Bachelor Project: Dedekind Sums

Begeleider: David Lilienfeldt

Richard Dedekind (1831-1916) introduced and studied the properties of the so-called Dedekind sums $s(a, c)$ defined for integers a and $c \neq 0$ with $\operatorname{gcd}(a, c)=1$ by

$$
s(a, c)=\sum_{n=1}^{|c|-1}\left(\left(\frac{n}{c}\right)\right)\left(\left(\frac{n a}{c}\right)\right) .
$$

Here $((\cdot)): \mathbb{R} \longrightarrow \mathbb{R}$ is the sawtooth function defined by the formula

$$
((x))= \begin{cases}x-\lfloor x\rfloor-1 / 2 & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}
$$

where $\lfloor\cdot\rfloor$ denotes the floor function (e.g., $\lfloor 1.7\rfloor=1$). Due to their remarkable arithmetic properties, Dedekind sums are ubiquitous in number theory and deeply connected with the theories of

- modular forms (Dedekind η-function, Ramanujan Δ-function)
- special values of L-functions (ζ-functions of real quadratic fields)
- linking numbers (of modular knots with the trefoil knot).

Recall that the matrix group $\mathrm{SL}_{2}(\mathbb{Z})$ is defined as

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\} .
$$

The Dedekind cocycle is a function $\Phi: \mathrm{SL}_{2}(\mathbb{Z}) \longrightarrow \mathbb{Q}$ defined, for a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, by

$$
\Phi(A)= \begin{cases}\frac{b}{d} & \text { if } c=0 \\ \frac{a+d}{c}-12 \operatorname{sign}(c) s(a, c) & \text { if } c \neq 0 .\end{cases}
$$

Remarkably, this function takes its values in \mathbb{Z} and is almost a homomorphism of groups: if $A, B \in$ $\mathrm{SL}_{2}(\mathbb{Z})$, then

$$
\Phi(A B)=\Phi(A)+\Phi(B)-3 \operatorname{sign}\left(c_{A} c_{B} c_{A B}\right),
$$

where c_{M} denotes the lower left entry of a matrix $M \in \mathrm{SL}_{2}(\mathbb{Z})$.

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ is hyperbolic with $a+d>2$, then it turns out that the quantity

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Phi\left(A^{n}\right)}{n} \tag{1}
\end{equation*}
$$

is equal to the linking number of a certain knot k_{A} on the 3-manifold $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R})$ with the trefoil knot. In particular, it is an integer.

Question: How fast does the quantity (1) converge? What happens when A is not hyperbolic?
The student will conduct numerical experiments using SageMath or MAGMA to study this question. Later in the project, it is possible to explore connections with modular forms, L-series, and/or linking numbers depending on the interests of the student.

Prerequisites: Group theory, real/complex analysis (optional), differential geometry (optional).

1. W. Duke, O. Imamoḡlu, A. Tóth, Modular cocycles and linking numbers, Duke Math. J. 166 (2017), 1179-1210.
2. E. Ghys, Knots and dynamics, International Congress of Mathematicians. Vol. I (2007), 247-277.
3. H. Rademacher, E. Grosswald, Dedekind sums, The Carus Mathematical Monographs, No. 16 (1972), xvi+102.
