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Points of Order 13 on Elliptic Curves 

B. Mazur (Cambridge, Mass.) and J. Tate (Cambridge, Mass.) 

1. Introduction 

The main object of this note is to show that an elliptic curve defined 
over Q cannot have a rational point of order 13. Equivalently, X~(13), 
the curve that classifies elliptic curves with a chosen point of order 13, 
has no non-cuspidal points rational over ~.  This has also been an- 
nounced by Blass who uses a method somewhat different from ours [1] 1. 

Our approach consists in applying a descent argument to J, the 
jacobian of X1(13), proving that J has precisely 19 rational points 
over (]~ 2. 

The possibility that this could be done occurred to us when Ogg 
passed through our town and mentioned that he had discovered a point 
of order 19 on the 2-dimensional abelian variety J. It seemed (to us and 
to Swinnerton-Dyer) that if such an abelian variety J, which has bad 
reduction at only one prime, and has a sizeable number of endomorphisms, 
has a point of order 19, it is not entitled to have any other points. 

We show this below by an argument that requires a minimum of 
calculation (by "pure thought") and which may have parallels in the 
study of X1 (n) for a few other higher values of n (e. g. see the forthcoming 
work of D. Kubert). Our first goal is to determine the structure of the 
Galois module V of 19-division points on J. To do this we use the action 
on V of a certain group A of automorphisms of X1(13). This group 
exists for Xl(n), any n, and we begin by describing it as an abstract 
group on which Galois acts, which we call the twisted dihedral group. 

2. The Twisted Dihedral Group 

Let ~ be an algebraic closure of • and let G = G a I ( ~ / ~ ) .  Fix an 
integer n. Let K denote the cyclotomic extension of ~ obtained by 

L Blass has communicated to us that he works directly on a hyperelliptic model of X1(13) 
of the form y2=g(x), where g(x) is a certain sixth degree polynomial which factors in a 
field of class number 1--not the field ~ (~l 3 + ~i-a l) which occurs below, however. 
20gg [4] has checked that the L-series of J is non-zero at s = 1 and thus the above result 
is in accord with the general conjecture of Birch and Swinnerton-Dyer. 
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adjoining all n-th roots of 1 in ~ .  There is a canonical identification, 

Gal (K/Q) ~ (Z/n)*. 

Let F denote the group (Z/n)*/(+ 1). If m is an integer relatively prime 
to n, let 7,. denote its image in F. Also, ifct is in G, or in Gal(K/Q), let 7~ 
denote its image in F, making use of the canonical identification alluded 
to. Thus we have Y, = Yp if and only if ct and fl coincide on the maximal 
real subfield K + of K. 

We shall now describe a specific group A, which is a dihedral ex- 
tension of Z/2 by F 

O ~  F ~  A ~ 7I/2 ~ O .  

As ( runs through all primitive n-th roots of 1, the symbols Tr 
will run through the elements of the non-trivial F-coset of A. Moreover, 
the following relations are imposed: 

27r rm Z~ -1 ~"~" ('~m) -1  

(zr 2 = 1. 

is a natural action of Gal (K+/Q)  on A, given by the rules 

~m-~m, and (z~)~=z~=7~zr 

This group A, with its G-action, is called the twisted dihedral group. 

Let n=>4. Let Xl(n) denote the non-singular projective curve over Q 
associated to the moduli problem: 

Classify injections x: Z/nTZ~-~E up to isomorphism, where E is an 
elliptic curve. 

Then, as in [4], one has the following classical description of the 
complex-analytic Riemann surface of complex points of X1 (n): 

Consider the subgroup F1 (n) of the full modular group PSL(2, Z ) =  
SL(2, Z) / (_  1) consisting in those y which can be represented by matrices 
satisfying the following congruence modulo n: 

(a b 1 
d)=(0 mod n. 

Let Y~ (n) denote the quotient of the upper half-plane under the action 
of F1 (n). Then Yx (n) is an open Riemann surface whose compactification 
is Xx (n), and: 

X l  (n) = Y~(n) u cusps. 
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The dihedral group A acts in a natural way as a group of automor- 
phisms on X = X~ (n). This action has the following modular  description: 

If 
x: 7Z/nZ ~.~E 

is a "po in t "  of Xl(n), let Vm X denote the "poin t" :  

ra# 
V,,x: 7l/n7Z~..-~E. 

Let zg x denote the "poin t" :  
i~ Jg-  

z~x: Z/nZ ~pn~-~E 

where E = E/image (fl), p. is the galois module of n-th roots of 1, and/J  is 
the inclusion given to us by self-duality of E 3, and finally i~ is the map 
sending 1 to (. The verification that this defines an action of A is left to 
the reader. 

This action is "defined ever Q "  in the sense that it enjoys the following 
galois-compatibility: 

(~. x)~= a ~. x ~ 

for aeA,  and x a point of X, rational over ~ .  

3. The Structure XI (13) 

From here on, fix n =  13. Then F is cyclic of order 6, with 72 as 
generator. The reader is referred to [4] for the following description of 
XI(13)=X:  

X is of genus 2, and its jacobian Pic ~ = J is an abelian variety of 
dimension 2 over Q with bad reduction only at the prime 13. The curve X 
has precisely 12 cusps, 6 of which are rational (over ~ )  and the remaining 
6 are rational over the maximal totally real subfield in Q((~3). The 
group F operates cyclically on each of the sets of 6 cusps and A acts 
freely on the set of all cusps. If we imbed X in J by one of the 6 rational 
cusps to 0e  J, then these 6 rational cusps generate a subgroup T c J  of 
order 19. The group T is the entire torsion subgroup of the Mordell- 
Weil group of J, and X c~ T consists in precisely the 6 rational cusps. 

The abelian variety J is simple over Q. Here is the easy way of seeing 
this: If not, there would be an exact sequence of abelian varieties over Q 

O-~ Jl-~ J-~ J2 ~ O 

a The eternal problem concerning which convention to take for the sign of the self-duality, 
(one may adopt  the choice of alternating form ( , ) defined by Weil [6] for example) and 
whether one wants image fl to appear in the first or second entry of( , ) forces us to confess 
that  there are t w o  natural choices for ~ which differ by sign. Luckily this ambiguity will 
not plague us insofar as the two natural choices are isomorphic to each other (by multi- 
plication by - 1) and therefore they give rise to the same point on X1 (n). 
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where J~ (i = 1, 2) are elliptic curves over Q with bad reduction only at 13. 
One of the J{s has a rational point of order 19 because J does. This is 
impossible, for the reduction of this elliptic curve at p = 2  can have by 
the Riemann hypothesis at most 5 rational points over the field of two 
elements, and a point of order 19 cannot reduce to zero under reduction 
in characteristic two. 

As we shall mention later on, J is not absolutely irreducible. Consider 
the characteristic polynomial of the generator ?2 ~ F acting on J. Since J 
is simple over Q, this polynomial is a power of an irreducible polynomial. 
Since the action of 72 on J is precisely of order 6 (that is, not of order 1, 2, 3) 
as can be seen by its action on the 6 rational cusps, the characteristic 
polynomial of 72 has no choice but to be: 

(1 - -  X + X2) 2 

and consequently the action of A induces an action of the quotient ring 

D = Z  [A]/ (1-72 +72) 

on J. Since D is an order in a simple algebra, this action is faithful. In the 
ring D, 72 generates a ring isomorphic to Z I - ~ ] ,  with 72 = _~/~.4 

Let V denote the galois module of 19-division points of J. Then V is a 
vector space of dimension 4 over the field with 19 elements. In the 
discussion to follow, all vector spaces will be over this field. 

The vector space V is canonically a G-module, and possesses a 
G-compatible action of A. Denote by V(1)c V the subspace of dimen- 
sion 1 given by the cyclic group T c J of 19 rational points. Then G acts 
trivially on V(1). 

Let 1 9 = n ~  denote a decomposition of 19 as a product of prime 
elements in the ring Z E72"] ~Z[~/~']" Since 7r and ~ are relatively prime 
the space V decomposes accordingly into the direct sum of the kernels 
of n and ~: 

v= v.~v~. 

The subspaces V~ and V~ are easily seen to be stable under the actions 
of G and of F, but they are interchanged under any z~. Indeed, the map 
~ z ~  zr is a non-trivial automorphism o f / ' [ 7 2 ]  and consequently 

The subspace V(1) is contained in one of the two subspaces V~ and Vn 
because it is stable under 72. Interchanging n and ~ if necessary, we can 
assume 

V(1)c V~. 

4 As Serre remarked, D |  ~ M2 (~), the algebra of 2 x 2 matrices over Q. Consequently J 
is not irreducible over any field over which the action of ,5 is rational. 
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We now define a subspace V(7)c V which is stable under the action 
of G and of F. 

V(7) = {re V[ v ~ = 7~ v, for all ~e G}. 

Claim 1. For any ~, z~ interchanges the subspaces V(1) and V(7 ). 

One proves the above claim, in one direction, by the calculation 

(~ v) ~ = ( ~ ) ~  = 7~ ~ v ~ = 7~ ( ~  v) 

if ve V(1), and in the other direction similarly. 

Claim 2. The self-duality of V induces a (Cartier) duality between the 
Galois modules V~ and V~. 

Since each of these spaces is of dimension 2 and their sum is V, it 
suffices to show that they are self orthogonal under the canonical pairing 
of V with itself to the Galois module of 19-th roots of unity (the "e19- 
pairing" of Weil). We denote this pairing simply by ( , ). We have 

(72 u, 72 v)= (u, v) 
because ?z must induce the identity on the 2-dimensional cohomology 
of our curve X. On the other hand, V~ and V~ are eigenspaces for 72, with 
eigenvalues the two primitive 6-th roots of unity in the field 7//19. Since 
the square of a primitive sixth root of unity is not 1, our claim follows. 

Corollary. Let V(X ) denote the Galois module of  19-th roots of unity. 
There is a short exact sequence of  G-modules as follows: 

0 -~ V(7) -~ V~ ~ V(x ) -~ 0. 

Take the map b to be the Cartier dual of the inclusion V(1)~--, V~. By 
Claim 1 we know that V(7 ) is a one-dimensional subspace of V~. Hence 
our corollary will be proven if we can show that V(7 ) is in the kernel of b. 
For  this it suffices to show that V(7 ) and V(~) are not isomorphic. But 
they certainly are not, since G a l ( ~ ( ~ ) + / ~ )  acts faithfully on V(7 ) and 
Gal  (Q (~i-)/Q) acts faithfully on V(Z ). 

4. The Descent 

We shall now use our analysis of the Galois structure of the 19-division 
points of J to prove 

Theorem. There are precisely 19 rational points on J. There are no 
rational points on X other than its six rational cusps. 

Corollary. There is no elliptic curve defined over ~ possessing a rational 
point of order 13. 5 

5 It is, however, extremely easy to find isogenies of order 13 of elliptic curves defined 
over ~: they form a parametrizable family since Xo(13) is of genus zero. 
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The theorem is proved by a n-descent (cf. I-3]). Let S=(Spec 7/)-(13) 
be the open subscheme of Spec Z obtained by removing the closed 
point 13. Let A be the abelian scheme over S with generic fiber J. We 
have a short exact sequence of group schemes over S 

O--~F-~A~,A-~O 

where F=A~ is a finite flat group scheme of order 192 whose generic 
fiber corresponds to the Galois module V = J~. 

Proposition. The map n induces a surjection on A(S). 

The theorem follows from the proposition. Indeed, the group 
A(S)~J(Q) is finitely generated ("Mordell-Weil Theorem") and a 
finitely generated Z [~/'l]-module on which n acts surjectively is finite. 
Thus the proposition implies J(Q) is finite, hence of order 19 by the 
result quoted above. The assertion about X also follows from a result 
of Ogg mentioned above, namely, that X c~ T consists of precisely the 
six rational cusps. 

Let P = Spec Q13. Then P is an S-scheme, and we have a commutative 
diagram with exact rows 

A (S) '~ , A(S) , H '  (S, F) 

A(P) ~ ,A(P) ,H~(P,F) 

where cohomology means f.p.p.f, cohomology. From this diagram it is 
clear that to prove the proposition it suffices to prove two things: 

(i) n acts surjectively on A(P). 
(ii) p is injective. 

Proof of(i). Let ~r denote the N6ron model of J over Z13, and let N 
be the kernel of the reduction map d ( Z 1 3 ) ~ d ( Z / 1 3 ) .  Then N is a 
pro-13-group on which 19, and hence n, must act bijectively. Since N is 
of finite index in ~r and since an endomorphism of a finite 
group is surjective if and only if it is injective, we are reduced to showing 
that n acts injectively on A(P)=J(ff~13), i.e. that (V~)D=0, where D is a 
13-decomposition subgroup of G. By the corollary in w 3 it suffices to 
note that both V(Z)~ and V(V)~ i.e. that 13 does not split com- 
pletely either in the field Q(~-f)(because 1 3 ~ l ( m o d  19)) or in the 
maximal real subfield of ~ (~i-)(because 13 ramifies). 

Proof of (ii). Let T =  Spec Z [~/1, 13 -1] be the normalization of S in 
Q ( ~ ) .  Note that T--~S is 6tale. 
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Lemma. There is a short exact sequence of S-group schemes 

0--~ E-~  F - .  p l 9 - .  0 

where E is a finite dtale group scheme over S whose restriction to T is 
isomorphic to 7Z/19. 

Let E be the Zariski closure in A of V(),), regarded as a finite sub- 
group of J. Then E is a finite flat closed subgroup of F, and the quotient 
FIE has generic fiber corresponding to the Galois module V(Z). Thus 
F/E and P~9 have isomorphic generic fibers, and so do EIT and Z/19. 
The lemma now follows from the fact that a finite flat group scheme of 
prime order p over U is determined by its generic fiber, if U is an open 
subset of the spectrum of the ring of integers in a number field such that 
each point of U above p has absolute ramification index < p - 1 .  This 
fact is a corollary of Theorem 3 of [5]; the key point is already the purely 
local theorem of [5], which shows that with the ramification so limited, 
there is only one group scheme over each local ring which is compatible 
with a given group scheme over its field of fractions. 

Now consider the exact commutative diagram 

HI(S,E) ~HI(S,F) , H1 (S, ]A19) 

n 1 (P, F) ~ H l (P, ~ l  9)- 

It shows that to prove (ii), i.e. p injective, it suffices to prove two things: 

(ii a) p' is injective. 
(iib) Hi(S, E)=0.  

To prove (ii a) we use the exact sequence 

0 ------~ pi  9 ------~ ~ m  1-~9 ~tn ------~ 0, 

Since Hi(S, 113,,)= Pic S = 0  and similarly Ht(P, II],.)=0, we are reduced 
to showing 

~;m (S)/19 ~;m (S) --* ~m (~13)/19 ~, .  (Q1 a) 

is injective. This is true, because ~m(S)=(+  13").r and 13 is not a 19-th 
power in Qla. 

To prove (iib) we note that 

Hi(S, E) = Hi(T, E) ~aur/s~ 

because T/S is Galois of degree 12 prime to 19. Hence it suffices to show 
Ht(T,E)=HI(T,Z/19)=O. This amounts to the fact that T has no 
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connected 6tale Galois covering of degree 19, i. e. that the field K = • (~'1) 
has no abelian extension of degree 19 unramified outside the prime 2 
above 13. This is true by class field theory, because the class number of 
K is prime to 19 (in fact it is 1; cf. [2]), and the group of 2-adic units is 
divisible by 19 (because it has a subgroup of index 1 3 - 1  = 12 which is a 
pro-13-group). 

Remarks. 1. It is of interest to list the main ingredients (apart from 
our analysis of 19-division points) which make the argument work: 

(a) 13 and 19 are distinct primes. 
(b) 13 ~ 1 mod 19. 
(c) the class number of Q(~13) is prime to 19. 

2. We performed our descent over the base S = S p e c Z - ( 1 3 )  in 
order to deal solely with finite fiat group schemes. We might have 
worked directly over Spec Z, in which case we would have been dealing 
with quasi-finite group schemes, but we could have avoided any special 
appeal to ~13. Such an argument yields easily the following extra bit of 
information: multiplication by n induces an injection on the Shafarevitch 
group of J over ~ .  

5. An Afterthought 

When you study X1 (n), you find yourself quite naturally led to certain 
twisted forms of the curve X1 (n), which become isomorphic to X~ (n) 
over K § These can easily be defined explicitly, or by the following 
succinct modular description: 

Let t /be any integer mod ~p(n)/2. Set X"=X'~(n) to be the complete 
curve over ~ which is obtained from considering the following moduli 
problem. 

Classify pairs 
| r/ r/times x: #~'r E where #, = ~ . |  ... |  

We then have operators: ~: X '  ~ X ~-", by setting z x to be 

where E = E/image ~), as before. 
Now specialize again to the case n =  13. Over the field Q(l/q-3), the 

isomorphism class of X" depends only on r/mod 3 and so specializing to 
t /=  2 we have an involution: 

(.0="~": S2---~X 2 

defined over Q(1/~).  This involution determines an involution of the 
Jacobian co: d 2--, j2. It is not too hard to see that the + 1 and - 1 eigen- 
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s p a c e s  o f  th i s  i n v o l u t i o n  to a re  e l l ip t ic  c u r v e s  in j 2  w h i c h  a re  c o n j u g a t e  

ove r  Q,  a n d  i s o g e n o u s .  T h i s  i n d i c a t e s  t h a t  o u r  a b e l i a n  va r i e ty  o f  d i m e n -  

s i o n  2 is a c tua l ly ,  u p  to  i sogeny ,  a p r o d u c t  o f  t w o  el l ipt ic  c u r v e s  o v e r  K § 
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