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1. Mixed Hodge theory

1.1. Pure Hodge structures. Let X be a smooth projective complex variety and Ω•X the
complex of sheaves of holomorphic differential forms with the de Rham differential.

We have two structures on the de Rham cohomology Hn
dR(X) = Hn(X,Ω•X):

• We have a period isomorphism

Hn
dR(X)→ Hn(X,Q)⊗Q C

ω 7→
∫
γ

ω

This gives a Q-sublattice Hn(X,Q) ⊂ Hn(X,Ω•X)
• We have a decreasing filtration

Ω•X = F 0(Ω•X) ⊃ F 1(Ω•X) ⊃ ....

where
F pΩ•X = (Ωp

X → Ωp+1
X → ...)[−p].

This defines a Hodge filtration F on Hn
dR(X).

We can also define the conjugate filtration F using the real structure coming from the
Q-sublattice. These two pieces of data define a pure Hodge structure of weight n: we have

grpF grq
F
Hn
dR(X) = 0

unless p+ q = n.

1.2. Example. Consider the twice-punctured torus:

picture

It seems different cycles land in H1(X,Q) for different reasons: some come from encircling
the boundary (α, β) and some come from the actual homology (γ, γ′). Note that this does
not give a decomposition of the homology since γ′ = γ + 2α + 2β. However, this gives a
cofiltration:

H1(X) � Hpure
1 (X),

where Hpure
1 (X) is the one-dimensional vector space spanned by γ (or γ′).

More precisely, let X ⊃ X be the torus with the punctures filled in. Then we have a long
exact sequence

H2(X,X)→ H1(X)→ H1(X)→ H1(X,X)→ ...

The pure part Hpure
1 (X) is the kernel

Hpure
1 (X) = Ker(H1(X)→ H1(X,X)).
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1.3. Mixed Hodge structures. Let us switch to cohomology to get a filtration instead of
a cofiltration. Let X be a smooth quasi-projective complex variety with X ⊃ X a smooth
compactification with the boundary D = X −X being a smooth divisor (more generally, a
smooth normal crossing divisor).

We still have the period isomorphism Hn
dR(X) ∼= Hn(X,Q) ⊗Q C, but we want to put

extra structure on the left-hand side.
Let Ω•

X
(logD) be the log de Rham complex of meromorphic differential forms ω on X

which are holomorphic on X and such that for every point x ∈ D and a local equation z = 0
of the divisor, the differential forms zω and zdω are holomorphic at x.

Proposition (Deligne). The restriction map

Hn(X,Ω•
X

(logD))→ Hn(X,Ω•X)

is an isomorphism.

We have an increasing filtration on Ω•
X

(logD) called the weight filtration. It is defined as
follows:

WpΩ
n
X

(logD) =


Ωn
X
, p ≤ 0

Ωn
X

(logD), p ≥ n

Ωn−p
X
∧ Ωp

X
(logD), 0 < p < n

This defines a mixed Hodge structure on Hn
dR(X).

Definition. A mixed Hodge structure on a complex vector space V is a collection of the
following data:

• a decreasing Hodge filtration F pV ,
• an increasing weight filtration WpV ,
• a Q-lattice VQ ⊂ V

satisfying the condition that the graded pieces grpW (V ) are pure Hodge structures of weight
p.

One can easily see that the mixed Hodge structure we have defined on Hn
dR(X) has weights

starting at n. More generally, we have the following heuristics:

• If X is projective, Hn
dR(X) contains weights 0, ..., n.

• If X is not smooth, Hn
dR(X) contains weights n, ..., 2n.

Example: X = C×. The first de Rham cohomology is represented by the differential form
dx
x

which implies that H1
dR(X) is pure of weight 2. We call this the Tate Hodge structure

Q(−1). Note that it coincides with the Hodge structure on H2
dR(CP1).

2. Hodge modules

2.1. Variations of Hodge structures. Previously we have looked at the case of a single
complex variety X. Now consider a proper smooth morphism f : X → S of smooth complex
varieties.

Then VQ := Rnf∗Q is a local system of Q-vector spaces and V = Rnf∗(Ω
•
X/S) is a vector

bundle with a flat Gauss–Manin connection ∇ satisfying the Griffiths transversality condi-
tion.
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Definition. A variation of a Hodge structure of weight n on a smooth complex variety S is
a collection of the following data:

• a flat vector bundle (V,∇)
• a local system VQ of Q-vector spaces together with an identification

VQ ⊗Q OS
of flat vector bundles
• a decreasing Hodge filtration F • on V

satisfying

(1) Griffiths transversality: ∇(F pV ) ⊂ F p−1V ⊗ Ω1
S

(2) Opposedness: grpF grq
F
V = 0 unless p+ q = n.

Note that Griffiths transversality shows that the filtration is not flat with respect to ∇
and so does not descend to a filtration on the local system VQ.

One can also define a variation of a mixed Hodge structure by combining the notions of
a variation of Hodge structure and mixed Hodge structure. Given a morphism f : X → S,
then generically (i.e. over a smooth open U ⊂ S) Rnf∗Q underlines a variation of a mixed
Hodge structure.

2.2. Polarization. When one defines a projective variety, one simply says that there is an
embedding X ⊂ PN without actually specifying it as a data. The data of the embedding is
equivalent to the data of an ample line bundle O(1). It has a first Chern class ω ∈ F 1H2

dR(X)
which is, moreover, integral (i.e. comes from a class in H2(X,Z)).

Define a pairing

Hn
dR(X)⊗Hn

dR(X)→ C

by

α, β 7→
∫
X

α ∧ β ∧ ωd−n,

where d is the dimension of X.
It defines a morphism

Hn
dR(X)⊗Hn

dR(X)→ Q(−n)

of pure Hodge structures.
The morphism is skew-symmetric (symmetric for n even and antisymmetric for n odd)

and non-degenerate.

Definition. A polarization of a pure Hodge structure V of weight n is a (graded)-symmetric
morphism

V ⊗ V → Q(−n)

inducing an isomorphism

V → V ∨(−n).

We say that a pure Hodge structure is polarizable if it admits a polarization. A mixed
Hodge structure V is graded-polarizable if grnW (V ) are polarizable pure Hodge structures.
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2.3. Hodge modules. A variation of a Hodge structure has an underlying flat vector bundle
and a local system of flat sections.

Let us try to extend this definition to include regular holonomic D-modules and perverse
sheaves. Before we do that, let us make an observation regarding the Griffiths transversality
condition. It says that

∇(F pV ) ⊂ F p−1V ⊗ Ω1.

In particular, for a vector field v we have

∇v(F
pV ) ⊂ F p−1V.

Thus, the increasing filtration F−pV = F pV is compatible with the natural filtration on
the sheaf of differential operators D by degree. In fact, the filtration F• on the D-module V
is an example of a good filtration which we will not define.

Let X be a complex variety.

Definition. A rational filtered D-module on X is a collection of the following data:

• A regular holonomic D-module M
• A perverse sheaf of Q-vector spaces MQ together with an isomorphism DR(M) ∼=
MQ ⊗Q C
• A good filtration F• on M .

The category of rational filtered D-modules is closed under Verdier duality and nearby
and vanishing cycles.

The full subcategory HM(X,n) of Hodge modules of weight n on X is defined inductively.

Definition. A rational filtered D-module M has strict support on a subvariety Z ⊂ X if it
is supported on Z and no quotient or sub object has a smaller support.

We let
HM(X,n) =

⊕
Z⊂X

HMZ(X,n),

where HMZ(X,n) is the category of Hodge modules with a strict support on Z.
The induction procedure is as follows:

• Hodge modules of weight n supported on a point are the same as pure Hodge struc-
tures of weight n
• Suppose U ⊂ X is an open subvariety and f : U → C a holomorphic function. For

a rational filtered D-module M , the module of nearby cycles ψf (M) has a weight
filtration and we say M ∈ HM(X,n) if grWk (ψf (M)) are Hodge modules of weight k
with support on f−1(0).

We will not define the category of mixed Hodge modules MHM(X), but we will just state
its properties:

• There are forgetful functors MHM(X) → Perv(X,Q) and MHM(X) → Drh(X)
compatible with the Riemann–Hilbert correspondence.
• Objects in MHM(X) admit a weight filtration.
• We have the six-functor formalism on the bounded derived category compatible with

the forgetful functors to perverse sheaves and D-modules.
• The functors f!, f

∗ do not increase weights, the functors f∗, f
! do not decrease weights.
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Let f : X → pt be the natural projection. Then we have the Tate Hodge structure
Q(0) ∈ MHM(pt). Therefore, f∗f

∗Q(0) is a complex of mixed Hodge modules and so we
have a mixed Hodge structure on H∗(X,Q).

Suppose X is smooth. Then f ∗Q(0) = QX(0) has weights ≥ 0. Similarly, f !Q(0) =
QX(dimX)[2 dimX] has weights ≤ 0, or, equivalently, QX(0) has weights ≤ 0. Therefore,
QX(0) is pure of weight 0. If f is proper, f∗ = f! and so it sends pure Hodge modules to
pure Hodge modules. Therefore, the cohomology H∗(X,Q) has a pure Hodge structure in
this case.

For an open immersion j : U → X of the smooth locus we can define the intermediate
extension functor j!∗. We define the IC sheaves ICU ∈ MHM(X) to be

ICU := j!∗(QU(0)[dimX]).

Proposition. The Hodge module ICU is of pure weight 0. More precisely, grdimX H
dimXQX(0) =

ICU .
In particular, the n-th intersection cohomology of X has a pure Hodge structure of weight

n.

2.4. Towards the decomposition theorem. Let us go back to the setting of (pure) Hodge
modules. We can define polarizable Hodge modules similarly to polarizable variations of
Hodge structure by replacing linear duality by Verdier duality.

The Chern class of a line bundle on X can be represented as a morphism ZX → ZX(1)[2]
in the derived category of mixed Hodge modules on X.

Consider a projective morphism f : X → Y with a relatively ample line bundle L and the
associated Lefschetz operator on Hodge modules.

Proposition (Saito). Suppose M is a polarizable Hodge module of weight n on X. Then:

(1) The pushforward Rkf∗M is a Hodge module of weight n+ k on Y .
(2) (Hard Lefschetz) The Lefschetz operator induces an isomorphism

R−if∗M → Rif∗M(i).

(3) The primitive part of R−if∗M is a polarized Hodge module.

Proposition (Deligne). The hard Lefschetz property implies that

Rf∗M ∼=
⊕
i

Rif∗M [−i].

To derive the decomposition theorem, the only thing left is the structure theorem for
polarizable Hodge modules.

Proposition (Saito). Every polarizable Hodge module of weight n on X comes as an inter-
mediate extension of a variation of Hodge structure of weight n− dimZ on an smooth open
subset of Z for some closed subvariety Z ⊂ X.

Given a variation of Hodge structure V on an open subset of Z, we denote by ICZ(V ) the
intermediate extension as a Hodge module on X.

Combining the previous theorems, we get:

Theorem (Decomposition theorem). Let f : X → Y be a projective morphism. Then
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(1)

Rf∗ ICX(V ) =
⊕
i

Rif∗ ICX(V )[−i].

(2)

Rif∗ ICX(V ) ∼=
⊕
Z⊂X

ICZ(V i
Z)

for some variations of Hodge structure V i
Z.


