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Craig’s Lattices. We propose to study a family of euclidean lattices known as Craig’s Lattices
and denoted Ak

n−1 (n ≥ 3, k ≥ 1), also called “repeated difference lattices”. While there definition
is rather simple, they are known to provide near-optimal lattice packing. Indeed, define the n× n
circulant matrix (zero-entries left blank)

Bn−1 =


1 −1
−1 1

−1 1
. . .

. . .

−1 1

 (1)

and consider Ak
n−1 the lattice generated by the columns of Bk

n−1. Alternatively, one may think of
Ak

n is the ideal generated by (1−X) in the ring Z[X]/(1−Xn). This lattices has dimension n− 1,
and determinant nk/2. For n prime and k ≤ 1 one can show [CS13, Chap. 8, §6] a lower bound on
its minimal distance1 namely:

λ1(A
k
n−1) ≥

√
2k.

This lower bound can be compared to Minkowski upper bound λ1(L)

det(L)1/n
≤

√
2n
πe + o(

√
n), and

choosing k = ⌊n/ lnn⌋ we note a gap of only O(lnn) between this lower and upper bounds. In
other terms, these rather simply defined lattices are not that far from providing optimal minimal
distances. This property is not only of pure mathematical interest, but has potential application
in information theory and cryptography.

Some experimental conjectures. One may wonder whether this bound λ1(A
k
n−1) ≥

√
2k is

actually reached, and by how many vectors. For k = 1, the answer is easy and well documented
(An−1 = A1

n−1 is known as a so-called ”root lattice”): λ1(A
1
n) =

√
2, and its kissing number2 is

κ(A1
n−1) = n(n− 1).

Not much more appears to be known for k ≥ 2, except for rather specific cases: λ1(A
k
n−1) =

√
2k

is already known if k divides (n− 1), or if k = 1
4(p+ 1) with k ≡ 3 mod 4 [BB92, Prop 4.1]. But

experimentally, it seems that more could be said. Indeed, for parameters where we could brute-force
the enumeration of short vectors on a computer (say, n ≤ 200, k ≤ 7) we remark that:

1i.e. the quantity λ1(L) := minx∈L\{0} ∥x∥, where ∥ · ∥ denotes the standard euclidean norm of Rn.
2i.e. the quantity κ(L) := |{x ∈ L | ∥x∥ = λ1(L)}|
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� For k = 2 and any n ≥ 5 (including composite n), λ1(A
2
n−1) = 2 and

κ(A2
n−1) =

{
n(n− 1)(n− 3)/4 if n is odd
n(n− 2)(n− 4)/4 if n is even.

Perhaps interestingly, this match a known integer sequence, namely the number of obtuse
triangles made from vertices of a regular n-gon [https://oeis.org/A060423].

� For any fixed k, and for large enough primes n, λ1(A
k
n−1) =

√
2k and

κ(Ak
n−1) ∼

(
n

k

)2

· n1−k as n → ∞

Problem 1: Prove, or disprove the above conjectures, even partially.

Spherical Codes and Decoding. A spherical code with parameters (n,N, α) is a finite subset
C of the Euclidean sphere Sd−1 of Rd such that any distinct points c, c′ ∈ C satisfy ⟨c, c′⟩ ≤ cosα.
In other terms, the angles between any two points of C are at least α.
By intersecting a (re-scaled) lattice L ⊂ Rn with the sphere, one obtain a spherical code C(L) =

1
λ1(L)

L ∩ Sn−1 with parameters (n, κ(L), π/3).

The list decoding problem for a code C and angle β and target t ∈ Sn−1 is the algorithmic task
of finding all codewords close to t; i.e. computing the set {c ∈ C | ⟨c, t⟩ ≥ cosβ}. Note that if
β ≤ α/2, there is at most one solution, in which case the problem is called unique decoding.
Generically, this problem can be solved in time O(n ·N) by brute-force, that is by computing the
N inner products and testing the inequality. But we hope to do better for well structured spherical
codes. For example, the spherical code C(A1

n−1) has N = n(n − 1) many elements, and for any
β < π/6 the unique decoding problem can be solved in time O(n) instead of the brute-forcing time
O(n3). Indeed, one may simply find the index i (resp j) of the minimal (resp. maximal) coordinate
of t, leading to the single candidate solution c = 1√

2
(ei − ej).

Problem 2: Invent and analyze algorithms faster than brute-force for decoding the spherical code
C(Ak

n) for k > 1. Precomputation that depends only on n, k, β but not on t is allowed.
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