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1. Topology

Let X be a connected topological space. Let x € X be a point. An important invariant of (X, x)
is the (topological) fundamental group

7(X, x) := {loops x ~» x in X} /~.

It can also be described in terms of covers. A cover of X is a map p: Y — X such that every
point x € X has an open neighborhood U C X with p~1(U) = U x p~!(x) as spaces over
U (endowing p~!(x) with the discrete topology). A cover Y — X is universal if Y is simply
connected. In this case (X, x) = Auty Y.

Theorem 1.1. Suppose X admits a universal cover. Then the functor
Cov X — 1(X, x)-Set, p—pi(x)
is an equivalence. ¢
Theorem 1.2. There is a profinite group v, unique up to isomorphism, such that
FCov X ~ m-FSet.
If X admits a universal cover, then 7t is isomorphic to the profinite completion 7 (X, x). ¢

All data in this theorem can be made functorial in (X, x).

Example 1.3. The circle S! has fundamental group 7(S!,x) = Z. It has the universal cover
R — S!, t — exp 27it, with automorphism group generated by the shift ¢ — t + 1. In the set-
ting of theorem 1.2, suppose A is a transitive finite Z-set. Then A 2 Z/nZ, and it corresponds
to the finite cover R/nZ — S!, t — exp 2mit. ¢

2. Algebraic geometry

Let X be a connected scheme. Let x € X be a point. The topological fundamental group 77(X, x)
is not a useful invariant, due to the Zariski topology. As usual, the correct notion of a covering
in algebraic geometry is an étale map. Then theorem 1.2 has the following analogue.

Theorem 2.1. There is a profinite group v, unique up to isomorphism, such that
FEt X ~ m-FSet. ¢

Given a geometric point ¥ of X, we can define 7t and the equivalence functorially in (X, ). It
is the étale fundamental group (X, X).

Often 7®(X, x) is the desired analogue of the topological fundamental group. This can be
seen for instance in the complex case: if X is a connected complex variety and x a closed point,
then 71¢t(X, x) = A (X", x).



Example 2.2. Let X be the complex projective line with 0 and co identified. Its analytification is
the Riemann sphere S? with two points identified, hence 71(X®", x) = Z. We get ¢(X, %) = Z.
In the setting of theorem 2.1, suppose A & Z/nZ is a transitive finite Z-set. It corresponds to
the finite étale X-scheme consisting of 1 copies of P!, where 0 in the i copy is identified with
oo in the (i +1)% copy, cyclically. ¢

Remark 2.3. In the preceding example, there is a natural “universal’ étale X-scheme, with
automorphism group Z. It would be nice if one could actually detect this. This ‘defect’ is
repaired by the pro-étale fundamental group, to be introduced next week. ¢

3. Galois theory

The formalism behind theorems 1.2 and 2.1 is a type of Galois theory. It is used to classify
categories of the form 7-FSet for some profinite group 7.

Definition 3.1. Let C be a category and F: C — FSet a functor. Then C is a Galois category with
fundamental functor F if
» C has finite limits and colimits,
» any map f: X — Y in C can be written as f = m oe with e an epimorphism and m a
monomorphism onto a direct summand of Y, and
» F is exact and conservative. ¢

Example 3.2. Let 7t be a profinite group. Then 71-FSet with the forgetful functor 7r-FSet — FSet
is a Galois category. (We will see that, up to equivalence, this is the only example.) ¢

Let (C, F) be a Galois category. Consider the automorphism group Aut F. Endowing each finite
permutation group S(F(X)) with the discrete topology, the subgroup AutF C [Txcc S(F(X))
is closed. In fact AutF is profinite. The action of Aut F on each F(X) is continuous. So we get
a functor C — Aut F-FSet.

Theorem 3.3. Let (C, F) be a Galois category.
» The functor C — Aut F-FSet is an equivalence.
» Let 7t be a profinite group. If F factors over an equivalence C — r-FSet, then m = Aut F. ¢

Moreover, the group Aut F does not really depend on F.

Theorem 3.4. Let C be a category.
» IfF,F': C — FSet both make C into a Galois category, then F = F'.
» Let 7t, 7' be profinite groups. If C is equivalent to both 7t-FSet and n’-FSet, then 7w = 7', ¢

4. Applications

From the preceding theory we can easily prove theorems 1.2 and 2.1. For the first, let (X, x)
be a pointed connected topological space. We define the fiber functor Fy: FCov X — FSet,

p—ptx).

Lemma 4.1. Let X be a topological space. Let p: Y — X and q: Z — X be finite coverings, and
f+Y — Z a morphism of coverings. Then each x € X has an open neighborhood U C X where p and
q are trivial, such that f is of the form idy x a: U x p~1(U) — U x g~ (U) above U. ¢

Theorem 4.2. The pair (FCov X, Fy) is a Galois category. ¢



In the algebraic geometry setting, we do essentially the same. Let (X, X) be a geometrically
pointed connected scheme. Let F; be the fiber functor FEt X — FEtx — FSet.

Theorem 4.3. The pair (FEt X, Fy) is a Galois category. ¢
It is a good exercise to prove this theorem in the case X = Speck, where k is a field. Observe

that then 7¢t(X, X) = Gal(k*®P /k). This illustrates the terminology ‘Galois theory’.
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