (Z /pZ)× is denoted byW0.

The coe�cients of Eisenstein series are naturally functions of (k, χ), and one can easily show that they

extend to functions ofW . The only part that needs clari�cation is how to view the Kubota–Leopoldt zeta

function ζp as a function of κ ∈ W . Denote ∆ for the torsion subgroup of Z×p , which is cyclic of order φ(q),

where q = 4 if p = 2, and q = p otherwise. There is an isomorphism

(89) Z×p
∼−→ ∆× (1 + qZp), a 7−→ (ω(a), 〈a〉).

The character ω is called the Teichmüller character. Let Λ = ZpJZ×p K be the Iwasawa algebra, which is the

ring of functions onW , then we have an isomorphism

(90) Λ ' Zp[∆]JT K, 1 + q 7−→ 1 + T.
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This way, the Kubota–Leopoldt zeta function ζp can be viewed as a function onW , satisfying

(91) ζp
(
(1 + q)k−1 − 1

)
= (1− pk−1)ζ(1− k),

giving us the Eisenstein family

(92)

Gκ(q) =
ζp(κ)

2
+

∑
n≥1

(∑
p-d|n

κ(d)/d
)
qn κ 6∈ W0

Eκ(q) = 1 +
2

ζp(κ)

∑
n≥1

(∑
p-d|n

κ(d)/d
)
qn κ ∈ W0

The idea of Coleman was to de�ne an overconvergent modular form of weight κ to be any q-expansion with

the property that its quotient by the Eisenstein series of weight κ is an overconvergent modular function
7
.

The weights of overconvergent modular forms are naturally parametrised by a geometric object: We de�ne

WN , the weight space of level N , as a rigid analytic variety, via

(93) WN = (Spf ΛN )
rig

, where ΛN = ZpJ(Z /N Z)× × Z×p K.

This set of ideas culminated in the construction, due to Coleman–Mazur [CM98], of the eigencurve CN .

Theorem 3.4 (Coleman–Mazur). There exists a rigid analytic curve CN → WN , whose Cp-points classify
normalised overconvergent eigenforms f which are not in the kernel8 of Up.

The map π : CN −→WN simply associates to every overconvergent eigenform f its weight character

κ. The geometric properties of CN therefore dictate all the possible p-adic variations of modular forms

of �nite slope in families. Relatively little is known about its geometry. The following picture is a free

impression that attempts to depict some of its features. The weight spaceWN decomposes as a �nite union

of open disks, whereas CN contains a particularly well-behaved subspace CordN that is �nite �at over every

component ofWN (to be discussed in § 3.7) and otherwise exhibits a striking contrast between its behaviour

close to the boundary, and deeper in the interior (these will be discussed in § 4.2).

We brie�y mention here one important property that has been established recently, and is often referred

to as the “properness” of the eigencurve. More precisely, it was asked by Coleman–Mazur [CM98] whether

7
Since then, a more satisfactory – albeit somewhat less immediately suited for explicit computations – de�nition has been given

by Pilloni [Pil13] and Andreatta–Iovita–Pilloni [AIP18], who gave a geometric construction of line bundles ωκ on the a�noidsXr for

some r that depends on κ. He shows that the Eisenstein series of weight κ is a section of his line bundle, therefore giving a completely

geometric de�nition of the space of r-overconvergent forms M†κ(r) for any weight-character κ, as long as r is su�ciently small.

8
In this case, we say f is of �nite slope, where the ‘slope’ refers to the valuation of its Up-eigenvalue.
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the eigencurve can have any ‘holes’, in the sense of a p-adic analytic family of overconvergent eigenforms

of �nite slope parameterized by a punctured disc, which converges at the puncture to an overconvergent

eigenform in the kernel of Up (such a form is typically said to have in�nite slope). This is reminiscent of the

valuative criterion for properness. It was proved by Buzzard–Calegari [BC06] that no such families exist

(and hence the eigencurve is “proper”) when p = 2 and N = 1, and then by Calegari [Cal08] at integer

weights. The general case was established via an intricate, yet elegant, argument by Diao–Liu [DL16].

3.7. Hida theory. One part of the eigencurve that is fairly well understood is the ordinary part, whose

discovery by Hida [Hid86b, Hid86a] predates that of the eigencurve by over a decade. An overconvergent

form is called ordinary if it is a Up-eigenvector with an eigenvalue that is a p-adic unit, or, said di�erently,

is of slope zero. Hida considered the ordinary projection operator

(94) eord = lim
n→∞

Un!p

whose limit exists as an operator on M†κ(r) for any κ inWN . Then Hida showed:

Theorem 3.5 (Hida). The image of eord on M†κ(r) is a �nite-dimensional vector space, whose dimension
depends only on the connected component ofWN containing κ.

This spectacular result shows that even though the slopes of the spectrum of Up can vary wildly, the

dimension of the part of slope 0 is locally constant onWN . Note that the connected components ofWN

are indexed by the characters (Z /NqZ)× → C×p , and the dimension of the ordinary subspace is constant

over each component. Hida in fact proved the following statement: Suppose

(95) πord : Cord

N →WN

is the projection map from the ordinary part of the eigencurve to weight space, then πord
is �nite �at. The

ordinary part of Cord

N is often referred to, though usually only locally, as the Hida family.

An extremely powerful tool is the fact that specialisations of Hida families at classical weights k ≥ 2 are

always classical modular forms. More generally, the following theorem was proved by Coleman [Col96].

Theorem 3.6 (Coleman). Suppose that k ≥ 2 is an integer weight, and f ∈ M†k is a Up-eigenform of slope
strictly less than k − 1. Then f is classical, in the sense that it belongs to the �nite-dimensional subspace

(96) Mk(Γ0(Np)) ⊂M†k(Γ0(N)).

It is di�cult to overstate the importance of this powerful result, which often goes by the name of the

Coleman classicality theorem. In the literature on overconvergent modular symbols, it is also commonly

referred to as Coleman’s control theorem. It has far-reaching implications, and is used so frequently in the

literature – as well as what follows – that it is often applied without explicit mention.

3.8. Leopoldt’s formula. We end this section with an application of this geometric viewpoint on p-adic

modular forms, and prove a classical result on the value at s = 1 of p-adic L-functions attached to Dirichlet

characters via an incarnation of Serre’s idea to investigate the constant coe�cient via the higher Fourier

coe�cients. In this situation, it allows us to identify the L-value as an explicit combination of units. We

follow the treatment in [BCD
+

], which contains several more appearances of Serre’s idea in various guises.

A di�erent proof for Leopoldt’s formula for Lp(1, χ) can be found in [Was97, §5.4].
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Suppose that χ : (Z /N Z)× → C× is a primitive even Dirichlet character with conductor N > 1

coprime to p, then we have the p-adic Eisenstein family of overconvergent forms

(97) E
(p)
k (χ) = Lp(1− k, χ) + 2

∑
n≥1

σ
(p)
k,χ(n) qn, where σ

(p)
k,χ(n) =

∑
p - d |n

χ(d)dk−1.

This family specialises at k = 0 to a rigid analytic function on Xord = X1(N)ord
, whose value at the cusp

∞ is the value Lp(1, χ). Now choose a primitive N -th root of unity ζ , then there is a collection of Siegel
units ga ∈ O×Y1(N) whose q-expansions are given by

(98) ga(q) = q1/12(1− ζa)
∏
n≥1

(1− qnζa)(1− qnζ−a), 1 ≤ a ≤ N − 1.

Using the operator Vp on p-adic modular forms, we de�ne the rigid analytic function

(99) F (p)
χ =

1

pg(χ−1)

N−1∑
a=1

χ−1(a) logp
(
Vp(gpa)g−1a

)
which is de�ned on the ordinary locus Xord

. Here g denotes the standard Gauß sum, obtained by summing

χ−1(a)ζa over a. A direct computation using the expression (98) shows that the higher coe�cients of its

q-expansion agree with that of E
(p)
0 (χ). Therefore the modular form

(100) E
(p)
0 (χ)− F (p)

χ ,

which is a constant function, must be equal to zero, since it has nebentype χ. We conclude that the constant

terms of both series are equal, yielding Leopoldt’s formula:

(101) Lp(1, χ) = − (1− χ(p)p−1)

g(χ−1)

N−1∑
a=1

χ−1(a) logp(1− ζa).

4. Explicit computations and arithmetic applications

We now discuss how to compute explicitly with overconvergent modular forms, in more generality than

was achieved in the extended example § 3.4, following the approach of Lauder [Lau11]. We then look at a

number of di�erent arithmetic applications of this theory, illustrated with explicit examples.

4.1. Computing overconvergent forms. We �rst explain how to compute explicit bases for the p-adic

Banach spaces of r-overconvergent forms, following Katz [Kat73] and Lauder [Lau11]. Note that in the

explicit example treated in § 3.4, where (p,N) = (2, 1) and k = 0, we were particularly lucky in the sense

that the modular curve X0(2) had genus zero, and the overconvergent regions Xr were isomorphic to a

rigid analytic disk, for which we could identify an explicit parameter. This procedure can be repeated for

any prime p for which X0(p) has genus zero (i.e. for p = 2, 3, 5, 7, 13), where one can likewise write down

a power basis for the space of overconvergent modular forms, for any weight k. See Loe�er [Loe07] for a

detailed discussion of this case, as well as many interesting results and computations.

For general values of p, we are faced with a more complicated geometric picture, as the overconvergent

regions Xr are isomorphic to the complement of a �nite number of disks in P1
:
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Moreover, in cases where we also have a nontrivial tame levelN , the modular curve from which we remove

these �nitely many disks is no longer isomorphic to P1
. Therefore, �nding an explicit basis for the set

of sections over the overconvergent regions Xr becomes signi�cantly more subtle. In his foundational

paper on the subject, Katz [Kat73, Chapter 2] identi�es an explicit basis for these spaces, such that any

overconvergent form may be written as a unique linear combination of it, referred to as its Katz expansion.

Let X be the modular curve over Zp with Γ1(N)-level structure
9

for p - N ≥ 5. Let n be the smallest

power of p such that the n-th power of the Hasse invariantAn lifts to a level 1 Eisenstein seriesE of weight

kE = n(p− 1). Throughout this section, we assume nr ≤ 1. Our notation is summarised by:

p 2 3 ≥ 5

E E4 E6 Ep−1

n 4 3 1

kE 4 6 p− 1

We now describe an explicit basis for the spaces M†k(r). Suppose r = vp(s) for some s ∈ Cp, then let

Ir be the sheaf of ideals in Sym(ω⊗kE ) generated by E − sn, and de�ne the line bundle

(102) L = SpecX
(
Sym(ω⊗kE )/Ir

) πL−→ X .

Assuming that k 6= 1, we can apply the base change theorems from [Kat73, Theorem 1.7.1] to show that

M†k(r) = H0
(
Lrig, π∗Lω

⊗k)
(103)

= H0
(
X , ω⊗k ⊗ Sym(ω⊗kE )

)
/H0(X , Ir).(104)

Having this concrete description in hand, we now attempt to eliminate the relationE = sn by investigating

the map given by multiplication by E on modular forms as in [Kat73, Lemma 2.6.1] and [Von15, Lemma 1].

More precisely, the injection given by the multiplication by E-map

(105) −×E : H0
(
X , ω⊗k

)
−→H0

(
X , ω⊗k+kE

)
splits as a map of Zp-modules. This implies that for every i ≥ 0, we may choose generators {ai,j}j for a

complement of the submodule

(106) Im (−× E) ⊆ H0(X , ω⊗k+ikE ).

This choice is not canonical, but we will �x it once and for all in what follows. As in [Kat73, Proposition

2.6.2], one obtains the following as a consequence of (104) and the splitting of (105).

9
In practice, there is a lot of �exibility with the setup, and the computations below are usually for Γ0(N) instead of Γ1(N). To

justify this, some additional analysis is required to deal with the lack of representability, see [BC05, Appendix].
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Theorem 4.1. The set {ei,j}i,j is an orthonormal basis for the p-adic Banach spaceM†k(r), where

(107) ei,j = sni
ai,j
Ei

Note that we have avoided the case k = 1, which we can still compute with by appropriately twisting

by Up, thereby reducing the computation to one in higher weight for which the results above hold. This

technique is often referred to as Coleman’s trick, see [Col97b, Eqn. (3.3)], and is also frequently useful in

other situations. It is based on the observation that multiplication by Ej de�nes an isomorphism

(108) M†k(r) −→ M†k+jkE (r),

as well as the fact that the Up-operator is Frobenius linear in the sense that

(109) Up(fVp(E)) = Up(f)E.

It follows from these two simple facts that Pk+jkE (t) equals the characteristic series of Up ◦Gj on M†k(r),

where we denoteG = E/VpE. This allows us to �exibly change the weights of the spaces of overconvergent

forms we are interested in. In particular, we can compute overconvergent forms in weight 1 by reducing

the computation to, say, weight p. Likewise, if we would like to compute the operator Up on M†k(r) for

some extremely large weight k, we can use Coleman’s trick to reduce the computation to a small weight.

Now that we know, by Theorem 4.1, an explicit basis ei,j for the Banach spaceM†k(r), we are in a position

to compute approximations of the matrix of Up on q-expansions. Since we can only compute �nitely many

of its entries, we need a good estimate on the valuations of its entries, so we know how many elements of

the basis we need to compute before we are guaranteed that the end result is correct up to some chosen

p-adic precision. To do this, let us �rst �x some notation for these entries. We write

(110) Up ◦Gj(eu,v) =
∑
w,z

Aw,zu,v (j) ew,z,

for some Aw,zu,v (j) ∈ Cp. Said di�erently, the numbers Aw,zu,v (j) are the entries of the in�nite matrix of

Up ◦ Gj with respect to our chosen orthonormal basis for M†k(r). The following lemma estimates their

p-adic valuations, and is an easy extension of Wan [Wan98, Lemma 3.1], see [Von15].

Lemma 4.2. We have

(111) vp
(
Aw,zu,v (j)

)
≥ wrkE − 1− r(n− 1).

The reader may have wondered why in the above precision estimate, we included the parameter j, corre-

sponding to a twist of the Up operator byGj = (E/VpE)j , rather than simply putting j = 0. The reason is

that this allows us to easily move between di�erent weights, and perform the computation of Up in several

weights at once. The examples below illustrate this, by computing the Up-operator in families.

Remark. In what follows, we frequently drop the rate of overconvergence r from the notation. This

is justi�ed by the fact that an overconvergent �nite slope eigenform must be r-overconvergent for any
r < p/(p + 1). The data below therefore does not depend on r at all, though its computation does. It is

clear from (111) that it is helpful in practice to choose r as large as possible, to accelerate convergence.

4.2. The spectral curve. We now have two crucial active ingredients for a working algorithm to compute

with spaces of overconvergent modular forms, since we have (a) an explicit basis due to Katz, provided

by Theorem 4.1, and (b) a precision estimate for the concomitant entries of the matrix of Up due to Wan,

provided by (111). Lauder [Lau11] combines these two ingredients into an e�cient algorithm for computing
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Up on M†k(r). We note that the estimate (111) is independent of j, and hence the computation may be

performed at several p-adic weights at once. In this example, we compute the resulting 2-variable series

P (κ, t). The curve inWN ×Gm cut out by this equation is often referred to as the spectral curve of Up,

which yields the eigencurve after an additional modi�cation, see [CM98].

Let f :WN → Cp be a function in the Iwasawa algebra, and {κ0, κ1, . . . , κn} a �nite set of points. Then

we denote f [κ0] = f(κ0) and we inductively de�ne the divided di�erence of order n to be

f [κ0, κ1, . . . , κn] :=
f [κ1, . . . , κn]− f [κ0, . . . , κn−1]

κn − κ0
.

We now de�ne the n-th Newton series to be

(112) Pn(κ, t) =

n∑
i=0

P [κ0, κ1, . . . , κi](t)× (κ− κ0)(κ− κ1) · · · (κ− κi),

where P [κ0, . . . , κn](t) is the power series in t obtained by taking the corresponding �nite di�erences

on the coe�cients of P (κ, t) of t, which are elements of the Iwasawa algebra by Coleman [Col97a]. The

theory of �nite di�erences then shows that upon increasing the number of interpolation points, the n-th

Newton series p-adically approaches the series P (κ, t). This means that all we need to do to compute an

approximation for P (κ, t), is to choose our interpolation points carefully and estimate the error term.

We explicitly compute some examples, starting by revisiting the example of Buzzard–Calegari [BC05]

familiar from § 3.4, and then venturing into more unfamiliar territory relating to situations that were con-

sidered in the literature by Buzzard–Kilford [BK05], Roe [Roe14] and the work on boundary slopes and the

spectral halo by Andreatta–Iovita–Pilloni [AIP18] and Bergdall–Pollack [BP16]. We note that an alterna-

tive approach using overconvergent modular symbols has been developed in [DHH
+

16], for Hida families.

Their algorithms yield explicit q-expansions of Hida families, where the coe�cients are elements of Λ, but

is only equipped to handle the ordinary part of the spectrum of Up.

Example 1. We revisit the case of p = 2 and tame level N = 1, where we computed with the space

for k = 0 in § 3.4. Using an interpolation as described above, we can compute the two variable power

series P (κ, t), whose specialisation at κ ∈ W recovers the characteristic series Pκ(t) of U2 on the space of

overconvergent modular forms M†κ(r). We obtain

P (κ, t) = 1 + (519736167t+ 413685912t2 + 148708352t3 + 1065353216t4)

+ κ (36306799t+ 374998993t2 + 380696768t3 + 281739264t4)

+ κ2(43984100t+ 481404364t2 + 496002384t3 + 387895296t4 + 1811939328t5)

+ κ3(874017364t+ 890496879t2 + 487943741t3 + 4077568t4 + 964689920t5)

+ κ4(392124398t+ 264203079t2 + 839291211t3 + 908503936t4 + 817102848t5)

+O(κ5, 230),

We actually computed P (κ, t) to precision O(κ25, 270), which took about 5 minutes, but truncated the

result to get output that �ts in this document. Let us now investigate various specialisations:

• The computation we did in the previous section is contained in this one, and if we set κ = 5k−1 = 0,

which corresponds to weight k = 0, we recover the same power series as before, up to the used

precision. In particular, we can read o� that �rst few slopes are 01,31,71, . . ., which agrees with

the result of Buzzard–Calegari [BC05] that in weight 0 the n-th slope is equal to

1 + 2v2

(
(3n)!

n!

)
.
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• As for the other extreme, the main result of Buzzard–Kilford [BK05] states that the slopes on the

boundary annulus 1/8 < |κ| < 1 form an arithmetic progression with n-th term nv2(κ), all with

multiplicity 1. Indeed, by substituting κ = 2 we obtain the slope sequence 0, 1, 2, 3, 4, . . ., while for

κ = 4 we recover 0, 2, 4, 6, 8, . . .. Our computed power series P (κ, t) hence combines the best of

both worlds, by describing the spectral curve over the inner regions ofW as well as the outskirts.

Notice the striking contrast between the nature of the slope sequence at k = 0 and that close to

the boundary! A folklore conjecture predicts that the same phenomenon happens in general, and a

result of this �avour was obtained by Liu–Wan–Xiao [LWX17].

In the above computation, we focussed on the variation of Pκ(t) with the weight κ, but we can inter-

change the variables κ and t and study instead the powers series in κ appearing as the coe�cients of the

above series in t. For instance, up to precision (221, κ7) we obtain

P (κ, t) ≡ 1 + t(1739623 + 655215κ+ 2041060κ2 + 1602132κ3 + 2054126κ4 + 779022κ5 + 1634724κ6)

+ t2(546968 + 1705937κ+ 1156556κ2 + 1304431κ3 + 2059079κ4 + 1677821κ5 + 644339κ6)

+ t3(1907712 + 1112256κ+ 1074512κ2 + 1404477κ3 + 430411κ4 + 51909κ5 + 1261732κ6)

+ t4(720896κ+ 2019328κ2 + 1980416κ3 + 437120κ4 + 1161264κ5 + 1648837κ6)

+ t5(1310720κ4 + 524288κ5 + 1101824κ6)

+O(221, κ7)

Investigating the coe�cients ai(κ) of P (κ, t) for small values, we see that their valuation on κ ∈ Z2 only

seems to depend on κ (mod 26). This can be made into a rigorous proof of this fact, by using the uniform

estimates in Wan [Wan98] for the Newton polygon in t of P (κ, t) recalled above. After possibly redoing the

computation to a higher precision, to assure that all the slopes are indeed correct, we recover the following

theorem, which may be found in Emerton [Eme98, Theorem 1.1].

Theorem 4.3 (Emerton). The minimal non-zero slope of U2 onM
†
k in tame level 1, along with its multiplicity,

depends only on k (mod 16). More precisely, it is given by

31 if k ≡ 0 (mod 4),

41 if k ≡ 2 (mod 8),

51 if k ≡ 6 (mod 16),

62 if k ≡ 14 (mod 16).

We note that the calculations of Emerton [Eme98] rely crucially on the explicit uniformisations of 2-adic

regions on the genus 0 modular curves X0(2n) for small values of n, which are hard to come by in higher

levels and primes. Our algorithms do not rely on any speci�cs of the situation (p,N) = (2, 1), and therefore

similar arguments work in more general settings.

Looking further into the above coe�cients, let λ(i) be the number of roots of ai(κ) in the open unit disk.

The following table displays the 2-adic valuations of these roots, along with their multiplicities:
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Coe�cient Valuations λ

a0(κ) = 1 ∅ 0

a1(κ) ∅ 0

a2(κ) 31 1

a3(κ) 32,41 3

a4(κ) 34,41,71 6

a5(κ) 36,42,51,71 10

a6(κ) 39,43,52,61 15

a7(κ) 312,45,52,61,81 21

By inspecting the 2-adic valuations of the coe�cients we computed, we see that this output is provably

correct and complete. Note that

λ(i) =

(
i

2

)
,

which also follows from the main result of Buzzard–Kilford [BK05]. In Bergdall–Pollack [BP16], precise

conjectures are made about the location of the zeroes of ai.

Example 2. Let us set (p,N) = (3, 1) and compute P (κ, t) up to precision O(390, κ60). With the same

notation as above, we �nd
10

the following slopes of the zeroes of the coe�cients ai(κ):

Coe�cient Valuations λ

a0(κ) = 1 ∅ 0

a1(κ) ∅ 0

a2(κ) 12 2

a3(κ) 15,31 6

a4(κ) 19,22,31 12

a5(κ) 115,24,31 20

a6(κ) 122,25,32,41 30

a7(κ) 130,28,32,42 42

a8(κ) 140,211,32,43 56

Again, this output is complete and provably correct. Notice that

λ(i) = 2

(
i

2

)
,

which follows from the main result of Roe [Roe14], who showed that near the boundary, the slopes form

an arithmetic progression with an explicit argument that depends on the valuation of κ. Roe tackled this

more complicated situation using the same techniques as Buzzard–Kilford [BK05].

Example 3. We now turn to (p,N) = (2, 3) and compute P (κ, t) up to precision O(260, κ20). This

computation took about 90 minutes on a standard laptop. In addition to the notation above, let µ(i) to be

the largest power of p that divides ai(κ). The work of Bergdall–Pollack [BP16] uses Koike’s trace formula

to prove that µ(i) = 0 whenever N = 1. However, in our situation µ appears to be larger for several i:

10
The motivated reader can try to recover this computation, for instance using an explicit basis similar to that used in § 3.4, which

is possible since X0(3) has genus 0. There is a particularly nice basis, described by Loe�er [Loe07], which can be twisted by an

Eisenstein series to obtain the computation in all weights.
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Coe�cient Valuations λ µ

a0(κ) = 1 ∅ 0 0

a1(κ) − − −
a2(κ) ∅ 0 0

a3(κ) ∅ 0 1

a4(κ) 41 1 0

a5(κ) 32 2 1

a6(κ) 32,41 3 0

a7(κ) 32,41,81 4 1

a8(κ) 33,41,51,61 6 0

a9(κ) 34,43,61 8 1

a10(κ) 35,43,51,81 10 0

a11(κ) 36,44,52 12 1

a12(κ) 37,45,52,71 15 0

Computing P (κ, t) up to precision O(2, κ30) takes about one minute. Extracting the degrees of the t-

coe�cients, our data suggests the boundary slope sequence

02,1/22,12,3/22,22,5/22,32,7/22, . . .

which is indeed in accordance with the Newton polygon of λ+ µ computed above, up to the chosen preci-

sions. Notice the similarity with the slope sequence for (p,N) = (2, 1).

Example 4. As above, set (p,N) = (11, 1) and compute P (κ, t) up to precision O(11, κ60), which

takes about two minutes. We compute the degrees of the t-coe�cients, which suggest the boundary slope

sequence:

01,11,21,31,42,51,61,71,92, . . .

4.3. The Gouvêa–Mazur conjecture. An enormous amount of arithmetic information is encoded in the

slopes of overconvergent modular forms, which are the valuations of their Up-eigenvalues. One of the

consequences of the theory of Coleman [Col97b] is that for any α > 0, there exists a smallest integer Nα
with the following property: If k1 and k2 are integers such that

(113) k1 ≡ k2 mod pNα(p− 1)

then the collection of slopes ≤ α in weights k1 and k2 agree, with multiplicities. Gouvêa and Mazur con-

jectured in [GM92] that Nα ≤ bαc. However, Wan [Wan98] exhibits an explicit quadratic upper bound for

Nα, depending on p and the level.
11

The key observation for Wan is that the lower bound (111) is independent of j. After taking determinants,

we obtain a lower bound on the coe�cients of the characteristic series of Up in weight k + jkE , again

independent of j. Wan then proceeds by proving a very general reciprocity lemma on Newton polygons,

which allows him to transform the lower bound for those coe�cients into an upper bound for Nα.

Theorem 4.4. There is an explicitly computable quadratic polynomial P ∈ Q[x], depending only on p and
the level, such that Nα ≤ P (α).

Since Gouvêa and Mazur conjectured in [GM92] that Nα ≤ bαc, this is still an order of magnitude from

what we expect. However, the conjecture of Gouvêa–Mazur is known to be false, and a counterexample

11
Strictly speaking, Wan assumes that p ≥ 5, but his arguments easily extend to p = 2, 3 using our basis described above.
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was given in [BC04]. It should be noted that the counterexample of Buzzard–Calegari is only a very small

violation of the conjecture, and generically it seems that in fact something much stronger than Gouvêa–

Mazur is true! Let us illustrate this with two examples.

The case p = 2 is proli�c soil for �nding counterexamples to the Gouvêa–Mazur conjecture. As noted

above, the �rst counterexample was given in [BC04] for p = 59 and level 1, and a further one for p = 79 in

[Lau11]. For p = 2, we obtain the following slope sequences in level Γ0(19):

k = −2 : 04,1/22,13,25,9/44,43,52,621,15/22, . . .

k = 0 : 04,1/22,15,311,13/44,725,25/24,1311, . . .

k = 2 : 04,1/22,13,3/22,25,411,17/44,825,27/24, . . .

k = 4 : 04,1/22,15,5/22,36,7/22,43,55,21/44, . . .

k = 6 : 04,1/22,13,27,5/22,43,9/22,56,11/22, . . .

k = 8 : 04,1/22,15,313,7/22,65,13/22,76,15/22, . . .

Notice the aberration in the dimensions of the slope 1 subspaces, as well as the slope 3 subspaces in weights

0 and 8. Whereas these are all near misses, in that the smallest slopes for which discrepancies arise are

exactly equal to the valuation of the weight di�erence, we note a 2-dimensional slope 3/2 subspace in

weight 2, which is completely absent in weight 6, whereas 3/2 < v2(6 − 2) = 2. Similarly, the slope 9/4

subspace in weight −2 does not exist in weight 6 = −2 + 23.

On the other hand, to see how Gouvêa–Mazur is frequently much weaker than the truth, consider the

�rst few slopes of U3 acting on M†278 (Γ0(41)), which we computed using Lauder’s algorithm to be

(114) 012,114,348,614,722,86,922,1014,1248,1414,1622,176,1822, . . .

where the subscripts denote multiplicities. Repeating the same computation in weight 8, we �nd the exact

same slope sequence for all the terms we display here, whereas the Gouvêa–Mazur conjecture would only

predict the slopes up to 3 to agree. This behaviour seems rather typical in most examples we computed.

4.4. Chow–Heegner points. We now discuss how the computation of spaces of overconvergent forms,

using the above algorithms, can be used to construct arithmeto-geometric invariants. We chose to discuss

the Heegner-type point construction on elliptic curves, following Darmon–Rotger [DR14].

Let p be a prime and E/Q an elliptic curve of conductor N , associated to a p-ordinary form f ∈
Snew
2 (Γ0(N)). Let g be any other weight 2 newform which is p-ordinary. It can be deduced from the

work of Darmon–Rotger [DR14, Theorem 1.3] that there exists a global (rational) point Pg ∈ E(Q) that

satis�es the Gross–Zagier type formula

(115) log(Pg) = 2dg ·
E0(g) E1(g)

E(g, f, g)
· Lp(g, f ,g)(2, 2, 2) ,

where the quantities appearing in the formula are

• log is the formal p-adic logarithm on the elliptic curve E,

• dg is an integer described in [DDLR15, Remark 3.1.3],

• the E-factors are quadratic numbers depending only on the p-th coe�cients of f and g,

• Lp(g, f ,g) is the Rankin triple product p-adic L-function of the Hida families f ,g through f, g.
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The last item in this list deserves some discussion. We will not de�ne the Rankin triple product p-adic

L-function here, as that would lead us too far from the topic of these notes, and the exposition in Darmon–

Rotger [DR14] is excellent. We will however explain how one computes the special value appearing in

formula (115). As before, we let eord = limn U
n!
p be Hida’s ordinary projector. Start by computing

(116) eord(θ−1f [p] × g)

where f [p] denotes the p-depletion (1 − VpUp)f of f . Here, we have used Serre’s di�erential operator

θ = qd/dq, which is an important object in the theory of overconvergent forms, and would surely merit an

entire article to do it justice. The inverse of this operator is de�ned by the p-adic limit

(117) θ−1 = lim
n→∞

θp
n−1.

By Coleman’s criterion, we conclude that the overconvergent form (116) is classical, and hence it can be

written as a �nite linear combination of Hecke eigenforms of weight 2 and level Γ0(p). The special value

Lp(g, f ,g)(2, 2, 2) is the coe�cient of g in this linear combination.

Example 1. Consider the elliptic curve

(118) E : y2 + xy = x3 − x2 − x+ 1

which has rank 1 and conductor 58. Consider its associated newform f , and let g be the unique newform

on Γ0(58) di�erent from f , then

(119)

f(q) = q − q2 − 3q3 + q4 − 3q5 + 3q6 − 2q7 − q8 + 6q9 + 3q10 − q11 + . . .

g(q) = q + q2 − q3 + q4 + q5 − q6 − 2q7 + q8 − 2q9 + q10 − 3q11 + . . .

Both f and g are 2-ordinary. Letting P = (0, 1) be a generator for E(Q), we compute that

(120) L2(g, f ,g)(2, 2, 2) ≡ 3 logE(P ) (mod 2200),

as predicted by the theory in [DR14].

Let us end this discussion on a more speculative note. In the above it is important that f is ordinary.

Whereas it is conceivable that this may be extended to eigenforms of �nite slope through the use of Coleman

families, it is not clear that even if the Rankin triple product p-adic L-function may be constructed in cases

where f is of in�nite slope, that it should be related to global points. Nonetheless, the computation of the

special value above yields an explicit number even in those situations, and we now compute a few examples

where the Tate module of EQ is wildly rami�ed at 2 or 3, and f is of in�nite slope.

Example 2a. Consider the elliptic curve

(121) E : y2 + y = x3 + 9x− 10

which is of conductor 4617 = 35 · 19 and rank 1. Consider the newforms

(122)

f(q) = q − 2q2 + 2q4 − 2q5 − 3q7 + 4q10 − 6q11 + . . .

g(q) = q − 2q3 − 2q4 + 3q5 − q7 + q9 + 3q11 + . . .

where f is associated to E, and g is the unique cuspidal newform of weight 2 on Γ0(19). Despite f being

of in�nite 3-adic slope, we can run the computation and �nd a numerical value for L2(g, “f”,g)(2, 2, 2).

We �nd that

(123) L3(g, “f”,g)(2, 2, 2) ≡ t · logE(P ) (mod 3200) where 2t2 + 48t+ 729 = 0,
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where P = (4, 9) is a generator of E(Q). The fact that both quantities are related by a quadratic number t

of small height suggests that a more general analogue of the theory for ordinary forms in [DR14], and more

speci�cally equation (115), might exist.

Example 2b. Consider the elliptic curve

(124) E : y2 = x3 + x2 − 62893x− 6091893

which is of rank 1 and conductor 15104 = 28 ·59. Let f be its associated newform, and let g be the newform

of level 118 associated to the elliptic curve with Cremona label 118.a1, then

(125)

f(q) = q − 2q3 − 3q7 + q9 + 3q11 − 3q13 + . . .

g(q) = q − q2 − q3 + q4 − 3q5 + q6 − q7 − q8 − 2q9 + 3q10 − 2q11 + . . .

Note that g is 2-ordinary. We compute that

(126) L2(g, “f”,g)(2, 2, 2) ≡ 6 logE(P ) (mod 2100),

4.5. p-Adic L-functions of real quadratic �elds. We end this article with a discussion of a method to

compute p-adic L-functions of totally real �elds F , following [LV19]. We closely mirror the approach to p-

adic L-functions in § 2 developed in Serre [Ser73] and Deligne–Ribet [DR80], which is rooted in an idea that

goes back to Hecke [Hec24] and Siegel [Sie68]. It should be noted that an alternative approach towards p-

adic L-functions of Barsky and Cassou-Noguès [Bar78, CN79] based on the explicit formula for zeta values

of Shintani [Shi76] was recently used to develop an algorithm for their computation by Roblot [Rob15].

Instead, we take here an approach using diagonal restrictions of Eisenstein series and p-adic interpolation,

similar to that of Cohen [Coh76] and Cartier–Roy [CR72].

For simplicity, we restrict to the case where F = Q(
√
D) is a real quadratic �eld. Let d denote its

di�erent ideal. Suppose ψ is a character of F , then Hecke [Hec24] proposed to study the values L(ψ, 1−k)

by considering the diagonal restriction of a Hilbert Eisenstein series of weight k over F . This was carried

out by Klingen–Siegel [Kli62, Sie68] to show the rationality of such special values, and to give explicit closed

formulae for some small values of k. For instance, their methods, which we review shortly, yield classical

identities such as

(127) ζF (−1) =
−1

60

∑
b<
√
D

b≡D (mod 2)

σ1

(
D − b2

4

)
.

To explain their arguments, we recall the de�nition of the Eisenstein series attached to a character ψ of

modulus m. Suppose k ≥ 1 is such that ψ has sign (−1)k at both in�nite places. Shimura [Shi78] de�nes

the space Mk(m, ψ) of Hilbert modular forms of (parallel) weight k, level m and character ψ. We content

ourselves by mentioning that the data includes a holomorphic function f : H2 → C which satis�es

(128) (c1z1 + d1)−k(c2z2 + d2)−kf

(
a1z1 + b1

c1z1 + d1
,

a2z2 + b2

c2z2 + d2

)
= ψ(a)f(z1, z2),

for all matrices

(129) γ =

(
a b

c d

)
∈ SL2(OF ) such that c ∈ m .

Here, and in what follows, we have used the notation xi to denote the image of x ∈ F under the i-th

embedding σi : F ↪→ R. The transformation law (128) implies that every form has a q-expansion, indexed
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by the totally positive elements d−1+ of the inverse di�erent. The case of interest to us is given by the

Eisenstein series

(130) Gk,k(ψ) ∈Mk(m, ψ)

whose q-expansion is
12

given by

(131) L(ψ, 1− k) + 4
∑
ν∈d−1

+

∑
a |(ν)d

ψ(a) Nm(a)k−1 exp (2πi(ν1z1 + ν2z2)) .

The diagonal restriction of Gk,k(ψ)(z1, z2) is obtained by setting z1 = z2, and is a modular form of weight

2k and level one, which has q-expansion:

(132) L(ψ, 1− k) + 4
∑
n≥1

 ∑
ν∈d−1

+

Tr(ν)=n

∑
a |(ν)d

ψ(a) Nm(a)k−1

 qn.

Setting k = 2, note that M4(SL2(Z)) = 〈E4〉, so the above form must be a multiple of E4. One quickly

determines this multiple, and we deduce the equality (127). For general k, it is more di�cult to describe the

combination of modular forms we obtain, but we can always choose a basis of classical modular forms with

rational Fourier coe�cients, of which the diagonal restriction must be a rational linear combination due to

the rationality
13

of its higher Fourier coe�cients. It then immediately follows that L(ψ, 1−k) must also be

rational. We illustrate this with a simple example.

Example 1. Let us consider F = Q(
√

5). The narrow ray class group attached to the prime (3) is

(133) Cl+(3) ' Z /2Z

and the unique quadratic character ψ of conductor (3) is totally odd. We compute the diagonal restriction

in (132) for k = 3, and �nd it has q-expansion given by

(134) L(ψ,−2) − 1144q − 39696q2 − 291448q3 − 1261696q4 + . . .

This is a modular form of weight 6 and level Γ1(3), and the space M6(Γ1(3)) is 3-dimensional, and has a

basis of the form

(135)


f1 = 1 − 504q3 + . . . ,

f2 = q + 45q3 + 166q4 + . . . ,

f3 = q2 + 6q3 + 27q4 + . . .

Using the �rst three higher Fourier coe�cients, we easily determine that the diagonal restriction is equal

to

32

9
f1 − 1144f2 − 39696f3,

and we deduce that L(ψ,−2) = 32/9.

For general weights and characters, our inability to easily describe the �rst few Fourier coe�cients of

a rational basis for the space of modular forms that contains the diagonal restriction is what stood in the

way of giving a clean explicit formula of the sort of (127). Computationally, we may easily determine such

a basis as in the above example, and obtain such a formula in any given case that merits our consideration.

This e�ectively reduces the computation of the constant term to the e�cient computation of the higher

12
In the case where k = 1 and m = (1), the constant term of (131) must be modi�ed suitably, and we refer the interested reader

to the statements contained in Darmon–Dasgupta–Pollack [DDP11, Proposition 2.11] for more details.

13
Strictly speaking, here we mean rational over the smallest number �eld containing the values of ψ.
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Fourier coe�cients of (132), which are of a much more elementary nature. For real quadratic �elds, an

e�cient algorithm was presented in [LV19] in terms of the theory of reduced cycles of inde�nite quadratic

forms [Gau01, BV07]. The p-adic variation of the constant term is then computed by interpolation, and

we therefore �nd an algorithmic incarnation of the idea of Serre of studying this variation by studying the

corresponding variation of the higher Fourier coe�cients.

Example 2. Let F = Q(
√

3 · 71), and ψ the genus character attached to the extension

L = Q(
√
−3,
√
−71).

The p-adic L-function is naturally an element in the Iwasawa algebra ZpJκK where for any positive integer

k ≡ 1 (mod p− 1) we have the interpolation property

(136) Lp
(
(1 + p)k−1 − 1, ψ

)
= L(1− k, ψ) ·

∏
p |p

(1− ψ(p) Nm(p)k−1)

which, together with the method described above, we use to compute numerically that

L7(κ, ψ) = −103777561 · 7κ− 96435328κ2 − 15935394κ3 + . . . (mod 710, κ4)

L11(κ, ψ) = −8645808191− 10894273842κ+ 4315116763κ2 + . . . (mod 1110, κ4)

By inspection of the Newton polygon, we see that the 7-adic L-function has precisely two zeroes in the open

unit disk. One of the zeroes is a so-called exceptional zero, which is caused by the vanishing of the Euler

factor at κ = 0 (corresponding to k = 1) in the equality (136). Such a zero is not present in the 11-adic

L-function, since 11 splits into two ideals in F , neither of which are in the kernel of ψ. The other zero of

L7(κ, ψ) is more interesting, and we compute its approximate value

κ = 2669714 · 7 (mod 710).

The presence of this zero predicts linear growth of the 7-part of the class number of the cyclotomic tower

over L relative to F . In fact, such a divisibility is already be observed at the bottom layer, since

ClL ' Z/7Z .

A celebrated feature of these p-adic L-functions is contained in the Gross–Stark conjecture, which occurs

in situations where p is inert in F , so there is an exceptional zero as in the example above. Indeed, in this

case it is known by the work of Darmon–Dasgupta–Pollack [DDP11] that

Lp(0, ψ) = 0, L′p(0, ψ) = logp(u), u ∈ OH [1/p]×

where H is the ray class �eld cut out by ψ. The numerical computation of the quantity L′p(0, ψ) may be

done without �rst computing the series Lp(κ, ψ), using a more direct and e�cient approach. To explain it,

assume for simplicity that ψ is unrami�ed, and note the following, see [DPV20]:

• The p-adic family Gκ,κ(ψ)(z, z) obtained from the diagonal restrictions of the Hilbert Eisenstein

series specialising to the p-stabilisations of the Eisenstein series (131) attached to ψ vanishes at

κ = 0 (which corresponds to weight k = 1), i.e. we have:

G0,0(ψ)(z, z) = 0.

In other words, the exceptional zero of the constant term propagates to the higher coe�cients.

• Its �rst order derivative with respect to κ is the q-expansion of an overconvergent modular form of

tame level one, whose constant coe�cient is equal to L′p(0, ψ).
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Since the higher Fourier coe�cients are elementary even after taking this �rst order derivative, we may

proceed with the strategy as above. We compute the higher Fourier coe�cients, write the form in terms of

a precomputed basis for the space M†2 (SL2(Z)), and obtain a p-adic approximation for the constant term

L′p(0, ψ). This leads to very signi�cant speed-ups when compared to the naive approach that �rst computes

the series Lp(κ, ψ). The following example appears in [LV19, § 4.4]:

Example 3. Let F = Q(
√

321), which has class number 6, then we compute in under 5 seconds that

when ψ is the unique unrami�ed quadratic character, we have L′7(0, ψ) = log7(u), where u is a root of

716u6 − 20976 · 78u5 − 270624 · 74u4 + 526859689u3 − 270624u2 − 20976u+ 74 = 0,

which is a 7-unit in the Hilbert class �eld of F .

Remark 1. A beautiful alternative method for the computation of the Gross—Stark unit was developed

for real quadratic �elds by Dasgupta [Das07] and for cubic �elds by Slavov [Sla07] based on the Shintani

cone re�nements of [Das08]. We mention also the unpublished algorithm of Charollois, based on cocycle

relations for GLn as in [CD14, CDG15]. These works are more closely related to the de�nition of the p-adic

L-functions by Barsky and Cassou–Noguès, but yield a suitable re�nement of it. Such a re�nement may

also be obtained for our method above, where the p-adic family of Eisenstein series is replaced by a cuspidal

family in the anti-parallel weight direction. This is the subject of the forthcoming paper [DPV21].

Remark 2. We note the striking parallel with the work of Gross–Zagier [GZ86] on singular moduli. They

consider the setting of two imaginary quadratic �elds K1 = Q(τ1) and K2 = Q(τ2), whose biquadratic

compositum contains a unique real quadratic sub�eldF . The real analytic familyGs(z1, z2) overF attached

to the associated genus character is the principal actor in the analytic part of the arguments of Gross–Zagier.

They consider its diagonal restriction Gs(z, z), and show that

• When s = 0, we have Gs(z, z) = 0,

• The holomorphic projection of the �rst derivative(
∂

∂s
Gs(z, z)

) ∣∣∣∣hol
s=0

has Fourier coe�cients related to log Nm (j(τ1)− j(τ2)).

Since the holomorphic projection is a holomorphic modular form of weight 2 and level 1, it must vanish!

This vanishing gives Gross–Zagier their explicit formula for Nm (j(τ1)− j(τ2)).

In [DPV20], we observe a suitable p-adic analogue of these phenomena. More precisely, we show that

(137)

(
∂

∂κ
Gκ,κ(ψ)(z, z)

) ∣∣∣∣ord

κ=0

is a classical modular form of weight two, whose component along the Eisenstein series E
(p)
2 has constant

term L′p(0, ψ). For Gross–Zagier, the higher Fourier coe�cients were related to the norms of di�erences

of singular moduli. In our setting, the higher Fourier coe�cients of (137) are related to the RM (real mul-

tiplication) values of certain rigid cocycles, which were introduced in [DV21] as a framework for singular

moduli in the case of real quadratic �elds, which are conjecturally algebraic.

In this case, the conjecture may be proved using the idea of Serre in the reverse direction, whereby

information on a higher Fourier coe�cient is inferred from the constant coe�cient. Indeed, using the theory

of p-adic deformation of Galois representations, it was proved in Darmon–Dasgupta–Pollack [DDP11] that
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the constant term is a rational multiple of the logarithm of a unit in OH [1/p]×. The same then follows for

the higher Fourier coe�cients, giving the algebraic nature of the RM values of rigid cocycles conjectured

in [DV21], at least in the special case of the so-called Dedekind–Rademacher cocycle.
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