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Richard Dedekind (1831–1916) introduced and studied the properties of
the so-called Dedekind sums s(a, c) defined for integers a and c ̸= 0 with
gcd(a, c) = 1 by

s(a, c) =

|c|−1∑
n=1

((n
c

))((na
c

))
.

Here ((·)) : R −→ R is the sawtooth function defined by the formula

((x)) =

{
x− ⌊x⌋ − 1/2 if x ∈ R \ Z
0 if x ∈ Z,

where ⌊·⌋ denotes the floor function (e.g., ⌊1.7⌋ = 1). Due to their remarkable arithmetic properties,
Dedekind sums are ubiquitous in number theory and deeply connected with the theories of

• modular forms (Dedekind η-function, Ramanujan ∆-function)

• special values of L-functions (ζ-functions of real quadratic fields)

• linking numbers (of modular knots with the trefoil knot).

Recall that the matrix group SL2(Z) is defined as

SL2(Z) =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

The Dedekind cocycle is a function Φ: SL2(Z)−→Q defined, for a matrix A =
(
a b
c d

)
∈ SL2(Z), by

Φ(A) =

{
b
d if c = 0
a+d
c − 12 sign(c)s(a, c) if c ̸= 0.

Remarkably, this function takes its values in Z and is almost a homomorphism of groups: if A,B ∈
SL2(Z), then

Φ(AB) = Φ(A) + Φ(B)− 3 sign(cAcBcAB),

where cM denotes the lower left entry of a matrix M ∈ SL2(Z).

If A =
(
a b
c d

)
∈ SL2(Z) is hyperbolic with a + d > 2, then it turns out that the

quantity

lim
n→∞

Φ(An)

n
(1)

is equal to the linking number of a certain knot kA on the 3-manifold
SL2(Z)\SL2(R) with the trefoil knot. In particular, it is an integer.

Question: How fast does the quantity (1) converge? What happens when A is not hyperbolic?

The student will conduct numerical experiments using SageMath or MAGMA to study this question.
Later in the project, it is possible to explore connections with modular forms, L-series, and/or
linking numbers depending on the interests of the student.

Prerequisites: Group theory, real/complex analysis (optional), differential geometry (optional).
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