Frits Veerman

Contact information

University of Leiden
Mathematical Institute
Gorlaeus building, office BW 2.05
email: f.w.j.veerman at math dot leidenuniv dot nl

Mailing address:
Mathematical Institute
P.O.Box 9512
2300 RA Leiden
The Netherlands




Frits Veerman

Current research

I'm currently assistant professor at the Mathematical Institute, University of Leiden. Until January 2020, I was a Humboldt Research Fellow at the research group Applied Analysis and Modelling in Biosciences, University of Heidelberg, with Anna Marciniak-Czochra. Until May 2018, I was a postdoc at the School of Mathematics, University of Edinburgh, with Nikola Popović. Until November 2015, I was a postdoc at the Centre for Mathematical Biology, University of Oxford, with Philip Maini.

PhD research

My PhD research, at the University of Leiden, focused on pulse dynamics in two component, singularly perturbed reaction-diffusion equations. Keywords: pattern formation, dynamical systems.
The research was supervised by Arjen Doelman and Vivi Rottschäfer.

Publications

Online

Journal articles

  • M. Mercker, A. Tursch, F. Veerman, A. Kazarnikov, S. Höger, T. Lengfeld, S. Özbek, T. Holstein and A. Marciniak-Czochra, Two separate but interconnected pattern systems are required to control body-axis and head-organiser formation, submitted (2024) [bioRxiv]

  • P. Carter, A. Doelman, A. Iuorio and F. Veerman, Travelling pulses on three spatial scales in a Klausmeier-type vegetation-autotoxicity model, to appear in Nonlinearity (2024) [arXiv]

  • A. Iuorio, M. Baudena, M.B. Eppinga, F. Giannino, M. Rietkerk and F. Veerman, Travelling waves due to negative plant-soil feedbacks in a model including tree life-stages, Mathematical Biosciences 368/109128 (2024) [DOI] [bioRxiv]

  • A. Iuorio, M.B. Eppinga, M. Baudena, F. Veerman, M. Rietkerk and F. Giannino, Modelling how negative plant-soil feedbacks across life stages affect the spatial patterning of trees, Nature Scientific Reports 13/19128 (2023) [DOI] [preprint]

  • F. Veerman and I. Schneider, Controlling pulse stability in singularly perturbed reaction-diffusion systems, Chaos 33/083135 (2023) [DOI] [arXiv]

  • F. Veerman, M. Mercker and A. Marciniak-Czochra, Beyond Turing: Far-from-equilibrium patterns and mechano-chemical feedback, Philosophical Transactions of the Royal Society A 379/2213 (2021) [DOI] [bioRxiv]

  • A. Iuorio and F. Veerman, The influence of autotoxicity on the dynamics of vegetation spots, Physica D 427/133015 (2021) [DOI] [bioRxiv]

  • Y. Chen, A. Doelman, K. Promislow and F. Veerman, Robust stability of multicomponent membranes: the role of glycolipids, Archive for Rational Mechanics and Analysis 238/3 (2020), pp 1521-1557 [DOI] [arXiv]

  • F. Veerman, N. Popović and C. Marr, Parameter inference with analytical propagators for stochastic models of autoregulated gene expression, to appear in International Journal of Nonlinear Sciences and Numerical Simulation (2019) [DOI] [bioRxiv]

  • A. Doelman, J. Rademacher, B. de Rijk, and F. Veerman, Destabilization mechanisms of periodic pulse patterns near a homoclinic limit, SIAM J. Dyn. Sys. 17/2 (2018), pp 1833-1890 [DOI] [PDF]

  • F. Veerman, C. Marr and N. Popović, Time-dependent propagators for stochastic models of gene expression: an analytical method, J. Math. Biol. 77/2 (2018), pp 261-312 [DOI] [PDF]

  • S.H. Piltz, F. Veerman, P.K. Maini, and M.A. Porter, A predator-2 prey fast-slow dynamical system for rapid predator evolution, SIAM J. Dyn. Sys. 16/1 (2017), pp 54-90 [DOI] [arXiv] [PDF]

  • F. Veerman, Breathing pulses in singularly perturbed reaction-diffusion systems, Nonlinearity 28/7 (2015), pp 2211-2246 [DOI] [PDF]

  • A. Doelman and F. Veerman, An explicit theory for pulses in two component, singularly perturbed, reaction-diffusion equations, J. Dyn. Diff. Eq. 27/3 (2015), pp 555-595 [DOI] [PDF]

  • F. Veerman and A. Doelman, Pulses in a Gierer-Meinhardt equation with a slow nonlinearity, SIAM J. Dyn. Sys. 12/1 (2013), pp 28-60 [DOI] [PDF]

  • F. Veerman and F. Verhulst, Quasiperiodic phenomena in the Van der Pol-Mathieu equation, J. Sound and Vibration 326/1-2 (2009), pp 314-320 [DOI]

  • PhD thesis

    Conference proceedings