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About

You are reading the program for the arithmetic geometry student seminar at FU Berlin during
the summer semester of 2016. Below we sketch an outline of the content we aim to cover. Next
follow some organizational remarks and a detailed schedule. At the end of the program you’ll
find a list of references. If you have any questions regarding the seminar or want to volunteer
for a talk, please contact the organizers.

Overview

The topic of this seminar is, obviously, D-modules. These can be seen as the algebraic version
of partial differential equations. There is a striking dichotomy between the characteristic 0
and the characteristic p settings. In complex geometry, the Riemann–Hilbert correspondence
is a dictionary between D-modules and local systems, or representations of the fundamental
group. In particular, all D-modules on a proper smooth complex variety X are trivial if the
fundamental group of X is trivial. We will prove and explain these statements. Then, still in
characteristic 0, we make a little detour into derived categories and study some functoriality
for D-modules, as well as the Gauss–Manin connection. At the end of the seminar we move
to characteristic p. An analogue of the Riemann–Hilbert correspondence was conjectured by
Gieseker and recently proven by Esnault and Mehta. That proof is far beyond our scope.
Instead we will study various examples of the phenomenon.

Organization

Time Monday, 10:15–11:45

April 18 until July 18

Location FU Berlin, A3/SR210

Organizers Elena Lavanda, elenalavanda@zedat.fu-berlin.de
Wouter Zomervrucht, zomervruchtw@mi.fu-berlin.de

Website http://www.mi.fu-berlin.de/users/zomervruchtw/2016-dmod/

Unfortunately, there does not seem to exist a single main reference suitable for this seminar.
Therefore the schedule below includes detailed references for each talk, as well as some extra
explanation where needed. However, you are free to follow any source you like; there is usually
not a best one. It is only important to cover the described material. Try to include examples
and counterexamples in your talk every now and then. Some have already been written down
in the schedule, but the more, the merrier!

At the end of this program there is a list of references. The list is duplicated on the seminar’s
website with links to the full text as far as freely online available. If nevertheless you experience
trouble finding a reference, just contact the organizers.
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Schedule

Throughout, k is an algebraically closed field. A variety over k is an integral separated finite
type k-scheme. Usually we only consider smooth varieties.

22-04. Introduction Wouter

Give an overview of the seminar following the program below. In the second half of the talk
recall the basic notions of (quasi-)coherent sheaves, derivations, differentials, and smoothness.
A possible reference is [16], sections 4.2–3, 5.1, and 6.1–2.

25-04. The sheaf of differential operators Marco

Start by introducing the sheaf of differential operators DX/k on a smooth variety X/k. It is
defined as follows. First set D≤0 = OX . We interpret f ∈ D≤0 as the multiplication map
OX → OX , g 7→ f g. Then for i ≥ 1 define D≤i inductively as the subsheaf of Endk OX consisting
of those θ for which the commutator [θ, f ] with any f ∈ D≤0 lies in D≤i−1. We obtain a system
D≤0 ⊆ D≤1 ⊆ . . . ⊆ Endk OX and define DX/k = colimi≥0 D

≤i. (This colimit is just a union.)
The sheaf DX/k has a non-commutative ring structure by composition. Remark that each D≤i

is an OX-module and in particular D≤1 = OX ⊕ TX/k as OX-modules; here we identify as usual
TX/k = Derk(OX ,OX). For η ∈ D≤i, θ ∈ D≤j one has ηθ ∈ D≤i+j and [η, θ] ∈ D≤i+j−1.

Since X/k is smooth, at every point of X we can find a system of local coordinates, i.e. local
sections x1, . . . , xn ∈ OX such that dx1, . . . , dxn form a basis of Ω1

X/k. Given local coordinates,
describe DX/k as in proposition 1.8 of [14]. Make the second and third remark of corollary 1.9.
Our next goal is to see this description is correct. Here is the strategy. Let R be the sheaf of rings
given by generators and relations in proposition 1.8. There is an obvious ring homomorphism
R→ DX/k. Both R and DX/k are filtered; by dimension considerations it suffices to prove that
grR→ grDX/k is an isomorphism. For char k = 0 that verification can be found in the proofs
of propositions 5.2–3 of [8]. For char k > 0 the same proof works.

If time permits you can now explain the fourth remark of [14], corollary 1.9. In any case
mention the following distinction between characteristic 0 and p. The commutator bracket [·, ·]
makes the tangent bundle TX/k into a Lie algebra. As such, TX/k has a universal enveloping
algebra. In characteristic zero this is precisely DX/k. In positive characteristic that is false.

02-05. D-modules and connections Yun

Let X/k be a smooth variety. Define a D-module on X as a sheaf of DX/k-modules, that is, a
sheaf of abelian groups E on X endowed with (i) a map DX/k × E → E satisfying the usual
module axioms, or equivalently (ii) a ring homomorphism DX/k → EndE. Such E inherits an
OX-module structure via OX → DX/k and in particular has a k-module structure. Now the map
in (i) factors canonically over DX/k ⊗OX E. Observe also that it is k-linear but not necessarily
OX-linear in E, because k is the center of DX/k. Similarly the map in (ii) has image in Endk E,
not necessarily in EndOX E. Nevertheless the map in (ii) is OX-linear.

If E and F are D-modules on X, a D-module homomorphism E → F is a homomorphism
of abelian sheaves that respects the D-module structure, i.e. for which the obvious diagram

DX/k × E E

DX/k × F F
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commutes.
A first example of a D-module is DX/k itself. More interesting is the D-module OX with

action given by θ · f = θ( f ). A D-module is called trivial if it is isomorphic as D-module to
a direct sum

⊕
I OX . To see some real examples, explain the relation between D-modules and

partial differential equations following §6.1 in [3]. In this text K denotes a field of characteristic
zero and the Weyl algebra An is by definition the K[x1, . . . , xn]-algebra DAn/K(A

n).
Define a stratified bundle to be a DX/k-module that is coherent as OX-module. Show that

stratified bundles are in fact locally free: proposition VI.1.7 in [2] or proposition 1.11 in [14].
This justifies the word ‘bundle’. Usually we’ll restrict ourselves to stratified bundles.

Now introduce flat (or integrable) connections. Cover from [17] definition 1.1, example 1.2,
example 1.5, and all of §1.3. Take S = Spec k and do not forget the remark at the top of page 3.
Then explain how a stratified bundle induces an flat connection. Indeed, for a stratified bundle
E the inclusion TX/k → DX/k gives a map TX/k ⊗OX E→ E. Since TX/k is the OX-dual of Ω1

X/k
there is an induced map E→ Ω1

X/k ⊗OX E. Verify that this is an flat connection.
In characteristic zero one can reverse the process as follows. A flat connection on E induces

a Lie algebra homomorphism TX/k → Endk E. Recall from the previous talk that DX/k is the
universal enveloping algebra of TX/k, so TX/k → Endk E extends uniquely to a k-algebra ho-
momorphism DX/k → Endk E. Conclude that there is an equivalence of categories between
stratified bundles and flat connections. This is false in positive characteristic, as then DX/k is
not the universal enveloping algebra of TX/k.

09-05. The tannakian category of D-modules Marcin

Present the theory of neutral tannakian categories. An excellent reference is [5], §1–2. Do not
spend too much time on all details; often saying ‘the obvious diagrams commute’ is enough.
Most proofs can be omitted, as well as items 1.25–27, 2.12–16, 2.22–29, and 2.34–35. You may
omit more where necessary, but don’t skip all examples! Try to give at least a sketch of the
proof of theorem 2.11.

To finish your talk, let X/k be a smooth variety and x ∈ X a closed point. Prove that the
category of stratified bundles on X is neutral tannakian with fiber functor E 7→ Ex. Use for
instance proposition 1.20 of [5]. See exercises 1.10(1) and 1.11(1) in [18] for some constructions.

16-05. No seminar

23-05. The Riemann–Hilbert correspondence Pedro

In complex geometry, the Riemann–Hilbert correspondence is a dictionary between D-modules
and so-called local systems. Surprisingly the latter are purely topological! Remember that, as
we work in characteristic zero, stratified bundles can be replaced by flat connections.

Give a short introduction to analytic spaces. We are mostly interested in smooth analytic
spaces, which are just complex manifolds. You can use sections 1.1–2 of [19] or any textbook on
complex geometry. Define holomorphic flat connections as in [4], I.2.4–14. Following Deligne,
give definition I.1.1 and prove proposition I.2.16 and theorem I.2.17. (The proofs are in I.2.23.)
This is the classical, analytic Riemann–Hilbert correspondence. Add the remark that the equiv-
alence is one of tensor categories, i.e. respects the tannakian structure.

Now let X/C be a smooth variety. Sketch how to associate to X an analytic space Xan and
to an OX-module F an OXan -module Fan following [19], sections 2.4–3.9. Observe in 3.9 that
there is a morphism of ringed spaces ψ : (Xan,OXan)→ (X,OX). If F is a sheaf of OX-modules,
then Serre’s sheaf F′ is simply ψ−1F and Fan = ψ∗F.

3



State theorems 2 and 3 from §3.12 of [19] for proper varieties. Returning to connections,
show that an algebraic (flat) connection on X induces a holomorphic (flat) connection on Xan.
Deduce from the GAGA theorems that this construction is an equivalence of categories if X is
proper. Again the equivalence is one of tensor categories. Remark that the equivalence breaks
down if X is not proper; in that case one should restrict to connections with at most ‘regular
singularities’ on a compactifaction. This is proved in [4].

30-05. Representations of the fundamental group Fei

Recall the Riemann–Hilbert correspondence between flat connections and local systems. On
proper varieties, algebraic and analytic flat connections are the same. In this talk we’ll take a
closer look at local systems and try to make those algebraic as well.

First we give an second analytic characterization of local systems: on a (decent) topological
space X, local systems are equivalent to finite-dimensional representations of the fundamental
group π1(X). To see this, first define locally constant sheaves and state their equivalence with
covers and π1(X)-sets as in definition 2.5.6, theorem 2.5.9, and theorem 2.3.4 of [20]. Don’t give
any proofs; just construct the fiber functor. Note that Szamuely uses Deligne’s convention that
for loops α, β ∈ π1(X) the composition αβ means first β, then α. You should make the world a
better place and do the same! Then explain corollary 2.6.2.

Now let X/C be a smooth variety. Local systems on Xan are closely related to covers of Xan.
Unfortunately, the category of covers of Xan does not seem to admit an algebraic description.
Nevertheless we can describe the full subcategory of finite covers. Remark that if s : Z → Xan

is a cover, one can endow Z with a complex structure making s holomorphic. Moreover, in that
case s is a local isomorphism by the inverse function theorem, i.e. s is an isomorphism every-
where locally on Z. Grothendieck made the essential observation that the algebraic analogue
of local isomorphisms are étale morphisms. To be precise, a morphism of complex varieties
Y → X is étale if and only if Yan → Xan is a local isomorphism. Of course, not every local iso-
morphism is a topological cover; but if Y → X is finite étale, then Yan → Xan is a finite cover.
This will give an equivalence between finite étale maps Y → X and finite covers Z → Xan.

Let’s make things precise. Explain without proof theorem 5.10 in [15]. Then define the fiber
functor and explain that the category of finite étale covers of X is equivalent to that of finite
π-sets for some profinite group π. We call π = πet

1 (X) the (étale) fundamental group of X.
Follow theorem 5.24 in [15] or theorem 5.4.2 in [20]. In either case, there is time only for a
sketch of the proof. Also state [20], theorem 5.7.4.

At last return to local systems. A local system on Xan is a sheaf of vector spaces V on
Xan that admits a cover s : Z → Xan such that s−1V is constant. Say the system is finite if
we can take s to be finite. Similarly, define a finite local system on X to be a sheaf of vector
spaces V on X that admits a finite étale cover s : Y → X such that s−1V is constant. By the
above reasoning the categories of analytic and algebraic finite local systems are equivalent.
Moreover, analogous to corollary 2.6.2 of [20] algebraic finite local systems are equivalent to
finite-dimensional representions of πet

1 (X). The induced functor from πet
1 (X)-representations

to π1(Xan)-representations is simply restriction along π1(Xan)→ π̂1(Xan) = πet
1 (X).

06-06. The derived category of D-modules Mara

Recall quickly, without proofs, the definition of sheaf cohomology via right derived functors.
More precisely, define injective objects and injective resolutions; state that on any scheme X
the category of OX-modules has enough injectives; and if F is an OX-module with injective
resolution I•, then Hi(X,F) = Γ(X, Ii) = Ii(X). See sections III.1–2 of [11] for more details.
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Show that the category of OX-quasi-coherent DX/k-modules on a smooth variety X/k has
enough injectives following proposition VI.2.1 in [2]. Borel denotes this category by µ(DX). You
may use without proof that, for any not necessarily commutative ring R, the category of left
R-modules has enough injectives. Similarly show that there are enough projectives following
proposition VI.2.4. For both parts a sketch of the proofs suffices.

During the remainder of the talk, construct Dqc(DX/k), the derived category of the cate-
gory of OX-quasi-coherent DX/k-modules. In fact, construct the derived category D(A) of any
abelian category A. The emphasis should not be on proofs, but rather on how we can work in
practice with objects and morphisms of D(A). Also do not mention the triangulated structure
on D(A). A good reference is [21], items 10.1.1–2, 10.3.1–11 without the set-theoretic remarks,
10.3.15–16, and the special case K = K(A), S = {quasi-isomorphisms} of proposition 10.4.1(1).

13-06. Functoriality of D-modules Elena

Introduce derived functors between derived categories as in [21], 10.5.1–7. Replace corollary
10.5.7 by the following equivalent statement. Let F : A → B be an additive functor of abelian
categories and assume A has enough injectives. Each bounded below complex A• in A admits
an injective resolution A• → I• and Hi(RF(A•)) = Hi(F(I•)). Similarly for LF.

In this talk we study two types of functoriality for D-modules: pullback and pushforward.
First pullback. Let f : X → Y be a morphism of smooth k-varieties and F a D-module on Y. The
usual inverse image f ∗F has a natural DX/k-module structure. We denote this D-module by
f+F. Note that f+, like f ∗, is right exact but in general not exact. So we get a derived functor
L f+ : D−qc(DY/k) → D−qc(DX/k). One has L f+DY/k = f+DY/k and for any F• ∈ D−qc(DY/k) the
complex of OX-modules underlying L f+F• is just L f ∗F•. See §1.3 and §1.5 of [12] for details;
be warned that they write f ∗ for our f+.

Next pushforward. Up to now, all D-module were left D-modules. Pushforward will be
defined for right D-modules. In characteristic zero that is not a problem, since then there is an
equivalence between left and right D-modules. Indeed, if char k = 0, we know that DX/k is the
universal enveloping algebra of TX/k. Hence the canonical bundle ωX/k is a right D-module
as in [12], page 19. (This text writes ΩX/k for ωX/k.) Explain proposition 1.2.12 from [12]. Take
care to define the correct D-module structures from proposition 1.2.9.

If E is a right D-module on X, its direct image is f+E = f∗(E⊗DX/k f+DY/k). Deriving
this functor is somewhat complicated since f∗ is left exact whereas ⊗ is right exact. That is
resolved using the Spencer complex Sp•X→Y, a flat resolution of f+DY/k in DX/k-modules.
Then R f+ : D+

qc(DX/k)→ D+
qc(DY/k) is given by E• 7→ R f∗(E• ⊗DX/k Sp•X→Y). The point is that

we don’t need to derive the tensor product anymore. For details see items 1.4.2–3 and 3.3.1–3

of [18]. Finally, if char k = 0 describe the analogue for left modules following page 23 in [12].

20-06. No seminar

27-06. The Gauss–Manin connection Efstathia

Throughout, let k have characteristic zero and f : X → Y a morphism of smooth k-varieties.
Recall the construction of the derived direct image R f+E of a left D-module E on X. Here is an
alternative construction. Associated to a flat connection E on X we have the de Rham complex
Ω•X/k(E). See definition 1.4.1 in [18] and prove propositions 1.4.3 and 1.4.4. Then explain the
alternative construction of R f+ in proposition 3.3.5.

In the special case E = OX we call the connections Hi(R f+OX) the Gauss–Manin con-
nections with respect to f . They can be computed using a spectral sequence: see §3.1 of [1].
You can say a few words about that if you want. During the remainder of your talk, you will
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compute the Gauss–Manin connection if Y is a curve. Then the spectral sequence reduces to
the boundary map in a certain exact sequence. Explain this following [1], §3.3. Omit the Čech
cohomology computations on page 11 but give as many details as possible for example 3.4.

04-07. F-divided bundles Wouter

Recall the Riemann–Hilbert correspondence: on a proper smooth variety V/C there is an
equivalence of categories between stratified bundles on V and finite-dimensional complex
representations of the topological fundamental group π1(Van). Deduce theorem 0.4 of [9]. The
proof uses the main result from [10]. Depending on time, you may use that as a black box.

Gieseker’s conjecture states that roughly the same result should hold for varieties over a
field of positive characteristic. In the next few talks we study this conjecture. So from now on
suppose that char k = p is positive. Then stratified bundles have an alternative description as
F-divided bundles. Define F-divided bundles and their morphisms as in [9], definitions 1.1–2.
Prove theorem 1.3 and end your talk with the proof of proposition 1.7.

Here follow some hints regarding the terminology in [9]. Ignoring Gieseker, take for V/k
just a smooth variety, not a formal scheme. The Frobenius endomorphism F : V → V is the
absolute Frobenius, i.e. the identity on topological spaces but with F# : OV → OV the p-power
map. If ϕ : k→ k is the usual p-Frobenius, there is a commutative (not cartesian) diagram

V V

Spec k Spec k.

F

ϕ∗

A map of bundles σ : E → F is p-linear if for all f ∈ OV and x ∈ E one has σ( f x) = f pσ(x).
Gieseker’s flat bundles are nowadays known as F-divided bundles. Please use the modern
term. What Gieseker calls horizontal maps of stratified bundles we just call morphisms.

11-07. The Gieseker conjecture Yun

First prove theorem 1.8 of [9] as a corollary to proposition 1.7 which was proved in the previous
talk. (If otherwise your talk will be too long, you may skip this part.)

Explain the construction above proposition 1.9 in [9]. Then prove proposition 1.9 and theo-
rem 1.10. State Gieseker’s conjecture: the converse of theorem 1.10 should hold for projective
smooth varieties. The conjecture has recently been proven in [6, 7]. If you feel confident, you
can give a short sketch of the proof following the introduction of [6].

To finish your talk, verify that the Gieseker conjecture holds for Pn. That is, show that Pn

is simply connected and prove theorem 2.2 of [9]. Here is a proof of π1(P
n) = 1. For n = 1

see example IV.2.5.3 in [11]. For n ≥ 2 suppose U → Pn is a connected finite étale cover. Let
H ⊂ Pn be a hyperplane. Then U′ = U×Pn H is connected as well by the Lefschetz hyperplane
theorem; see e.g. [11], corollary III.7.9. Applying induction to H ∼= Pn−1 the cover U → Pn has
degree 1 above H, but then it must have degree 1 everywhere.

18-07. D-modules on K3 surfaces and unirational varieties Tanya

In this talk, we verify the Gieseker conjecture for two classes of examples: K3 surfaces and
unirational varieties. First K3 surfaces. Recall the definition of a K3 surface and show that K3

surfaces are simply connected following [13], remark 2.4. (Don’t spend too much time on this.)
Then prove, in positive characteristic, theorem 2.3 of [9].
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Unirational varieties require some preparation. First prove items 2.7–10 of [9]. For propo-
sition 2.7 you can follow the easier proof in [14], proposition 2.7(c). Now recall that a variety
X/k is unirational if there exists a dominant rational map Pn 99K X. Then its function field has
a finite extension isomorphic to k(x1, . . . , xn). So Gieseker’s conjecture for unirational varieties
follows from theorems 2.2 and 2.10. Note that there exist examples due to Shioda of unirational
surfaces with non-trivial fundamental group.
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